Zhangir Azerbayev
squashed?
4365a98
raw
history blame
27.3 kB
/-
Copyright (c) 2020 Yury Kudryashov All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov, Moritz Doll
-/
import linear_algebra.basic
import linear_algebra.prod
/-!
# Partially defined linear maps
A `linear_pmap R E F` is a linear map from a submodule of `E` to `F`. We define
a `semilattice_inf` with `order_bot` instance on this this, and define three operations:
* `mk_span_singleton` defines a partial linear map defined on the span of a singleton.
* `sup` takes two partial linear maps `f`, `g` that agree on the intersection of their
domains, and returns the unique partial linear map on `f.domain ⊔ g.domain` that
extends both `f` and `g`.
* `Sup` takes a `directed_on (≤)` set of partial linear maps, and returns the unique
partial linear map on the `Sup` of their domains that extends all these maps.
Moreover, we define
* `linear_pmap.graph` is the graph of the partial linear map viewed as a submodule of `E × F`.
Partially defined maps are currently used in `mathlib` to prove Hahn-Banach theorem
and its variations. Namely, `linear_pmap.Sup` implies that every chain of `linear_pmap`s
is bounded above.
They are also the basis for the theory of unbounded operators.
-/
open set
universes u v w
/-- A `linear_pmap R E F` is a linear map from a submodule of `E` to `F`. -/
structure linear_pmap (R : Type u) [ring R] (E : Type v) [add_comm_group E] [module R E]
(F : Type w) [add_comm_group F] [module R F] :=
(domain : submodule R E)
(to_fun : domain →ₗ[R] F)
variables {R : Type*} [ring R] {E : Type*} [add_comm_group E] [module R E]
{F : Type*} [add_comm_group F] [module R F]
{G : Type*} [add_comm_group G] [module R G]
namespace linear_pmap
open submodule
instance : has_coe_to_fun (linear_pmap R E F) (λ f : linear_pmap R E F, f.domain → F) :=
⟨λ f, f.to_fun⟩
@[simp] lemma to_fun_eq_coe (f : linear_pmap R E F) (x : f.domain) :
f.to_fun x = f x := rfl
@[ext] lemma ext {f g : linear_pmap R E F} (h : f.domain = g.domain)
(h' : ∀ ⦃x : f.domain⦄ ⦃y : g.domain⦄ (h : (x:E) = y), f x = g y) : f = g :=
begin
rcases f with ⟨f_dom, f⟩,
rcases g with ⟨g_dom, g⟩,
obtain rfl : f_dom = g_dom := h,
obtain rfl : f = g := linear_map.ext (λ x, h' rfl),
refl,
end
@[simp] lemma map_zero (f : linear_pmap R E F) : f 0 = 0 := f.to_fun.map_zero
lemma ext_iff {f g : linear_pmap R E F} :
f = g ↔
∃ (domain_eq : f.domain = g.domain),
∀ ⦃x : f.domain⦄ ⦃y : g.domain⦄ (h : (x:E) = y), f x = g y :=
⟨λ EQ, EQ ▸ ⟨rfl, λ x y h, by { congr, exact_mod_cast h }⟩, λ ⟨deq, feq⟩, ext deq feq⟩
lemma map_add (f : linear_pmap R E F) (x y : f.domain) : f (x + y) = f x + f y :=
f.to_fun.map_add x y
lemma map_neg (f : linear_pmap R E F) (x : f.domain) : f (-x) = -f x :=
f.to_fun.map_neg x
lemma map_sub (f : linear_pmap R E F) (x y : f.domain) : f (x - y) = f x - f y :=
f.to_fun.map_sub x y
lemma map_smul (f : linear_pmap R E F) (c : R) (x : f.domain) : f (c • x) = c • f x :=
f.to_fun.map_smul c x
@[simp] lemma mk_apply (p : submodule R E) (f : p →ₗ[R] F) (x : p) :
mk p f x = f x := rfl
/-- The unique `linear_pmap` on `R ∙ x` that sends `x` to `y`. This version works for modules
