Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import linear_algebra.quotient | |
import linear_algebra.prod | |
/-! | |
# Projection to a subspace | |
In this file we define | |
* `linear_proj_of_is_compl (p q : submodule R E) (h : is_compl p q)`: the projection of a module `E` | |
to a submodule `p` along its complement `q`; it is the unique linear map `f : E β p` such that | |
`f x = x` for `x β p` and `f x = 0` for `x β q`. | |
* `is_compl_equiv_proj p`: equivalence between submodules `q` such that `is_compl p q` and | |
projections `f : E β p`, `β x β p, f x = x`. | |
We also provide some lemmas justifying correctness of our definitions. | |
## Tags | |
projection, complement subspace | |
-/ | |
section ring | |
variables {R : Type*} [ring R] {E : Type*} [add_comm_group E] [module R E] | |
{F : Type*} [add_comm_group F] [module R F] | |
{G : Type*} [add_comm_group G] [module R G] (p q : submodule R E) | |
variables {S : Type*} [semiring S] {M : Type*} [add_comm_monoid M] [module S M] (m : submodule S M) | |
noncomputable theory | |
namespace linear_map | |
variable {p} | |
open submodule | |
lemma ker_id_sub_eq_of_proj {f : E ββ[R] p} (hf : β x : p, f x = x) : | |
ker (id - p.subtype.comp f) = p := | |
begin | |
ext x, | |
simp only [comp_apply, mem_ker, subtype_apply, sub_apply, id_apply, sub_eq_zero], | |
exact β¨Ξ» h, h.symm βΈ submodule.coe_mem _, Ξ» hx, by erw [hf β¨x, hxβ©, subtype.coe_mk]β© | |
end | |
lemma range_eq_of_proj {f : E ββ[R] p} (hf : β x : p, f x = x) : | |
range f = β€ := | |
range_eq_top.2 $ Ξ» x, β¨x, hf xβ© | |
lemma is_compl_of_proj {f : E ββ[R] p} (hf : β x : p, f x = x) : | |
is_compl p f.ker := | |
begin | |
split, | |
{ rintros x β¨hpx, hfxβ©, | |
erw [set_like.mem_coe, mem_ker, hf β¨x, hpxβ©, mk_eq_zero] at hfx, | |
simp only [hfx, set_like.mem_coe, zero_mem] }, | |
{ intros x hx, | |
rw [mem_sup'], | |
refine β¨f x, β¨x - f x, _β©, add_sub_cancel'_right _ _β©, | |
rw [mem_ker, linear_map.map_sub, hf, sub_self] } | |
end | |
end linear_map | |
namespace submodule | |
open linear_map | |
/-- If `q` is a complement of `p`, then `M/p β q`. -/ | |
def quotient_equiv_of_is_compl (h : is_compl p q) : (E β§Έ p) ββ[R] q := | |
linear_equiv.symm $ linear_equiv.of_bijective (p.mkq.comp q.subtype) | |
(by simp only [β ker_eq_bot, ker_comp, ker_mkq, disjoint_iff_comap_eq_bot.1 h.symm.disjoint]) | |
(by simp only [β range_eq_top, range_comp, range_subtype, map_mkq_eq_top, h.sup_eq_top]) | |
@[simp] lemma quotient_equiv_of_is_compl_symm_apply (h : is_compl p q) (x : q) : | |
(quotient_equiv_of_is_compl p q h).symm x = quotient.mk x := rfl | |
@[simp] lemma quotient_equiv_of_is_compl_apply_mk_coe (h : is_compl p q) (x : q) : | |
quotient_equiv_of_is_compl p q h (quotient.mk x) = x := | |
(quotient_equiv_of_is_compl p q h).apply_symm_apply x | |
