Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
5.63 kB
/-
Copyright (c) 2022 Yaël Dillies. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yaël Dillies
-/
import order.antichain
import order.upper_lower
/-!
# Minimal/maximal elements of a set
This file defines minimal and maximal of a set with respect to an arbitrary relation.
## Main declarations
* `maximals r s`: Maximal elements of `s` with respect to `r`.
* `minimals r s`: Minimal elements of `s` with respect to `r`.
## TODO
Do we need a `finset` version?
-/
open function set
variables {α : Type*} (r r₁ r₂ : α → α → Prop) (s t : set α) (a : α)
/-- Turns a set into an antichain by keeping only the "maximal" elements. -/
def maximals : set α := {a ∈ s | ∀ ⦃b⦄, b ∈ s → r a b → a = b}
/-- Turns a set into an antichain by keeping only the "minimal" elements. -/
def minimals : set α := {a ∈ s | ∀ ⦃b⦄, b ∈ s → r b a → a = b}
lemma maximals_subset : maximals r s ⊆ s := sep_subset _ _
lemma minimals_subset : minimals r s ⊆ s := sep_subset _ _
@[simp] lemma maximals_empty : maximals r ∅ = ∅ := sep_empty _
@[simp] lemma minimals_empty : minimals r ∅ = ∅ := sep_empty _
@[simp] lemma maximals_singleton : maximals r {a} = {a} :=
(maximals_subset _ _).antisymm $ singleton_subset_iff.2 $ ⟨rfl, λ b hb _, hb.symm⟩
@[simp] lemma minimals_singleton : minimals r {a} = {a} := maximals_singleton _ _
lemma maximals_swap : maximals (swap r) s = minimals r s := rfl
lemma minimals_swap : minimals (swap r) s = maximals r s := rfl
lemma maximals_antichain : is_antichain r (maximals r s) := λ a ha b hb hab h, hab $ ha.2 hb.1 h
lemma minimals_antichain : is_antichain r (minimals r s) := (maximals_antichain _ _).swap
lemma maximals_eq_minimals [is_symm α r] : maximals r s = minimals r s :=
by { congr, ext a b, exact comm }
variables {r r₁ r₂ s t a}
lemma set.subsingleton.maximals_eq (h : s.subsingleton) : maximals r s = s :=
h.induction_on (minimals_empty _) (maximals_singleton _)
lemma set.subsingleton.minimals_eq (h : s.subsingleton) : minimals r s = s := h.maximals_eq
lemma maximals_mono (h : ∀ a b, r₁ a b → r₂ a b) : maximals r₂ s ⊆ maximals r₁ s :=
λ a ha, ⟨ha.1, λ b hb, ha.2 hb ∘ h _ _⟩
lemma minimals_mono (h : ∀ a b, r₁ a b → r₂ a b) : minimals r₂ s ⊆ minimals r₁ s :=
λ a ha, ⟨ha.1, λ b hb, ha.2 hb ∘ h _ _⟩
lemma maximals_union : maximals r (s ∪ t) ⊆ maximals r s ∪ maximals r t :=
begin
intros a ha,
obtain h | h := ha.1,
{ exact or.inl ⟨h, λ b hb, ha.2 $ or.inl hb⟩ },
{ exact or.inr ⟨h, λ b hb, ha.2 $ or.inr hb⟩ }
end
lemma minimals_union : minimals r (s ∪ t) ⊆ minimals r s ∪ minimals r t := maximals_union
lemma maximals_inter_subset : maximals r s ∩ t ⊆ maximals r (s ∩ t) :=
λ a ha, ⟨⟨ha.1.1, ha.2⟩, λ b hb, ha.1.2 hb.1
lemma minimals_inter_subset : minimals r s ∩ t ⊆ minimals r (s ∩ t) := maximals_inter_subset
lemma inter_maximals_subset : s ∩ maximals r t ⊆ maximals r (s ∩ t) :=
λ a ha, ⟨⟨ha.1, ha.2.1⟩, λ b hb, ha.2.2 hb.2
lemma inter_minimals_subset : s ∩ minimals r t ⊆ minimals r (s ∩ t) := inter_maximals_subset
lemma _root_.is_antichain.maximals_eq (h : is_antichain r s) : maximals r s = s :=
(maximals_subset _ _).antisymm $ λ a ha, ⟨ha, λ b, h.eq ha⟩
lemma _root_.is_antichain.minimals_eq (h : is_antichain r s) : minimals r s = s :=
(minimals_subset _ _).antisymm $ λ a ha, ⟨ha, λ b, h.eq' ha⟩
@[simp] lemma maximals_idem : maximals r (maximals r s) = maximals r s :=
(maximals_antichain _ _).maximals_eq
@[simp] lemma minimals_idem : minimals r (minimals r s) = minimals r s := maximals_idem
/-- If `maximals r s` is included in but *shadows* the antichain `t`, then it is actually
equal to `t`. -/
lemma is_antichain.max_maximals (ht : is_antichain r t) (h : maximals r s ⊆ t)
(hs : ∀ ⦃a⦄, a ∈ t → ∃ b ∈ maximals r s, r b a) :
maximals r s = t :=
begin
refine h.antisymm (λ a ha, _),
obtain ⟨b, hb, hr⟩ := hs ha,
rwa of_not_not (λ hab, ht (h hb) ha (ne.symm hab) hr),
end
/-- If `minimals r s` is included in but *shadows* the antichain `t`, then it is actually
equal to `t`. -/
lemma is_antichain.max_minimals (ht : is_antichain r t) (h : minimals r s ⊆ t)
(hs : ∀ ⦃a⦄, a ∈ t → ∃ b ∈ minimals r s, r a b) :
minimals r s = t :=
begin
refine h.antisymm (λ a ha, _),
obtain ⟨b, hb, hr⟩ := hs ha,
rwa of_not_not (λ hab, ht ha (h hb) hab hr),
end
variables [partial_order α]
lemma is_least.mem_minimals (h : is_least s a) : a ∈ minimals (≤) s :=
⟨h.1, λ b hb, (h.2 hb).antisymm⟩
lemma is_greatest.mem_maximals (h : is_greatest s a) : a ∈ maximals (≤) s :=
⟨h.1, λ b hb, (h.2 hb).antisymm'⟩
lemma is_least.minimals_eq (h : is_least s a) : minimals (≤) s = {a} :=
eq_singleton_iff_unique_mem.2 ⟨h.mem_minimals, λ b hb, hb.2 h.1 $ h.2 hb.1
lemma is_greatest.maximals_eq (h : is_greatest s a) : maximals (≤) s = {a} :=
eq_singleton_iff_unique_mem.2 ⟨h.mem_maximals, λ b hb, hb.2 h.1 $ h.2 hb.1
lemma is_antichain.minimals_upper_closure (hs : is_antichain (≤) s) :
minimals (≤) (upper_closure s : set α) = s :=
hs.max_minimals (λ a ⟨⟨b, hb, hba⟩, h⟩, by rwa h (subset_upper_closure hb) hba) $ λ a ha,
⟨a, ⟨subset_upper_closure ha, λ b ⟨c, hc, hcb⟩ hba, hba.antisymm' $
by rwa hs.eq' ha hc (hcb.trans hba)⟩, le_rfl⟩
lemma is_antichain.maximals_lower_closure (hs : is_antichain (≤) s) :
maximals (≤) (lower_closure s : set α) = s :=
hs.to_dual.minimals_upper_closure