over rings, and requires a proof of `∀ c, c • x = 0 → c • y = 0`. -/
noncomputable def mk_span_singleton' (x : E) (y : F) (H : ∀ c : R, c • x = 0 → c • y = 0) :
linear_pmap R E F :=
{ domain := R ∙ x,
to_fun :=
have H : ∀ c₁ c₂ : R, c₁ • x = c₂ • x → c₁ • y = c₂ • y,
{ intros c₁ c₂ h,
rw [← sub_eq_zero, ← sub_smul] at h ⊢,
exact H _ h },
{ to_fun := λ z, (classical.some (mem_span_singleton.1 z.prop) • y),
map_add' := λ y z, begin
rw [← add_smul],
apply H,
simp only [add_smul, sub_smul, classical.some_spec (mem_span_singleton.1 _)],
apply coe_add
end,
map_smul' := λ c z, begin
rw [smul_smul],
apply H,
simp only [mul_smul, classical.some_spec (mem_span_singleton.1 _)],
apply coe_smul
end } }
@[simp] lemma domain_mk_span_singleton (x : E) (y : F) (H : ∀ c : R, c • x = 0 → c • y = 0) :
(mk_span_singleton' x y H).domain = R ∙ x := rfl
@[simp] lemma mk_span_singleton'_apply (x : E) (y : F) (H : ∀ c : R, c • x = 0 → c • y = 0)
(c : R) (h) :
mk_span_singleton' x y H ⟨c • x, h⟩ = c • y :=
begin
dsimp [mk_span_singleton'],
rw [← sub_eq_zero, ← sub_smul],
apply H,
simp only [sub_smul, one_smul, sub_eq_zero],
apply classical.some_spec (mem_span_singleton.1 h),
end
@[simp] lemma mk_span_singleton'_apply_self (x : E) (y : F) (H : ∀ c : R, c • x = 0 → c • y = 0)
(h) :
mk_span_singleton' x y H ⟨x, h⟩ = y :=
by convert mk_span_singleton'_apply x y H 1 _; rwa one_smul
/-- The unique `linear_pmap` on `span R {x}` that sends a non-zero vector `x` to `y`.
This version works for modules over division rings. -/
@[reducible] noncomputable def mk_span_singleton {K E F : Type*} [division_ring K]
[add_comm_group E] [module K E] [add_comm_group F] [module K F] (x : E) (y : F) (hx : x ≠ 0) :
linear_pmap K E F :=
mk_span_singleton' x y $ λ c hc, (smul_eq_zero.1 hc).elim
(λ hc, by rw [hc, zero_smul]) (λ hx', absurd hx' hx)
lemma mk_span_singleton_apply (K : Type*) {E F : Type*} [division_ring K]
[add_comm_group E] [module K E] [add_comm_group F] [module K F] {x : E} (hx : x ≠ 0) (y : F) :
mk_span_singleton x y hx
⟨x, (submodule.mem_span_singleton_self x : x ∈ submodule.span K {x})⟩ = y :=
linear_pmap.mk_span_singleton'_apply_self _ _ _ _
/-- Projection to the first coordinate as a `linear_pmap` -/
protected def fst (p : submodule R E) (p' : submodule R F) : linear_pmap R (E × F) E :=
{ domain := p.prod p',
to_fun := (linear_map.fst R E F).comp (p.prod p').subtype }
@[simp] lemma fst_apply (p : submodule R E) (p' : submodule R F) (x : p.prod p') :
linear_pmap.fst p p' x = (x : E × F).1 := rfl
/-- Projection to the second coordinate as a `linear_pmap` -/
protected def snd (p : submodule R E) (p' : submodule R F) : linear_pmap R (E × F) F :=
{ domain := p.prod p',
to_fun := (linear_map.snd R E F).comp (p.prod p').subtype }
@[simp] lemma snd_apply (p : submodule R E) (p' : submodule R F) (x : p.prod p') :
linear_pmap.snd p p' x = (x : E × F).2 := rfl
instance : has_neg (linear_pmap R E F) :=
⟨λ f, ⟨f.domain, -f.to_fun⟩⟩
@[simp] lemma neg_apply (f : linear_pmap R E F) (x) : (-f) x = -(f x) := rfl
instance : has_le (linear_pmap R E F) :=
⟨λ f g, f.domain ≤ g.domain ∧ ∀ ⦃x : f.domain⦄ ⦃y : g.domain⦄ (h : (x:E) = y), f x = g y⟩
