Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.8 kB
/-
Copyright (c) 2022 Sébastien Gouëzel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Sébastien Gouëzel
-/
import probability.notation
import probability.integration
/-!
# Variance of random variables
We define the variance of a real-valued random variable as `Var[X] = 𝔼[(X - 𝔼[X])^2]` (in the
`probability_theory` locale).
We prove the basic properties of the variance:
* `variance_le_expectation_sq`: the inequality `Var[X] ≤ 𝔼[X^2]`.
* `meas_ge_le_variance_div_sq`: Chebyshev's inequality, i.e.,
`ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2)`.
* `indep_fun.variance_add`: the variance of the sum of two independent random variables is the sum
of the variances.
* `indep_fun.variance_sum`: the variance of a finite sum of pairwise independent random variables is
the sum of the variances.
-/
open measure_theory filter finset
noncomputable theory
open_locale big_operators measure_theory probability_theory ennreal nnreal
namespace probability_theory
/-- The variance of a random variable is `𝔼[X^2] - 𝔼[X]^2` or, equivalently, `𝔼[(X - 𝔼[X])^2]`. We
use the latter as the definition, to ensure better behavior even in garbage situations. -/
def variance {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : ℝ :=
μ[(f - (λ x, μ[f])) ^ 2]
@[simp] lemma variance_zero {Ω : Type*} {m : measurable_space Ω} (μ : measure Ω) :
variance 0 μ = 0 :=
by simp [variance]
lemma variance_nonneg {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) :
0 ≤ variance f μ :=
integral_nonneg (λ x, sq_nonneg _)
lemma variance_mul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) :
variance (λ x, c * f x) μ = c^2 * variance f μ :=
calc
variance (λ x, c * f x) μ
= ∫ x, (c * f x - ∫ y, c * f y ∂μ) ^ 2 ∂μ : rfl
... = ∫ x, (c * (f x - ∫ y, f y ∂μ)) ^ 2 ∂μ :
by { congr' 1 with x, simp_rw [integral_mul_left, mul_sub] }
... = c^2 * variance f μ :
by { simp_rw [mul_pow, integral_mul_left], refl }
lemma variance_smul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) :
variance (c • f) μ = c^2 * variance f μ :=
variance_mul c f μ
lemma variance_smul' {A : Type*} [comm_semiring A] [algebra A ℝ]
{Ω : Type*} {m : measurable_space Ω} (c : A) (f : Ω → ℝ) (μ : measure Ω) :
variance (c • f) μ = c^2 • variance f μ :=
begin
convert variance_smul (algebra_map A ℝ c) f μ,
{ ext1 x, simp only [algebra_map_smul], },
{ simp only [algebra.smul_def, map_pow], }
end
localized
"notation `Var[` X `]` := probability_theory.variance X measure_theory.measure_space.volume"
in probability_theory
variables {Ω : Type*} [measure_space Ω] [is_probability_measure (volume : measure Ω)]
lemma variance_def' {X : Ω → ℝ} (hX : mem_ℒp X 2) :
Var[X] = 𝔼[X^2] - 𝔼[X]^2 :=
begin
rw [variance, sub_sq', integral_sub', integral_add'], rotate,
{ exact hX.integrable_sq },
{ convert integrable_const (𝔼[X] ^ 2),
apply_instance },
{ apply hX.integrable_sq.add,
convert integrable_const (𝔼[X] ^ 2),
apply_instance },
{ exact ((hX.integrable ennreal.one_le_two).const_mul 2).mul_const' _ },
simp only [integral_mul_right, pi.pow_apply, pi.mul_apply, pi.bit0_apply, pi.one_apply,
integral_const (integral ℙ X ^ 2), integral_mul_left (2 : ℝ), one_mul,
variance, pi.pow_apply, measure_univ, ennreal.one_to_real, algebra.id.smul_eq_mul],
ring,
end
lemma variance_le_expectation_sq {X : Ω → ℝ} :
Var[X] ≤ 𝔼[X^2] :=
begin
by_cases h_int : integrable X, swap,
{ simp only [variance, integral_undef h_int, pi.pow_apply, pi.sub_apply, sub_zero] },
by_cases hX : mem_ℒp X 2,
