Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2019 Chris Hughes. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Chris Hughes | |
-/ | |
import algebra.algebra.subalgebra.basic | |
import field_theory.finiteness | |
/-! | |
# Finite dimensional vector spaces | |
Definition and basic properties of finite dimensional vector spaces, of their dimensions, and | |
of linear maps on such spaces. | |
## Main definitions | |
Assume `V` is a vector space over a field `K`. There are (at least) three equivalent definitions of | |
finite-dimensionality of `V`: | |
- it admits a finite basis. | |
- it is finitely generated. | |
- it is noetherian, i.e., every subspace is finitely generated. | |
We introduce a typeclass `finite_dimensional K V` capturing this property. For ease of transfer of | |
proof, it is defined using the second point of view, i.e., as `finite`. However, we prove | |
that all these points of view are equivalent, with the following lemmas | |
(in the namespace `finite_dimensional`): | |
- `fintype_basis_index` states that a finite-dimensional | |
vector space has a finite basis | |
- `finite_dimensional.fin_basis` and `finite_dimensional.fin_basis_of_finrank_eq` | |
are bases for finite dimensional vector spaces, where the index type | |
is `fin` | |
- `of_fintype_basis` states that the existence of a basis indexed by a | |
finite type implies finite-dimensionality | |
- `of_finset_basis` states that the existence of a basis indexed by a | |
`finset` implies finite-dimensionality | |
- `of_finite_basis` states that the existence of a basis indexed by a | |
finite set implies finite-dimensionality | |
- `is_noetherian.iff_fg` states that the space is finite-dimensional if and only if | |
it is noetherian | |
Also defined is `finrank`, the dimension of a finite dimensional space, returning a `nat`, | |
as opposed to `module.rank`, which returns a `cardinal`. When the space has infinite dimension, its | |
`finrank` is by convention set to `0`. | |
Preservation of finite-dimensionality and formulas for the dimension are given for | |
- submodules | |
- quotients (for the dimension of a quotient, see `finrank_quotient_add_finrank`) | |
- linear equivs, in `linear_equiv.finite_dimensional` and `linear_equiv.finrank_eq` | |
- image under a linear map (the rank-nullity formula is in `finrank_range_add_finrank_ker`) | |
Basic properties of linear maps of a finite-dimensional vector space are given. Notably, the | |
equivalence of injectivity and surjectivity is proved in `linear_map.injective_iff_surjective`, | |
and the equivalence between left-inverse and right-inverse in `linear_map.mul_eq_one_comm` | |
and `linear_map.comp_eq_id_comm`. | |
## Implementation notes | |
Most results are deduced from the corresponding results for the general dimension (as a cardinal), | |
in `dimension.lean`. Not all results have been ported yet. | |
Much of this file could be generalised away from fields or division rings. | |
You should not assume that there has been any effort to state lemmas as generally as possible. | |
One of the characterizations of finite-dimensionality is in terms of finite generation. This | |
property is currently defined only for submodules, so we express it through the fact that the | |
maximal submodule (which, as a set, coincides with the whole space) is finitely generated. This is | |
not very convenient to use, although there are some helper functions. However, this becomes very | |
convenient when speaking of submodules which are finite-dimensional, as this notion coincides with | |
the fact that the submodule is finitely generated (as a submodule of the whole space). This | |
equivalence is proved in `submodule.fg_iff_finite_dimensional`. | |
-/ | |
universes u v v' w | |
open_locale classical cardinal | |
open cardinal submodule module function | |
/-- `finite_dimensional` vector spaces are defined to be finite modules. | |
Use `finite_dimensional.of_fintype_basis` to prove finite dimension from another definition. -/ | |
@[reducible] def finite_dimensional (K V : Type*) [division_ring K] | |
[add_comm_group V] [module K V] := module.finite K V | |
variables {K : Type u} {V : Type v} | |
namespace finite_dimensional | |
open is_noetherian | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
/-- If the codomain of an injective linear map is finite dimensional, the domain must be as well. -/ | |
lemma of_injective (f : V →ₗ[K] V₂) (w : function.injective f) | |
[finite_dimensional K V₂] : finite_dimensional K V := | |
have is_noetherian K V₂ := is_noetherian.iff_fg.mpr ‹_›, by exactI module.finite.of_injective f w | |
/-- If the domain of a surjective linear map is finite dimensional, the codomain must be as well. -/ | |
lemma of_surjective (f : V →ₗ[K] V₂) (w : function.surjective f) | |
[finite_dimensional K V] : finite_dimensional K V₂ := | |
module.finite.of_surjective f w | |
variables (K V) | |
instance finite_dimensional_pi {ι} [fintype ι] : finite_dimensional K (ι → K) := | |
iff_fg.1 is_noetherian_pi | |
instance finite_dimensional_pi' {ι} [fintype ι] (M : ι → Type*) | |
[∀ i, add_comm_group (M i)] [∀ i, module K (M i)] [I : ∀ i, finite_dimensional K (M i)] : | |
finite_dimensional K (Π i, M i) := | |
begin | |
haveI : ∀ i : ι, is_noetherian K (M i) := λ i, iff_fg.2 (I i), | |
exact iff_fg.1 is_noetherian_pi | |
end | |
/-- A finite dimensional vector space over a finite field is finite -/ | |
noncomputable def fintype_of_fintype [fintype K] [finite_dimensional K V] : fintype V := | |
module.fintype_of_fintype (@finset_basis K V _ _ _ (iff_fg.2 infer_instance)) | |
variables {K V} | |
/-- If a vector space has a finite basis, then it is finite-dimensional. -/ | |
lemma of_fintype_basis {ι : Type w} [fintype ι] (h : basis ι K V) : | |
finite_dimensional K V := | |
⟨⟨finset.univ.image h, by { convert h.span_eq, simp } ⟩⟩ | |
/-- If a vector space is `finite_dimensional`, all bases are indexed by a finite type -/ | |
noncomputable | |
def fintype_basis_index {ι : Type*} [finite_dimensional K V] (b : basis ι K V) : fintype ι := | |
begin | |
letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance, | |
exact is_noetherian.fintype_basis_index b, | |
end | |
/-- If a vector space is `finite_dimensional`, `basis.of_vector_space` is indexed by | |
a finite type.-/ | |
noncomputable instance [finite_dimensional K V] : fintype (basis.of_vector_space_index K V) := | |
begin | |
letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance, | |
apply_instance | |
end | |
/-- If a vector space has a basis indexed by elements of a finite set, then it is | |
finite-dimensional. -/ | |
lemma of_finite_basis {ι : Type w} {s : set ι} (h : basis s K V) (hs : set.finite s) : | |
finite_dimensional K V := | |
by haveI := hs.fintype; exact of_fintype_basis h | |
/-- If a vector space has a finite basis, then it is finite-dimensional, finset style. -/ | |
lemma of_finset_basis {ι : Type w} {s : finset ι} (h : basis s K V) : | |
finite_dimensional K V := | |
of_finite_basis h s.finite_to_set | |
/-- A subspace of a finite-dimensional space is also finite-dimensional. -/ | |
instance finite_dimensional_submodule [finite_dimensional K V] (S : submodule K V) : | |
finite_dimensional K S := | |
begin | |
letI : is_noetherian K V := iff_fg.2 _, | |
exact iff_fg.1 | |
(is_noetherian.iff_dim_lt_aleph_0.2 (lt_of_le_of_lt (dim_submodule_le _) (dim_lt_aleph_0 K V))), | |
apply_instance, | |
end | |
/-- A quotient of a finite-dimensional space is also finite-dimensional. -/ | |
instance finite_dimensional_quotient [finite_dimensional K V] (S : submodule K V) : | |
finite_dimensional K (V ⧸ S) := | |
module.finite.of_surjective (submodule.mkq S) $ surjective_quot_mk _ | |
/-- The rank of a module as a natural number. | |
Defined by convention to be `0` if the space has infinite rank. | |
For a vector space `V` over a field `K`, this is the same as the finite dimension | |
of `V` over `K`. | |
-/ | |
noncomputable def finrank (R V : Type*) [semiring R] | |
[add_comm_group V] [module R V] : ℕ := | |
(module.rank R V).to_nat | |
/-- In a finite-dimensional space, its dimension (seen as a cardinal) coincides with its | |
`finrank`. -/ | |
lemma finrank_eq_dim (K : Type u) (V : Type v) [division_ring K] | |
[add_comm_group V] [module K V] [finite_dimensional K V] : | |
(finrank K V : cardinal.{v}) = module.rank K V := | |
begin | |
letI : is_noetherian K V := iff_fg.2 infer_instance, | |
rw [finrank, cast_to_nat_of_lt_aleph_0 (dim_lt_aleph_0 K V)] | |
end | |
lemma finrank_eq_of_dim_eq {n : ℕ} (h : module.rank K V = ↑ n) : finrank K V = n := | |
begin | |
apply_fun to_nat at h, | |
rw to_nat_cast at h, | |
exact_mod_cast h, | |
end | |
lemma finrank_of_infinite_dimensional | |
{K V : Type*} [division_ring K] [add_comm_group V] [module K V] | |
(h : ¬finite_dimensional K V) : finrank K V = 0 := | |
dif_neg $ mt is_noetherian.iff_dim_lt_aleph_0.2 $ (not_iff_not.2 iff_fg).2 h | |
lemma finite_dimensional_of_finrank {K V : Type*} [division_ring K] [add_comm_group V] [module K V] | |
(h : 0 < finrank K V) : finite_dimensional K V := | |
by { contrapose h, simp [finrank_of_infinite_dimensional h] } | |
lemma finite_dimensional_of_finrank_eq_succ {K V : Type*} [field K] [add_comm_group V] [module K V] | |
{n : ℕ} (hn : finrank K V = n.succ) : finite_dimensional K V := | |
finite_dimensional_of_finrank $ by rw hn; exact n.succ_pos | |
/-- We can infer `finite_dimensional K V` in the presence of `[fact (finrank K V = n + 1)]`. Declare | |
this as a local instance where needed. -/ | |
lemma fact_finite_dimensional_of_finrank_eq_succ {K V : Type*} [field K] [add_comm_group V] | |
