Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.5 kB
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import data.matrix.basis
import linear_algebra.basis
import linear_algebra.pi
/-!
# The standard basis
This file defines the standard basis `pi.basis (s : ∀ j, basis (ι j) R (M j))`,
which is the `Σ j, ι j`-indexed basis of Π j, M j`. The basis vectors are given by
`pi.basis s ⟨j, i⟩ j' = linear_map.std_basis R M j' (s j) i = if j = j' then s i else 0`.
The standard basis on `R^η`, i.e. `η → R` is called `pi.basis_fun`.
To give a concrete example, `linear_map.std_basis R (λ (i : fin 3), R) i 1`
gives the `i`th unit basis vector in `R³`, and `pi.basis_fun R (fin 3)` proves
this is a basis over `fin 3 → R`.
## Main definitions
- `linear_map.std_basis R M`: if `x` is a basis vector of `M i`, then
`linear_map.std_basis R M i x` is the `i`th standard basis vector of `Π i, M i`.
- `pi.basis s`: given a basis `s i` for each `M i`, the standard basis on `Π i, M i`
- `pi.basis_fun R η`: the standard basis on `R^η`, i.e. `η → R`, given by
`pi.basis_fun R η i j = if i = j then 1 else 0`.
- `matrix.std_basis R n m`: the standard basis on `matrix n m R`, given by
`matrix.std_basis R n m (i, j) i' j' = if (i, j) = (i', j') then 1 else 0`.
-/
open function submodule
open_locale big_operators
open_locale big_operators
namespace linear_map
variables (R : Type*) {ι : Type*} [semiring R] (φ : ι → Type*)
[Π i, add_comm_monoid (φ i)] [Π i, module R (φ i)] [decidable_eq ι]
/-- The standard basis of the product of `φ`. -/
def std_basis : Π (i : ι), φ i →ₗ[R] (Πi, φ i) := single
lemma std_basis_apply (i : ι) (b : φ i) : std_basis R φ i b = update 0 i b :=
rfl
lemma coe_std_basis (i : ι) : ⇑(std_basis R φ i) = pi.single i :=
rfl
@[simp] lemma std_basis_same (i : ι) (b : φ i) : std_basis R φ i b i = b :=
pi.single_eq_same i b
lemma std_basis_ne (i j : ι) (h : j ≠ i) (b : φ i) : std_basis R φ i b j = 0 :=
pi.single_eq_of_ne h b
lemma std_basis_eq_pi_diag (i : ι) : std_basis R φ i = pi (diag i) :=
begin
ext x j,
convert (update_apply 0 x i j _).symm,
refl,
end
lemma ker_std_basis (i : ι) : ker (std_basis R φ i) = ⊥ :=
ker_eq_bot_of_injective $ pi.single_injective _ _
lemma proj_comp_std_basis (i j : ι) : (proj i).comp (std_basis R φ j) = diag j i :=
by rw [std_basis_eq_pi_diag, proj_pi]
lemma proj_std_basis_same (i : ι) : (proj i).comp (std_basis R φ i) = id :=
linear_map.ext $ std_basis_same R φ i
lemma proj_std_basis_ne (i j : ι) (h : i ≠ j) : (proj i).comp (std_basis R φ j) = 0 :=
linear_map.ext $ std_basis_ne R φ _ _ h
lemma supr_range_std_basis_le_infi_ker_proj (I J : set ι) (h : disjoint I J) :
(⨆i∈I, range (std_basis R φ i)) ≤ (⨅i∈J, ker (proj i)) :=
begin
refine (supr_le $ λ i, supr_le $ λ hi, range_le_iff_comap.2 _),
simp only [(ker_comp _ _).symm, eq_top_iff, set_like.le_def, mem_ker, comap_infi, mem_infi],
rintro b - j hj,
rw [proj_std_basis_ne R φ j i, zero_apply],
rintro rfl,
exact h ⟨hi, hj⟩
end
lemma infi_ker_proj_le_supr_range_std_basis {I : finset ι} {J : set ι} (hu : set.univ ⊆ ↑I ∪ J) :
(⨅ i∈J, ker (proj i)) ≤ (⨆i∈I, range (std_basis R φ i)) :=
set_like.le_def.2
begin
assume b hb,
simp only [mem_infi, mem_ker, proj_apply] at hb,
rw ← show ∑ i in I, std_basis R φ i (b i) = b,
{ ext i,
rw [finset.sum_apply, ← std_basis_same R φ i (b i)],
refine finset.sum_eq_single i (assume j hjI ne, std_basis_ne _ _ _ _ ne.symm _) _,
assume hiI,
