Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Markus Himmel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Markus Himmel, Scott Morrison | |
-/ | |
import ring_theory.ideal.quotient | |
import ring_theory.principal_ideal_domain | |
/-! | |
# Invariant basis number property | |
We say that a ring `R` satisfies the invariant basis number property if there is a well-defined | |
notion of the rank of a finitely generated free (left) `R`-module. Since a finitely generated free | |
module with a basis consisting of `n` elements is linearly equivalent to `fin n → R`, it is | |
sufficient that `(fin n → R) ≃ₗ[R] (fin m → R)` implies `n = m`. | |
It is also useful to consider two stronger conditions, namely the rank condition, | |
that a surjective linear map `(fin n → R) →ₗ[R] (fin m → R)` implies `m ≤ n` and | |
the strong rank condition, that an injective linear map `(fin n → R) →ₗ[R] (fin m → R)` | |
implies `n ≤ m`. | |
The strong rank condition implies the rank condition, and the rank condition implies | |
the invariant basis number property. | |
## Main definitions | |
`strong_rank_condition R` is a type class stating that `R` satisfies the strong rank condition. | |
`rank_condition R` is a type class stating that `R` satisfies the rank condition. | |
`invariant_basis_number R` is a type class stating that `R` has the invariant basis number property. | |
## Main results | |
We show that every nontrivial left-noetherian ring satisfies the strong rank condition, | |
(and so in particular every division ring or field), | |
and then use this to show every nontrivial commutative ring has the invariant basis number property. | |
More generally, every commutative ring satisfies the strong rank condition. This is proved in | |
`linear_algebra/free_module/strong_rank_condition`. We keep | |
`invariant_basis_number_of_nontrivial_of_comm_ring` here since it imports fewer files. | |
## Future work | |
So far, there is no API at all for the `invariant_basis_number` class. There are several natural | |
ways to formulate that a module `M` is finitely generated and free, for example | |
`M ≃ₗ[R] (fin n → R)`, `M ≃ₗ[R] (ι → R)`, where `ι` is a fintype, or providing a basis indexed by | |
a finite type. There should be lemmas applying the invariant basis number property to each | |
situation. | |
The finite version of the invariant basis number property implies the infinite analogue, i.e., that | |
`(ι →₀ R) ≃ₗ[R] (ι' →₀ R)` implies that `cardinal.mk ι = cardinal.mk ι'`. This fact (and its | |
variants) should be formalized. | |
## References | |
* https://en.wikipedia.org/wiki/Invariant_basis_number | |
* https://mathoverflow.net/a/2574/ | |
## Tags | |
free module, rank, invariant basis number, IBN | |
-/ | |
noncomputable theory | |
open_locale classical big_operators | |
open function | |
universes u v w | |
section | |
variables (R : Type u) [semiring R] | |
/-- We say that `R` satisfies the strong rank condition if `(fin n → R) →ₗ[R] (fin m → R)` injective | |
implies `n ≤ m`. -/ | |
@[mk_iff] | |
class strong_rank_condition : Prop := | |
(le_of_fin_injective : ∀ {n m : ℕ} (f : (fin n → R) →ₗ[R] (fin m → R)), injective f → n ≤ m) | |
lemma le_of_fin_injective [strong_rank_condition R] {n m : ℕ} (f : (fin n → R) →ₗ[R] (fin m → R)) : | |
injective f → n ≤ m := | |
strong_rank_condition.le_of_fin_injective f | |
/-- A ring satisfies the strong rank condition if and only if, for all `n : ℕ`, any linear map | |
`(fin (n + 1) → R) →ₗ[R] (fin n → R)` is not injective. -/ | |
lemma strong_rank_condition_iff_succ : strong_rank_condition R ↔ | |
∀ (n : ℕ) (f : (fin (n + 1) → R) →ₗ[R] (fin n → R)), ¬function.injective f := | |
begin | |
refine ⟨λ h n, λ f hf, _, λ h, ⟨λ n m f hf, _⟩⟩, | |
{ letI : strong_rank_condition R := h, | |
exact nat.not_succ_le_self n (le_of_fin_injective R f hf) }, | |
{ by_contra H, | |
exact h m (f.comp (function.extend_by_zero.linear_map R (fin.cast_le (not_le.1 H)))) | |
(hf.comp (function.extend_injective (rel_embedding.injective _) 0)) } | |
end | |