[module K V] (n : ℕ) [fact (finrank K V = n + 1)] : | |
finite_dimensional K V := | |
finite_dimensional_of_finrank $ by convert nat.succ_pos n; apply fact.out | |
lemma finite_dimensional_iff_of_rank_eq_nsmul | |
{K V W : Type*} [field K] [add_comm_group V] [add_comm_group W] [module K V] [module K W] | |
{n : ℕ} (hn : n ≠ 0) (hVW : module.rank K V = n • module.rank K W) : | |
finite_dimensional K V ↔ finite_dimensional K W := | |
by simp only [finite_dimensional, ← is_noetherian.iff_fg, is_noetherian.iff_dim_lt_aleph_0, hVW, | |
cardinal.nsmul_lt_aleph_0_iff_of_ne_zero hn] | |
/-- If a vector space has a finite basis, then its dimension is equal to the cardinality of the | |
basis. -/ | |
lemma finrank_eq_card_basis {ι : Type w} [fintype ι] (h : basis ι K V) : | |
finrank K V = fintype.card ι := | |
begin | |
haveI : finite_dimensional K V := of_fintype_basis h, | |
have := dim_eq_card_basis h, | |
rw ← finrank_eq_dim at this, | |
exact_mod_cast this | |
end | |
/-- If a vector space is finite-dimensional, then the cardinality of any basis is equal to its | |
`finrank`. -/ | |
lemma finrank_eq_card_basis' [finite_dimensional K V] {ι : Type w} (h : basis ι K V) : | |
(finrank K V : cardinal.{w}) = #ι := | |
begin | |
haveI : is_noetherian K V := iff_fg.2 infer_instance, | |
haveI : fintype ι := fintype_basis_index h, | |
rw [cardinal.mk_fintype, finrank_eq_card_basis h] | |
end | |
/-- If a vector space has a finite basis, then its dimension is equal to the cardinality of the | |
basis. This lemma uses a `finset` instead of indexed types. -/ | |
lemma finrank_eq_card_finset_basis {ι : Type w} {b : finset ι} | |
(h : basis.{w} b K V) : | |
finrank K V = finset.card b := | |
by rw [finrank_eq_card_basis h, fintype.card_coe] | |
variables (K V) | |
/-- A finite dimensional vector space has a basis indexed by `fin (finrank K V)`. -/ | |
noncomputable def fin_basis [finite_dimensional K V] : basis (fin (finrank K V)) K V := | |
have h : fintype.card (@finset_basis_index K V _ _ _ (iff_fg.2 infer_instance)) = finrank K V, | |
from (finrank_eq_card_basis (@finset_basis K V _ _ _ (iff_fg.2 infer_instance))).symm, | |
(@finset_basis K V _ _ _ (iff_fg.2 infer_instance)).reindex (fintype.equiv_fin_of_card_eq h) | |
/-- An `n`-dimensional vector space has a basis indexed by `fin n`. -/ | |
noncomputable def fin_basis_of_finrank_eq [finite_dimensional K V] {n : ℕ} (hn : finrank K V = n) : | |
basis (fin n) K V := | |
(fin_basis K V).reindex (fin.cast hn).to_equiv | |
variables {K V} | |
/-- A module with dimension 1 has a basis with one element. -/ | |
noncomputable def basis_unique (ι : Type*) [unique ι] (h : finrank K V = 1) : | |
basis ι K V := | |
begin | |
haveI := finite_dimensional_of_finrank (_root_.zero_lt_one.trans_le h.symm.le), | |
exact (fin_basis_of_finrank_eq K V h).reindex (equiv.equiv_of_unique _ _) | |
end | |
@[simp] | |
lemma basis_unique.repr_eq_zero_iff {ι : Type*} [unique ι] {h : finrank K V = 1} | |
{v : V} {i : ι} : (basis_unique ι h).repr v i = 0 ↔ v = 0 := | |
⟨λ hv, (basis_unique ι h).repr.map_eq_zero_iff.mp (finsupp.ext $ λ j, subsingleton.elim i j ▸ hv), | |
λ hv, by rw [hv, linear_equiv.map_zero, finsupp.zero_apply]⟩ | |
lemma cardinal_mk_le_finrank_of_linear_independent | |
[finite_dimensional K V] {ι : Type w} {b : ι → V} (h : linear_independent K b) : | |
#ι ≤ finrank K V := | |
begin | |
rw ← lift_le.{_ (max v w)}, | |
simpa [← finrank_eq_dim K V] using | |
cardinal_lift_le_dim_of_linear_independent.{_ _ _ (max v w)} h | |
end | |
lemma fintype_card_le_finrank_of_linear_independent | |
[finite_dimensional K V] {ι : Type*} [fintype ι] {b : ι → V} (h : linear_independent K b) : | |
fintype.card ι ≤ finrank K V := | |
by simpa using cardinal_mk_le_finrank_of_linear_independent h | |
lemma finset_card_le_finrank_of_linear_independent [finite_dimensional K V] {b : finset V} | |
(h : linear_independent K (λ x, x : b → V)) : | |
b.card ≤ finrank K V := | |
begin | |
rw ←fintype.card_coe, | |
exact fintype_card_le_finrank_of_linear_independent h, | |
end | |
lemma lt_aleph_0_of_linear_independent {ι : Type w} [finite_dimensional K V] | |
{v : ι → V} (h : linear_independent K v) : | |
#ι < ℵ₀ := | |
begin | |
apply cardinal.lift_lt.1, | |
apply lt_of_le_of_lt, | |
apply cardinal_lift_le_dim_of_linear_independent h, | |
rw [←finrank_eq_dim, cardinal.lift_aleph_0, cardinal.lift_nat_cast], | |
apply cardinal.nat_lt_aleph_0, | |
end | |
lemma _root_.linear_independent.finite {K : Type*} {V : Type*} [division_ring K] [add_comm_group V] | |
[module K V] [finite_dimensional K V] {b : set V} (h : linear_independent K (λ (x:b), (x:V))) : | |
b.finite := | |
cardinal.lt_aleph_0_iff_set_finite.mp (finite_dimensional.lt_aleph_0_of_linear_independent h) | |
lemma not_linear_independent_of_infinite {ι : Type w} [inf : infinite ι] [finite_dimensional K V] | |
(v : ι → V) : ¬ linear_independent K v := | |
begin | |
intro h_lin_indep, | |
have : ¬ ℵ₀ ≤ #ι := not_le.mpr (lt_aleph_0_of_linear_independent h_lin_indep), | |
have : ℵ₀ ≤ #ι := infinite_iff.mp inf, | |
contradiction | |
end | |
/-- A finite dimensional space has positive `finrank` iff it has a nonzero element. -/ | |
lemma finrank_pos_iff_exists_ne_zero [finite_dimensional K V] : 0 < finrank K V ↔ ∃ x : V, x ≠ 0 := | |
iff.trans (by { rw ← finrank_eq_dim, norm_cast }) (@dim_pos_iff_exists_ne_zero K V _ _ _ _ _) | |
/-- A finite dimensional space has positive `finrank` iff it is nontrivial. -/ | |
lemma finrank_pos_iff [finite_dimensional K V] : 0 < finrank K V ↔ nontrivial V := | |
iff.trans (by { rw ← finrank_eq_dim, norm_cast }) (@dim_pos_iff_nontrivial K V _ _ _ _ _) | |
/-- A finite dimensional space is nontrivial if it has positive `finrank`. -/ | |
lemma nontrivial_of_finrank_pos (h : 0 < finrank K V) : nontrivial V := | |
begin | |
haveI : finite_dimensional K V := finite_dimensional_of_finrank h, | |
rwa finrank_pos_iff at h | |
end | |
/-- A finite dimensional space is nontrivial if it has `finrank` equal to the successor of a | |
natural number. -/ | |
lemma nontrivial_of_finrank_eq_succ {n : ℕ} (hn : finrank K V = n.succ) : nontrivial V := | |
nontrivial_of_finrank_pos (by rw hn; exact n.succ_pos) | |
/-- A nontrivial finite dimensional space has positive `finrank`. -/ | |
lemma finrank_pos [finite_dimensional K V] [h : nontrivial V] : 0 < finrank K V := | |
finrank_pos_iff.mpr h | |
/-- A finite dimensional space has zero `finrank` iff it is a subsingleton. | |
This is the `finrank` version of `dim_zero_iff`. -/ | |
lemma finrank_zero_iff [finite_dimensional K V] : | |
finrank K V = 0 ↔ subsingleton V := | |
iff.trans (by { rw ← finrank_eq_dim, norm_cast }) (@dim_zero_iff K V _ _ _ _ _) | |
/-- A finite dimensional space that is a subsingleton has zero `finrank`. -/ | |
lemma finrank_zero_of_subsingleton [h : subsingleton V] : | |
finrank K V = 0 := | |
finrank_zero_iff.2 h | |
lemma basis.subset_extend {s : set V} (hs : linear_independent K (coe : s → V)) : | |
s ⊆ hs.extend (set.subset_univ _) := | |
hs.subset_extend _ | |
/-- If a submodule has maximal dimension in a finite dimensional space, then it is equal to the | |
whole space. -/ | |
lemma eq_top_of_finrank_eq [finite_dimensional K V] {S : submodule K V} | |
(h : finrank K S = finrank K V) : S = ⊤ := | |
begin | |
haveI : is_noetherian K V := iff_fg.2 infer_instance, | |
set bS := basis.of_vector_space K S with bS_eq, | |
have : linear_independent K (coe : (coe '' basis.of_vector_space_index K S : set V) → V), | |
from @linear_independent.image_subtype _ _ _ _ _ _ _ _ _ | |
(submodule.subtype S) (by simpa using bS.linear_independent) (by simp), | |
set b := basis.extend this with b_eq, | |
letI : fintype (this.extend _) := | |
(finite_of_linear_independent (by simpa using b.linear_independent)).fintype, | |
letI : fintype (coe '' basis.of_vector_space_index K S) := | |
(finite_of_linear_independent this).fintype, | |
letI : fintype (basis.of_vector_space_index K S) := | |
(finite_of_linear_independent (by simpa using bS.linear_independent)).fintype, | |
have : coe '' (basis.of_vector_space_index K S) = this.extend (set.subset_univ _), | |
from set.eq_of_subset_of_card_le (this.subset_extend _) | |
(by rw [set.card_image_of_injective _ subtype.coe_injective, ← finrank_eq_card_basis bS, | |
← finrank_eq_card_basis b, h]; apply_instance), | |
rw [← b.span_eq, b_eq, basis.coe_extend, subtype.range_coe, ← this, ← submodule.coe_subtype, | |
span_image], | |
have := bS.span_eq, | |
rw [bS_eq, basis.coe_of_vector_space, subtype.range_coe] at this, | |
rw [this, map_top (submodule.subtype S), range_subtype], | |
end | |
variable (K) | |
/-- A division_ring is one-dimensional as a vector space over itself. -/ | |
@[simp] lemma finrank_self : finrank K K = 1 := | |
begin | |
have := dim_self K, | |
rw [←finrank_eq_dim] at this, | |
exact_mod_cast this | |
end | |
instance finite_dimensional_self : finite_dimensional K K := | |
by apply_instance | |
/-- The vector space of functions on a fintype ι has finrank equal to the cardinality of ι. -/ | |
@[simp] lemma finrank_fintype_fun_eq_card {ι : Type v} [fintype ι] : | |
finrank K (ι → K) = fintype.card ι := | |
begin | |
have : module.rank K (ι → K) = fintype.card ι := dim_fun', | |
rwa [← finrank_eq_dim, nat_cast_inj] at this, | |
end | |
/-- The vector space of functions on `fin n` has finrank equal to `n`. -/ | |
@[simp] lemma finrank_fin_fun {n : ℕ} : finrank K (fin n → K) = n := | |
by simp | |
/-- The submodule generated by a finite set is finite-dimensional. -/ | |
theorem span_of_finite {A : set V} (hA : set.finite A) : | |
finite_dimensional K (submodule.span K A) := | |
