Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
2.94 kB
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau
-/
import data.polynomial.eval
import ring_theory.ideal.quotient
/-!
# modular equivalence for submodule
-/
open submodule
open_locale polynomial
variables {R : Type*} [ring R]
variables {M : Type*} [add_comm_group M] [module R M] (U U₁ Uβ‚‚ : submodule R M)
variables {x x₁ xβ‚‚ y y₁ yβ‚‚ z z₁ zβ‚‚ : M}
variables {N : Type*} [add_comm_group N] [module R N] (V V₁ Vβ‚‚ : submodule R N)
/-- A predicate saying two elements of a module are equivalent modulo a submodule. -/
def smodeq (x y : M) : Prop :=
(submodule.quotient.mk x : M β§Έ U) = submodule.quotient.mk y
notation x ` ≑ `:50 y ` [SMOD `:50 N `]`:0 := smodeq N x y
variables {U U₁ Uβ‚‚}
protected lemma smodeq.def : x ≑ y [SMOD U] ↔
(submodule.quotient.mk x : M β§Έ U) = submodule.quotient.mk y := iff.rfl
namespace smodeq
lemma sub_mem : x ≑ y [SMOD U] ↔ x - y ∈ U :=
by rw [smodeq.def, submodule.quotient.eq]
@[simp] theorem top : x ≑ y [SMOD (⊀ : submodule R M)] :=
(submodule.quotient.eq ⊀).2 mem_top
@[simp] theorem bot : x ≑ y [SMOD (βŠ₯ : submodule R M)] ↔ x = y :=
by rw [smodeq.def, submodule.quotient.eq, mem_bot, sub_eq_zero]
@[mono] theorem mono (HU : U₁ ≀ Uβ‚‚) (hxy : x ≑ y [SMOD U₁]) : x ≑ y [SMOD Uβ‚‚] :=
(submodule.quotient.eq Uβ‚‚).2 $ HU $ (submodule.quotient.eq U₁).1 hxy
@[refl] theorem refl : x ≑ x [SMOD U] := eq.refl _
@[symm] theorem symm (hxy : x ≑ y [SMOD U]) : y ≑ x [SMOD U] := hxy.symm
@[trans] theorem trans (hxy : x ≑ y [SMOD U]) (hyz : y ≑ z [SMOD U]) : x ≑ z [SMOD U] :=
hxy.trans hyz
theorem add (hxy₁ : x₁ ≑ y₁ [SMOD U]) (hxyβ‚‚ : xβ‚‚ ≑ yβ‚‚ [SMOD U]) : x₁ + xβ‚‚ ≑ y₁ + yβ‚‚ [SMOD U] :=
by { rw smodeq.def at hxy₁ hxyβ‚‚ ⊒, simp_rw [quotient.mk_add, hxy₁, hxyβ‚‚] }
theorem smul (hxy : x ≑ y [SMOD U]) (c : R) : c β€’ x ≑ c β€’ y [SMOD U] :=
by { rw smodeq.def at hxy ⊒, simp_rw [quotient.mk_smul, hxy] }
theorem zero : x ≑ 0 [SMOD U] ↔ x ∈ U :=
by rw [smodeq.def, submodule.quotient.eq, sub_zero]
theorem map (hxy : x ≑ y [SMOD U]) (f : M β†’β‚—[R] N) : f x ≑ f y [SMOD U.map f] :=
(submodule.quotient.eq _).2 $ f.map_sub x y β–Έ mem_map_of_mem $ (submodule.quotient.eq _).1 hxy
theorem comap {f : M β†’β‚—[R] N} (hxy : f x ≑ f y [SMOD V]) : x ≑ y [SMOD V.comap f] :=
(submodule.quotient.eq _).2 $ show f (x - y) ∈ V,
from (f.map_sub x y).symm β–Έ (submodule.quotient.eq _).1 hxy
lemma eval {R : Type*} [comm_ring R] {I : ideal R} {x y : R} (h : x ≑ y [SMOD I])
(f : R[X]) : f.eval x ≑ f.eval y [SMOD I] :=
begin
rw [smodeq.def] at h ⊒,
show ideal.quotient.mk I (f.eval x) = ideal.quotient.mk I (f.eval y),
change ideal.quotient.mk I x = ideal.quotient.mk I y at h,
rw [← polynomial.evalβ‚‚_at_apply, ← polynomial.evalβ‚‚_at_apply, h],
end
end smodeq