lemma card_le_of_injective [strong_rank_condition R] {α β : Type*} [fintype α] [fintype β] | |
(f : (α → R) →ₗ[R] (β → R)) (i : injective f) : fintype.card α ≤ fintype.card β := | |
begin | |
let P := linear_equiv.fun_congr_left R R (fintype.equiv_fin α), | |
let Q := linear_equiv.fun_congr_left R R (fintype.equiv_fin β), | |
exact le_of_fin_injective R ((Q.symm.to_linear_map.comp f).comp P.to_linear_map) | |
(((linear_equiv.symm Q).injective.comp i).comp (linear_equiv.injective P)), | |
end | |
lemma card_le_of_injective' [strong_rank_condition R] {α β : Type*} [fintype α] [fintype β] | |
(f : (α →₀ R) →ₗ[R] (β →₀ R)) (i : injective f) : fintype.card α ≤ fintype.card β := | |
begin | |
let P := (finsupp.linear_equiv_fun_on_fintype R R β), | |
let Q := (finsupp.linear_equiv_fun_on_fintype R R α).symm, | |
exact card_le_of_injective R ((P.to_linear_map.comp f).comp Q.to_linear_map) | |
((P.injective.comp i).comp Q.injective) | |
end | |
/-- We say that `R` satisfies the rank condition if `(fin n → R) →ₗ[R] (fin m → R)` surjective | |
implies `m ≤ n`. -/ | |
class rank_condition : Prop := | |
(le_of_fin_surjective : ∀ {n m : ℕ} (f : (fin n → R) →ₗ[R] (fin m → R)), surjective f → m ≤ n) | |
lemma le_of_fin_surjective [rank_condition R] {n m : ℕ} (f : (fin n → R) →ₗ[R] (fin m → R)) : | |
surjective f → m ≤ n := | |
rank_condition.le_of_fin_surjective f | |
lemma card_le_of_surjective [rank_condition R] {α β : Type*} [fintype α] [fintype β] | |
(f : (α → R) →ₗ[R] (β → R)) (i : surjective f) : fintype.card β ≤ fintype.card α := | |
begin | |
let P := linear_equiv.fun_congr_left R R (fintype.equiv_fin α), | |
let Q := linear_equiv.fun_congr_left R R (fintype.equiv_fin β), | |
exact le_of_fin_surjective R ((Q.symm.to_linear_map.comp f).comp P.to_linear_map) | |
(((linear_equiv.symm Q).surjective.comp i).comp (linear_equiv.surjective P)), | |
end | |
lemma card_le_of_surjective' [rank_condition R] {α β : Type*} [fintype α] [fintype β] | |
(f : (α →₀ R) →ₗ[R] (β →₀ R)) (i : surjective f) : fintype.card β ≤ fintype.card α := | |
begin | |
let P := (finsupp.linear_equiv_fun_on_fintype R R β), | |
let Q := (finsupp.linear_equiv_fun_on_fintype R R α).symm, | |
exact card_le_of_surjective R ((P.to_linear_map.comp f).comp Q.to_linear_map) | |
((P.surjective.comp i).comp Q.surjective) | |
end | |
/-- | |
By the universal property for free modules, any surjective map `(fin n → R) →ₗ[R] (fin m → R)` | |
has an injective splitting `(fin m → R) →ₗ[R] (fin n → R)` | |
from which the strong rank condition gives the necessary inequality for the rank condition. | |
-/ | |
@[priority 100] | |
instance rank_condition_of_strong_rank_condition [strong_rank_condition R] : rank_condition R := | |
{ le_of_fin_surjective := λ n m f s, | |
le_of_fin_injective R _ (f.splitting_of_fun_on_fintype_surjective_injective s), } | |
/-- We say that `R` has the invariant basis number property if `(fin n → R) ≃ₗ[R] (fin m → R)` | |
implies `n = m`. This gives rise to a well-defined notion of rank of a finitely generated free | |
module. -/ | |
class invariant_basis_number : Prop := | |
(eq_of_fin_equiv : ∀ {n m : ℕ}, ((fin n → R) ≃ₗ[R] (fin m → R)) → n = m) | |
@[priority 100] | |
instance invariant_basis_number_of_rank_condition [rank_condition R] : invariant_basis_number R := | |
{ eq_of_fin_equiv := λ n m e, le_antisymm | |
(le_of_fin_surjective R e.symm.to_linear_map e.symm.surjective) | |
(le_of_fin_surjective R e.to_linear_map e.surjective) } | |
end | |
section | |
variables (R : Type u) [semiring R] [invariant_basis_number R] | |
lemma eq_of_fin_equiv {n m : ℕ} : ((fin n → R) ≃ₗ[R] (fin m → R)) → n = m := | |
invariant_basis_number.eq_of_fin_equiv | |
lemma card_eq_of_lequiv {α β : Type*} [fintype α] [fintype β] | |
(f : (α → R) ≃ₗ[R] (β → R)) : fintype.card α = fintype.card β := | |
eq_of_fin_equiv R (((linear_equiv.fun_congr_left R R (fintype.equiv_fin α)).trans f) ≪≫ₗ | |
((linear_equiv.fun_congr_left R R (fintype.equiv_fin β)).symm)) | |
lemma nontrivial_of_invariant_basis_number : nontrivial R := | |