iff_fg.1 $ is_noetherian_span_of_finite K hA | |
/-- The submodule generated by a single element is finite-dimensional. -/ | |
instance span_singleton (x : V) : finite_dimensional K (K ∙ x) := | |
span_of_finite K $ set.finite_singleton _ | |
/-- The submodule generated by a finset is finite-dimensional. -/ | |
instance span_finset (s : finset V) : finite_dimensional K (span K (s : set V)) := | |
span_of_finite K $ s.finite_to_set | |
/-- Pushforwards of finite-dimensional submodules are finite-dimensional. -/ | |
instance (f : V →ₗ[K] V₂) (p : submodule K V) [h : finite_dimensional K p] : | |
finite_dimensional K (p.map f) := | |
begin | |
unfreezingI { rw [finite_dimensional, ← iff_fg, is_noetherian.iff_dim_lt_aleph_0] at h ⊢ }, | |
rw [← cardinal.lift_lt.{v' v}], | |
rw [← cardinal.lift_lt.{v v'}] at h, | |
rw [cardinal.lift_aleph_0] at h ⊢, | |
exact (lift_dim_map_le f p).trans_lt h | |
end | |
/-- Pushforwards of finite-dimensional submodules have a smaller finrank. -/ | |
lemma finrank_map_le (f : V →ₗ[K] V₂) (p : submodule K V) [finite_dimensional K p] : | |
finrank K (p.map f) ≤ finrank K p := | |
by simpa [← finrank_eq_dim] using lift_dim_map_le f p | |
variable {K} | |
lemma _root_.complete_lattice.independent.subtype_ne_bot_le_finrank_aux [finite_dimensional K V] | |
{ι : Type w} {p : ι → submodule K V} (hp : complete_lattice.independent p) : | |
#{i // p i ≠ ⊥} ≤ (finrank K V : cardinal.{w}) := | |
begin | |
suffices : cardinal.lift.{v} (#{i // p i ≠ ⊥}) ≤ cardinal.lift.{v} (finrank K V : cardinal.{w}), | |
{ rwa cardinal.lift_le at this }, | |
calc cardinal.lift.{v} (# {i // p i ≠ ⊥}) | |
≤ cardinal.lift.{w} (module.rank K V) : hp.subtype_ne_bot_le_rank | |
... = cardinal.lift.{w} (finrank K V : cardinal.{v}) : by rw finrank_eq_dim | |
... = cardinal.lift.{v} (finrank K V : cardinal.{w}) : by simp | |
end | |
/-- If `p` is an independent family of subspaces of a finite-dimensional space `V`, then the | |
number of nontrivial subspaces in the family `p` is finite. -/ | |
noncomputable def _root_.complete_lattice.independent.fintype_ne_bot_of_finite_dimensional | |
[finite_dimensional K V] {ι : Type w} {p : ι → submodule K V} | |
(hp : complete_lattice.independent p) : | |
fintype {i : ι // p i ≠ ⊥} := | |
begin | |
suffices : #{i // p i ≠ ⊥} < (ℵ₀ : cardinal.{w}), | |
{ rw cardinal.lt_aleph_0_iff_fintype at this, | |
exact this.some }, | |
refine lt_of_le_of_lt hp.subtype_ne_bot_le_finrank_aux _, | |
simp [cardinal.nat_lt_aleph_0], | |
end | |
/-- If `p` is an independent family of subspaces of a finite-dimensional space `V`, then the | |
number of nontrivial subspaces in the family `p` is bounded above by the dimension of `V`. | |
Note that the `fintype` hypothesis required here can be provided by | |
`complete_lattice.independent.fintype_ne_bot_of_finite_dimensional`. -/ | |
lemma _root_.complete_lattice.independent.subtype_ne_bot_le_finrank | |
[finite_dimensional K V] {ι : Type w} {p : ι → submodule K V} | |
(hp : complete_lattice.independent p) [fintype {i // p i ≠ ⊥}] : | |
fintype.card {i // p i ≠ ⊥} ≤ finrank K V := | |
by simpa using hp.subtype_ne_bot_le_finrank_aux | |
section | |
open_locale big_operators | |
open finset | |
/-- | |
If a finset has cardinality larger than the dimension of the space, | |
then there is a nontrivial linear relation amongst its elements. | |
-/ | |
lemma exists_nontrivial_relation_of_dim_lt_card | |
[finite_dimensional K V] {t : finset V} (h : finrank K V < t.card) : | |
∃ f : V → K, ∑ e in t, f e • e = 0 ∧ ∃ x ∈ t, f x ≠ 0 := | |
begin | |
have := mt finset_card_le_finrank_of_linear_independent (by { simpa using h }), | |
rw not_linear_independent_iff at this, | |
obtain ⟨s, g, sum, z, zm, nonzero⟩ := this, | |
-- Now we have to extend `g` to all of `t`, then to all of `V`. | |
let f : V → K := | |
λ x, if h : x ∈ t then if (⟨x, h⟩ : t) ∈ s then g ⟨x, h⟩ else 0 else 0, | |
-- and finally clean up the mess caused by the extension. | |
refine ⟨f, _, _⟩, | |
{ dsimp [f], | |
rw ← sum, | |
fapply sum_bij_ne_zero (λ v hvt _, (⟨v, hvt⟩ : {v // v ∈ t})), | |
{ intros v hvt H, dsimp, | |
rw [dif_pos hvt] at H, | |
contrapose! H, | |
rw [if_neg H, zero_smul], }, | |
{ intros _ _ _ _ _ _, exact subtype.mk.inj, }, | |
{ intros b hbs hb, | |
use b, | |
simpa only [hbs, exists_prop, dif_pos, finset.mk_coe, and_true, if_true, finset.coe_mem, | |
eq_self_iff_true, exists_prop_of_true, ne.def] using hb, }, | |
{ intros a h₁, dsimp, rw [dif_pos h₁], | |
intro h₂, rw [if_pos], contrapose! h₂, | |
rw [if_neg h₂, zero_smul], }, }, | |
{ refine ⟨z, z.2, _⟩, dsimp only [f], erw [dif_pos z.2, if_pos]; rwa [subtype.coe_eta] }, | |
end | |
/-- | |
If a finset has cardinality larger than `finrank + 1`, | |
then there is a nontrivial linear relation amongst its elements, | |
such that the coefficients of the relation sum to zero. | |
-/ | |
lemma exists_nontrivial_relation_sum_zero_of_dim_succ_lt_card | |
[finite_dimensional K V] {t : finset V} (h : finrank K V + 1 < t.card) : | |
∃ f : V → K, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x ∈ t, f x ≠ 0 := | |
begin | |
-- Pick an element x₀ ∈ t, | |
have card_pos : 0 < t.card := lt_trans (nat.succ_pos _) h, | |
obtain ⟨x₀, m⟩ := (finset.card_pos.1 card_pos).bex, | |
-- and apply the previous lemma to the {xᵢ - x₀} | |
let shift : V ↪ V := ⟨λ x, x - x₀, sub_left_injective⟩, | |
let t' := (t.erase x₀).map shift, | |
have h' : finrank K V < t'.card, | |
{ simp only [t', card_map, finset.card_erase_of_mem m], | |
exact nat.lt_pred_iff.mpr h, }, | |
-- to obtain a function `g`. | |
obtain ⟨g, gsum, x₁, x₁_mem, nz⟩ := exists_nontrivial_relation_of_dim_lt_card h', | |
-- Then obtain `f` by translating back by `x₀`, | |
-- and setting the value of `f` at `x₀` to ensure `∑ e in t, f e = 0`. | |
let f : V → K := λ z, if z = x₀ then - ∑ z in (t.erase x₀), g (z - x₀) else g (z - x₀), | |
refine ⟨f, _ ,_ ,_⟩, | |
-- After this, it's a matter of verifiying the properties, | |
-- based on the corresponding properties for `g`. | |
{ show ∑ (e : V) in t, f e • e = 0, | |
-- We prove this by splitting off the `x₀` term of the sum, | |
-- which is itself a sum over `t.erase x₀`, | |
-- combining the two sums, and | |
-- observing that after reindexing we have exactly | |
-- ∑ (x : V) in t', g x • x = 0. | |
simp only [f], | |
conv_lhs { apply_congr, skip, rw [ite_smul], }, | |
rw [finset.sum_ite], | |
conv { congr, congr, apply_congr, simp [filter_eq', m], }, | |
conv { congr, congr, skip, apply_congr, simp [filter_ne'], }, | |
rw [sum_singleton, neg_smul, add_comm, ←sub_eq_add_neg, sum_smul, ←sum_sub_distrib], | |
simp only [←smul_sub], | |
-- At the end we have to reindex the sum, so we use `change` to | |
-- express the summand using `shift`. | |
change (∑ (x : V) in t.erase x₀, (λ e, g e • e) (shift x)) = 0, | |
rw ←sum_map _ shift, | |
exact gsum, }, | |
{ show ∑ (e : V) in t, f e = 0, | |
-- Again we split off the `x₀` term, | |
-- observing that it exactly cancels the other terms. | |
rw [← insert_erase m, sum_insert (not_mem_erase x₀ t)], | |
dsimp [f], | |
rw [if_pos rfl], | |
conv_lhs { congr, skip, apply_congr, skip, rw if_neg (show x ≠ x₀, from (mem_erase.mp H).1), }, | |
exact neg_add_self _, }, | |
{ show ∃ (x : V) (H : x ∈ t), f x ≠ 0, | |
-- We can use x₁ + x₀. | |
refine ⟨x₁ + x₀, _, _⟩, | |
{ rw finset.mem_map at x₁_mem, | |
rcases x₁_mem with ⟨x₁, x₁_mem, rfl⟩, | |
rw mem_erase at x₁_mem, | |
simp only [x₁_mem, sub_add_cancel, function.embedding.coe_fn_mk], }, | |
{ dsimp only [f], | |
rwa [if_neg, add_sub_cancel], | |
rw [add_left_eq_self], rintro rfl, | |
simpa only [sub_eq_zero, exists_prop, finset.mem_map, embedding.coe_fn_mk, eq_self_iff_true, | |
mem_erase, not_true, exists_eq_right, ne.def, false_and] using x₁_mem, } }, | |
end | |
section | |
variables {L : Type*} [linear_ordered_field L] | |
variables {W : Type v} [add_comm_group W] [module L W] | |
/-- | |
A slight strengthening of `exists_nontrivial_relation_sum_zero_of_dim_succ_lt_card` | |
available when working over an ordered field: | |
we can ensure a positive coefficient, not just a nonzero coefficient. | |
-/ | |
lemma exists_relation_sum_zero_pos_coefficient_of_dim_succ_lt_card | |
[finite_dimensional L W] {t : finset W} (h : finrank L W + 1 < t.card) : | |
∃ f : W → L, ∑ e in t, f e • e = 0 ∧ ∑ e in t, f e = 0 ∧ ∃ x ∈ t, 0 < f x := | |
begin | |
obtain ⟨f, sum, total, nonzero⟩ := exists_nontrivial_relation_sum_zero_of_dim_succ_lt_card h, | |
exact ⟨f, sum, total, exists_pos_of_sum_zero_of_exists_nonzero f total nonzero⟩, | |
end | |
end | |
end | |
/-- In a vector space with dimension 1, each set {v} is a basis for `v ≠ 0`. -/ | |
@[simps] | |
noncomputable def basis_singleton (ι : Type*) [unique ι] | |
(h : finrank K V = 1) (v : V) (hv : v ≠ 0) : | |
basis ι K V := | |
let b := basis_unique ι h in | |
let h : b.repr v default ≠ 0 := mt basis_unique.repr_eq_zero_iff.mp hv in | |
basis.of_repr | |
{ to_fun := λ w, finsupp.single default (b.repr w default / b.repr v default), | |
inv_fun := λ f, f default • v, | |
map_add' := by simp [add_div], | |
map_smul' := by simp [mul_div], | |
left_inv := λ w, begin | |
apply_fun b.repr using b.repr.to_equiv.injective, | |
apply_fun equiv.finsupp_unique, | |
simp only [linear_equiv.map_smulₛₗ, finsupp.coe_smul, finsupp.single_eq_same, ring_hom.id_apply, | |
smul_eq_mul, pi.smul_apply, equiv.finsupp_unique_apply], | |
exact div_mul_cancel _ h, | |
end , | |
right_inv := λ f, begin | |
ext, | |
simp only [linear_equiv.map_smulₛₗ, finsupp.coe_smul, finsupp.single_eq_same, ring_hom.id_apply, | |
smul_eq_mul, pi.smul_apply], | |
