Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2020 Aaron Anderson. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Aaron Anderson | |
-/ | |
import order.bounds | |
/-! | |
# Intervals in Lattices | |
In this file, we provide instances of lattice structures on intervals within lattices. | |
Some of them depend on the order of the endpoints of the interval, and thus are not made | |
global instances. These are probably not all of the lattice instances that could be placed on these | |
intervals, but more can be added easily along the same lines when needed. | |
## Main definitions | |
In the following, `*` can represent either `c`, `o`, or `i`. | |
* `set.Ic*.order_bot` | |
* `set.Ii*.semillatice_inf` | |
* `set.I*c.order_top` | |
* `set.I*c.semillatice_inf` | |
* `set.I**.lattice` | |
* `set.Iic.bounded_order`, within an `order_bot` | |
* `set.Ici.bounded_order`, within an `order_top` | |
-/ | |
variable {α : Type*} | |
namespace set | |
namespace Ico | |
instance [semilattice_inf α] {a b : α} : semilattice_inf (Ico a b) := | |
subtype.semilattice_inf (λ x y hx hy, ⟨le_inf hx.1 hy.1, lt_of_le_of_lt inf_le_left hx.2⟩) | |
/-- `Ico a b` has a bottom element whenever `a < b`. -/ | |
@[reducible] protected def order_bot [partial_order α] {a b : α} (h : a < b) : | |
order_bot (Ico a b) := | |
(is_least_Ico h).order_bot | |
end Ico | |
namespace Iio | |
instance [semilattice_inf α] {a : α} : semilattice_inf (Iio a) := | |
subtype.semilattice_inf (λ x y hx hy, lt_of_le_of_lt inf_le_left hx) | |
end Iio | |
namespace Ioc | |
instance [semilattice_sup α] {a b : α} : semilattice_sup (Ioc a b) := | |
subtype.semilattice_sup (λ x y hx hy, ⟨lt_of_lt_of_le hx.1 le_sup_left, sup_le hx.2 hy.2⟩) | |
/-- `Ioc a b` has a top element whenever `a < b`. -/ | |
@[reducible] protected def order_top [partial_order α] {a b : α} (h : a < b) : | |
order_top (Ioc a b) := | |
(is_greatest_Ioc h).order_top | |
end Ioc | |
namespace Ioi | |
instance [semilattice_sup α] {a : α} : semilattice_sup (Ioi a) := | |
subtype.semilattice_sup (λ x y hx hy, lt_of_lt_of_le hx le_sup_left) | |
end Ioi | |
namespace Iic | |
instance [semilattice_inf α] {a : α} : semilattice_inf (Iic a) := | |
subtype.semilattice_inf (λ x y hx hy, le_trans inf_le_left hx) | |
instance [semilattice_sup α] {a : α} : semilattice_sup (Iic a) := | |
subtype.semilattice_sup (λ x y hx hy, sup_le hx hy) | |
instance [lattice α] {a : α} : lattice (Iic a) := | |
{ .. Iic.semilattice_inf, | |
.. Iic.semilattice_sup } | |
instance [preorder α] {a : α} : order_top (Iic a) := | |
{ top := ⟨a, le_refl a⟩, | |
le_top := λ x, x.prop } | |
@[simp] lemma coe_top [preorder α] {a : α} : ↑(⊤ : Iic a) = a := rfl | |
instance [preorder α] [order_bot α] {a : α} : order_bot (Iic a) := | |
{ bot := ⟨⊥, bot_le⟩, | |
bot_le := λ ⟨_,_⟩, subtype.mk_le_mk.2 bot_le } | |
@[simp] lemma coe_bot [preorder α] [order_bot α] {a : α} : ↑(⊥ : Iic a) = (⊥ : α) := rfl | |
instance [preorder α] [order_bot α] {a : α} : bounded_order (Iic a) := | |
{ .. Iic.order_top, | |
.. Iic.order_bot } | |
end Iic | |
namespace Ici | |
instance [semilattice_inf α] {a : α}: semilattice_inf (Ici a) := | |
subtype.semilattice_inf (λ x y hx hy, le_inf hx hy) | |
instance [semilattice_sup α] {a : α} : semilattice_sup (Ici a) := | |
subtype.semilattice_sup (λ x y hx hy, le_trans hx le_sup_left) | |
instance [lattice α] {a : α} : lattice (Ici a) := | |
{ .. Ici.semilattice_inf, | |
.. Ici.semilattice_sup } | |
instance [preorder α] {a : α} : order_bot (Ici a) := | |
{ bot := ⟨a, le_refl a⟩, | |
bot_le := λ x, x.prop } | |
@[simp] lemma coe_bot [preorder α] {a : α} : ↑(⊥ : Ici a) = a := rfl | |
instance [preorder α] [order_top α] {a : α}: order_top (Ici a) := | |
{ top := ⟨⊤, le_top⟩, | |
le_top := λ ⟨_,_⟩, subtype.mk_le_mk.2 le_top } | |
@[simp] lemma coe_top [preorder α] [order_top α] {a : α} : ↑(⊤ : Ici a) = (⊤ : α) := rfl | |
instance [preorder α] [order_top α] {a : α}: bounded_order (Ici a) := | |
{ .. Ici.order_top, | |
.. Ici.order_bot } | |
end Ici | |
namespace Icc | |
instance [semilattice_inf α] {a b : α} : semilattice_inf (Icc a b) := | |
subtype.semilattice_inf (λ x y hx hy, ⟨le_inf hx.1 hy.1, le_trans inf_le_left hx.2⟩) | |
instance [semilattice_sup α] {a b : α} : semilattice_sup (Icc a b) := | |
subtype.semilattice_sup (λ x y hx hy, ⟨le_trans hx.1 le_sup_left, sup_le hx.2 hy.2⟩) | |
instance [lattice α] {a b : α} : lattice (Icc a b) := | |
{ .. Icc.semilattice_inf, | |
.. Icc.semilattice_sup } | |
/-- `Icc a b` has a bottom element whenever `a ≤ b`. -/ | |
@[reducible] protected def order_bot [preorder α] {a b : α} (h : a ≤ b) : order_bot (Icc a b) := | |
(is_least_Icc h).order_bot | |
/-- `Icc a b` has a top element whenever `a ≤ b`. -/ | |
@[reducible] protected def order_top [preorder α] {a b : α} (h : a ≤ b) : order_top (Icc a b) := | |
(is_greatest_Icc h).order_top | |
/-- `Icc a b` is a `bounded_order` whenever `a ≤ b`. -/ | |
@[reducible] protected def bounded_order [preorder α] {a b : α} (h : a ≤ b) : | |
bounded_order (Icc a b) := | |
{ .. Icc.order_top h, | |
.. Icc.order_bot h } | |
end Icc | |
end set | |