@[simp] lemma mk_quotient_equiv_of_is_compl_apply (h : is_compl p q) (x : E β§Έ p) : | |
(quotient.mk (quotient_equiv_of_is_compl p q h x) : E β§Έ p) = x := | |
(quotient_equiv_of_is_compl p q h).symm_apply_apply x | |
/-- If `q` is a complement of `p`, then `p Γ q` is isomorphic to `E`. It is the unique | |
linear map `f : E β p` such that `f x = x` for `x β p` and `f x = 0` for `x β q`. -/ | |
def prod_equiv_of_is_compl (h : is_compl p q) : (p Γ q) ββ[R] E := | |
begin | |
apply linear_equiv.of_bijective (p.subtype.coprod q.subtype), | |
{ simp only [βker_eq_bot, ker_eq_bot', prod.forall, subtype_apply, prod.mk_eq_zero, coprod_apply], | |
-- TODO: if I add `submodule.forall`, it unfolds the outer `β` but not the inner one. | |
rintros β¨x, hxβ© β¨y, hyβ©, | |
simp only [coe_mk, mk_eq_zero, β eq_neg_iff_add_eq_zero], | |
rintro rfl, | |
rw [neg_mem_iff] at hx, | |
simp [disjoint_def.1 h.disjoint y hx hy] }, | |
{ rw [β range_eq_top, β sup_eq_range, h.sup_eq_top] } | |
end | |
@[simp] lemma coe_prod_equiv_of_is_compl (h : is_compl p q) : | |
(prod_equiv_of_is_compl p q h : (p Γ q) ββ[R] E) = p.subtype.coprod q.subtype := rfl | |
@[simp] lemma coe_prod_equiv_of_is_compl' (h : is_compl p q) (x : p Γ q) : | |
prod_equiv_of_is_compl p q h x = x.1 + x.2 := rfl | |
@[simp] lemma prod_equiv_of_is_compl_symm_apply_left (h : is_compl p q) (x : p) : | |
(prod_equiv_of_is_compl p q h).symm x = (x, 0) := | |
(prod_equiv_of_is_compl p q h).symm_apply_eq.2 $ by simp | |
@[simp] lemma prod_equiv_of_is_compl_symm_apply_right (h : is_compl p q) (x : q) : | |
(prod_equiv_of_is_compl p q h).symm x = (0, x) := | |
(prod_equiv_of_is_compl p q h).symm_apply_eq.2 $ by simp | |
@[simp] lemma prod_equiv_of_is_compl_symm_apply_fst_eq_zero (h : is_compl p q) {x : E} : | |
((prod_equiv_of_is_compl p q h).symm x).1 = 0 β x β q := | |
begin | |
conv_rhs { rw [β (prod_equiv_of_is_compl p q h).apply_symm_apply x] }, | |
rw [coe_prod_equiv_of_is_compl', submodule.add_mem_iff_left _ (submodule.coe_mem _), | |
mem_right_iff_eq_zero_of_disjoint h.disjoint] | |
end | |
@[simp] lemma prod_equiv_of_is_compl_symm_apply_snd_eq_zero (h : is_compl p q) {x : E} : | |
((prod_equiv_of_is_compl p q h).symm x).2 = 0 β x β p := | |
begin | |
conv_rhs { rw [β (prod_equiv_of_is_compl p q h).apply_symm_apply x] }, | |
rw [coe_prod_equiv_of_is_compl', submodule.add_mem_iff_right _ (submodule.coe_mem _), | |
mem_left_iff_eq_zero_of_disjoint h.disjoint] | |
end | |
@[simp] | |
lemma prod_comm_trans_prod_equiv_of_is_compl (h : is_compl p q) : | |
linear_equiv.prod_comm R q p βͺβ«β prod_equiv_of_is_compl p q h = | |
prod_equiv_of_is_compl q p h.symm := | |
linear_equiv.ext $ Ξ» _, add_comm _ _ | |
/-- Projection to a submodule along its complement. -/ | |
def linear_proj_of_is_compl (h : is_compl p q) : | |
E ββ[R] p := | |
(linear_map.fst R p q) ββ β(prod_equiv_of_is_compl p q h).symm | |
