Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import model_theory.elementary_maps | |
/-! | |
# Skolem Functions and Downward Löwenheim–Skolem | |
## Main Definitions | |
* `first_order.language.skolem₁` is a language consisting of Skolem functions for another language. | |
## Main Results | |
* `first_order.language.exists_elementary_substructure_card_eq` is the Downward Löwenheim–Skolem | |
theorem: If `s` is a set in an `L`-structure `M` and `κ` an infinite cardinal such that | |
`max (# s, L.card) ≤ κ` and `κ ≤ # M`, then `M` has an elementary substructure containing `s` of | |
cardinality `κ`. | |
## TODO | |
* Use `skolem₁` recursively to construct an actual Skolemization of a language. | |
-/ | |
universes u v w w' | |
namespace first_order | |
namespace language | |
open Structure cardinal | |
open_locale cardinal | |
variables (L : language.{u v}) {M : Type w} [nonempty M] [L.Structure M] | |
/-- A language consisting of Skolem functions for another language. | |
Called `skolem₁` because it is the first step in building a Skolemization of a language. -/ | |
@[simps] def skolem₁ : language := ⟨λ n, L.bounded_formula empty (n + 1), λ _, empty⟩ | |
variables {L} | |
theorem card_functions_sum_skolem₁ : | |
# (Σ n, (L.sum L.skolem₁).functions n) = # (Σ n, L.bounded_formula empty (n + 1)) := | |
begin | |
simp only [card_functions_sum, skolem₁_functions, lift_id', mk_sigma, sum_add_distrib'], | |
rw [add_comm, add_eq_max, max_eq_left], | |
{ refine sum_le_sum _ _ (λ n, _), | |
rw [← lift_le, lift_lift, lift_mk_le], | |
refine ⟨⟨λ f, (func f default).bd_equal (func f default), λ f g h, _⟩⟩, | |
rcases h with ⟨rfl, ⟨rfl⟩⟩, | |
refl }, | |
{ rw ← mk_sigma, | |
exact infinite_iff.1 (infinite.of_injective (λ n, ⟨n, ⊥⟩) (λ x y xy, (sigma.mk.inj xy).1)) } | |
end | |
theorem card_functions_sum_skolem₁_le : | |
# (Σ n, (L.sum L.skolem₁).functions n) ≤ max ℵ₀ L.card := | |
begin | |
rw card_functions_sum_skolem₁, | |
transitivity # (Σ n, L.bounded_formula empty n), | |
{ exact ⟨⟨sigma.map nat.succ (λ _, id), nat.succ_injective.sigma_map | |
(λ _, function.injective_id)⟩⟩ }, | |
{ refine trans bounded_formula.card_le (lift_le.1 _), | |
simp only [mk_empty, lift_zero, lift_uzero, zero_add] } | |
end | |
/-- The structure assigning each function symbol of `L.skolem₁` to a skolem function generated with | |
choice. -/ | |
noncomputable instance skolem₁_Structure : L.skolem₁.Structure M := | |
⟨λ n φ x, classical.epsilon (λ a, φ.realize default (fin.snoc x a : _ → M)), λ _ r, empty.elim r⟩ | |
namespace substructure | |
lemma skolem₁_reduct_is_elementary (S : (L.sum L.skolem₁).substructure M) : | |
(Lhom.sum_inl.substructure_reduct S).is_elementary := | |
begin | |
apply (Lhom.sum_inl.substructure_reduct S).is_elementary_of_exists, | |
intros n φ x a h, | |
let φ' : (L.sum L.skolem₁).functions n := (Lhom.sum_inr.on_function φ), | |
exact ⟨⟨fun_map φ' (coe ∘ x), S.fun_mem (Lhom.sum_inr.on_function φ) (coe ∘ x) (λ i, (x i).2)⟩, | |
