Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Kexing Ying. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Kexing Ying | |
-/ | |
import measure_theory.decomposition.radon_nikodym | |
import measure_theory.measure.lebesgue | |
/-! | |
# Probability density function | |
This file defines the probability density function of random variables, by which we mean | |
measurable functions taking values in a Borel space. In particular, a measurable function `f` | |
is said to the probability density function of a random variable `X` if for all measurable | |
sets `S`, `ℙ(X ∈ S) = ∫ x in S, f x dx`. Probability density functions are one way of describing | |
the distribution of a random variable, and are useful for calculating probabilities and | |
finding moments (although the latter is better achieved with moment generating functions). | |
This file also defines the continuous uniform distribution and proves some properties about | |
random variables with this distribution. | |
## Main definitions | |
* `measure_theory.has_pdf` : A random variable `X : α → E` is said to `has_pdf` with | |
respect to the measure `ℙ` on `α` and `μ` on `E` if there exists a measurable function `f` | |
such that the push-forward measure of `ℙ` along `X` equals `μ.with_density f`. | |
* `measure_theory.pdf` : If `X` is a random variable that `has_pdf X ℙ μ`, then `pdf X` | |
is the measurable function `f` such that the push-forward measure of `ℙ` along `X` equals | |
`μ.with_density f`. | |
* `measure_theory.pdf.uniform` : A random variable `X` is said to follow the uniform | |
distribution if it has a constant probability density function with a compact, non-null support. | |
## Main results | |
* `measure_theory.pdf.integral_fun_mul_eq_integral` : Law of the unconscious statistician, | |
i.e. if a random variable `X : α → E` has pdf `f`, then `𝔼(g(X)) = ∫ x, g x * f x dx` for | |
all measurable `g : E → ℝ`. | |
* `measure_theory.pdf.integral_mul_eq_integral` : A real-valued random variable `X` with | |
pdf `f` has expectation `∫ x, x * f x dx`. | |
* `measure_theory.pdf.uniform.integral_eq` : If `X` follows the uniform distribution with | |
its pdf having support `s`, then `X` has expectation `(λ s)⁻¹ * ∫ x in s, x dx` where `λ` | |
is the Lebesgue measure. | |
## TODOs | |
Ultimately, we would also like to define characteristic functions to describe distributions as | |
it exists for all random variables. However, to define this, we will need Fourier transforms | |
which we currently do not have. | |
-/ | |
noncomputable theory | |
open_locale classical measure_theory nnreal ennreal | |
namespace measure_theory | |
open topological_space measure_theory.measure | |
variables {α E : Type*} [measurable_space E] | |
/-- A random variable `X : α → E` is said to `has_pdf` with respect to the measure `ℙ` on `α` and | |
`μ` on `E` if there exists a measurable function `f` such that the push-forward measure of `ℙ` | |