exact mul_div_cancel _ h, | |
end, } | |
@[simp] lemma basis_singleton_apply (ι : Type*) [unique ι] | |
(h : finrank K V = 1) (v : V) (hv : v ≠ 0) (i : ι) : | |
basis_singleton ι h v hv i = v := | |
by { cases unique.uniq ‹unique ι› i, simp [basis_singleton], } | |
@[simp] lemma range_basis_singleton (ι : Type*) [unique ι] | |
(h : finrank K V = 1) (v : V) (hv : v ≠ 0) : | |
set.range (basis_singleton ι h v hv) = {v} := | |
by rw [set.range_unique, basis_singleton_apply] | |
end division_ring | |
end finite_dimensional | |
variables {K V} | |
section zero_dim | |
variables [division_ring K] [add_comm_group V] [module K V] | |
open finite_dimensional | |
lemma finite_dimensional_of_dim_eq_zero (h : module.rank K V = 0) : finite_dimensional K V := | |
begin | |
dsimp [finite_dimensional], | |
rw [← is_noetherian.iff_fg, is_noetherian.iff_dim_lt_aleph_0, h], | |
exact cardinal.aleph_0_pos | |
end | |
lemma finite_dimensional_of_dim_eq_one (h : module.rank K V = 1) : finite_dimensional K V := | |
begin | |
dsimp [finite_dimensional], | |
rw [← is_noetherian.iff_fg, is_noetherian.iff_dim_lt_aleph_0, h], | |
exact one_lt_aleph_0 | |
end | |
lemma finrank_eq_zero_of_dim_eq_zero [finite_dimensional K V] (h : module.rank K V = 0) : | |
finrank K V = 0 := | |
begin | |
convert finrank_eq_dim K V, | |
rw h, norm_cast | |
end | |
lemma finrank_eq_zero_of_basis_imp_not_finite | |
(h : ∀ s : set V, basis.{v} (s : set V) K V → ¬ s.finite) : finrank K V = 0 := | |
dif_neg (λ dim_lt, h _ (basis.of_vector_space K V) | |
((basis.of_vector_space K V).finite_index_of_dim_lt_aleph_0 dim_lt)) | |
lemma finrank_eq_zero_of_basis_imp_false | |
(h : ∀ s : finset V, basis.{v} (s : set V) K V → false) : finrank K V = 0 := | |
finrank_eq_zero_of_basis_imp_not_finite (λ s b hs, h hs.to_finset (by { convert b, simp })) | |
lemma finrank_eq_zero_of_not_exists_basis | |
(h : ¬ (∃ s : finset V, nonempty (basis (s : set V) K V))) : finrank K V = 0 := | |
finrank_eq_zero_of_basis_imp_false (λ s b, h ⟨s, ⟨b⟩⟩) | |
lemma finrank_eq_zero_of_not_exists_basis_finite | |
(h : ¬ ∃ (s : set V) (b : basis.{v} (s : set V) K V), s.finite) : finrank K V = 0 := | |
finrank_eq_zero_of_basis_imp_not_finite (λ s b hs, h ⟨s, b, hs⟩) | |
lemma finrank_eq_zero_of_not_exists_basis_finset | |
(h : ¬ ∃ (s : finset V), nonempty (basis s K V)) : finrank K V = 0 := | |
finrank_eq_zero_of_basis_imp_false (λ s b, h ⟨s, ⟨b⟩⟩) | |
variables (K V) | |
instance finite_dimensional_bot : finite_dimensional K (⊥ : submodule K V) := | |
finite_dimensional_of_dim_eq_zero $ by simp | |
@[simp] lemma finrank_bot : finrank K (⊥ : submodule K V) = 0 := | |
begin | |
convert finrank_eq_dim K (⊥ : submodule K V), | |
rw dim_bot, norm_cast | |
end | |
variables {K V} | |
lemma bot_eq_top_of_dim_eq_zero (h : module.rank K V = 0) : (⊥ : submodule K V) = ⊤ := | |
begin | |
haveI := finite_dimensional_of_dim_eq_zero h, | |
apply eq_top_of_finrank_eq, | |
rw [finrank_bot, finrank_eq_zero_of_dim_eq_zero h] | |
end | |
@[simp] theorem dim_eq_zero {S : submodule K V} : module.rank K S = 0 ↔ S = ⊥ := | |
⟨λ h, (submodule.eq_bot_iff _).2 $ λ x hx, congr_arg subtype.val $ | |
((submodule.eq_bot_iff _).1 $ eq.symm $ bot_eq_top_of_dim_eq_zero h) ⟨x, hx⟩ submodule.mem_top, | |
λ h, by rw [h, dim_bot]⟩ | |
@[simp] theorem finrank_eq_zero {S : submodule K V} [finite_dimensional K S] : | |
finrank K S = 0 ↔ S = ⊥ := | |
by rw [← dim_eq_zero, ← finrank_eq_dim, ← @nat.cast_zero cardinal, cardinal.nat_cast_inj] | |
end zero_dim | |
namespace submodule | |
open is_noetherian finite_dimensional | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
/-- A submodule is finitely generated if and only if it is finite-dimensional -/ | |
theorem fg_iff_finite_dimensional (s : submodule K V) : | |
s.fg ↔ finite_dimensional K s := | |
⟨λ h, module.finite_def.2 $ (fg_top s).2 h, λ h, (fg_top s).1 $ module.finite_def.1 h⟩ | |
/-- A submodule contained in a finite-dimensional submodule is | |
finite-dimensional. -/ | |
lemma finite_dimensional_of_le {S₁ S₂ : submodule K V} [finite_dimensional K S₂] (h : S₁ ≤ S₂) : | |
finite_dimensional K S₁ := | |
begin | |
haveI : is_noetherian K S₂ := iff_fg.2 infer_instance, | |
exact iff_fg.1 (is_noetherian.iff_dim_lt_aleph_0.2 | |
(lt_of_le_of_lt (dim_le_of_submodule _ _ h) (dim_lt_aleph_0 K S₂))), | |
end | |
/-- The inf of two submodules, the first finite-dimensional, is | |
finite-dimensional. -/ | |
instance finite_dimensional_inf_left (S₁ S₂ : submodule K V) [finite_dimensional K S₁] : | |
finite_dimensional K (S₁ ⊓ S₂ : submodule K V) := | |
finite_dimensional_of_le inf_le_left | |
/-- The inf of two submodules, the second finite-dimensional, is | |
finite-dimensional. -/ | |
instance finite_dimensional_inf_right (S₁ S₂ : submodule K V) [finite_dimensional K S₂] : | |
finite_dimensional K (S₁ ⊓ S₂ : submodule K V) := | |
finite_dimensional_of_le inf_le_right | |
/-- The sup of two finite-dimensional submodules is | |
finite-dimensional. -/ | |
instance finite_dimensional_sup (S₁ S₂ : submodule K V) [h₁ : finite_dimensional K S₁] | |
[h₂ : finite_dimensional K S₂] : finite_dimensional K (S₁ ⊔ S₂ : submodule K V) := | |
begin | |
unfold finite_dimensional at *, | |
rw [finite_def] at *, | |
exact (fg_top _).2 (((fg_top S₁).1 h₁).sup ((fg_top S₂).1 h₂)), | |
end | |
/-- The submodule generated by a finite supremum of finite dimensional submodules is | |
finite-dimensional. | |
Note that strictly this only needs `∀ i ∈ s, finite_dimensional K (S i)`, but that doesn't | |
work well with typeclass search. -/ | |
instance finite_dimensional_finset_sup {ι : Type*} (s : finset ι) (S : ι → submodule K V) | |
[Π i, finite_dimensional K (S i)] : finite_dimensional K (s.sup S : submodule K V) := | |
begin | |
refine @finset.sup_induction _ _ _ _ s S (λ i, finite_dimensional K ↥i) | |
(finite_dimensional_bot K V) _ (λ i hi, by apply_instance), | |
{ introsI S₁ hS₁ S₂ hS₂, | |
exact submodule.finite_dimensional_sup S₁ S₂ }, | |
end | |
/-- The submodule generated by a supremum of finite dimensional submodules, indexed by a finite | |
type is finite-dimensional. -/ | |
instance finite_dimensional_supr {ι : Type*} [fintype ι] (S : ι → submodule K V) | |
[Π i, finite_dimensional K (S i)] : finite_dimensional K ↥(⨆ i, S i) := | |
begin | |
rw ←finset.sup_univ_eq_supr, | |
exact submodule.finite_dimensional_finset_sup _ _, | |
end | |
/-- The submodule generated by a supremum indexed by a proposition is finite-dimensional if | |
the submodule is. -/ | |
instance finite_dimensional_supr_prop {P : Prop} (S : P → submodule K V) | |
[Π h, finite_dimensional K (S h)] : finite_dimensional K ↥(⨆ h, S h) := | |
begin | |
by_cases hp : P, | |
{ rw supr_pos hp, | |
apply_instance }, | |
{ rw supr_neg hp, | |
apply_instance }, | |
end | |
/-- The dimension of a submodule is bounded by the dimension of the ambient space. -/ | |
lemma finrank_le [finite_dimensional K V] (s : submodule K V) : finrank K s ≤ finrank K V := | |
by simpa only [cardinal.nat_cast_le, ←finrank_eq_dim] using | |
s.subtype.dim_le_of_injective (injective_subtype s) | |
/-- The dimension of a quotient is bounded by the dimension of the ambient space. -/ | |
lemma finrank_quotient_le [finite_dimensional K V] (s : submodule K V) : | |
finrank K (V ⧸ s) ≤ finrank K V := | |
by simpa only [cardinal.nat_cast_le, ←finrank_eq_dim] using | |
(mkq s).dim_le_of_surjective (surjective_quot_mk _) | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] | |
/-- In a finite-dimensional vector space, the dimensions of a submodule and of the corresponding | |
quotient add up to the dimension of the space. -/ | |
theorem finrank_quotient_add_finrank [finite_dimensional K V] (s : submodule K V) : | |
finrank K (V ⧸ s) + finrank K s = finrank K V := | |
begin | |
have := dim_quotient_add_dim s, | |
rw [← finrank_eq_dim, ← finrank_eq_dim, ← finrank_eq_dim] at this, | |
exact_mod_cast this | |
end | |
/-- The dimension of a strict submodule is strictly bounded by the dimension of the ambient | |
space. -/ | |
lemma finrank_lt [finite_dimensional K V] {s : submodule K V} (h : s < ⊤) : | |
finrank K s < finrank K V := | |
begin | |
rw [← s.finrank_quotient_add_finrank, add_comm], | |
exact nat.lt_add_of_zero_lt_left _ _ (finrank_pos_iff.mpr (quotient.nontrivial_of_lt_top _ h)) | |
end | |
/-- The sum of the dimensions of s + t and s ∩ t is the sum of the dimensions of s and t -/ | |
theorem dim_sup_add_dim_inf_eq (s t : submodule K V) | |
[finite_dimensional K s] [finite_dimensional K t] : | |
finrank K ↥(s ⊔ t) + finrank K ↥(s ⊓ t) = finrank K ↥s + finrank K ↥t := | |
begin | |
have key : module.rank K ↥(s ⊔ t) + module.rank K ↥(s ⊓ t) = | |
module.rank K s + module.rank K t := dim_sup_add_dim_inf_eq s t, | |
repeat { rw ←finrank_eq_dim at key }, | |
norm_cast at key, | |
exact key | |
end | |
lemma eq_top_of_disjoint [finite_dimensional K V] (s t : submodule K V) | |
(hdim : finrank K s + finrank K t = finrank K V) | |
(hdisjoint : disjoint s t) : s ⊔ t = ⊤ := | |
begin | |
have h_finrank_inf : finrank K ↥(s ⊓ t) = 0, | |
{ rw [disjoint, le_bot_iff] at hdisjoint, | |
rw [hdisjoint, finrank_bot] }, | |
apply eq_top_of_finrank_eq, | |
rw ←hdim, | |
convert s.dim_sup_add_dim_inf_eq t, | |
rw h_finrank_inf, | |
refl, | |
end | |
end field | |
end submodule | |
namespace linear_equiv | |
open finite_dimensional | |
variables [division_ring K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
/-- Finite dimensionality is preserved under linear equivalence. -/ | |
protected theorem finite_dimensional (f : V ≃ₗ[K] V₂) [finite_dimensional K V] : | |
finite_dimensional K V₂ := | |
module.finite.equiv f | |
