Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel | |
-/ | |
import probability.notation | |
import probability.integration | |
/-! | |
# Variance of random variables | |
We define the variance of a real-valued random variable as `Var[X] = 𝔼[(X - 𝔼[X])^2]` (in the | |
`probability_theory` locale). | |
We prove the basic properties of the variance: | |
* `variance_le_expectation_sq`: the inequality `Var[X] ≤ 𝔼[X^2]`. | |
* `meas_ge_le_variance_div_sq`: Chebyshev's inequality, i.e., | |
`ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2)`. | |
* `indep_fun.variance_add`: the variance of the sum of two independent random variables is the sum | |
of the variances. | |
* `indep_fun.variance_sum`: the variance of a finite sum of pairwise independent random variables is | |
the sum of the variances. | |
-/ | |
open measure_theory filter finset | |
noncomputable theory | |
open_locale big_operators measure_theory probability_theory ennreal nnreal | |
namespace probability_theory | |
/-- The variance of a random variable is `𝔼[X^2] - 𝔼[X]^2` or, equivalently, `𝔼[(X - 𝔼[X])^2]`. We | |
use the latter as the definition, to ensure better behavior even in garbage situations. -/ | |
def variance {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : ℝ := | |
μ[(f - (λ x, μ[f])) ^ 2] | |
@[simp] lemma variance_zero {Ω : Type*} {m : measurable_space Ω} (μ : measure Ω) : | |
variance 0 μ = 0 := | |
by simp [variance] | |
lemma variance_nonneg {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : | |
0 ≤ variance f μ := | |
integral_nonneg (λ x, sq_nonneg _) | |
lemma variance_mul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) : | |
variance (λ x, c * f x) μ = c^2 * variance f μ := | |
calc | |
variance (λ x, c * f x) μ | |
= ∫ x, (c * f x - ∫ y, c * f y ∂μ) ^ 2 ∂μ : rfl | |
... = ∫ x, (c * (f x - ∫ y, f y ∂μ)) ^ 2 ∂μ : | |
by { congr' 1 with x, simp_rw [integral_mul_left, mul_sub] } | |
... = c^2 * variance f μ : | |
by { simp_rw [mul_pow, integral_mul_left], refl } | |
lemma variance_smul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) : | |
variance (c • f) μ = c^2 * variance f μ := | |
variance_mul c f μ | |
lemma variance_smul' {A : Type*} [comm_semiring A] [algebra A ℝ] | |
{Ω : Type*} {m : measurable_space Ω} (c : A) (f : Ω → ℝ) (μ : measure Ω) : | |
variance (c • f) μ = c^2 • variance f μ := | |
begin | |
convert variance_smul (algebra_map A ℝ c) f μ, | |
{ ext1 x, simp only [algebra_map_smul], }, | |
{ simp only [algebra.smul_def, map_pow], } | |
end | |
localized | |
"notation `Var[` X `]` := probability_theory.variance X measure_theory.measure_space.volume" | |
in probability_theory | |
variables {Ω : Type*} [measure_space Ω] [is_probability_measure (volume : measure Ω)] | |
lemma variance_def' {X : Ω → ℝ} (hX : mem_ℒp X 2) : | |
Var[X] = 𝔼[X^2] - 𝔼[X]^2 := | |
begin | |
rw [variance, sub_sq', integral_sub', integral_add'], rotate, | |
{ exact hX.integrable_sq }, | |
{ convert integrable_const (𝔼[X] ^ 2), | |
apply_instance }, | |
{ apply hX.integrable_sq.add, | |
convert integrable_const (𝔼[X] ^ 2), | |
apply_instance }, | |
{ exact ((hX.integrable ennreal.one_le_two).const_mul 2).mul_const' _ }, | |
simp only [integral_mul_right, pi.pow_apply, pi.mul_apply, pi.bit0_apply, pi.one_apply, | |
integral_const (integral ℙ X ^ 2), integral_mul_left (2 : ℝ), one_mul, | |
variance, pi.pow_apply, measure_univ, ennreal.one_to_real, algebra.id.smul_eq_mul], | |
ring, | |
end | |