along `X` equals `μ.with_density f`. -/ | |
class has_pdf {m : measurable_space α} (X : α → E) | |
(ℙ : measure α) (μ : measure E . volume_tac) : Prop := | |
(pdf' : measurable X ∧ ∃ (f : E → ℝ≥0∞), measurable f ∧ map X ℙ = μ.with_density f) | |
@[measurability] | |
lemma has_pdf.measurable {m : measurable_space α} | |
(X : α → E) (ℙ : measure α) (μ : measure E . volume_tac) [hX : has_pdf X ℙ μ] : | |
measurable X := | |
hX.pdf'.1 | |
/-- If `X` is a random variable that `has_pdf X ℙ μ`, then `pdf X` is the measurable function `f` | |
such that the push-forward measure of `ℙ` along `X` equals `μ.with_density f`. -/ | |
def pdf {m : measurable_space α} (X : α → E) (ℙ : measure α) (μ : measure E . volume_tac) := | |
if hX : has_pdf X ℙ μ then classical.some hX.pdf'.2 else 0 | |
lemma pdf_undef {m : measurable_space α} {ℙ : measure α} {μ : measure E} {X : α → E} | |
(h : ¬ has_pdf X ℙ μ) : | |
pdf X ℙ μ = 0 := | |
by simp only [pdf, dif_neg h] | |
lemma has_pdf_of_pdf_ne_zero {m : measurable_space α} {ℙ : measure α} {μ : measure E} {X : α → E} | |
(h : pdf X ℙ μ ≠ 0) : has_pdf X ℙ μ := | |
begin | |
by_contra hpdf, | |
rw [pdf, dif_neg hpdf] at h, | |
exact hpdf (false.rec (has_pdf X ℙ μ) (h rfl)) | |
end | |
lemma pdf_eq_zero_of_not_measurable {m : measurable_space α} | |
{ℙ : measure α} {μ : measure E} {X : α → E} (hX : ¬ measurable X) : | |
pdf X ℙ μ = 0 := | |
pdf_undef (λ hpdf, hX hpdf.pdf'.1) | |
lemma measurable_of_pdf_ne_zero {m : measurable_space α} | |
{ℙ : measure α} {μ : measure E} (X : α → E) (h : pdf X ℙ μ ≠ 0) : | |
measurable X := | |
by { by_contra hX, exact h (pdf_eq_zero_of_not_measurable hX) } | |
@[measurability] | |
lemma measurable_pdf {m : measurable_space α} | |
(X : α → E) (ℙ : measure α) (μ : measure E . volume_tac) : | |
measurable (pdf X ℙ μ) := | |
begin | |
by_cases hX : has_pdf X ℙ μ, | |
{ rw [pdf, dif_pos hX], | |
exact (classical.some_spec hX.pdf'.2).1 }, | |
{ rw [pdf, dif_neg hX], | |
exact measurable_zero } | |
end | |
lemma map_eq_with_density_pdf {m : measurable_space α} | |
(X : α → E) (ℙ : measure α) (μ : measure E . volume_tac) [hX : has_pdf X ℙ μ] : | |
measure.map X ℙ = μ.with_density (pdf X ℙ μ) := | |
begin | |
rw [pdf, dif_pos hX], | |
exact (classical.some_spec hX.pdf'.2).2 | |
end | |
lemma map_eq_set_lintegral_pdf {m : measurable_space α} | |
(X : α → E) (ℙ : measure α) (μ : measure E . volume_tac) [hX : has_pdf X ℙ μ] | |
{s : set E} (hs : measurable_set s) : | |
measure.map X ℙ s = ∫⁻ x in s, pdf X ℙ μ x ∂μ := | |
by rw [← with_density_apply _ hs, map_eq_with_density_pdf X ℙ μ] | |
namespace pdf | |
variables {m : measurable_space α} {ℙ : measure α} {μ : measure E} | |
lemma lintegral_eq_measure_univ {X : α → E} [has_pdf X ℙ μ] : | |
∫⁻ x, pdf X ℙ μ x ∂μ = ℙ set.univ := | |
begin | |
rw [← set_lintegral_univ, ← map_eq_set_lintegral_pdf X ℙ μ measurable_set.univ, | |
measure.map_apply (has_pdf.measurable X ℙ μ) measurable_set.univ, set.preimage_univ], | |