variables {R M M₂ : Type*} [ring R] [add_comm_group M] [add_comm_group M₂] | |
variables [module R M] [module R M₂] | |
/-- The dimension of a finite dimensional space is preserved under linear equivalence. -/ | |
theorem finrank_eq (f : M ≃ₗ[R] M₂) : finrank R M = finrank R M₂ := | |
by { unfold finrank, rw [← cardinal.to_nat_lift, f.lift_dim_eq, cardinal.to_nat_lift] } | |
/-- Pushforwards of finite-dimensional submodules along a `linear_equiv` have the same finrank. -/ | |
lemma finrank_map_eq (f : M ≃ₗ[R] M₂) (p : submodule R M) : | |
finrank R (p.map (f : M →ₗ[R] M₂)) = finrank R p := | |
(f.submodule_map p).finrank_eq.symm | |
end linear_equiv | |
section | |
variables [division_ring K] [add_comm_group V] [module K V] | |
instance finite_dimensional_finsupp {ι : Type*} [fintype ι] [h : finite_dimensional K V] : | |
finite_dimensional K (ι →₀ V) := | |
begin | |
letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance, | |
exact (finsupp.linear_equiv_fun_on_fintype K V ι).symm.finite_dimensional | |
end | |
end | |
namespace finite_dimensional | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
/-- | |
Two finite-dimensional vector spaces are isomorphic if they have the same (finite) dimension. | |
-/ | |
theorem nonempty_linear_equiv_of_finrank_eq [finite_dimensional K V] [finite_dimensional K V₂] | |
(cond : finrank K V = finrank K V₂) : nonempty (V ≃ₗ[K] V₂) := | |
nonempty_linear_equiv_of_lift_dim_eq $ by simp only [← finrank_eq_dim, cond, lift_nat_cast] | |
/-- | |
Two finite-dimensional vector spaces are isomorphic if and only if they have the same (finite) | |
dimension. | |
-/ | |
theorem nonempty_linear_equiv_iff_finrank_eq [finite_dimensional K V] [finite_dimensional K V₂] : | |
nonempty (V ≃ₗ[K] V₂) ↔ finrank K V = finrank K V₂ := | |
⟨λ ⟨h⟩, h.finrank_eq, λ h, nonempty_linear_equiv_of_finrank_eq h⟩ | |
variables (V V₂) | |
/-- | |
Two finite-dimensional vector spaces are isomorphic if they have the same (finite) dimension. | |
-/ | |
noncomputable def linear_equiv.of_finrank_eq [finite_dimensional K V] [finite_dimensional K V₂] | |
(cond : finrank K V = finrank K V₂) : V ≃ₗ[K] V₂ := | |
classical.choice $ nonempty_linear_equiv_of_finrank_eq cond | |
variables {V} | |
lemma eq_of_le_of_finrank_le {S₁ S₂ : submodule K V} [finite_dimensional K S₂] (hle : S₁ ≤ S₂) | |
(hd : finrank K S₂ ≤ finrank K S₁) : S₁ = S₂ := | |
begin | |
rw ←linear_equiv.finrank_eq (submodule.comap_subtype_equiv_of_le hle) at hd, | |
exact le_antisymm hle (submodule.comap_subtype_eq_top.1 (eq_top_of_finrank_eq | |
(le_antisymm (comap (submodule.subtype S₂) S₁).finrank_le hd))), | |
end | |
/-- If a submodule is less than or equal to a finite-dimensional | |
submodule with the same dimension, they are equal. -/ | |
lemma eq_of_le_of_finrank_eq {S₁ S₂ : submodule K V} [finite_dimensional K S₂] (hle : S₁ ≤ S₂) | |
(hd : finrank K S₁ = finrank K S₂) : S₁ = S₂ := | |
eq_of_le_of_finrank_le hle hd.ge | |
@[simp] | |
lemma finrank_map_subtype_eq (p : submodule K V) (q : submodule K p) : | |
finite_dimensional.finrank K (q.map p.subtype) = finite_dimensional.finrank K q := | |
(submodule.equiv_subtype_map p q).symm.finrank_eq | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
variables [finite_dimensional K V] [finite_dimensional K V₂] | |
/-- Given isomorphic subspaces `p q` of vector spaces `V` and `V₁` respectively, | |
`p.quotient` is isomorphic to `q.quotient`. -/ | |
noncomputable def linear_equiv.quot_equiv_of_equiv | |
{p : subspace K V} {q : subspace K V₂} | |
(f₁ : p ≃ₗ[K] q) (f₂ : V ≃ₗ[K] V₂) : (V ⧸ p) ≃ₗ[K] (V₂ ⧸ q) := | |
linear_equiv.of_finrank_eq _ _ | |
begin | |
rw [← @add_right_cancel_iff _ _ (finrank K p), submodule.finrank_quotient_add_finrank, | |
linear_equiv.finrank_eq f₁, submodule.finrank_quotient_add_finrank, | |
linear_equiv.finrank_eq f₂], | |
end | |
/-- Given the subspaces `p q`, if `p.quotient ≃ₗ[K] q`, then `q.quotient ≃ₗ[K] p` -/ | |
noncomputable def linear_equiv.quot_equiv_of_quot_equiv | |
{p q : subspace K V} (f : (V ⧸ p) ≃ₗ[K] q) : (V ⧸ q) ≃ₗ[K] p := | |
linear_equiv.of_finrank_eq _ _ | |
begin | |
rw [← @add_right_cancel_iff _ _ (finrank K q), submodule.finrank_quotient_add_finrank, | |
← linear_equiv.finrank_eq f, add_comm, submodule.finrank_quotient_add_finrank] | |
end | |
end field | |
end finite_dimensional | |
namespace linear_map | |
open finite_dimensional | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
/-- On a finite-dimensional space, an injective linear map is surjective. -/ | |
lemma surjective_of_injective [finite_dimensional K V] {f : V →ₗ[K] V} | |
(hinj : injective f) : surjective f := | |
begin | |
have h := dim_eq_of_injective _ hinj, | |
rw [← finrank_eq_dim, ← finrank_eq_dim, nat_cast_inj] at h, | |
exact range_eq_top.1 (eq_top_of_finrank_eq h.symm) | |
end | |
/-- The image under an onto linear map of a finite-dimensional space is also finite-dimensional. -/ | |
lemma finite_dimensional_of_surjective [h : finite_dimensional K V] | |
(f : V →ₗ[K] V₂) (hf : f.range = ⊤) : finite_dimensional K V₂ := | |
module.finite.of_surjective f $ range_eq_top.1 hf | |
/-- The range of a linear map defined on a finite-dimensional space is also finite-dimensional. -/ | |
instance finite_dimensional_range [h : finite_dimensional K V] (f : V →ₗ[K] V₂) : | |
finite_dimensional K f.range := | |
f.quot_ker_equiv_range.finite_dimensional | |
/-- The dimensions of the domain and range of an injective linear map are equal. -/ | |
lemma finrank_range_of_inj {f : V →ₗ[K] V₂} (hf : function.injective f) : | |
finrank K f.range = finrank K V := | |
by rw (linear_equiv.of_injective f hf).finrank_eq | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
/-- On a finite-dimensional space, a linear map is injective if and only if it is surjective. -/ | |
lemma injective_iff_surjective [finite_dimensional K V] {f : V →ₗ[K] V} : | |
injective f ↔ surjective f := | |
⟨surjective_of_injective, | |
λ hsurj, let ⟨g, hg⟩ := f.exists_right_inverse_of_surjective (range_eq_top.2 hsurj) in | |
have function.right_inverse g f, from linear_map.ext_iff.1 hg, | |
(left_inverse_of_surjective_of_right_inverse | |
(surjective_of_injective this.injective) this).injective⟩ | |
lemma ker_eq_bot_iff_range_eq_top [finite_dimensional K V] {f : V →ₗ[K] V} : | |
f.ker = ⊥ ↔ f.range = ⊤ := | |
by rw [range_eq_top, ker_eq_bot, injective_iff_surjective] | |
/-- In a finite-dimensional space, if linear maps are inverse to each other on one side then they | |
are also inverse to each other on the other side. -/ | |
lemma mul_eq_one_of_mul_eq_one [finite_dimensional K V] {f g : V →ₗ[K] V} (hfg : f * g = 1) : | |
g * f = 1 := | |
have ginj : injective g, from has_left_inverse.injective | |
⟨f, (λ x, show (f * g) x = (1 : V →ₗ[K] V) x, by rw hfg; refl)⟩, | |
let ⟨i, hi⟩ := g.exists_right_inverse_of_surjective | |
(range_eq_top.2 (injective_iff_surjective.1 ginj)) in | |
have f * (g * i) = f * 1, from congr_arg _ hi, | |
by rw [← mul_assoc, hfg, one_mul, mul_one] at this; rwa ← this | |
/-- In a finite-dimensional space, linear maps are inverse to each other on one side if and only if | |
they are inverse to each other on the other side. -/ | |
lemma mul_eq_one_comm [finite_dimensional K V] {f g : V →ₗ[K] V} : f * g = 1 ↔ g * f = 1 := | |
⟨mul_eq_one_of_mul_eq_one, mul_eq_one_of_mul_eq_one⟩ | |
/-- In a finite-dimensional space, linear maps are inverse to each other on one side if and only if | |
they are inverse to each other on the other side. -/ | |
lemma comp_eq_id_comm [finite_dimensional K V] {f g : V →ₗ[K] V} : f.comp g = id ↔ g.comp f = id := | |
mul_eq_one_comm | |
/-- rank-nullity theorem : the dimensions of the kernel and the range of a linear map add up to | |
the dimension of the source space. -/ | |
theorem finrank_range_add_finrank_ker [finite_dimensional K V] (f : V →ₗ[K] V₂) : | |
finrank K f.range + finrank K f.ker = finrank K V := | |
by { rw [← f.quot_ker_equiv_range.finrank_eq], exact submodule.finrank_quotient_add_finrank _ } | |
end field | |
end linear_map | |
namespace linear_equiv | |
open finite_dimensional | |
variables [field K] [add_comm_group V] [module K V] | |
variables [finite_dimensional K V] | |
/-- The linear equivalence corresponging to an injective endomorphism. -/ | |
noncomputable def of_injective_endo (f : V →ₗ[K] V) (h_inj : injective f) : V ≃ₗ[K] V := | |
linear_equiv.of_bijective f h_inj $ linear_map.injective_iff_surjective.mp h_inj | |
@[simp] lemma coe_of_injective_endo (f : V →ₗ[K] V) (h_inj : injective f) : | |
⇑(of_injective_endo f h_inj) = f := rfl | |
@[simp] lemma of_injective_endo_right_inv (f : V →ₗ[K] V) (h_inj : injective f) : | |
f * (of_injective_endo f h_inj).symm = 1 := | |
linear_map.ext $ (of_injective_endo f h_inj).apply_symm_apply | |
@[simp] lemma of_injective_endo_left_inv (f : V →ₗ[K] V) (h_inj : injective f) : | |
((of_injective_endo f h_inj).symm : V →ₗ[K] V) * f = 1 := | |
linear_map.ext $ (of_injective_endo f h_inj).symm_apply_apply | |
end linear_equiv | |
namespace linear_map | |
variables [field K] [add_comm_group V] [module K V] | |
lemma is_unit_iff_ker_eq_bot [finite_dimensional K V] (f : V →ₗ[K] V): is_unit f ↔ f.ker = ⊥ := | |
begin | |
split, | |
{ rintro ⟨u, rfl⟩, | |
exact linear_map.ker_eq_bot_of_inverse u.inv_mul }, | |
{ intro h_inj, rw ker_eq_bot at h_inj, | |
exact ⟨⟨f, (linear_equiv.of_injective_endo f h_inj).symm.to_linear_map, | |
linear_equiv.of_injective_endo_right_inv f h_inj, | |
linear_equiv.of_injective_endo_left_inv f h_inj⟩, rfl⟩ } | |
end | |
lemma is_unit_iff_range_eq_top [finite_dimensional K V] (f : V →ₗ[K] V): is_unit f ↔ f.range = ⊤ := | |