variables {p q} | |
@[simp] lemma linear_proj_of_is_compl_apply_left (h : is_compl p q) (x : p) : | |
linear_proj_of_is_compl p q h x = x := | |
by simp [linear_proj_of_is_compl] | |
@[simp] lemma linear_proj_of_is_compl_range (h : is_compl p q) : | |
(linear_proj_of_is_compl p q h).range = β€ := | |
range_eq_of_proj (linear_proj_of_is_compl_apply_left h) | |
@[simp] lemma linear_proj_of_is_compl_apply_eq_zero_iff (h : is_compl p q) {x : E} : | |
linear_proj_of_is_compl p q h x = 0 β x β q:= | |
by simp [linear_proj_of_is_compl] | |
lemma linear_proj_of_is_compl_apply_right' (h : is_compl p q) (x : E) (hx : x β q) : | |
linear_proj_of_is_compl p q h x = 0 := | |
(linear_proj_of_is_compl_apply_eq_zero_iff h).2 hx | |
@[simp] lemma linear_proj_of_is_compl_apply_right (h : is_compl p q) (x : q) : | |
linear_proj_of_is_compl p q h x = 0 := | |
linear_proj_of_is_compl_apply_right' h x x.2 | |
@[simp] lemma linear_proj_of_is_compl_ker (h : is_compl p q) : | |
(linear_proj_of_is_compl p q h).ker = q := | |
ext $ Ξ» x, mem_ker.trans (linear_proj_of_is_compl_apply_eq_zero_iff h) | |
lemma linear_proj_of_is_compl_comp_subtype (h : is_compl p q) : | |
(linear_proj_of_is_compl p q h).comp p.subtype = id := | |
linear_map.ext $ linear_proj_of_is_compl_apply_left h | |
lemma linear_proj_of_is_compl_idempotent (h : is_compl p q) (x : E) : | |
linear_proj_of_is_compl p q h (linear_proj_of_is_compl p q h x) = | |
linear_proj_of_is_compl p q h x := | |
linear_proj_of_is_compl_apply_left h _ | |
lemma exists_unique_add_of_is_compl_prod (hc : is_compl p q) (x : E) : | |
β! (u : p Γ q), (u.fst : E) + u.snd = x := | |
(prod_equiv_of_is_compl _ _ hc).to_equiv.bijective.exists_unique _ | |
lemma exists_unique_add_of_is_compl (hc : is_compl p q) (x : E) : | |
β (u : p) (v : q), ((u : E) + v = x β§ β (r : p) (s : q), | |
(r : E) + s = x β r = u β§ s = v) := | |
let β¨u, huβ, huββ© := exists_unique_add_of_is_compl_prod hc x in | |
β¨u.1, u.2, huβ, Ξ» r s hrs, prod.eq_iff_fst_eq_snd_eq.1 (huβ β¨r, sβ© hrs)β© | |
lemma linear_proj_add_linear_proj_of_is_compl_eq_self (hpq : is_compl p q) (x : E) : | |
(p.linear_proj_of_is_compl q hpq x + q.linear_proj_of_is_compl p hpq.symm x : E) = x := | |
begin | |
dunfold linear_proj_of_is_compl, | |
rw βprod_comm_trans_prod_equiv_of_is_compl _ _ hpq, | |
exact (prod_equiv_of_is_compl _ _ hpq).apply_symm_apply x, | |
end | |
end submodule | |
namespace linear_map | |
open submodule | |
/-- Given linear maps `Ο` and `Ο` from complement submodules, `of_is_compl` is | |
the induced linear map over the entire module. -/ | |
def of_is_compl {p q : submodule R E} (h : is_compl p q) | |
(Ο : p ββ[R] F) (Ο : q ββ[R] F) : E ββ[R] F := | |
(linear_map.coprod Ο Ο) ββ β(submodule.prod_equiv_of_is_compl _ _ h).symm | |
variables {p q} | |