end | |
lemma ae_lt_top [is_finite_measure ℙ] {μ : measure E} {X : α → E} : | |
∀ᵐ x ∂μ, pdf X ℙ μ x < ∞ := | |
begin | |
by_cases hpdf : has_pdf X ℙ μ, | |
{ haveI := hpdf, | |
refine ae_lt_top (measurable_pdf X ℙ μ) _, | |
rw lintegral_eq_measure_univ, | |
exact (measure_lt_top _ _).ne }, | |
{ rw [pdf, dif_neg hpdf], | |
exact filter.eventually_of_forall (λ x, with_top.zero_lt_top) } | |
end | |
lemma of_real_to_real_ae_eq [is_finite_measure ℙ] {X : α → E} : | |
(λ x, ennreal.of_real (pdf X ℙ μ x).to_real) =ᵐ[μ] pdf X ℙ μ := | |
of_real_to_real_ae_eq ae_lt_top | |
lemma integrable_iff_integrable_mul_pdf [is_finite_measure ℙ] {X : α → E} [has_pdf X ℙ μ] | |
{f : E → ℝ} (hf : measurable f) : | |
integrable (λ x, f (X x)) ℙ ↔ integrable (λ x, f x * (pdf X ℙ μ x).to_real) μ := | |
begin | |
rw [← integrable_map_measure hf.ae_strongly_measurable (has_pdf.measurable X ℙ μ).ae_measurable, | |
map_eq_with_density_pdf X ℙ μ, | |
integrable_with_density_iff (measurable_pdf _ _ _) ae_lt_top], | |
apply_instance | |
end | |
/-- **The Law of the Unconscious Statistician**: Given a random variable `X` and a measurable | |
function `f`, `f ∘ X` is a random variable with expectation `∫ x, f x * pdf X ∂μ` | |
where `μ` is a measure on the codomain of `X`. -/ | |
lemma integral_fun_mul_eq_integral [is_finite_measure ℙ] | |
{X : α → E} [has_pdf X ℙ μ] {f : E → ℝ} (hf : measurable f) : | |
∫ x, f x * (pdf X ℙ μ x).to_real ∂μ = ∫ x, f (X x) ∂ℙ := | |
begin | |
by_cases hpdf : integrable (λ x, f x * (pdf X ℙ μ x).to_real) μ, | |
{ rw [← integral_map (has_pdf.measurable X ℙ μ).ae_measurable hf.ae_strongly_measurable, | |
map_eq_with_density_pdf X ℙ μ, | |
integral_eq_lintegral_pos_part_sub_lintegral_neg_part hpdf, | |
integral_eq_lintegral_pos_part_sub_lintegral_neg_part, | |
lintegral_with_density_eq_lintegral_mul _ (measurable_pdf X ℙ μ) hf.neg.ennreal_of_real, | |
lintegral_with_density_eq_lintegral_mul _ (measurable_pdf X ℙ μ) hf.ennreal_of_real], | |
{ congr' 2, | |
{ have : ∀ x, ennreal.of_real (f x * (pdf X ℙ μ x).to_real) = | |
ennreal.of_real (pdf X ℙ μ x).to_real * ennreal.of_real (f x), | |
{ intro x, | |
rw [mul_comm, ennreal.of_real_mul ennreal.to_real_nonneg] }, | |
simp_rw [this], | |
exact lintegral_congr_ae (filter.eventually_eq.mul of_real_to_real_ae_eq (ae_eq_refl _)) }, | |
{ have : ∀ x, ennreal.of_real (- (f x * (pdf X ℙ μ x).to_real)) = | |
ennreal.of_real (pdf X ℙ μ x).to_real * ennreal.of_real (-f x), | |
{ intro x, | |
rw [neg_mul_eq_neg_mul, mul_comm, ennreal.of_real_mul ennreal.to_real_nonneg] }, | |
simp_rw [this], | |
exact lintegral_congr_ae (filter.eventually_eq.mul of_real_to_real_ae_eq | |
(ae_eq_refl _)) } }, | |
{ refine ⟨hf.ae_strongly_measurable, _⟩, | |
rw [has_finite_integral, lintegral_with_density_eq_lintegral_mul _ | |
(measurable_pdf _ _ _) hf.nnnorm.coe_nnreal_ennreal], | |
have : (λ x, (pdf X ℙ μ * λ x, ↑∥f x∥₊) x) =ᵐ[μ] (λ x, ∥f x * (pdf X ℙ μ x).to_real∥₊), | |