lemma eq_of_le_of_domain_eq {f g : linear_pmap R E F} (hle : f ≤ g) (heq : f.domain = g.domain) :
f = g :=
ext heq hle.2
/-- Given two partial linear maps `f`, `g`, the set of points `x` such that
both `f` and `g` are defined at `x` and `f x = g x` form a submodule. -/
def eq_locus (f g : linear_pmap R E F) : submodule R E :=
{ carrier := {x | ∃ (hf : x ∈ f.domain) (hg : x ∈ g.domain), f ⟨x, hf⟩ = g ⟨x, hg⟩},
zero_mem' := ⟨zero_mem _, zero_mem _, f.map_zero.trans g.map_zero.symm⟩,
add_mem' := λ x y ⟨hfx, hgx, hx⟩ ⟨hfy, hgy, hy⟩, ⟨add_mem hfx hfy, add_mem hgx hgy,
by erw [f.map_add ⟨x, hfx⟩ ⟨y, hfy⟩, g.map_add ⟨x, hgx⟩ ⟨y, hgy⟩, hx, hy]⟩,
smul_mem' := λ c x ⟨hfx, hgx, hx⟩, ⟨smul_mem _ c hfx, smul_mem _ c hgx,
by erw [f.map_smul c ⟨x, hfx⟩, g.map_smul c ⟨x, hgx⟩, hx]⟩ }
instance : has_inf (linear_pmap R E F) :=
⟨λ f g, ⟨f.eq_locus g, f.to_fun.comp $ of_le $ λ x hx, hx.fst⟩⟩
instance : has_bot (linear_pmap R E F) := ⟨⟨⊥, 0⟩⟩
instance : inhabited (linear_pmap R E F) := ⟨⊥⟩
instance : semilattice_inf (linear_pmap R E F) :=
{ le := (≤),
le_refl := λ f, ⟨le_refl f.domain, λ x y h, subtype.eq h ▸ rfl⟩,
le_trans := λ f g h ⟨fg_le, fg_eq⟩ ⟨gh_le, gh_eq⟩,
⟨le_trans fg_le gh_le, λ x z hxz,
have hxy : (x:E) = of_le fg_le x, from rfl,
(fg_eq hxy).trans (gh_eq $ hxy.symm.trans hxz)⟩,
le_antisymm := λ f g fg gf, eq_of_le_of_domain_eq fg (le_antisymm fg.1 gf.1),
inf := (⊓),
le_inf := λ f g h ⟨fg_le, fg_eq⟩ ⟨fh_le, fh_eq⟩,
⟨λ x hx, ⟨fg_le hx, fh_le hx,
by refine (fg_eq _).symm.trans (fh_eq _); [exact ⟨x, hx⟩, refl, refl]⟩,
λ x ⟨y, yg, hy⟩ h, by { apply fg_eq, exact h }⟩,
inf_le_left := λ f g, ⟨λ x hx, hx.fst,
λ x y h, congr_arg f $ subtype.eq $ by exact h⟩,
inf_le_right := λ f g, ⟨λ x hx, hx.snd.fst,
λ ⟨x, xf, xg, hx⟩ y h, hx.trans $ congr_arg g $ subtype.eq $ by exact h⟩ }
instance : order_bot (linear_pmap R E F) :=
{ bot := ⊥,
bot_le := λ f, ⟨bot_le, λ x y h,
have hx : x = 0, from subtype.eq ((mem_bot R).1 x.2),
have hy : y = 0, from subtype.eq (h.symm.trans (congr_arg _ hx)),
by rw [hx, hy, map_zero, map_zero]⟩ }
lemma le_of_eq_locus_ge {f g : linear_pmap R E F} (H : f.domain ≤ f.eq_locus g) :
f ≤ g :=
suffices f ≤ f ⊓ g, from le_trans this inf_le_right,
⟨H, λ x y hxy, ((inf_le_left : f ⊓ g ≤ f).2 hxy.symm).symm⟩
lemma domain_mono : strict_mono (@domain R _ E _ _ F _ _) :=
λ f g hlt, lt_of_le_of_ne hlt.1.1 $ λ heq, ne_of_lt hlt $
eq_of_le_of_domain_eq (le_of_lt hlt) heq
private lemma sup_aux (f g : linear_pmap R E F)
(h : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y) :
∃ fg : ↥(f.domain ⊔ g.domain) →ₗ[R] F,
∀ (x : f.domain) (y : g.domain) (z),
(x:E) + y = ↑z → fg z = f x + g y :=
begin
choose x hx y hy hxy using λ z : f.domain ⊔ g.domain, mem_sup.1 z.prop,
set fg := λ z, f ⟨x z, hx z⟩ + g ⟨y z, hy z⟩,
have fg_eq : ∀ (x' : f.domain) (y' : g.domain) (z' : f.domain ⊔ g.domain) (H : (x':E) + y' = z'),
fg z' = f x' + g y',
{ intros x' y' z' H,
dsimp [fg],
rw [add_comm, ← sub_eq_sub_iff_add_eq_add, eq_comm, ← map_sub, ← map_sub],
apply h,
simp only [← eq_sub_iff_add_eq] at hxy,
simp only [add_subgroup_class.coe_sub, coe_mk, coe_mk, hxy, ← sub_add, ← sub_sub, sub_self,