classical.epsilon_spec ⟨a, h⟩⟩, | |
end | |
/-- Any `L.sum L.skolem₁`-substructure is an elementary `L`-substructure. -/ | |
noncomputable def elementary_skolem₁_reduct (S : (L.sum L.skolem₁).substructure M) : | |
L.elementary_substructure M := | |
⟨Lhom.sum_inl.substructure_reduct S, λ _, S.skolem₁_reduct_is_elementary⟩ | |
lemma coe_sort_elementary_skolem₁_reduct | |
(S : (L.sum L.skolem₁).substructure M) : | |
(S.elementary_skolem₁_reduct : Type w) = S := | |
rfl | |
end substructure | |
open substructure | |
variables (L) (M) | |
instance : small (⊥ : (L.sum L.skolem₁).substructure M).elementary_skolem₁_reduct := | |
begin | |
rw [coe_sort_elementary_skolem₁_reduct], | |
apply_instance, | |
end | |
theorem exists_small_elementary_substructure : | |
∃ (S : L.elementary_substructure M), small.{max u v} S := | |
⟨substructure.elementary_skolem₁_reduct ⊥, infer_instance⟩ | |
variables {M} | |
/-- The Downward Löwenheim–Skolem theorem : | |
If `s` is a set in an `L`-structure `M` and `κ` an infinite cardinal such that | |
`max (# s, L.card) ≤ κ` and `κ ≤ # M`, then `M` has an elementary substructure containing `s` of | |
cardinality `κ`. -/ | |
theorem exists_elementary_substructure_card_eq (s : set M) (κ : cardinal.{w'}) | |
(h1 : ℵ₀ ≤ κ) | |
(h2 : cardinal.lift.{w'} (# s) ≤ cardinal.lift.{w} κ) | |
(h3 : cardinal.lift.{w'} L.card ≤ cardinal.lift.{max u v} κ) | |
(h4 : cardinal.lift.{w} κ ≤ cardinal.lift.{w'} (# M)) : | |
∃ (S : L.elementary_substructure M), s ⊆ S ∧ | |
cardinal.lift.{w'} (# S) = cardinal.lift.{w} κ := | |
begin | |
obtain ⟨s', hs'⟩ := cardinal.le_mk_iff_exists_set.1 h4, | |
rw ← aleph_0_le_lift at h1, | |
rw ← hs' at *, | |
refine ⟨elementary_skolem₁_reduct (closure (L.sum L.skolem₁) | |
(s ∪ (equiv.ulift '' s'))), | |
(s.subset_union_left _).trans subset_closure, _⟩, | |
have h := mk_image_eq_lift _ s' equiv.ulift.injective, | |
rw [lift_umax, lift_id'] at h, | |
rw [coe_sort_elementary_skolem₁_reduct, ← h, lift_inj], | |
refine le_antisymm (lift_le.1 (lift_card_closure_le.trans _)) | |
(mk_le_mk_of_subset ((set.subset_union_right _ _).trans subset_closure)), | |
rw [max_le_iff, aleph_0_le_lift, ← aleph_0_le_lift, h, add_eq_max, max_le_iff, lift_le], | |
refine ⟨h1, (mk_union_le _ _).trans _, (lift_le.2 card_functions_sum_skolem₁_le).trans _⟩, | |
{ rw [← lift_le, lift_add, h, add_comm, add_eq_max h1], | |
exact max_le le_rfl h2 }, | |
{ rw [lift_max, lift_aleph_0, max_le_iff, aleph_0_le_lift, and_comm, | |
← lift_le.{_ w'}, lift_lift, lift_lift, ← aleph_0_le_lift, h], | |
refine ⟨_, h1⟩, | |
simp only [← lift_lift, lift_umax, lift_umax'], | |
rw [lift_lift, ← lift_lift.{w' w} L.card], | |
refine trans ((lift_le.{_ w}).2 h3) _, | |
rw [lift_lift, ← lift_lift.{w (max u v)}, ← hs', ← h, lift_lift, lift_lift, lift_lift] }, | |
{ refine trans _ (lift_le.2 (mk_le_mk_of_subset (set.subset_union_right _ _))), | |
rw [aleph_0_le_lift, ← aleph_0_le_lift, h], | |
exact h1 } | |
end | |
end language | |
end first_order | |