{ simp_rw [← smul_eq_mul, nnnorm_smul, ennreal.coe_mul], | |
rw [smul_eq_mul, mul_comm], | |
refine filter.eventually_eq.mul (ae_eq_refl _) (ae_eq_trans of_real_to_real_ae_eq.symm _), | |
convert ae_eq_refl _, | |
ext1 x, | |
exact real.ennnorm_eq_of_real ennreal.to_real_nonneg }, | |
rw lintegral_congr_ae this, | |
exact hpdf.2 } }, | |
{ rw [integral_undef hpdf, integral_undef], | |
rwa ← integrable_iff_integrable_mul_pdf hf at hpdf, | |
all_goals { apply_instance } } | |
end | |
lemma map_absolutely_continuous {X : α → E} [has_pdf X ℙ μ] : map X ℙ ≪ μ := | |
by { rw map_eq_with_density_pdf X ℙ μ, exact with_density_absolutely_continuous _ _, } | |
/-- A random variable that `has_pdf` is quasi-measure preserving. -/ | |
lemma to_quasi_measure_preserving {X : α → E} [has_pdf X ℙ μ] : quasi_measure_preserving X ℙ μ := | |
{ measurable := has_pdf.measurable X ℙ μ, | |
absolutely_continuous := map_absolutely_continuous, } | |
lemma have_lebesgue_decomposition_of_has_pdf {X : α → E} [hX' : has_pdf X ℙ μ] : | |
(map X ℙ).have_lebesgue_decomposition μ := | |
⟨⟨⟨0, pdf X ℙ μ⟩, | |
by simp only [zero_add, measurable_pdf X ℙ μ, true_and, mutually_singular.zero_left, | |
map_eq_with_density_pdf X ℙ μ] ⟩⟩ | |
lemma has_pdf_iff {X : α → E} : | |
has_pdf X ℙ μ ↔ measurable X ∧ (map X ℙ).have_lebesgue_decomposition μ ∧ map X ℙ ≪ μ := | |
begin | |
split, | |
{ intro hX', | |
exactI ⟨hX'.pdf'.1, have_lebesgue_decomposition_of_has_pdf, map_absolutely_continuous⟩ }, | |
{ rintros ⟨hX, h_decomp, h⟩, | |
haveI := h_decomp, | |
refine ⟨⟨hX, (measure.map X ℙ).rn_deriv μ, measurable_rn_deriv _ _, _⟩⟩, | |
rwa with_density_rn_deriv_eq } | |
end | |
lemma has_pdf_iff_of_measurable {X : α → E} (hX : measurable X) : | |
has_pdf X ℙ μ ↔ (map X ℙ).have_lebesgue_decomposition μ ∧ map X ℙ ≪ μ := | |
by { rw has_pdf_iff, simp only [hX, true_and], } | |
section | |
variables {F : Type*} [measurable_space F] {ν : measure F} | |
/-- A random variable that `has_pdf` transformed under a `quasi_measure_preserving` | |
map also `has_pdf` if `(map g (map X ℙ)).have_lebesgue_decomposition μ`. | |
`quasi_measure_preserving_has_pdf'` is more useful in the case we are working with a | |
probability measure and a real-valued random variable. -/ | |
lemma quasi_measure_preserving_has_pdf {X : α → E} [has_pdf X ℙ μ] | |
{g : E → F} (hg : quasi_measure_preserving g μ ν) | |
(hmap : (map g (map X ℙ)).have_lebesgue_decomposition ν) : | |
has_pdf (g ∘ X) ℙ ν := | |
begin | |
rw [has_pdf_iff, ← map_map hg.measurable (has_pdf.measurable X ℙ μ)], | |
refine ⟨hg.measurable.comp (has_pdf.measurable X ℙ μ), hmap, _⟩, | |
rw [map_eq_with_density_pdf X ℙ μ], | |
refine absolutely_continuous.mk (λ s hsm hs, _), | |
rw [map_apply hg.measurable hsm, with_density_apply _ (hg.measurable hsm)], | |
have := hg.absolutely_continuous hs, | |
rw map_apply hg.measurable hsm at this, | |
exact set_lintegral_measure_zero _ _ this, | |
end | |