zero_sub, ← H],
apply neg_add_eq_sub },
refine ⟨{ to_fun := fg, .. }, fg_eq⟩,
{ rintros ⟨z₁, hz₁⟩ ⟨z₂, hz₂⟩,
rw [← add_assoc, add_right_comm (f _), ← map_add, add_assoc, ← map_add],
apply fg_eq,
simp only [coe_add, coe_mk, ← add_assoc],
rw [add_right_comm (x _), hxy, add_assoc, hxy, coe_mk, coe_mk] },
{ intros c z,
rw [smul_add, ← map_smul, ← map_smul],
apply fg_eq,
simp only [coe_smul, coe_mk, ← smul_add, hxy, ring_hom.id_apply] },
end
/-- Given two partial linear maps that agree on the intersection of their domains,
`f.sup g h` is the unique partial linear map on `f.domain ⊔ g.domain` that agrees
with `f` and `g`. -/
protected noncomputable def sup (f g : linear_pmap R E F)
(h : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y) :
linear_pmap R E F :=
⟨_, classical.some (sup_aux f g h)⟩
@[simp] lemma domain_sup (f g : linear_pmap R E F)
(h : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y) :
(f.sup g h).domain = f.domain ⊔ g.domain :=
rfl
lemma sup_apply {f g : linear_pmap R E F}
(H : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y)
(x y z) (hz : (↑x:E) + ↑y = ↑z) :
f.sup g H z = f x + g y :=
classical.some_spec (sup_aux f g H) x y z hz
protected lemma left_le_sup (f g : linear_pmap R E F)
(h : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y) :
f ≤ f.sup g h :=
begin
refine ⟨le_sup_left, λ z₁ z₂ hz, _⟩,
rw [← add_zero (f _), ← g.map_zero],
refine (sup_apply h _ _ _ _).symm,
simpa
end
protected lemma right_le_sup (f g : linear_pmap R E F)
(h : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y) :
g ≤ f.sup g h :=
begin
refine ⟨le_sup_right, λ z₁ z₂ hz, _⟩,
rw [← zero_add (g _), ← f.map_zero],
refine (sup_apply h _ _ _ _).symm,
simpa
end
protected lemma sup_le {f g h : linear_pmap R E F}
(H : ∀ (x : f.domain) (y : g.domain), (x:E) = y → f x = g y)
(fh : f ≤ h) (gh : g ≤ h) :
f.sup g H ≤ h :=
have Hf : f ≤ (f.sup g H) ⊓ h, from le_inf (f.left_le_sup g H) fh,
have Hg : g ≤ (f.sup g H) ⊓ h, from le_inf (f.right_le_sup g H) gh,
le_of_eq_locus_ge $ sup_le Hf.1 Hg.1
/-- Hypothesis for `linear_pmap.sup` holds, if `f.domain` is disjoint with `g.domain`. -/
lemma sup_h_of_disjoint (f g : linear_pmap R E F) (h : disjoint f.domain g.domain)
(x : f.domain) (y : g.domain) (hxy : (x:E) = y) :
f x = g y :=
begin
rw [disjoint_def] at h,
have hy : y = 0, from subtype.eq (h y (hxy ▸ x.2) y.2),
have hx : x = 0, from subtype.eq (hxy.trans $ congr_arg _ hy),
simp [*]
end
section smul
variables {M N : Type*} [monoid M] [distrib_mul_action M F] [smul_comm_class R M F]
variables [monoid N] [distrib_mul_action N F] [smul_comm_class R N F]
instance : has_smul M (linear_pmap R E F) :=
⟨λ a f,
{ domain := f.domain,
to_fun := a • f.to_fun }⟩
lemma smul_apply (a : M) (f : linear_pmap R E F) (x : ((a • f).domain)) :
(a • f) x = a • f x := rfl
@[simp] lemma coe_smul (a : M) (f : linear_pmap R E F) : ⇑(a • f) = a • f := rfl
instance [smul_comm_class M N F] : smul_comm_class M N (linear_pmap R E F) :=
⟨λ a b f, ext rfl $ λ x y hxy, by simp_rw [smul_apply, subtype.eq hxy, smul_comm]⟩
instance [has_smul M N] [is_scalar_tower M N F] : is_scalar_tower M N (linear_pmap R E F) :=