lemma variance_le_expectation_sq {X : Ω → ℝ} : | |
Var[X] ≤ 𝔼[X^2] := | |
begin | |
by_cases h_int : integrable X, swap, | |
{ simp only [variance, integral_undef h_int, pi.pow_apply, pi.sub_apply, sub_zero] }, | |
by_cases hX : mem_ℒp X 2, | |
{ rw variance_def' hX, | |
simp only [sq_nonneg, sub_le_self_iff] }, | |
{ rw [variance, integral_undef], | |
{ exact integral_nonneg (λ a, sq_nonneg _) }, | |
{ assume h, | |
have A : mem_ℒp (X - λ (x : Ω), 𝔼[X]) 2 ℙ := (mem_ℒp_two_iff_integrable_sq | |
(h_int.ae_strongly_measurable.sub ae_strongly_measurable_const)).2 h, | |
have B : mem_ℒp (λ (x : Ω), 𝔼[X]) 2 ℙ := mem_ℒp_const _, | |
apply hX, | |
convert A.add B, | |
simp } } | |
end | |
/-- *Chebyshev's inequality* : one can control the deviation probability of a real random variable | |
from its expectation in terms of the variance. -/ | |
theorem meas_ge_le_variance_div_sq {X : Ω → ℝ} (hX : mem_ℒp X 2) {c : ℝ} (hc : 0 < c) : | |
ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2) := | |
begin | |
have A : (ennreal.of_real c : ℝ≥0∞) ≠ 0, | |
by simp only [hc, ne.def, ennreal.of_real_eq_zero, not_le], | |
have B : ae_strongly_measurable (λ (ω : Ω), 𝔼[X]) ℙ := ae_strongly_measurable_const, | |
convert meas_ge_le_mul_pow_snorm ℙ ennreal.two_ne_zero ennreal.two_ne_top | |
(hX.ae_strongly_measurable.sub B) A, | |
{ ext ω, | |
set d : ℝ≥0 := ⟨c, hc.le⟩ with hd, | |
have cd : c = d, by simp only [subtype.coe_mk], | |
simp only [pi.sub_apply, ennreal.coe_le_coe, ← real.norm_eq_abs, ← coe_nnnorm, | |
nnreal.coe_le_coe, cd, ennreal.of_real_coe_nnreal] }, | |
{ rw (hX.sub (mem_ℒp_const _)).snorm_eq_integral_rpow_norm | |
ennreal.two_ne_zero ennreal.two_ne_top, | |
simp only [pi.sub_apply, ennreal.to_real_bit0, ennreal.one_to_real], | |
rw ennreal.of_real_rpow_of_nonneg _ zero_le_two, rotate, | |
{ apply real.rpow_nonneg_of_nonneg, | |
exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) }, | |
rw [variance, ← real.rpow_mul, inv_mul_cancel], rotate, | |
{ exact two_ne_zero }, | |
{ exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) }, | |
simp only [pi.pow_apply, pi.sub_apply, real.rpow_two, real.rpow_one, real.norm_eq_abs, | |
pow_bit0_abs, ennreal.of_real_inv_of_pos hc, ennreal.rpow_two], | |
rw [← ennreal.of_real_pow (inv_nonneg.2 hc.le), ← ennreal.of_real_mul (sq_nonneg _), | |
div_eq_inv_mul, inv_pow] } | |
end | |
/-- The variance of the sum of two independent random variables is the sum of the variances. -/ | |
theorem indep_fun.variance_add {X Y : Ω → ℝ} | |
(hX : mem_ℒp X 2) (hY : mem_ℒp Y 2) (h : indep_fun X Y) : | |
Var[X + Y] = Var[X] + Var[Y] := | |
calc | |
Var[X + Y] = 𝔼[λ a, (X a)^2 + (Y a)^2 + 2 * X a * Y a] - 𝔼[X+Y]^2 : | |
by simp [variance_def' (hX.add hY), add_sq'] | |
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * 𝔼[X * Y]) - (𝔼[X] + 𝔼[Y])^2 : | |
begin | |
simp only [pi.add_apply, pi.pow_apply, pi.mul_apply, mul_assoc], | |
rw [integral_add, integral_add, integral_add, integral_mul_left], | |
{ exact hX.integrable ennreal.one_le_two }, | |
{ exact hY.integrable ennreal.one_le_two }, | |
{ exact hX.integrable_sq }, | |
{ exact hY.integrable_sq }, | |
{ exact hX.integrable_sq.add hY.integrable_sq }, | |
{ apply integrable.const_mul, | |
exact h.integrable_mul (hX.integrable ennreal.one_le_two) (hY.integrable ennreal.one_le_two) } | |
end | |
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * (𝔼[X] * 𝔼[Y])) - (𝔼[X] + 𝔼[Y])^2 : | |
begin | |
congr, | |
exact h.integral_mul_of_integrable | |