@[simp] lemma of_is_compl_left_apply | |
(h : is_compl p q) {Ο : p ββ[R] F} {Ο : q ββ[R] F} (u : p) : | |
of_is_compl h Ο Ο (u : E) = Ο u := by simp [of_is_compl] | |
@[simp] lemma of_is_compl_right_apply | |
(h : is_compl p q) {Ο : p ββ[R] F} {Ο : q ββ[R] F} (v : q) : | |
of_is_compl h Ο Ο (v : E) = Ο v := by simp [of_is_compl] | |
lemma of_is_compl_eq (h : is_compl p q) | |
{Ο : p ββ[R] F} {Ο : q ββ[R] F} {Ο : E ββ[R] F} | |
(hΟ : β u, Ο u = Ο u) (hΟ : β u, Ο u = Ο u) : | |
of_is_compl h Ο Ο = Ο := | |
begin | |
ext x, | |
obtain β¨_, _, rfl, _β© := exists_unique_add_of_is_compl h x, | |
simp [of_is_compl, hΟ, hΟ] | |
end | |
lemma of_is_compl_eq' (h : is_compl p q) | |
{Ο : p ββ[R] F} {Ο : q ββ[R] F} {Ο : E ββ[R] F} | |
(hΟ : Ο = Ο.comp p.subtype) (hΟ : Ο = Ο.comp q.subtype) : | |
of_is_compl h Ο Ο = Ο := | |
of_is_compl_eq h (Ξ» _, hΟ.symm βΈ rfl) (Ξ» _, hΟ.symm βΈ rfl) | |
@[simp] lemma of_is_compl_zero (h : is_compl p q) : | |
(of_is_compl h 0 0 : E ββ[R] F) = 0 := | |
of_is_compl_eq _ (Ξ» _, rfl) (Ξ» _, rfl) | |
@[simp] lemma of_is_compl_add (h : is_compl p q) | |
{Οβ Οβ : p ββ[R] F} {Οβ Οβ : q ββ[R] F} : | |
of_is_compl h (Οβ + Οβ) (Οβ + Οβ) = of_is_compl h Οβ Οβ + of_is_compl h Οβ Οβ := | |
of_is_compl_eq _ (by simp) (by simp) | |
@[simp] lemma of_is_compl_smul | |
{R : Type*} [comm_ring R] {E : Type*} [add_comm_group E] [module R E] | |
{F : Type*} [add_comm_group F] [module R F] {p q : submodule R E} | |
(h : is_compl p q) {Ο : p ββ[R] F} {Ο : q ββ[R] F} (c : R) : | |
of_is_compl h (c β’ Ο) (c β’ Ο) = c β’ of_is_compl h Ο Ο := | |
of_is_compl_eq _ (by simp) (by simp) | |
section | |
variables {Rβ : Type*} [comm_ring Rβ] [module Rβ E] [module Rβ F] | |
/-- The linear map from `(p ββ[Rβ] F) Γ (q ββ[Rβ] F)` to `E ββ[Rβ] F`. -/ | |
def of_is_compl_prod {p q : submodule Rβ E} (h : is_compl p q) : | |
((p ββ[Rβ] F) Γ (q ββ[Rβ] F)) ββ[Rβ] (E ββ[Rβ] F) := | |
{ to_fun := Ξ» Ο, of_is_compl h Ο.1 Ο.2, | |
map_add' := by { intros Ο Ο, rw [prod.snd_add, prod.fst_add, of_is_compl_add] }, | |
map_smul' := by { intros c Ο, simp [prod.smul_snd, prod.smul_fst, of_is_compl_smul] } } | |
@[simp] lemma of_is_compl_prod_apply {p q : submodule Rβ E} (h : is_compl p q) | |
(Ο : (p ββ[Rβ] F) Γ (q ββ[Rβ] F)) : of_is_compl_prod h Ο = of_is_compl h Ο.1 Ο.2 := rfl | |
/-- The natural linear equivalence between `(p ββ[Rβ] F) Γ (q ββ[Rβ] F)` and `E ββ[Rβ] F`. -/ | |
def of_is_compl_prod_equiv {p q : submodule Rβ E} (h : is_compl p q) : | |
((p ββ[Rβ] F) Γ (q ββ[Rβ] F)) ββ[Rβ] (E ββ[Rβ] F) := | |
{ inv_fun := Ξ» Ο, β¨Ο.dom_restrict p, Ο.dom_restrict qβ©, | |
left_inv := | |
begin | |
intros Ο, ext, | |
{ exact of_is_compl_left_apply h x }, | |
{ exact of_is_compl_right_apply h x } | |
end, | |
right_inv := | |
begin | |
intro Ο, ext, | |
obtain β¨a, b, hab, _β© := exists_unique_add_of_is_compl h x, | |
rw [β hab], simp, | |