⟨λ a b f, ext rfl $ λ x y hxy, by simp_rw [smul_apply, subtype.eq hxy, smul_assoc]⟩
end smul
section
variables {K : Type*} [division_ring K] [module K E] [module K F]
/-- Extend a `linear_pmap` to `f.domain ⊔ K ∙ x`. -/
noncomputable def sup_span_singleton (f : linear_pmap K E F) (x : E) (y : F) (hx : x ∉ f.domain) :
linear_pmap K E F :=
f.sup (mk_span_singleton x y (λ h₀, hx $ h₀.symm ▸ f.domain.zero_mem)) $
sup_h_of_disjoint _ _ $ by simpa [disjoint_span_singleton]
@[simp] lemma domain_sup_span_singleton (f : linear_pmap K E F) (x : E) (y : F)
(hx : x ∉ f.domain) :
(f.sup_span_singleton x y hx).domain = f.domain ⊔ K ∙ x := rfl
@[simp] lemma sup_span_singleton_apply_mk (f : linear_pmap K E F) (x : E) (y : F)
(hx : x ∉ f.domain) (x' : E) (hx' : x' ∈ f.domain) (c : K) :
f.sup_span_singleton x y hx ⟨x' + c • x,
mem_sup.2 ⟨x', hx', _, mem_span_singleton.2 ⟨c, rfl⟩, rfl⟩⟩ = f ⟨x', hx'⟩ + c • y :=
begin
erw [sup_apply _ ⟨x', hx'⟩ ⟨c • x, _⟩, mk_span_singleton'_apply],
refl,
exact mem_span_singleton.2 ⟨c, rfl⟩
end
end
private lemma Sup_aux (c : set (linear_pmap R E F)) (hc : directed_on (≤) c) :
∃ f : ↥(Sup (domain '' c)) →ₗ[R] F, (⟨_, f⟩ : linear_pmap R E F) ∈ upper_bounds c :=
begin
cases c.eq_empty_or_nonempty with ceq cne, { subst c, simp },
have hdir : directed_on (≤) (domain '' c),
from directed_on_image.2 (hc.mono domain_mono.monotone),
have P : Π x : Sup (domain '' c), {p : c // (x : E) ∈ p.val.domain },
{ rintros x,
apply classical.indefinite_description,
have := (mem_Sup_of_directed (cne.image _) hdir).1 x.2,
rwa [bex_image_iff, set_coe.exists'] at this },
set f : Sup (domain '' c) → F := λ x, (P x).val.val ⟨x, (P x).property⟩,
have f_eq : ∀ (p : c) (x : Sup (domain '' c)) (y : p.1.1) (hxy : (x : E) = y), f x = p.1 y,
{ intros p x y hxy,
rcases hc (P x).1.1 (P x).1.2 p.1 p.2 with ⟨q, hqc, hxq, hpq⟩,
refine (hxq.2 _).trans (hpq.2 _).symm,
exacts [of_le hpq.1 y, hxy, rfl] },
refine ⟨{ to_fun := f, .. }, _⟩,
{ intros x y,
rcases hc (P x).1.1 (P x).1.2 (P y).1.1 (P y).1.2 with ⟨p, hpc, hpx, hpy⟩,
set x' := of_le hpx.1 ⟨x, (P x).2⟩,
set y' := of_le hpy.1 ⟨y, (P y).2⟩,
rw [f_eq ⟨p, hpc⟩ x x' rfl, f_eq ⟨p, hpc⟩ y y' rfl, f_eq ⟨p, hpc⟩ (x + y) (x' + y') rfl,
map_add] },
{ intros c x,
simp [f_eq (P x).1 (c • x) (c • ⟨x, (P x).2⟩) rfl, ← map_smul] },
{ intros p hpc,
refine ⟨le_Sup $ mem_image_of_mem domain hpc, λ x y hxy, eq.symm _⟩,
exact f_eq ⟨p, hpc⟩ _ _ hxy.symm }
end
/-- Glue a collection of partially defined linear maps to a linear map defined on `Sup`
of these submodules. -/
protected noncomputable def Sup (c : set (linear_pmap R E F)) (hc : directed_on (≤) c) :
linear_pmap R E F :=
⟨_, classical.some $ Sup_aux c hc⟩
protected lemma le_Sup {c : set (linear_pmap R E F)} (hc : directed_on (≤) c)
{f : linear_pmap R E F} (hf : f ∈ c) : f ≤ linear_pmap.Sup c hc :=
classical.some_spec (Sup_aux c hc) hf
protected lemma Sup_le {c : set (linear_pmap R E F)} (hc : directed_on (≤) c)
{g : linear_pmap R E F} (hg : ∀ f ∈ c, f ≤ g) : linear_pmap.Sup c hc ≤ g :=
le_of_eq_locus_ge $ Sup_le $ λ _ ⟨f, hf, eq⟩, eq ▸
have f ≤ (linear_pmap.Sup c hc) ⊓ g, from le_inf (linear_pmap.le_Sup _ hf) (hg f hf),