(hX.integrable ennreal.one_le_two) (hY.integrable ennreal.one_le_two), | |
end | |
... = Var[X] + Var[Y] : | |
by { simp only [variance_def', hX, hY, pi.pow_apply], ring } | |
/-- The variance of a finite sum of pairwise independent random variables is the sum of the | |
variances. -/ | |
theorem indep_fun.variance_sum {ι : Type*} {X : ι → Ω → ℝ} {s : finset ι} | |
(hs : ∀ i ∈ s, mem_ℒp (X i) 2) (h : set.pairwise ↑s (λ i j, indep_fun (X i) (X j))) : | |
Var[∑ i in s, X i] = ∑ i in s, Var[X i] := | |
begin | |
classical, | |
induction s using finset.induction_on with k s ks IH, | |
{ simp only [finset.sum_empty, variance_zero] }, | |
rw [variance_def' (mem_ℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks], | |
simp only [add_sq'], | |
calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2 | |
= (𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i]) | |
- (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 : | |
begin | |
rw [integral_add', integral_add', integral_add'], | |
{ exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _)) }, | |
{ apply integrable_finset_sum' _ (λ i hi, _), | |
exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi)) }, | |
{ exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) }, | |
{ apply mem_ℒp.integrable_sq, | |
exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) }, | |
{ apply integrable.add, | |
{ exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) }, | |
{ apply mem_ℒp.integrable_sq, | |
exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) } }, | |
{ rw mul_assoc, | |
apply integrable.const_mul _ 2, | |
simp only [mul_sum, sum_apply, pi.mul_apply], | |
apply integrable_finset_sum _ (λ i hi, _), | |
apply indep_fun.integrable_mul _ | |
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _))) | |
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi))), | |
apply h (mem_insert_self _ _) (mem_insert_of_mem hi), | |
exact (λ hki, ks (hki.symm ▸ hi)) } | |
end | |
... = Var[X k] + Var[∑ i in s, X i] + | |
(𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) : | |
begin | |
rw [variance_def' (hs _ (mem_insert_self _ _)), | |
variance_def' (mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))))], | |
ring, | |
end | |
... = Var[X k] + Var[∑ i in s, X i] : | |
begin | |
simp only [mul_assoc, integral_mul_left, pi.mul_apply, pi.bit0_apply, pi.one_apply, sum_apply, | |
add_right_eq_self, mul_sum], | |
rw integral_finset_sum s (λ i hi, _), swap, | |
{ apply integrable.const_mul _ 2, | |
apply indep_fun.integrable_mul _ | |
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _))) | |
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi))), | |
apply h (mem_insert_self _ _) (mem_insert_of_mem hi), | |
exact (λ hki, ks (hki.symm ▸ hi)) }, | |
rw [integral_finset_sum s | |
(λ i hi, (mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi)))), | |
mul_sum, mul_sum, ← sum_sub_distrib], | |
apply finset.sum_eq_zero (λ i hi, _), | |
rw [integral_mul_left, indep_fun.integral_mul_of_integrable', sub_self], | |
{ apply h (mem_insert_self _ _) (mem_insert_of_mem hi), | |
exact (λ hki, ks (hki.symm ▸ hi)) }, | |
{ exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _)) }, | |
{ exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi)) } | |
end | |
... = Var[X k] + ∑ i in s, Var[X i] : | |
by rw IH (λ i hi, hs i (mem_insert_of_mem hi)) | |
(h.mono (by simp only [coe_insert, set.subset_insert])) | |
end | |
end probability_theory | |