lemma quasi_measure_preserving_has_pdf' [is_finite_measure ℙ] [sigma_finite ν] | |
{X : α → E} [has_pdf X ℙ μ] {g : E → F} (hg : quasi_measure_preserving g μ ν) : | |
has_pdf (g ∘ X) ℙ ν := | |
quasi_measure_preserving_has_pdf hg infer_instance | |
end | |
section real | |
variables [is_finite_measure ℙ] {X : α → ℝ} | |
/-- A real-valued random variable `X` `has_pdf X ℙ λ` (where `λ` is the Lebesgue measure) if and | |
only if the push-forward measure of `ℙ` along `X` is absolutely continuous with respect to `λ`. -/ | |
lemma real.has_pdf_iff_of_measurable (hX : measurable X) : has_pdf X ℙ ↔ map X ℙ ≪ volume := | |
begin | |
rw [has_pdf_iff_of_measurable hX, and_iff_right_iff_imp], | |
exact λ h, infer_instance, | |
end | |
lemma real.has_pdf_iff : has_pdf X ℙ ↔ measurable X ∧ map X ℙ ≪ volume := | |
begin | |
by_cases hX : measurable X, | |
{ rw [real.has_pdf_iff_of_measurable hX, iff_and_self], | |
exact λ h, hX, | |
apply_instance }, | |
{ exact ⟨λ h, false.elim (hX h.pdf'.1), λ h, false.elim (hX h.1)⟩, } | |
end | |
/-- If `X` is a real-valued random variable that has pdf `f`, then the expectation of `X` equals | |
`∫ x, x * f x ∂λ` where `λ` is the Lebesgue measure. -/ | |
lemma integral_mul_eq_integral [has_pdf X ℙ] : | |
∫ x, x * (pdf X ℙ volume x).to_real = ∫ x, X x ∂ℙ := | |
integral_fun_mul_eq_integral measurable_id | |
lemma has_finite_integral_mul {f : ℝ → ℝ} {g : ℝ → ℝ≥0∞} | |
(hg : pdf X ℙ =ᵐ[volume] g) (hgi : ∫⁻ x, ∥f x∥₊ * g x ≠ ∞) : | |
has_finite_integral (λ x, f x * (pdf X ℙ volume x).to_real) := | |
begin | |
rw has_finite_integral, | |
have : (λ x, ↑∥f x∥₊ * g x) =ᵐ[volume] (λ x, ∥f x * (pdf X ℙ volume x).to_real∥₊), | |
{ refine ae_eq_trans (filter.eventually_eq.mul (ae_eq_refl (λ x, ∥f x∥₊)) | |
(ae_eq_trans hg.symm of_real_to_real_ae_eq.symm)) _, | |
simp_rw [← smul_eq_mul, nnnorm_smul, ennreal.coe_mul, smul_eq_mul], | |
refine filter.eventually_eq.mul (ae_eq_refl _) _, | |
convert ae_eq_refl _, | |
ext1 x, | |
exact real.ennnorm_eq_of_real ennreal.to_real_nonneg }, | |
rwa [lt_top_iff_ne_top, ← lintegral_congr_ae this], | |
end | |
end real | |
section | |
/-! **Uniform Distribution** -/ | |
/-- A random variable `X` has uniform distribution if it has a probability density function `f` | |
with support `s` such that `f = (μ s)⁻¹ 1ₛ` a.e. where `1ₛ` is the indicator function for `s`. -/ | |
def is_uniform {m : measurable_space α} (X : α → E) (support : set E) | |
(ℙ : measure α) (μ : measure E . volume_tac) := | |
pdf X ℙ μ =ᵐ[μ] support.indicator ((μ support)⁻¹ • 1) | |
namespace is_uniform | |
lemma has_pdf {m : measurable_space α} {X : α → E} {ℙ : measure α} {μ : measure E} | |
{support : set E} (hns : μ support ≠ 0) (hnt : μ support ≠ ⊤) (hu : is_uniform X support ℙ μ) : | |
has_pdf X ℙ μ := | |
has_pdf_of_pdf_ne_zero | |
begin | |
intro hpdf, | |
rw [is_uniform, hpdf] at hu, | |
suffices : μ (support ∩ function.support ((μ support)⁻¹ • 1)) = 0, | |
{ have heq : function.support ((μ support)⁻¹ • (1 : E → ℝ≥0∞)) = set.univ, | |