this.1
protected lemma Sup_apply {c : set (linear_pmap R E F)} (hc : directed_on (≤) c)
{l : linear_pmap R E F} (hl : l ∈ c) (x : l.domain) :
(linear_pmap.Sup c hc) ⟨x, (linear_pmap.le_Sup hc hl).1 x.2⟩ = l x :=
begin
symmetry,
apply (classical.some_spec (Sup_aux c hc) hl).2,
refl,
end
end linear_pmap
namespace linear_map
/-- Restrict a linear map to a submodule, reinterpreting the result as a `linear_pmap`. -/
def to_pmap (f : E →ₗ[R] F) (p : submodule R E) : linear_pmap R E F :=
⟨p, f.comp p.subtype⟩
@[simp] lemma to_pmap_apply (f : E →ₗ[R] F) (p : submodule R E) (x : p) :
f.to_pmap p x = f x := rfl
/-- Compose a linear map with a `linear_pmap` -/
def comp_pmap (g : F →ₗ[R] G) (f : linear_pmap R E F) : linear_pmap R E G :=
{ domain := f.domain,
to_fun := g.comp f.to_fun }
@[simp] lemma comp_pmap_apply (g : F →ₗ[R] G) (f : linear_pmap R E F) (x) :
g.comp_pmap f x = g (f x) := rfl
end linear_map
namespace linear_pmap
/-- Restrict codomain of a `linear_pmap` -/
def cod_restrict (f : linear_pmap R E F) (p : submodule R F) (H : ∀ x, f x ∈ p) :
linear_pmap R E p :=
{ domain := f.domain,
to_fun := f.to_fun.cod_restrict p H }
/-- Compose two `linear_pmap`s -/
def comp (g : linear_pmap R F G) (f : linear_pmap R E F)
(H : ∀ x : f.domain, f x ∈ g.domain) :
linear_pmap R E G :=
g.to_fun.comp_pmap $ f.cod_restrict _ H
/-- `f.coprod g` is the partially defined linear map defined on `f.domain × g.domain`,
and sending `p` to `f p.1 + g p.2`. -/
def coprod (f : linear_pmap R E G) (g : linear_pmap R F G) :
linear_pmap R (E × F) G :=
{ domain := f.domain.prod g.domain,
to_fun := (f.comp (linear_pmap.fst f.domain g.domain) (λ x, x.2.1)).to_fun +
(g.comp (linear_pmap.snd f.domain g.domain) (λ x, x.2.2)).to_fun }
@[simp] lemma coprod_apply (f : linear_pmap R E G) (g : linear_pmap R F G) (x) :
f.coprod g x = f ⟨(x : E × F).1, x.2.1⟩ + g ⟨(x : E × F).2, x.2.2⟩ :=
rfl
/-! ### Graph -/
section graph
/-- The graph of a `linear_pmap` viewed as a submodule on `E × F`. -/
def graph (f : linear_pmap R E F) : submodule R (E × F) :=
f.to_fun.graph.map (f.domain.subtype.prod_map linear_map.id)
lemma mem_graph_iff' (f : linear_pmap R E F) {x : E × F} :
x ∈ f.graph ↔ ∃ y : f.domain, (↑y, f y) = x :=
by simp [graph]
@[simp] lemma mem_graph_iff (f : linear_pmap R E F) {x : E × F} :
x ∈ f.graph ↔ ∃ y : f.domain, (↑y : E) = x.1 ∧ f y = x.2 :=
by { cases x, simp_rw [mem_graph_iff', prod.mk.inj_iff] }
/-- The tuple `(x, f x)` is contained in the graph of `f`. -/
lemma mem_graph (f : linear_pmap R E F) (x : domain f) : ((x : E), f x) ∈ f.graph :=
by simp
variables {M : Type*} [monoid M] [distrib_mul_action M F] [smul_comm_class R M F] (y : M)
/-- The graph of `z • f` as a pushforward. -/
lemma smul_graph (f : linear_pmap R E F) (z : M) :
(z • f).graph = f.graph.map (linear_map.id.prod_map (z • linear_map.id)) :=
begin
ext x, cases x,
split; intros h,
{ rw mem_graph_iff at h,
rcases h with ⟨y, hy, h⟩,
rw linear_pmap.smul_apply at h,
rw submodule.mem_map,
simp only [mem_graph_iff, linear_map.prod_map_apply, linear_map.id_coe, id.def,
linear_map.smul_apply, prod.mk.inj_iff, prod.exists, exists_exists_and_eq_and],