begin | |
by_contra h, | |
refine zero_ne_one (eq_of_fin_equiv R _), | |
haveI := not_nontrivial_iff_subsingleton.1 h, | |
haveI : subsingleton (fin 1 → R) := ⟨λ a b, funext $ λ x, subsingleton.elim _ _⟩, | |
refine { .. }; { intros, exact 0 } <|> tidy | |
end | |
end | |
section | |
variables (R : Type u) [ring R] [nontrivial R] [is_noetherian_ring R] | |
/-- | |
Any nontrivial noetherian ring satisfies the strong rank condition. | |
An injective map `((fin n ⊕ fin (1 + m)) → R) →ₗ[R] (fin n → R)` for some left-noetherian `R` | |
would force `fin (1 + m) → R ≃ₗ punit` (via `is_noetherian.equiv_punit_of_prod_injective`), | |
which is not the case! | |
-/ | |
-- Note this includes fields, | |
-- and we use this below to show any commutative ring has invariant basis number. | |
@[priority 100] | |
instance noetherian_ring_strong_rank_condition : strong_rank_condition R := | |
begin | |
fsplit, | |
intros m n f i, | |
by_contradiction h, | |
rw [not_le, ←nat.add_one_le_iff, le_iff_exists_add] at h, | |
obtain ⟨m, rfl⟩ := h, | |
let e : fin (n + 1 + m) ≃ fin n ⊕ fin (1 + m) := | |
(fin_congr (add_assoc _ _ _)).trans fin_sum_fin_equiv.symm, | |
let f' := f.comp ((linear_equiv.sum_arrow_lequiv_prod_arrow _ _ R R).symm.trans | |
(linear_equiv.fun_congr_left R R e)).to_linear_map, | |
have i' : injective f' := i.comp (linear_equiv.injective _), | |
apply @zero_ne_one (fin (1 + m) → R) _ _, | |
apply (is_noetherian.equiv_punit_of_prod_injective f' i').injective, | |
ext, | |
end | |
end | |
/-! | |
We want to show that nontrivial commutative rings have invariant basis number. The idea is to | |
take a maximal ideal `I` of `R` and use an isomorphism `R^n ≃ R^m` of `R` modules to produce an | |
isomorphism `(R/I)^n ≃ (R/I)^m` of `R/I`-modules, which will imply `n = m` since `R/I` is a field | |
and we know that fields have invariant basis number. | |
We construct the isomorphism in two steps: | |
1. We construct the ring `R^n/I^n`, show that it is an `R/I`-module and show that there is an | |
isomorphism of `R/I`-modules `R^n/I^n ≃ (R/I)^n`. This isomorphism is called | |
`ideal.pi_quot_equiv` and is located in the file `ring_theory/ideals.lean`. | |
2. We construct an isomorphism of `R/I`-modules `R^n/I^n ≃ R^m/I^m` using the isomorphism | |
`R^n ≃ R^m`. | |
-/ | |
section | |
variables {R : Type u} [comm_ring R] (I : ideal R) {ι : Type v} [fintype ι] {ι' : Type w} | |
/-- An `R`-linear map `R^n → R^m` induces a function `R^n/I^n → R^m/I^m`. -/ | |
private def induced_map (I : ideal R) (e : (ι → R) →ₗ[R] (ι' → R)) : | |
(ι → R) ⧸ (I.pi ι) → (ι' → R) ⧸ I.pi ι' := | |
λ x, quotient.lift_on' x (λ y, ideal.quotient.mk _ (e y)) | |
begin | |
refine λ a b hab, ideal.quotient.eq.2 (λ h, _), | |
rw submodule.quotient_rel_r_def at hab, | |
rw ←linear_map.map_sub, | |
exact ideal.map_pi _ _ hab e h, | |
end | |
/-- An isomorphism of `R`-modules `R^n ≃ R^m` induces an isomorphism of `R/I`-modules | |
`R^n/I^n ≃ R^m/I^m`. -/ | |
private def induced_equiv [fintype ι'] (I : ideal R) (e : (ι → R) ≃ₗ[R] (ι' → R)) : | |
((ι → R) ⧸ I.pi ι) ≃ₗ[R ⧸ I] (ι' → R) ⧸ I.pi ι' := | |
begin | |
refine { to_fun := induced_map I e, inv_fun := induced_map I e.symm, .. }, | |
all_goals { rintro ⟨a⟩ ⟨b⟩ <|> rintro ⟨a⟩, | |
change ideal.quotient.mk _ _ = ideal.quotient.mk _ _, | |
congr, simp } | |
end | |
end | |
section | |
local attribute [instance] ideal.quotient.field | |
/-- Nontrivial commutative rings have the invariant basis number property. | |
In fact, any nontrivial commutative ring satisfies the strong rank condition, see | |
`comm_ring_strong_rank_condition`. We prove this instance separately to avoid dependency on | |
`linear_algebra.charpoly.basic`. -/ | |
@[priority 100] | |
instance invariant_basis_number_of_nontrivial_of_comm_ring {R : Type u} [comm_ring R] | |
[nontrivial R] : invariant_basis_number R := | |
⟨λ n m e, let ⟨I, hI⟩ := ideal.exists_maximal R in | |
by exactI eq_of_fin_equiv (R ⧸ I) | |
((ideal.pi_quot_equiv _ _).symm ≪≫ₗ ((induced_equiv _ e) ≪≫ₗ (ideal.pi_quot_equiv _ _)))⟩ | |
end | |