Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.05 kB
/-
Copyright (c) 2022 Aaron Anderson. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Aaron Anderson
-/
import model_theory.elementary_maps
/-!
# Skolem Functions and Downward Löwenheim–Skolem
## Main Definitions
* `first_order.language.skolem₁` is a language consisting of Skolem functions for another language.
## Main Results
* `first_order.language.exists_elementary_substructure_card_eq` is the Downward Löwenheim–Skolem
theorem: If `s` is a set in an `L`-structure `M` and `κ` an infinite cardinal such that
`max (# s, L.card) ≤ κ` and `κ ≤ # M`, then `M` has an elementary substructure containing `s` of
cardinality `κ`.
## TODO
* Use `skolem₁` recursively to construct an actual Skolemization of a language.
-/
universes u v w w'
namespace first_order
namespace language
open Structure cardinal
open_locale cardinal
variables (L : language.{u v}) {M : Type w} [nonempty M] [L.Structure M]
/-- A language consisting of Skolem functions for another language.
Called `skolem₁` because it is the first step in building a Skolemization of a language. -/
@[simps] def skolem₁ : language := ⟨λ n, L.bounded_formula empty (n + 1), λ _, empty⟩
variables {L}
theorem card_functions_sum_skolem₁ :
# (Σ n, (L.sum L.skolem₁).functions n) = # (Σ n, L.bounded_formula empty (n + 1)) :=
begin
simp only [card_functions_sum, skolem₁_functions, lift_id', mk_sigma, sum_add_distrib'],
rw [add_comm, add_eq_max, max_eq_left],
{ refine sum_le_sum _ _ (λ n, _),
rw [← lift_le, lift_lift, lift_mk_le],
refine ⟨⟨λ f, (func f default).bd_equal (func f default), λ f g h, _⟩⟩,
rcases h with ⟨rfl, ⟨rfl⟩⟩,
refl },
{ rw ← mk_sigma,
exact infinite_iff.1 (infinite.of_injective (λ n, ⟨n, ⊥⟩) (λ x y xy, (sigma.mk.inj xy).1)) }
end
theorem card_functions_sum_skolem₁_le :
# (Σ n, (L.sum L.skolem₁).functions n) ≤ max ℵ₀ L.card :=
begin
rw card_functions_sum_skolem₁,
transitivity # (Σ n, L.bounded_formula empty n),
{ exact ⟨⟨sigma.map nat.succ (λ _, id), nat.succ_injective.sigma_map
(λ _, function.injective_id)⟩⟩ },
{ refine trans bounded_formula.card_le (lift_le.1 _),
simp only [mk_empty, lift_zero, lift_uzero, zero_add] }
end
/-- The structure assigning each function symbol of `L.skolem₁` to a skolem function generated with
choice. -/
noncomputable instance skolem₁_Structure : L.skolem₁.Structure M :=
⟨λ n φ x, classical.epsilon (λ a, φ.realize default (fin.snoc x a : _ → M)), λ _ r, empty.elim r⟩
namespace substructure
lemma skolem₁_reduct_is_elementary (S : (L.sum L.skolem₁).substructure M) :
(Lhom.sum_inl.substructure_reduct S).is_elementary :=
begin
apply (Lhom.sum_inl.substructure_reduct S).is_elementary_of_exists,
intros n φ x a h,
let φ' : (L.sum L.skolem₁).functions n := (Lhom.sum_inr.on_function φ),
exact ⟨⟨fun_map φ' (coe ∘ x), S.fun_mem (Lhom.sum_inr.on_function φ) (coe ∘ x) (λ i, (x i).2)⟩,
classical.epsilon_spec ⟨a, h⟩⟩,
end
/-- Any `L.sum L.skolem₁`-substructure is an elementary `L`-substructure. -/
noncomputable def elementary_skolem₁_reduct (S : (L.sum L.skolem₁).substructure M) :
L.elementary_substructure M :=
⟨Lhom.sum_inl.substructure_reduct S, λ _, S.skolem₁_reduct_is_elementary⟩
lemma coe_sort_elementary_skolem₁_reduct
(S : (L.sum L.skolem₁).substructure M) :
(S.elementary_skolem₁_reduct : Type w) = S :=
rfl
end substructure
open substructure
variables (L) (M)
instance : small (⊥ : (L.sum L.skolem₁).substructure M).elementary_skolem₁_reduct :=
begin
rw [coe_sort_elementary_skolem₁_reduct],
apply_instance,
end
theorem exists_small_elementary_substructure :
∃ (S : L.elementary_substructure M), small.{max u v} S :=
⟨substructure.elementary_skolem₁_reduct ⊥, infer_instance⟩
variables {M}
/-- The Downward Löwenheim–Skolem theorem :
If `s` is a set in an `L`-structure `M` and `κ` an infinite cardinal such that
`max (# s, L.card) ≤ κ` and `κ ≤ # M`, then `M` has an elementary substructure containing `s` of
cardinality `κ`. -/
theorem exists_elementary_substructure_card_eq (s : set M) (κ : cardinal.{w'})
(h1 : ℵ₀ ≤ κ)
(h2 : cardinal.lift.{w'} (# s) ≤ cardinal.lift.{w} κ)
(h3 : cardinal.lift.{w'} L.card ≤ cardinal.lift.{max u v} κ)
(h4 : cardinal.lift.{w} κ ≤ cardinal.lift.{w'} (# M)) :
∃ (S : L.elementary_substructure M), s ⊆ S ∧
cardinal.lift.{w'} (# S) = cardinal.lift.{w} κ :=
begin
obtain ⟨s', hs'⟩ := cardinal.le_mk_iff_exists_set.1 h4,
rw ← aleph_0_le_lift at h1,
rw ← hs' at *,
refine ⟨elementary_skolem₁_reduct (closure (L.sum L.skolem₁)
(s ∪ (equiv.ulift '' s'))),
(s.subset_union_left _).trans subset_closure, _⟩,
have h := mk_image_eq_lift _ s' equiv.ulift.injective,
rw [lift_umax, lift_id'] at h,
rw [coe_sort_elementary_skolem₁_reduct, ← h, lift_inj],
refine le_antisymm (lift_le.1 (lift_card_closure_le.trans _))
(mk_le_mk_of_subset ((set.subset_union_right _ _).trans subset_closure)),
rw [max_le_iff, aleph_0_le_lift, ← aleph_0_le_lift, h, add_eq_max, max_le_iff, lift_le],
refine ⟨h1, (mk_union_le _ _).trans _, (lift_le.2 card_functions_sum_skolem₁_le).trans _⟩,
{ rw [← lift_le, lift_add, h, add_comm, add_eq_max h1],
exact max_le le_rfl h2 },
{ rw [lift_max, lift_aleph_0, max_le_iff, aleph_0_le_lift, and_comm,
← lift_le.{_ w'}, lift_lift, lift_lift, ← aleph_0_le_lift, h],
refine ⟨_, h1⟩,
simp only [← lift_lift, lift_umax, lift_umax'],
rw [lift_lift, ← lift_lift.{w' w} L.card],
refine trans ((lift_le.{_ w}).2 h3) _,
rw [lift_lift, ← lift_lift.{w (max u v)}, ← hs', ← h, lift_lift, lift_lift, lift_lift] },
{ refine trans _ (lift_le.2 (mk_le_mk_of_subset (set.subset_union_right _ _))),
rw [aleph_0_le_lift, ← aleph_0_le_lift, h],
exact h1 }
end
end language
end first_order