use [x_fst, y],
simp [hy, h] },
rw submodule.mem_map at h,
rcases h with ⟨x', hx', h⟩,
cases x',
simp only [linear_map.prod_map_apply, linear_map.id_coe, id.def, linear_map.smul_apply,
prod.mk.inj_iff] at h,
rw mem_graph_iff at hx' ⊢,
rcases hx' with ⟨y, hy, hx'⟩,
use y,
rw [←h.1, ←h.2],
simp[hy, hx'],
end
/-- The graph of `-f` as a pushforward. -/
lemma neg_graph (f : linear_pmap R E F) :
(-f).graph = f.graph.map (linear_map.id.prod_map (-linear_map.id)) :=
begin
ext, cases x,
split; intros h,
{ rw mem_graph_iff at h,
rcases h with ⟨y, hy, h⟩,
rw linear_pmap.neg_apply at h,
rw submodule.mem_map,
simp only [mem_graph_iff, linear_map.prod_map_apply, linear_map.id_coe, id.def,
linear_map.neg_apply, prod.mk.inj_iff, prod.exists, exists_exists_and_eq_and],
use [x_fst, y],
simp [hy, h] },
rw submodule.mem_map at h,
rcases h with ⟨x', hx', h⟩,
cases x',
simp only [linear_map.prod_map_apply, linear_map.id_coe, id.def, linear_map.neg_apply,
prod.mk.inj_iff] at h,
rw mem_graph_iff at hx' ⊢,
rcases hx' with ⟨y, hy, hx'⟩,
use y,
rw [←h.1, ←h.2],
simp [hy, hx'],
end
lemma mem_graph_snd_inj (f : linear_pmap R E F) {x y : E} {x' y' : F} (hx : (x,x') ∈ f.graph)
(hy : (y,y') ∈ f.graph) (hxy : x = y) : x' = y' :=
begin
rw [mem_graph_iff] at hx hy,
rcases hx with ⟨x'', hx1, hx2⟩,
rcases hy with ⟨y'', hy1, hy2⟩,
simp only at hx1 hx2 hy1 hy2,
rw [←hx1, ←hy1, set_like.coe_eq_coe] at hxy,
rw [←hx2, ←hy2, hxy],
end
lemma mem_graph_snd_inj' (f : linear_pmap R E F) {x y : E × F} (hx : x ∈ f.graph) (hy : y ∈ f.graph)
(hxy : x.1 = y.1) : x.2 = y.2 :=
by { cases x, cases y, exact f.mem_graph_snd_inj hx hy hxy }
/-- The property that `f 0 = 0` in terms of the graph. -/
lemma graph_fst_eq_zero_snd (f : linear_pmap R E F) {x : E} {x' : F} (h : (x,x') ∈ f.graph)
(hx : x = 0) : x' = 0 :=
f.mem_graph_snd_inj h f.graph.zero_mem hx
lemma mem_domain_iff {f : linear_pmap R E F} {x : E} : x ∈ f.domain ↔ ∃ y : F, (x,y) ∈ f.graph :=
begin
split; intro h,
{ use f ⟨x, h⟩,
exact f.mem_graph ⟨x, h⟩ },
cases h with y h,
rw mem_graph_iff at h,
cases h with x' h,
simp only at h,
rw ←h.1,
simp,
end
lemma image_iff {f : linear_pmap R E F} {x : E} {y : F} (hx : x ∈ f.domain) :
y = f ⟨x, hx⟩ ↔ (x, y) ∈ f.graph :=
begin
rw mem_graph_iff,
split; intro h,
{ use ⟨x, hx⟩,
simp [h] },
rcases h with ⟨⟨x', hx'⟩, ⟨h1, h2⟩⟩,
simp only [submodule.coe_mk] at h1 h2,
simp only [←h2, h1],
end
lemma mem_range_iff {f : linear_pmap R E F} {y : F} : y ∈ set.range f ↔ ∃ x : E, (x,y) ∈ f.graph :=
begin
split; intro h,
{ rw set.mem_range at h,
rcases h with ⟨⟨x, hx⟩, h⟩,
use x,
rw ←h,
exact f.mem_graph ⟨x, hx⟩ },
cases h with x h,
rw mem_graph_iff at h,
cases h with x h,
rw set.mem_range,
use x,
simp only at h,
rw h.2,
end
lemma mem_domain_iff_of_eq_graph {f g : linear_pmap R E F} (h : f.graph = g.graph) {x : E} :
x ∈ f.domain ↔ x ∈ g.domain :=
by simp_rw [mem_domain_iff, h]
lemma le_of_le_graph {f g : linear_pmap R E F} (h : f.graph ≤ g.graph) : f ≤ g :=
begin
split,
{ intros x hx,
rw mem_domain_iff at hx ⊢,
cases hx with y hx,
use y,
exact h hx },
rintros ⟨x, hx⟩ ⟨y, hy⟩ hxy,
rw image_iff,
refine h _,
simp only [submodule.coe_mk] at hxy,
rw hxy at hx,