rw [std_basis_same],
exact hb _ ((hu trivial).resolve_left hiI) },
exact sum_mem_bsupr (λ i hi, (std_basis R φ i).mem_range_self (b i))
end
lemma supr_range_std_basis_eq_infi_ker_proj {I J : set ι}
(hd : disjoint I J) (hu : set.univ ⊆ I ∪ J) (hI : set.finite I) :
(⨆i∈I, range (std_basis R φ i)) = (⨅i∈J, ker (proj i)) :=
begin
refine le_antisymm (supr_range_std_basis_le_infi_ker_proj _ _ _ _ hd) _,
have : set.univ ⊆ ↑hI.to_finset ∪ J, { rwa [hI.coe_to_finset] },
refine le_trans (infi_ker_proj_le_supr_range_std_basis R φ this) (supr_mono $ assume i, _),
rw [set.finite.mem_to_finset],
exact le_rfl
end
lemma supr_range_std_basis [fintype ι] : (⨆i:ι, range (std_basis R φ i)) = ⊤ :=
have (set.univ : set ι) ⊆ ↑(finset.univ : finset ι) ∪ ∅ := by rw [finset.coe_univ, set.union_empty],
begin
apply top_unique,
convert (infi_ker_proj_le_supr_range_std_basis R φ this),
exact infi_emptyset.symm,
exact (funext $ λi, (@supr_pos _ _ _ (λh, range (std_basis R φ i)) $ finset.mem_univ i).symm)
end
lemma disjoint_std_basis_std_basis (I J : set ι) (h : disjoint I J) :
disjoint (⨆i∈I, range (std_basis R φ i)) (⨆i∈J, range (std_basis R φ i)) :=
begin
refine disjoint.mono
(supr_range_std_basis_le_infi_ker_proj _ _ _ _ $ disjoint_compl_right)
(supr_range_std_basis_le_infi_ker_proj _ _ _ _ $ disjoint_compl_right) _,
simp only [disjoint, set_like.le_def, mem_infi, mem_inf, mem_ker, mem_bot, proj_apply,
funext_iff],
rintros b ⟨hI, hJ⟩ i,
classical,
by_cases hiI : i ∈ I,
{ by_cases hiJ : i ∈ J,
{ exact (h ⟨hiI, hiJ⟩).elim },
{ exact hJ i hiJ } },
{ exact hI i hiI }
end
lemma std_basis_eq_single {a : R} :
(λ (i : ι), (std_basis R (λ _ : ι, R) i) a) = λ (i : ι), (finsupp.single i a) :=
funext $ λ i, (finsupp.single_eq_pi_single i a).symm
end linear_map
namespace pi
open linear_map
open set
variables {R : Type*}
section module
variables {η : Type*} {ιs : η → Type*} {Ms : η → Type*}
lemma linear_independent_std_basis [ring R] [∀i, add_comm_group (Ms i)] [∀i, module R (Ms i)]
[decidable_eq η] (v : Πj, ιs j → (Ms j)) (hs : ∀i, linear_independent R (v i)) :
linear_independent R (λ (ji : Σ j, ιs j), std_basis R Ms ji.1 (v ji.1 ji.2)) :=
begin
have hs' : ∀j : η, linear_independent R (λ i : ιs j, std_basis R Ms j (v j i)),
{ intro j,
exact (hs j).map' _ (ker_std_basis _ _ _) },
apply linear_independent_Union_finite hs',
{ assume j J _ hiJ,
simp [(set.Union.equations._eqn_1 _).symm, submodule.span_image, submodule.span_Union],
have h₀ : ∀ j, span R (range (λ (i : ιs j), std_basis R Ms j (v j i)))
≤ range (std_basis R Ms j),
{ intro j,
rw [span_le, linear_map.range_coe],
apply range_comp_subset_range },
have h₁ : span R (range (λ (i : ιs j), std_basis R Ms j (v j i)))
≤ ⨆ i ∈ {j}, range (std_basis R Ms i),
{ rw @supr_singleton _ _ _ (λ i, linear_map.range (std_basis R (λ (j : η), Ms j) i)),
apply h₀ },
have h₂ : (⨆ j ∈ J, span R (range (λ (i : ιs j), std_basis R Ms j (v j i)))) ≤
⨆ j ∈ J, range (std_basis R (λ (j : η), Ms j) j) :=
supr₂_mono (λ i _, h₀ i),
have h₃ : disjoint (λ (i : η), i ∈ {j}) J,
{ convert set.disjoint_singleton_left.2 hiJ using 0 },
exact (disjoint_std_basis_std_basis _ _ _ _ h₃).mono h₁ h₂ }
end
variables [semiring R] [∀i, add_comm_monoid (Ms i)] [∀i, module R (Ms i)]
variable [fintype η]
section
open linear_equiv
/-- `pi.basis (s : ∀ j, basis (ιs j) R (Ms j))` is the `Σ j, ιs j`-indexed basis on `Π j, Ms j`
given by `s j` on each component.