end, .. of_is_compl_prod h } | |
end | |
@[simp] lemma linear_proj_of_is_compl_of_proj (f : E ββ[R] p) (hf : β x : p, f x = x) : | |
p.linear_proj_of_is_compl f.ker (is_compl_of_proj hf) = f := | |
begin | |
ext x, | |
have : x β p β f.ker, | |
{ simp only [(is_compl_of_proj hf).sup_eq_top, mem_top] }, | |
rcases mem_sup'.1 this with β¨x, y, rflβ©, | |
simp [hf] | |
end | |
/-- If `f : E ββ[R] F` and `g : E ββ[R] G` are two surjective linear maps and | |
their kernels are complement of each other, then `x β¦ (f x, g x)` defines | |
a linear equivalence `E ββ[R] F Γ G`. -/ | |
def equiv_prod_of_surjective_of_is_compl (f : E ββ[R] F) (g : E ββ[R] G) (hf : f.range = β€) | |
(hg : g.range = β€) (hfg : is_compl f.ker g.ker) : | |
E ββ[R] F Γ G := | |
linear_equiv.of_bijective (f.prod g) (by simp [β ker_eq_bot, hfg.inf_eq_bot]) | |
(by simp [β range_eq_top, range_prod_eq hfg.sup_eq_top, *]) | |
@[simp] lemma coe_equiv_prod_of_surjective_of_is_compl {f : E ββ[R] F} {g : E ββ[R] G} | |
(hf : f.range = β€) (hg : g.range = β€) (hfg : is_compl f.ker g.ker) : | |
(equiv_prod_of_surjective_of_is_compl f g hf hg hfg : E ββ[R] F Γ G) = f.prod g := | |
rfl | |
@[simp] lemma equiv_prod_of_surjective_of_is_compl_apply {f : E ββ[R] F} {g : E ββ[R] G} | |
(hf : f.range = β€) (hg : g.range = β€) (hfg : is_compl f.ker g.ker) (x : E): | |
equiv_prod_of_surjective_of_is_compl f g hf hg hfg x = (f x, g x) := | |
rfl | |
end linear_map | |
namespace submodule | |
open linear_map | |
/-- Equivalence between submodules `q` such that `is_compl p q` and linear maps `f : E ββ[R] p` | |
such that `β x : p, f x = x`. -/ | |
def is_compl_equiv_proj : | |
{q // is_compl p q} β {f : E ββ[R] p // β x : p, f x = x} := | |
{ to_fun := Ξ» q, β¨linear_proj_of_is_compl p q q.2, linear_proj_of_is_compl_apply_left q.2β©, | |
inv_fun := Ξ» f, β¨(f : E ββ[R] p).ker, is_compl_of_proj f.2β©, | |
left_inv := Ξ» β¨q, hqβ©, by simp only [linear_proj_of_is_compl_ker, subtype.coe_mk], | |
right_inv := Ξ» β¨f, hfβ©, subtype.eq $ f.linear_proj_of_is_compl_of_proj hf } | |
@[simp] lemma coe_is_compl_equiv_proj_apply (q : {q // is_compl p q}) : | |
(p.is_compl_equiv_proj q : E ββ[R] p) = linear_proj_of_is_compl p q q.2 := rfl | |
@[simp] lemma coe_is_compl_equiv_proj_symm_apply (f : {f : E ββ[R] p // β x : p, f x = x}) : | |
(p.is_compl_equiv_proj.symm f : submodule R E) = (f : E ββ[R] p).ker := rfl | |
end submodule | |
namespace linear_map | |
open submodule | |
/-- | |
A linear endomorphism of a module `E` is a projection onto a submodule `p` if it sends every element | |
of `E` to `p` and fixes every element of `p`. | |
The definition allow more generally any `fun_like` type and not just linear maps, so that it can be | |
used for example with `continuous_linear_map` or `matrix`. | |
-/ | |
structure is_proj {F : Type*} [fun_like F M (Ξ» _, M)] (f : F) : Prop := | |