rw ←image_iff hx,
simp [hxy],
end
lemma eq_of_eq_graph {f g : linear_pmap R E F} (h : f.graph = g.graph) : f = g :=
by {ext, exact mem_domain_iff_of_eq_graph h, exact (le_of_le_graph h.le).2 }
end graph
end linear_pmap
namespace submodule
section submodule_to_linear_pmap
lemma exists_unique_from_graph {g : submodule R (E × F)}
(hg : ∀ {x : E × F} (hx : x ∈ g) (hx' : x.fst = 0), x.snd = 0) {a : E}
(ha : a ∈ g.map (linear_map.fst R E F)) :
∃! (b : F), (a,b) ∈ g :=
begin
refine exists_unique_of_exists_of_unique _ _,
{ convert ha, simp },
intros y₁ y₂ hy₁ hy₂,
have hy : ((0 : E), y₁ - y₂) ∈ g :=
begin
convert g.sub_mem hy₁ hy₂,
exact (sub_self _).symm,
end,
exact sub_eq_zero.mp (hg hy (by simp)),
end
/-- Auxiliary definition to unfold the existential quantifier. -/
noncomputable
def val_from_graph {g : submodule R (E × F)}
(hg : ∀ (x : E × F) (hx : x ∈ g) (hx' : x.fst = 0), x.snd = 0) {a : E}
(ha : a ∈ g.map (linear_map.fst R E F)) : F :=
(exists_of_exists_unique (exists_unique_from_graph hg ha)).some
lemma val_from_graph_mem {g : submodule R (E × F)}
(hg : ∀ (x : E × F) (hx : x ∈ g) (hx' : x.fst = 0), x.snd = 0) {a : E}
(ha : a ∈ g.map (linear_map.fst R E F)) : (a, val_from_graph hg ha) ∈ g :=
(exists_of_exists_unique (exists_unique_from_graph hg ha)).some_spec
/-- Define a `linear_pmap` from its graph. -/
noncomputable
def to_linear_pmap (g : submodule R (E × F))
(hg : ∀ (x : E × F) (hx : x ∈ g) (hx' : x.fst = 0), x.snd = 0) : linear_pmap R E F :=
{ domain := g.map (linear_map.fst R E F),
to_fun :=
{ to_fun := λ x, val_from_graph hg x.2,
map_add' := λ v w, begin
have hadd := (g.map (linear_map.fst R E F)).add_mem v.2 w.2,
have hvw := val_from_graph_mem hg hadd,
have hvw' := g.add_mem (val_from_graph_mem hg v.2) (val_from_graph_mem hg w.2),
rw [prod.mk_add_mk] at hvw',
exact (exists_unique_from_graph hg hadd).unique hvw hvw',
end,
map_smul' := λ a v, begin
have hsmul := (g.map (linear_map.fst R E F)).smul_mem a v.2,
have hav := val_from_graph_mem hg hsmul,
have hav' := g.smul_mem a (val_from_graph_mem hg v.2),
rw [prod.smul_mk] at hav',
exact (exists_unique_from_graph hg hsmul).unique hav hav',
end } }
lemma mem_graph_to_linear_pmap (g : submodule R (E × F))
(hg : ∀ (x : E × F) (hx : x ∈ g) (hx' : x.fst = 0), x.snd = 0)
(x : g.map (linear_map.fst R E F)) : (x.val, g.to_linear_pmap hg x) ∈ g :=
val_from_graph_mem hg x.2
@[simp] lemma to_linear_pmap_graph_eq (g : submodule R (E × F))
(hg : ∀ (x : E × F) (hx : x ∈ g) (hx' : x.fst = 0), x.snd = 0) :
(g.to_linear_pmap hg).graph = g :=
begin
ext,
split; intro hx,
{ rw [linear_pmap.mem_graph_iff] at hx,
rcases hx with ⟨y,hx1,hx2⟩,
convert g.mem_graph_to_linear_pmap hg y,
rw [subtype.val_eq_coe],
exact prod.ext hx1.symm hx2.symm },
rw linear_pmap.mem_graph_iff,
cases x,
have hx_fst : x_fst ∈ g.map (linear_map.fst R E F) :=
begin
simp only [mem_map, linear_map.fst_apply, prod.exists, exists_and_distrib_right,
exists_eq_right],
exact ⟨x_snd, hx⟩,
end,
refine ⟨⟨x_fst, hx_fst⟩, subtype.coe_mk x_fst hx_fst, _⟩,
exact (exists_unique_from_graph hg hx_fst).unique (val_from_graph_mem hg hx_fst) hx,
end
end submodule_to_linear_pmap
end submodule