For the standard basis over `R` on the finite-dimensional space `η → R` see `pi.basis_fun`.
-/
protected noncomputable def basis (s : ∀ j, basis (ιs j) R (Ms j)) :
basis (Σ j, ιs j) R (Π j, Ms j) :=
-- The `add_comm_monoid (Π j, Ms j)` instance was hard to find.
-- Defining this in tactic mode seems to shake up instance search enough that it works by itself.
by { refine basis.of_repr (_ ≪≫ₗ (finsupp.sigma_finsupp_lequiv_pi_finsupp R).symm),
exact linear_equiv.Pi_congr_right (λ j, (s j).repr) }
@[simp] lemma basis_repr_std_basis [decidable_eq η] (s : ∀ j, basis (ιs j) R (Ms j)) (j i) :
(pi.basis s).repr (std_basis R _ j (s j i)) = finsupp.single ⟨j, i⟩ 1 :=
begin
ext ⟨j', i'⟩,
by_cases hj : j = j',
{ subst hj,
simp only [pi.basis, linear_equiv.trans_apply, basis.repr_self, std_basis_same,
linear_equiv.Pi_congr_right_apply, finsupp.sigma_finsupp_lequiv_pi_finsupp_symm_apply],
symmetry,
exact basis.finsupp.single_apply_left
(λ i i' (h : (⟨j, i⟩ : Σ j, ιs j) = ⟨j, i'⟩), eq_of_heq (sigma.mk.inj h).2) _ _ _ },
simp only [pi.basis, linear_equiv.trans_apply, finsupp.sigma_finsupp_lequiv_pi_finsupp_symm_apply,
linear_equiv.Pi_congr_right_apply],
dsimp,
rw [std_basis_ne _ _ _ _ (ne.symm hj), linear_equiv.map_zero, finsupp.zero_apply,
finsupp.single_eq_of_ne],
rintros ⟨⟩,
contradiction
end
@[simp] lemma basis_apply [decidable_eq η] (s : ∀ j, basis (ιs j) R (Ms j)) (ji) :
pi.basis s ji = std_basis R _ ji.1 (s ji.1 ji.2) :=
basis.apply_eq_iff.mpr (by simp)
@[simp] lemma basis_repr (s : ∀ j, basis (ιs j) R (Ms j)) (x) (ji) :
(pi.basis s).repr x ji = (s ji.1).repr (x ji.1) ji.2 :=
rfl
end
section
variables (R η)
/-- The basis on `η → R` where the `i`th basis vector is `function.update 0 i 1`. -/
noncomputable def basis_fun : basis η R (Π (j : η), R) :=
basis.of_equiv_fun (linear_equiv.refl _ _)
@[simp] lemma basis_fun_apply [decidable_eq η] (i) :
basis_fun R η i = std_basis R (λ (i : η), R) i 1 :=
by { simp only [basis_fun, basis.coe_of_equiv_fun, linear_equiv.refl_symm,
linear_equiv.refl_apply, std_basis_apply],
congr /- Get rid of a `decidable_eq` mismatch. -/ }
@[simp] lemma basis_fun_repr (x : η → R) (i : η) :
(pi.basis_fun R η).repr x i = x i :=
by simp [basis_fun]
end
end module
end pi
namespace matrix
variables (R : Type*) (m n : Type*) [fintype m] [fintype n] [semiring R]
/-- The standard basis of `matrix m n R`. -/
noncomputable def std_basis : basis (m × n) R (matrix m n R) :=
basis.reindex (pi.basis (λ (i : m), pi.basis_fun R n)) (equiv.sigma_equiv_prod _ _)
variables {n m}
lemma std_basis_eq_std_basis_matrix (i : n) (j : m) [decidable_eq n] [decidable_eq m] :
std_basis R n m (i, j) = std_basis_matrix i j (1 : R) :=
begin
ext a b,
by_cases hi : i = a; by_cases hj : j = b,
{ simp [std_basis, hi, hj] },
{ simp [std_basis, hi, hj, ne.symm hj, linear_map.std_basis_ne] },
{ simp [std_basis, hi, hj, ne.symm hi, linear_map.std_basis_ne] },
{ simp [std_basis, hi, hj, ne.symm hj, ne.symm hi, linear_map.std_basis_ne] }
end
end matrix