(map_mem : β x, f x β m) | |
(map_id : β x β m, f x = x) | |
lemma is_proj_iff_idempotent (f : M ββ[S] M) : (β p : submodule S M, is_proj p f) β f ββ f = f := | |
begin | |
split, | |
{ intro h, obtain β¨p, hpβ© := h, ext, rw comp_apply, exact hp.map_id (f x) (hp.map_mem x), }, | |
{ intro h, use f.range, split, | |
{ intro x, exact mem_range_self f x, }, | |
{ intros x hx, obtain β¨y, hyβ© := mem_range.1 hx, rw [βhy, βcomp_apply, h], }, }, | |
end | |
namespace is_proj | |
variables {p m} | |
/-- | |
Restriction of the codomain of a projection of onto a subspace `p` to `p` instead of the whole | |
space. | |
-/ | |
def cod_restrict {f : M ββ[S] M} (h : is_proj m f) : M ββ[S] m := | |
f.cod_restrict m h.map_mem | |
@[simp] | |
lemma cod_restrict_apply {f : M ββ[S] M} (h : is_proj m f) (x : M) : | |
β(h.cod_restrict x) = f x := f.cod_restrict_apply m x | |
@[simp] | |
lemma cod_restrict_apply_cod {f : M ββ[S] M} (h : is_proj m f) (x : m) : | |
h.cod_restrict x = x := | |
by {ext, rw [cod_restrict_apply], exact h.map_id x x.2} | |
lemma cod_restrict_ker {f : M ββ[S] M} (h : is_proj m f) : | |
h.cod_restrict.ker = f.ker := f.ker_cod_restrict m _ | |
lemma is_compl {f : E ββ[R] E} (h : is_proj p f) : is_compl p f.ker := | |
by { rw βcod_restrict_ker, exact is_compl_of_proj h.cod_restrict_apply_cod, } | |
lemma eq_conj_prod_map' {f : E ββ[R] E} (h : is_proj p f) : | |
f = (p.prod_equiv_of_is_compl f.ker h.is_compl).to_linear_map ββ prod_map id 0 ββ | |
(p.prod_equiv_of_is_compl f.ker h.is_compl).symm.to_linear_map := | |
begin | |
refine (linear_map.cancel_right | |
(p.prod_equiv_of_is_compl f.ker h.is_compl).surjective).1 _, | |
ext, | |
{ simp only [coe_comp, linear_equiv.coe_to_linear_map, coe_inl, function.comp_app, | |
linear_equiv.of_top_apply, linear_equiv.of_injective_apply, coprod_apply, submodule.coe_subtype, | |
coe_zero, add_zero, prod_equiv_of_is_compl_symm_apply_left, prod_map_apply, id_coe, id.def, | |
zero_apply, coe_prod_equiv_of_is_compl', h.map_id x x.2], }, | |
{simp only [coe_comp, linear_equiv.coe_to_linear_map, coe_inr, function.comp_app, | |
linear_equiv.of_top_apply, linear_equiv.of_injective_apply, coprod_apply, submodule.coe_subtype, | |
coe_zero, zero_add, map_coe_ker, prod_equiv_of_is_compl_symm_apply_right, prod_map_apply, id_coe, | |
id.def, zero_apply, coe_prod_equiv_of_is_compl'], } | |
end | |
end is_proj | |
end linear_map | |
end ring | |
section comm_ring | |
namespace linear_map | |
variables {R : Type*} [comm_ring R] {E : Type*} [add_comm_group E] [module R E] {p : submodule R E} | |
lemma is_proj.eq_conj_prod_map {f : E ββ[R] E} (h : is_proj p f) : | |
f = (p.prod_equiv_of_is_compl f.ker h.is_compl).conj (prod_map id 0) := | |
by {rw linear_equiv.conj_apply, exact h.eq_conj_prod_map'} | |
end linear_map | |
end comm_ring | |