{ ext x, | |
rw [function.mem_support], | |
simp [hnt] }, | |
rw [heq, set.inter_univ] at this, | |
exact hns this }, | |
exact set.indicator_ae_eq_zero hu.symm, | |
end | |
lemma pdf_to_real_ae_eq {m : measurable_space α} | |
{X : α → E} {ℙ : measure α} {μ : measure E} {s : set E} (hX : is_uniform X s ℙ μ) : | |
(λ x, (pdf X ℙ μ x).to_real) =ᵐ[μ] | |
(λ x, (s.indicator ((μ s)⁻¹ • (1 : E → ℝ≥0∞)) x).to_real) := | |
filter.eventually_eq.fun_comp hX ennreal.to_real | |
variables [is_finite_measure ℙ] {X : α → ℝ} | |
variables {s : set ℝ} (hms : measurable_set s) (hns : volume s ≠ 0) | |
include hms hns | |
lemma mul_pdf_integrable (hcs : is_compact s) (huX : is_uniform X s ℙ) : | |
integrable (λ x : ℝ, x * (pdf X ℙ volume x).to_real) := | |
begin | |
by_cases hsupp : volume s = ∞, | |
{ have : pdf X ℙ =ᵐ[volume] 0, | |
{ refine ae_eq_trans huX _, | |
simp [hsupp] }, | |
refine integrable.congr (integrable_zero _ _ _) _, | |
rw [(by simp : (λ x, 0 : ℝ → ℝ) = (λ x, x * (0 : ℝ≥0∞).to_real))], | |
refine filter.eventually_eq.mul (ae_eq_refl _) | |
(filter.eventually_eq.fun_comp this.symm ennreal.to_real) }, | |
refine ⟨ae_strongly_measurable_id.mul | |
(measurable_pdf X ℙ).ae_measurable.ennreal_to_real.ae_strongly_measurable, _⟩, | |
refine has_finite_integral_mul huX _, | |
set ind := (volume s)⁻¹ • (1 : ℝ → ℝ≥0∞) with hind, | |
have : ∀ x, ↑∥x∥₊ * s.indicator ind x = s.indicator (λ x, ∥x∥₊ * ind x) x := | |
λ x, (s.indicator_mul_right (λ x, ↑∥x∥₊) ind).symm, | |
simp only [this, lintegral_indicator _ hms, hind, mul_one, | |
algebra.id.smul_eq_mul, pi.one_apply, pi.smul_apply], | |
rw lintegral_mul_const _ measurable_nnnorm.coe_nnreal_ennreal, | |
{ refine (ennreal.mul_lt_top (set_lintegral_lt_top_of_is_compact | |
hsupp hcs continuous_nnnorm).ne (ennreal.inv_lt_top.2 (pos_iff_ne_zero.mpr hns)).ne).ne }, | |
{ apply_instance } | |
end | |
/-- A real uniform random variable `X` with support `s` has expectation | |
`(λ s)⁻¹ * ∫ x in s, x ∂λ` where `λ` is the Lebesgue measure. -/ | |
lemma integral_eq (hnt : volume s ≠ ⊤) (huX : is_uniform X s ℙ) : | |
∫ x, X x ∂ℙ = (volume s)⁻¹.to_real * ∫ x in s, x := | |
begin | |
haveI := has_pdf hns hnt huX, | |
rw ← integral_mul_eq_integral, | |
all_goals { try { apply_instance } }, | |
rw integral_congr_ae (filter.eventually_eq.mul (ae_eq_refl _) (pdf_to_real_ae_eq huX)), | |
have : ∀ x, x * (s.indicator ((volume s)⁻¹ • (1 : ℝ → ℝ≥0∞)) x).to_real = | |
x * (s.indicator ((volume s)⁻¹.to_real • (1 : ℝ → ℝ)) x), | |
{ refine λ x, congr_arg ((*) x) _, | |
by_cases hx : x ∈ s, | |
{ simp [set.indicator_of_mem hx] }, | |
{ simp [set.indicator_of_not_mem hx] }}, | |
simp_rw [this, ← s.indicator_mul_right (λ x, x), integral_indicator hms], | |
change ∫ x in s, x * ((volume s)⁻¹.to_real • 1) ∂(volume) = _, | |
rw [integral_mul_right, mul_comm, algebra.id.smul_eq_mul, mul_one], | |
end . | |
end is_uniform | |
end | |
end pdf | |
end measure_theory | |