by rw [is_unit_iff_ker_eq_bot, ker_eq_bot_iff_range_eq_top] | |
end linear_map | |
open module finite_dimensional | |
section | |
variables [division_ring K] [add_comm_group V] [module K V] | |
section top | |
@[simp] | |
theorem finrank_top : finrank K (⊤ : submodule K V) = finrank K V := | |
by { unfold finrank, simp [dim_top] } | |
end top | |
lemma finrank_zero_iff_forall_zero [finite_dimensional K V] : | |
finrank K V = 0 ↔ ∀ x : V, x = 0 := | |
finrank_zero_iff.trans (subsingleton_iff_forall_eq 0) | |
/-- If `ι` is an empty type and `V` is zero-dimensional, there is a unique `ι`-indexed basis. -/ | |
noncomputable def basis_of_finrank_zero [finite_dimensional K V] | |
{ι : Type*} [is_empty ι] (hV : finrank K V = 0) : | |
basis ι K V := | |
begin | |
haveI : subsingleton V := finrank_zero_iff.1 hV, | |
exact basis.empty _ | |
end | |
end | |
namespace linear_map | |
variables [field K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
theorem injective_iff_surjective_of_finrank_eq_finrank [finite_dimensional K V] | |
[finite_dimensional K V₂] (H : finrank K V = finrank K V₂) {f : V →ₗ[K] V₂} : | |
function.injective f ↔ function.surjective f := | |
begin | |
have := finrank_range_add_finrank_ker f, | |
rw [← ker_eq_bot, ← range_eq_top], refine ⟨λ h, _, λ h, _⟩, | |
{ rw [h, finrank_bot, add_zero, H] at this, exact eq_top_of_finrank_eq this }, | |
{ rw [h, finrank_top, H] at this, exact finrank_eq_zero.1 (add_right_injective _ this) } | |
end | |
lemma ker_eq_bot_iff_range_eq_top_of_finrank_eq_finrank [finite_dimensional K V] | |
[finite_dimensional K V₂] (H : finrank K V = finrank K V₂) {f : V →ₗ[K] V₂} : | |
f.ker = ⊥ ↔ f.range = ⊤ := | |
by rw [range_eq_top, ker_eq_bot, injective_iff_surjective_of_finrank_eq_finrank H] | |
theorem finrank_le_finrank_of_injective [finite_dimensional K V] [finite_dimensional K V₂] | |
{f : V →ₗ[K] V₂} (hf : function.injective f) : finrank K V ≤ finrank K V₂ := | |
calc finrank K V | |
= finrank K f.range + finrank K f.ker : (finrank_range_add_finrank_ker f).symm | |
... = finrank K f.range : by rw [ker_eq_bot.2 hf, finrank_bot, add_zero] | |
... ≤ finrank K V₂ : submodule.finrank_le _ | |
/-- Given a linear map `f` between two vector spaces with the same dimension, if | |
`ker f = ⊥` then `linear_equiv_of_injective` is the induced isomorphism | |
between the two vector spaces. -/ | |
noncomputable def linear_equiv_of_injective | |
[finite_dimensional K V] [finite_dimensional K V₂] | |
(f : V →ₗ[K] V₂) (hf : injective f) (hdim : finrank K V = finrank K V₂) : V ≃ₗ[K] V₂ := | |
linear_equiv.of_bijective f hf $ | |
(linear_map.injective_iff_surjective_of_finrank_eq_finrank hdim).mp hf | |
@[simp] lemma linear_equiv_of_injective_apply | |
[finite_dimensional K V] [finite_dimensional K V₂] | |
{f : V →ₗ[K] V₂} (hf : injective f) (hdim : finrank K V = finrank K V₂) (x : V) : | |
f.linear_equiv_of_injective hf hdim x = f x := rfl | |
end linear_map | |
namespace alg_hom | |
lemma bijective {F : Type*} [field F] {E : Type*} [field E] [algebra F E] | |
[finite_dimensional F E] (ϕ : E →ₐ[F] E) : function.bijective ϕ := | |
have inj : function.injective ϕ.to_linear_map := ϕ.to_ring_hom.injective, | |
⟨inj, (linear_map.injective_iff_surjective_of_finrank_eq_finrank rfl).mp inj⟩ | |
end alg_hom | |
/-- Bijection between algebra equivalences and algebra homomorphisms -/ | |
noncomputable def alg_equiv_equiv_alg_hom (F : Type u) [field F] (E : Type v) [field E] | |
[algebra F E] [finite_dimensional F E] : (E ≃ₐ[F] E) ≃ (E →ₐ[F] E) := | |
{ to_fun := λ ϕ, ϕ.to_alg_hom, | |
inv_fun := λ ϕ, alg_equiv.of_bijective ϕ ϕ.bijective, | |
left_inv := λ _, by {ext, refl}, | |
right_inv := λ _, by {ext, refl} } | |
section | |
/-- A domain that is module-finite as an algebra over a field is a division ring. -/ | |
noncomputable def division_ring_of_finite_dimensional | |
(F K : Type*) [field F] [ring K] [is_domain K] | |
[algebra F K] [finite_dimensional F K] : division_ring K := | |
{ inv := λ x, if H : x = 0 then 0 else classical.some $ | |
(show function.surjective (algebra.lmul_left F x), from | |
linear_map.injective_iff_surjective.1 $ λ _ _, (mul_right_inj' H).1) 1, | |
mul_inv_cancel := λ x hx, show x * dite _ _ _ = _, by { rw dif_neg hx, | |
exact classical.some_spec ((show function.surjective (algebra.lmul_left F x), from | |
linear_map.injective_iff_surjective.1 $ λ _ _, (mul_right_inj' hx).1) 1) }, | |
inv_zero := dif_pos rfl, | |
.. ‹is_domain K›, | |
.. ‹ring K› } | |
/-- An integral domain that is module-finite as an algebra over a field is a field. -/ | |
noncomputable def field_of_finite_dimensional | |
(F K : Type*) [field F] [comm_ring K] [is_domain K] | |
[algebra F K] [finite_dimensional F K] : field K := | |
{ .. division_ring_of_finite_dimensional F K, | |
.. ‹comm_ring K› } | |
end | |
namespace submodule | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
lemma lt_of_le_of_finrank_lt_finrank {s t : submodule K V} | |
(le : s ≤ t) (lt : finrank K s < finrank K t) : s < t := | |
lt_of_le_of_ne le (λ h, ne_of_lt lt (by rw h)) | |
lemma lt_top_of_finrank_lt_finrank {s : submodule K V} | |
(lt : finrank K s < finrank K V) : s < ⊤ := | |
begin | |
rw ← @finrank_top K V at lt, | |
exact lt_of_le_of_finrank_lt_finrank le_top lt | |
end | |
lemma finrank_mono [finite_dimensional K V] : | |
monotone (λ (s : submodule K V), finrank K s) := | |
λ s t hst, | |
calc finrank K s = finrank K (comap t.subtype s) | |
: linear_equiv.finrank_eq (comap_subtype_equiv_of_le hst).symm | |
... ≤ finrank K t : submodule.finrank_le _ | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] | |
{V₂ : Type v'} [add_comm_group V₂] [module K V₂] | |
lemma finrank_lt_finrank_of_lt [finite_dimensional K V] {s t : submodule K V} (hst : s < t) : | |
finrank K s < finrank K t := | |
begin | |
rw linear_equiv.finrank_eq (comap_subtype_equiv_of_le (le_of_lt hst)).symm, | |
refine finrank_lt (lt_of_le_of_ne le_top _), | |
intro h_eq_top, | |
rw comap_subtype_eq_top at h_eq_top, | |
apply not_le_of_lt hst h_eq_top, | |
end | |
lemma finrank_add_eq_of_is_compl | |
[finite_dimensional K V] {U W : submodule K V} (h : is_compl U W) : | |
finrank K U + finrank K W = finrank K V := | |
begin | |
rw [← submodule.dim_sup_add_dim_inf_eq, top_le_iff.1 h.2, le_bot_iff.1 h.1, | |
finrank_bot, add_zero], | |
exact finrank_top | |
end | |
end field | |
end submodule | |
section span | |
open submodule | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
variable (K) | |
/-- The rank of a set of vectors as a natural number. -/ | |
protected noncomputable def set.finrank (s : set V) : ℕ := finrank K (span K s) | |
variable {K} | |
lemma finrank_span_le_card (s : set V) [fintype s] : | |
finrank K (span K s) ≤ s.to_finset.card := | |
begin | |
haveI := span_of_finite K s.to_finite, | |
have : module.rank K (span K s) ≤ #s := dim_span_le s, | |
rw [←finrank_eq_dim, cardinal.mk_fintype, ←set.to_finset_card] at this, | |
exact_mod_cast this, | |
end | |
lemma finrank_span_finset_le_card (s : finset V) : | |
(s : set V).finrank K ≤ s.card := | |
calc (s : set V).finrank K ≤ (s : set V).to_finset.card : finrank_span_le_card s | |
... = s.card : by simp | |
lemma finrank_span_eq_card {ι : Type*} [fintype ι] {b : ι → V} | |
(hb : linear_independent K b) : | |
finrank K (span K (set.range b)) = fintype.card ι := | |
begin | |
haveI : finite_dimensional K (span K (set.range b)) := span_of_finite K (set.finite_range b), | |
have : module.rank K (span K (set.range b)) = #(set.range b) := dim_span hb, | |
rwa [←finrank_eq_dim, ←lift_inj, mk_range_eq_of_injective hb.injective, | |
cardinal.mk_fintype, lift_nat_cast, lift_nat_cast, nat_cast_inj] at this, | |
end | |
lemma finrank_span_set_eq_card (s : set V) [fintype s] | |
(hs : linear_independent K (coe : s → V)) : | |
finrank K (span K s) = s.to_finset.card := | |
begin | |
haveI := span_of_finite K s.to_finite, | |
have : module.rank K (span K s) = #s := dim_span_set hs, | |
rw [←finrank_eq_dim, cardinal.mk_fintype, ←set.to_finset_card] at this, | |
exact_mod_cast this, | |
end | |
lemma finrank_span_finset_eq_card (s : finset V) | |
(hs : linear_independent K (coe : s → V)) : | |
finrank K (span K (s : set V)) = s.card := | |
begin | |
convert finrank_span_set_eq_card ↑s hs, | |
ext, | |
simp, | |
end | |
lemma span_lt_of_subset_of_card_lt_finrank {s : set V} [fintype s] {t : submodule K V} | |
(subset : s ⊆ t) (card_lt : s.to_finset.card < finrank K t) : span K s < t := | |
lt_of_le_of_finrank_lt_finrank | |
(span_le.mpr subset) | |
(lt_of_le_of_lt (finrank_span_le_card _) card_lt) | |
lemma span_lt_top_of_card_lt_finrank {s : set V} [fintype s] | |
(card_lt : s.to_finset.card < finrank K V) : span K s < ⊤ := | |
lt_top_of_finrank_lt_finrank (lt_of_le_of_lt (finrank_span_le_card _) card_lt) | |
lemma finrank_span_singleton {v : V} (hv : v ≠ 0) : finrank K (K ∙ v) = 1 := | |
begin | |
apply le_antisymm, | |
{ exact finrank_span_le_card ({v} : set V) }, | |
{ rw [nat.succ_le_iff, finrank_pos_iff], | |
use [⟨v, mem_span_singleton_self v⟩, 0], | |
simp [hv] } | |
end | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] | |
lemma set.finrank_mono [finite_dimensional K V] {s t : set V} (h : s ⊆ t) : | |
s.finrank K ≤ t.finrank K := finrank_mono (span_mono h) | |
end field | |
end span | |
section basis | |
section division_ring | |
variables [division_ring K] [add_comm_group V] [module K V] | |
lemma linear_independent_of_top_le_span_of_card_eq_finrank {ι : Type*} [fintype ι] {b : ι → V} | |
(spans : ⊤ ≤ span K (set.range b)) (card_eq : fintype.card ι = finrank K V) : | |
linear_independent K b := | |
linear_independent_iff'.mpr $ λ s g dependent i i_mem_s, | |
begin | |
by_contra gx_ne_zero, | |
-- We'll derive a contradiction by showing `b '' (univ \ {i})` of cardinality `n - 1` | |
-- spans a vector space of dimension `n`. | |
refine not_le_of_gt (span_lt_top_of_card_lt_finrank | |
(show (b '' (set.univ \ {i})).to_finset.card < finrank K V, from _)) _, | |
{ calc (b '' (set.univ \ {i})).to_finset.card = ((set.univ \ {i}).to_finset.image b).card | |
: by rw [set.to_finset_card, fintype.card_of_finset] | |
... ≤ (set.univ \ {i}).to_finset.card : finset.card_image_le | |
... = (finset.univ.erase i).card : congr_arg finset.card (finset.ext (by simp [and_comm])) | |
... < finset.univ.card : finset.card_erase_lt_of_mem (finset.mem_univ i) | |
... = finrank K V : card_eq }, | |
-- We already have that `b '' univ` spans the whole space, | |
-- so we only need to show that the span of `b '' (univ \ {i})` contains each `b j`. | |
refine spans.trans (span_le.mpr _), | |
rintros _ ⟨j, rfl, rfl⟩, | |
-- The case that `j ≠ i` is easy because `b j ∈ b '' (univ \ {i})`. | |
by_cases j_eq : j = i, | |
swap, | |
{ refine subset_span ⟨j, (set.mem_diff _).mpr ⟨set.mem_univ _, _⟩, rfl⟩, | |
exact mt set.mem_singleton_iff.mp j_eq }, | |
-- To show `b i ∈ span (b '' (univ \ {i}))`, we use that it's a weighted sum | |
-- of the other `b j`s. | |
rw [j_eq, set_like.mem_coe, show b i = -((g i)⁻¹ • (s.erase i).sum (λ j, g j • b j)), from _], | |
{ refine neg_mem (smul_mem _ _ (sum_mem (λ k hk, _))), | |
obtain ⟨k_ne_i, k_mem⟩ := finset.mem_erase.mp hk, | |
refine smul_mem _ _ (subset_span ⟨k, _, rfl⟩), | |
simpa using k_mem }, | |
-- To show `b i` is a weighted sum of the other `b j`s, we'll rewrite this sum | |
-- to have the form of the assumption `dependent`. | |
apply eq_neg_of_add_eq_zero_left, | |
calc b i + (g i)⁻¹ • (s.erase i).sum (λ j, g j • b j) | |
= (g i)⁻¹ • (g i • b i + (s.erase i).sum (λ j, g j • b j)) | |
: by rw [smul_add, ←mul_smul, inv_mul_cancel gx_ne_zero, one_smul] | |
... = (g i)⁻¹ • 0 : congr_arg _ _ | |
... = 0 : smul_zero _, | |
-- And then it's just a bit of manipulation with finite sums. | |
rwa [← finset.insert_erase i_mem_s, finset.sum_insert (finset.not_mem_erase _ _)] at dependent | |
end | |
/-- A finite family of vectors is linearly independent if and only if | |
its cardinality equals the dimension of its span. -/ | |
lemma linear_independent_iff_card_eq_finrank_span {ι : Type*} [fintype ι] {b : ι → V} : | |
linear_independent K b ↔ fintype.card ι = (set.range b).finrank K := | |
begin | |
split, | |
{ intro h, | |
exact (finrank_span_eq_card h).symm }, | |
{ intro hc, | |
let f := (submodule.subtype (span K (set.range b))), | |
let b' : ι → span K (set.range b) := | |
λ i, ⟨b i, mem_span.2 (λ p hp, hp (set.mem_range_self _))⟩, | |
have hs : ⊤ ≤ span K (set.range b'), | |
{ intro x, | |
have h : span K (f '' (set.range b')) = map f (span K (set.range b')) := span_image f, | |
have hf : f '' (set.range b') = set.range b, { ext x, simp [set.mem_image, set.mem_range] }, | |
rw hf at h, | |
have hx : (x : V) ∈ span K (set.range b) := x.property, | |
conv at hx { congr, skip, rw h }, | |
simpa [mem_map] using hx }, | |
have hi : f.ker = ⊥ := ker_subtype _, | |
convert (linear_independent_of_top_le_span_of_card_eq_finrank hs hc).map' _ hi } | |
end | |
/-- A family of `finrank K V` vectors forms a basis if they span the whole space. -/ | |
noncomputable def basis_of_top_le_span_of_card_eq_finrank {ι : Type*} [fintype ι] (b : ι → V) | |
(le_span : ⊤ ≤ span K (set.range b)) (card_eq : fintype.card ι = finrank K V) : | |
basis ι K V := | |
basis.mk (linear_independent_of_top_le_span_of_card_eq_finrank le_span card_eq) le_span | |
@[simp] lemma coe_basis_of_top_le_span_of_card_eq_finrank {ι : Type*} [fintype ι] (b : ι → V) | |
(le_span : ⊤ ≤ span K (set.range b)) (card_eq : fintype.card ι = finrank K V) : | |
⇑(basis_of_top_le_span_of_card_eq_finrank b le_span card_eq) = b := | |
basis.coe_mk _ _ | |
/-- A finset of `finrank K V` vectors forms a basis if they span the whole space. -/ | |
@[simps] | |
noncomputable def finset_basis_of_top_le_span_of_card_eq_finrank {s : finset V} | |
(le_span : ⊤ ≤ span K (s : set V)) (card_eq : s.card = finrank K V) : | |
basis (s : set V) K V := | |
basis_of_top_le_span_of_card_eq_finrank (coe : (s : set V) → V) | |
((@subtype.range_coe_subtype _ (λ x, x ∈ s)).symm ▸ le_span) | |
(trans (fintype.card_coe _) card_eq) | |
/-- A set of `finrank K V` vectors forms a basis if they span the whole space. -/ | |
@[simps] | |
noncomputable def set_basis_of_top_le_span_of_card_eq_finrank {s : set V} [fintype s] | |
(le_span : ⊤ ≤ span K s) (card_eq : s.to_finset.card = finrank K V) : | |
basis s K V := | |
basis_of_top_le_span_of_card_eq_finrank (coe : s → V) | |
((@subtype.range_coe_subtype _ s).symm ▸ le_span) | |
(trans s.to_finset_card.symm card_eq) | |
end division_ring | |
section field | |
variables [field K] [add_comm_group V] [module K V] | |
lemma span_eq_top_of_linear_independent_of_card_eq_finrank | |
{ι : Type*} [hι : nonempty ι] [fintype ι] {b : ι → V} | |
(lin_ind : linear_independent K b) (card_eq : fintype.card ι = finrank K V) : | |
span K (set.range b) = ⊤ := | |
begin | |
by_cases fin : (finite_dimensional K V), | |
{ haveI := fin, | |
by_contra ne_top, | |
have lt_top : span K (set.range b) < ⊤ := lt_of_le_of_ne le_top ne_top, | |
exact ne_of_lt (submodule.finrank_lt lt_top) (trans (finrank_span_eq_card lin_ind) card_eq) }, | |
{ exfalso, | |
apply ne_of_lt (fintype.card_pos_iff.mpr hι), | |
symmetry, | |
replace fin := (not_iff_not.2 is_noetherian.iff_fg).2 fin, | |
calc fintype.card ι = finrank K V : card_eq | |
... = 0 : dif_neg (mt is_noetherian.iff_dim_lt_aleph_0.mpr fin) } | |
end | |
/-- A linear independent family of `finrank K V` vectors forms a basis. -/ | |
@[simps] | |
noncomputable def basis_of_linear_independent_of_card_eq_finrank | |
{ι : Type*} [nonempty ι] [fintype ι] {b : ι → V} | |
(lin_ind : linear_independent K b) (card_eq : fintype.card ι = finrank K V) : | |
basis ι K V := | |
basis.mk lin_ind $ | |
(span_eq_top_of_linear_independent_of_card_eq_finrank lin_ind card_eq).ge | |
@[simp] lemma coe_basis_of_linear_independent_of_card_eq_finrank | |
{ι : Type*} [nonempty ι] [fintype ι] {b : ι → V} | |
(lin_ind : linear_independent K b) (card_eq : fintype.card ι = finrank K V) : | |
⇑(basis_of_linear_independent_of_card_eq_finrank lin_ind card_eq) = b := | |
basis.coe_mk _ _ | |
/-- A linear independent finset of `finrank K V` vectors forms a basis. -/ | |
@[simps] | |
noncomputable def finset_basis_of_linear_independent_of_card_eq_finrank | |
{s : finset V} (hs : s.nonempty) | |
(lin_ind : linear_independent K (coe : s → V)) (card_eq : s.card = finrank K V) : | |
basis s K V := | |
@basis_of_linear_independent_of_card_eq_finrank _ _ _ _ _ _ | |
⟨(⟨hs.some, hs.some_spec⟩ : s)⟩ _ _ | |
lin_ind | |
(trans (fintype.card_coe _) card_eq) | |
@[simp] lemma coe_finset_basis_of_linear_independent_of_card_eq_finrank | |
{s : finset V} (hs : s.nonempty) | |
(lin_ind : linear_independent K (coe : s → V)) (card_eq : s.card = finrank K V) : | |
⇑(finset_basis_of_linear_independent_of_card_eq_finrank hs lin_ind card_eq) = coe := | |
basis.coe_mk _ _ | |
/-- A linear independent set of `finrank K V` vectors forms a basis. -/ | |
@[simps] | |
noncomputable def set_basis_of_linear_independent_of_card_eq_finrank | |
{s : set V} [nonempty s] [fintype s] | |
(lin_ind : linear_independent K (coe : s → V)) (card_eq : s.to_finset.card = finrank K V) : | |
basis s K V := | |
basis_of_linear_independent_of_card_eq_finrank lin_ind (trans s.to_finset_card.symm card_eq) | |
@[simp] lemma coe_set_basis_of_linear_independent_of_card_eq_finrank | |
{s : set V} [nonempty s] [fintype s] | |
(lin_ind : linear_independent K (coe : s → V)) (card_eq : s.to_finset.card = finrank K V) : | |
⇑(set_basis_of_linear_independent_of_card_eq_finrank lin_ind card_eq) = coe := | |
basis.coe_mk _ _ | |
end field | |
end basis | |
/-! | |
We now give characterisations of `finrank K V = 1` and `finrank K V ≤ 1`. | |
-/ | |
section finrank_eq_one | |
variables [division_ring K] [add_comm_group V] [module K V] | |
/-- If there is a nonzero vector and every other vector is a multiple of it, | |
then the module has dimension one. -/ | |
lemma finrank_eq_one (v : V) (n : v ≠ 0) (h : ∀ w : V, ∃ c : K, c • v = w) : | |
finrank K V = 1 := | |
begin | |
obtain ⟨b⟩ := (basis.basis_singleton_iff punit).mpr ⟨v, n, h⟩, | |
rw [finrank_eq_card_basis b, fintype.card_punit] | |
end | |
/-- | |
If every vector is a multiple of some `v : V`, then `V` has dimension at most one. | |
-/ | |
lemma finrank_le_one (v : V) (h : ∀ w : V, ∃ c : K, c • v = w) : | |
finrank K V ≤ 1 := | |
begin | |
rcases eq_or_ne v 0 with rfl | hn, | |
{ haveI := subsingleton_of_forall_eq (0 : V) (λ w, by { obtain ⟨c, rfl⟩ := h w, simp }), | |
rw finrank_zero_of_subsingleton, | |
exact zero_le_one }, | |
{ exact (finrank_eq_one v hn h).le } | |
end | |
/-- | |
A vector space with a nonzero vector `v` has dimension 1 iff `v` spans. | |
-/ | |
lemma finrank_eq_one_iff_of_nonzero (v : V) (nz : v ≠ 0) : | |
finrank K V = 1 ↔ span K ({v} : set V) = ⊤ := | |
⟨λ h, by simpa using (basis_singleton punit h v nz).span_eq, | |
λ s, finrank_eq_card_basis (basis.mk (linear_independent_singleton nz) (by { convert s, simp }))⟩ | |
/-- | |
A module with a nonzero vector `v` has dimension 1 iff every vector is a multiple of `v`. | |
-/ | |
lemma finrank_eq_one_iff_of_nonzero' (v : V) (nz : v ≠ 0) : | |
finrank K V = 1 ↔ ∀ w : V, ∃ c : K, c • v = w := | |
begin | |
rw finrank_eq_one_iff_of_nonzero v nz, | |
apply span_singleton_eq_top_iff, | |
end | |
/-- | |
A module has dimension 1 iff there is some `v : V` so `{v}` is a basis. | |
-/ | |
lemma finrank_eq_one_iff (ι : Type*) [unique ι] : | |
finrank K V = 1 ↔ nonempty (basis ι K V) := | |
begin | |
fsplit, | |
{ intro h, | |
haveI := finite_dimensional_of_finrank (_root_.zero_lt_one.trans_le h.symm.le), | |
exact ⟨basis_unique ι h⟩ }, | |
{ rintro ⟨b⟩, | |
simpa using finrank_eq_card_basis b } | |
end | |
/-- | |
A module has dimension 1 iff there is some nonzero `v : V` so every vector is a multiple of `v`. | |
-/ | |
lemma finrank_eq_one_iff' : | |
finrank K V = 1 ↔ ∃ (v : V) (n : v ≠ 0), ∀ w : V, ∃ c : K, c • v = w := | |
begin | |
convert finrank_eq_one_iff punit, | |
simp only [exists_prop, eq_iff_iff, ne.def], | |
convert (basis.basis_singleton_iff punit).symm, | |
funext v, | |
simp, | |
apply_instance, apply_instance, -- Not sure why this aren't found automatically. | |
end | |
/-- | |
A finite dimensional module has dimension at most 1 iff | |
there is some `v : V` so every vector is a multiple of `v`. | |
-/ | |
lemma finrank_le_one_iff [finite_dimensional K V] : | |
finrank K V ≤ 1 ↔ ∃ (v : V), ∀ w : V, ∃ c : K, c • v = w := | |
begin | |
fsplit, | |
{ intro h, | |
by_cases h' : finrank K V = 0, | |
{ use 0, intro w, use 0, haveI := finrank_zero_iff.mp h', apply subsingleton.elim, }, | |
{ replace h' := zero_lt_iff.mpr h', have : finrank K V = 1, { linarith }, | |
obtain ⟨v, -, p⟩ := finrank_eq_one_iff'.mp this, | |
use ⟨v, p⟩, }, }, | |
{ rintro ⟨v, p⟩, | |
exact finrank_le_one v p, } | |
end | |
lemma submodule.finrank_le_one_iff_is_principal (W : submodule K V) [finite_dimensional K W] : | |
finite_dimensional.finrank K W ≤ 1 ↔ W.is_principal := | |
by rw [← W.rank_le_one_iff_is_principal, ← finite_dimensional.finrank_eq_dim, | |
← cardinal.nat_cast_le, nat.cast_one] | |
lemma module.finrank_le_one_iff_top_is_principal [finite_dimensional K V] : | |
finite_dimensional.finrank K V ≤ 1 ↔ (⊤ : submodule K V).is_principal := | |
by rw [← module.rank_le_one_iff_top_is_principal, ← finite_dimensional.finrank_eq_dim, | |
← cardinal.nat_cast_le, nat.cast_one] | |
-- We use the `linear_map.compatible_smul` typeclass here, to encompass two situations: | |
-- * `A = K` | |
-- * `[field K] [algebra K A] [is_scalar_tower K A V] [is_scalar_tower K A W]` | |
lemma surjective_of_nonzero_of_finrank_eq_one | |
{K : Type*} [division_ring K] {A : Type*} [semiring A] | |
[module K V] [module A V] | |
{W : Type*} [add_comm_group W] [module K W] [module A W] [linear_map.compatible_smul V W K A] | |
(h : finrank K W = 1) {f : V →ₗ[A] W} (w : f ≠ 0) : surjective f := | |
begin | |
change surjective (f.restrict_scalars K), | |
obtain ⟨v, n⟩ := fun_like.ne_iff.mp w, | |
intro z, | |
obtain ⟨c, rfl⟩ := (finrank_eq_one_iff_of_nonzero' (f v) n).mp h z, | |
exact ⟨c • v, by simp⟩, | |
end | |
end finrank_eq_one | |
section subalgebra_dim | |
open module | |
variables {F E : Type*} [field F] [field E] [algebra F E] | |
lemma subalgebra.dim_eq_one_of_eq_bot {S : subalgebra F E} (h : S = ⊥) : module.rank F S = 1 := | |
begin | |
rw [← S.to_submodule_equiv.dim_eq, h, | |
(linear_equiv.of_eq (⊥ : subalgebra F E).to_submodule _ algebra.to_submodule_bot).dim_eq, | |
dim_span_set], | |
exacts [mk_singleton _, linear_independent_singleton one_ne_zero] | |
end | |
@[simp] | |
lemma subalgebra.dim_bot : module.rank F (⊥ : subalgebra F E) = 1 := | |
subalgebra.dim_eq_one_of_eq_bot rfl | |
lemma subalgebra_top_dim_eq_submodule_top_dim : | |
module.rank F (⊤ : subalgebra F E) = module.rank F (⊤ : submodule F E) := | |
by { rw ← algebra.top_to_submodule, refl } | |
lemma subalgebra_top_finrank_eq_submodule_top_finrank : | |
finrank F (⊤ : subalgebra F E) = finrank F (⊤ : submodule F E) := | |
by { rw ← algebra.top_to_submodule, refl } | |
lemma subalgebra.dim_top : module.rank F (⊤ : subalgebra F E) = module.rank F E := | |
by { rw subalgebra_top_dim_eq_submodule_top_dim, exact dim_top F E } | |
instance subalgebra.finite_dimensional_bot : finite_dimensional F (⊥ : subalgebra F E) := | |
finite_dimensional_of_dim_eq_one subalgebra.dim_bot | |
@[simp] | |
lemma subalgebra.finrank_bot : finrank F (⊥ : subalgebra F E) = 1 := | |
begin | |
have : module.rank F (⊥ : subalgebra F E) = 1 := subalgebra.dim_bot, | |
rw ← finrank_eq_dim at this, | |
norm_cast at *, | |
simp *, | |
end | |
lemma subalgebra.finrank_eq_one_of_eq_bot {S : subalgebra F E} (h : S = ⊥) : finrank F S = 1 := | |
by { rw h, exact subalgebra.finrank_bot } | |
lemma subalgebra.eq_bot_of_finrank_one {S : subalgebra F E} (h : finrank F S = 1) : S = ⊥ := | |
begin | |
rw eq_bot_iff, | |
let b : set S := {1}, | |
have : fintype b := unique.fintype, | |
have b_lin_ind : linear_independent F (coe : b → S) := linear_independent_singleton one_ne_zero, | |
have b_card : fintype.card b = 1 := fintype.card_of_subsingleton _, | |
let hb := set_basis_of_linear_independent_of_card_eq_finrank | |
b_lin_ind (by simp only [*, set.to_finset_card]), | |
have b_spans := hb.span_eq, | |
intros x hx, | |
rw [algebra.mem_bot], | |
have x_in_span_b : (⟨x, hx⟩ : S) ∈ submodule.span F b, | |
{ rw [coe_set_basis_of_linear_independent_of_card_eq_finrank, subtype.range_coe] at b_spans, | |
rw b_spans, | |
exact submodule.mem_top, }, | |
obtain ⟨a, ha⟩ := submodule.mem_span_singleton.mp x_in_span_b, | |
replace ha : a • 1 = x := by injections with ha, | |
exact ⟨a, by rw [← ha, algebra.smul_def, mul_one]⟩, | |
end | |
lemma subalgebra.eq_bot_of_dim_one {S : subalgebra F E} (h : module.rank F S = 1) : S = ⊥ := | |
begin | |
haveI : finite_dimensional F S := finite_dimensional_of_dim_eq_one h, | |
rw ← finrank_eq_dim at h, | |
norm_cast at h, | |
exact subalgebra.eq_bot_of_finrank_one h, | |
end | |
@[simp] | |
lemma subalgebra.bot_eq_top_of_dim_eq_one (h : module.rank F E = 1) : (⊥ : subalgebra F E) = ⊤ := | |
begin | |
rw [← dim_top, ← subalgebra_top_dim_eq_submodule_top_dim] at h, | |
exact eq.symm (subalgebra.eq_bot_of_dim_one h), | |
end | |
@[simp] | |
lemma subalgebra.bot_eq_top_of_finrank_eq_one (h : finrank F E = 1) : (⊥ : subalgebra F E) = ⊤ := | |
begin | |
rw [← finrank_top, ← subalgebra_top_finrank_eq_submodule_top_finrank] at h, | |
exact eq.symm (subalgebra.eq_bot_of_finrank_one h), | |
end | |
@[simp] | |
theorem subalgebra.dim_eq_one_iff {S : subalgebra F E} : module.rank F S = 1 ↔ S = ⊥ := | |
⟨subalgebra.eq_bot_of_dim_one, subalgebra.dim_eq_one_of_eq_bot⟩ | |
@[simp] | |
theorem subalgebra.finrank_eq_one_iff {S : subalgebra F E} : finrank F S = 1 ↔ S = ⊥ := | |
⟨subalgebra.eq_bot_of_finrank_one, subalgebra.finrank_eq_one_of_eq_bot⟩ | |
end subalgebra_dim | |
namespace module | |
namespace End | |
variables [field K] [add_comm_group V] [module K V] | |
lemma exists_ker_pow_eq_ker_pow_succ [finite_dimensional K V] (f : End K V) : | |
∃ (k : ℕ), k ≤ finrank K V ∧ (f ^ k).ker = (f ^ k.succ).ker := | |
begin | |
classical, | |
by_contradiction h_contra, | |
simp_rw [not_exists, not_and] at h_contra, | |
have h_le_ker_pow : ∀ (n : ℕ), n ≤ (finrank K V).succ → n ≤ finrank K (f ^ n).ker, | |
{ intros n hn, | |
induction n with n ih, | |
{ exact zero_le (finrank _ _) }, | |
{ have h_ker_lt_ker : (f ^ n).ker < (f ^ n.succ).ker, | |
{ refine lt_of_le_of_ne _ (h_contra n (nat.le_of_succ_le_succ hn)), | |
rw pow_succ, | |
apply linear_map.ker_le_ker_comp }, | |
have h_finrank_lt_finrank : finrank K (f ^ n).ker < finrank K (f ^ n.succ).ker, | |
{ apply submodule.finrank_lt_finrank_of_lt h_ker_lt_ker }, | |
calc | |
n.succ ≤ (finrank K ↥(linear_map.ker (f ^ n))).succ : | |
nat.succ_le_succ (ih (nat.le_of_succ_le hn)) | |
... ≤ finrank K ↥(linear_map.ker (f ^ n.succ)) : | |
nat.succ_le_of_lt h_finrank_lt_finrank } }, | |
have h_le_finrank_V : ∀ n, finrank K (f ^ n).ker ≤ finrank K V := | |
λ n, submodule.finrank_le _, | |
have h_any_n_lt: ∀ n, n ≤ (finrank K V).succ → n ≤ finrank K V := | |
λ n hn, (h_le_ker_pow n hn).trans (h_le_finrank_V n), | |
show false, | |
from nat.not_succ_le_self _ (h_any_n_lt (finrank K V).succ (finrank K V).succ.le_refl), | |
end | |
lemma ker_pow_constant {f : End K V} {k : ℕ} (h : (f ^ k).ker = (f ^ k.succ).ker) : | |
∀ m, (f ^ k).ker = (f ^ (k + m)).ker | |
| 0 := by simp | |
| (m + 1) := | |
begin | |
apply le_antisymm, | |
{ rw [add_comm, pow_add], | |
apply linear_map.ker_le_ker_comp }, | |
{ rw [ker_pow_constant m, add_comm m 1, ←add_assoc, pow_add, pow_add f k m], | |
change linear_map.ker ((f ^ (k + 1)).comp (f ^ m)) ≤ linear_map.ker ((f ^ k).comp (f ^ m)), | |
rw [linear_map.ker_comp, linear_map.ker_comp, h, nat.add_one], | |
exact le_rfl, } | |
end | |
lemma ker_pow_eq_ker_pow_finrank_of_le [finite_dimensional K V] | |
{f : End K V} {m : ℕ} (hm : finrank K V ≤ m) : | |
(f ^ m).ker = (f ^ finrank K V).ker := | |
begin | |
obtain ⟨k, h_k_le, hk⟩ : | |
∃ k, k ≤ finrank K V ∧ linear_map.ker (f ^ k) = linear_map.ker (f ^ k.succ) := | |
exists_ker_pow_eq_ker_pow_succ f, | |
calc (f ^ m).ker = (f ^ (k + (m - k))).ker : | |
by rw add_tsub_cancel_of_le (h_k_le.trans hm) | |
... = (f ^ k).ker : by rw ker_pow_constant hk _ | |
... = (f ^ (k + (finrank K V - k))).ker : ker_pow_constant hk (finrank K V - k) | |
... = (f ^ finrank K V).ker : by rw add_tsub_cancel_of_le h_k_le | |
end | |
lemma ker_pow_le_ker_pow_finrank [finite_dimensional K V] (f : End K V) (m : ℕ) : | |
(f ^ m).ker ≤ (f ^ finrank K V).ker := | |
begin | |
by_cases h_cases: m < finrank K V, | |
{ rw [←add_tsub_cancel_of_le (nat.le_of_lt h_cases), add_comm, pow_add], | |
apply linear_map.ker_le_ker_comp }, | |
{ rw [ker_pow_eq_ker_pow_finrank_of_le (le_of_not_lt h_cases)], | |
exact le_rfl } | |
end | |
end End | |
end module | |