{ rw variance_def' hX,
simp only [sq_nonneg, sub_le_self_iff] },
{ rw [variance, integral_undef],
{ exact integral_nonneg (λ a, sq_nonneg _) },
{ assume h,
have A : mem_ℒp (X - λ (x : Ω), 𝔼[X]) 2 ℙ := (mem_ℒp_two_iff_integrable_sq
(h_int.ae_strongly_measurable.sub ae_strongly_measurable_const)).2 h,
have B : mem_ℒp (λ (x : Ω), 𝔼[X]) 2 ℙ := mem_ℒp_const _,
apply hX,
convert A.add B,
simp } }
end
/-- *Chebyshev's inequality* : one can control the deviation probability of a real random variable
from its expectation in terms of the variance. -/
theorem meas_ge_le_variance_div_sq {X : Ω → ℝ} (hX : mem_ℒp X 2) {c : ℝ} (hc : 0 < c) :
ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2) :=
begin
have A : (ennreal.of_real c : ℝ≥0∞) ≠ 0,
by simp only [hc, ne.def, ennreal.of_real_eq_zero, not_le],
have B : ae_strongly_measurable (λ (ω : Ω), 𝔼[X]) ℙ := ae_strongly_measurable_const,
convert meas_ge_le_mul_pow_snorm ℙ ennreal.two_ne_zero ennreal.two_ne_top
(hX.ae_strongly_measurable.sub B) A,
{ ext ω,
set d : ℝ≥0 := ⟨c, hc.le⟩ with hd,
have cd : c = d, by simp only [subtype.coe_mk],
simp only [pi.sub_apply, ennreal.coe_le_coe, ← real.norm_eq_abs, ← coe_nnnorm,
nnreal.coe_le_coe, cd, ennreal.of_real_coe_nnreal] },
{ rw (hX.sub (mem_ℒp_const _)).snorm_eq_integral_rpow_norm
ennreal.two_ne_zero ennreal.two_ne_top,
simp only [pi.sub_apply, ennreal.to_real_bit0, ennreal.one_to_real],
rw ennreal.of_real_rpow_of_nonneg _ zero_le_two, rotate,
{ apply real.rpow_nonneg_of_nonneg,
exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) },
rw [variance, ← real.rpow_mul, inv_mul_cancel], rotate,
{ exact two_ne_zero },
{ exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) },
simp only [pi.pow_apply, pi.sub_apply, real.rpow_two, real.rpow_one, real.norm_eq_abs,
pow_bit0_abs, ennreal.of_real_inv_of_pos hc, ennreal.rpow_two],
rw [← ennreal.of_real_pow (inv_nonneg.2 hc.le), ← ennreal.of_real_mul (sq_nonneg _),
div_eq_inv_mul, inv_pow] }
end
/-- The variance of the sum of two independent random variables is the sum of the variances. -/
theorem indep_fun.variance_add {X Y : Ω → ℝ}
(hX : mem_ℒp X 2) (hY : mem_ℒp Y 2) (h : indep_fun X Y) :
Var[X + Y] = Var[X] + Var[Y] :=
calc
Var[X + Y] = 𝔼[λ a, (X a)^2 + (Y a)^2 + 2 * X a * Y a] - 𝔼[X+Y]^2 :
by simp [variance_def' (hX.add hY), add_sq']
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * 𝔼[X * Y]) - (𝔼[X] + 𝔼[Y])^2 :
begin
simp only [pi.add_apply, pi.pow_apply, pi.mul_apply, mul_assoc],
rw [integral_add, integral_add, integral_add, integral_mul_left],
{ exact hX.integrable ennreal.one_le_two },
{ exact hY.integrable ennreal.one_le_two },
{ exact hX.integrable_sq },
{ exact hY.integrable_sq },
{ exact hX.integrable_sq.add hY.integrable_sq },
{ apply integrable.const_mul,
exact h.integrable_mul (hX.integrable ennreal.one_le_two) (hY.integrable ennreal.one_le_two) }
end
... = (𝔼[X^2] + 𝔼[Y^2] + 2 * (𝔼[X] * 𝔼[Y])) - (𝔼[X] + 𝔼[Y])^2 :
begin
congr,
exact h.integral_mul_of_integrable
(hX.integrable ennreal.one_le_two) (hY.integrable ennreal.one_le_two),
end
... = Var[X] + Var[Y] :
by { simp only [variance_def', hX, hY, pi.pow_apply], ring }
/-- The variance of a finite sum of pairwise independent random variables is the sum of the
variances. -/
theorem indep_fun.variance_sum {ι : Type*} {X : ι → Ω → ℝ} {s : finset ι}
(hs : ∀ i ∈ s, mem_ℒp (X i) 2) (h : set.pairwise ↑s (λ i j, indep_fun (X i) (X j))) :
Var[∑ i in s, X i] = ∑ i in s, Var[X i] :=
begin
classical,
induction s using finset.induction_on with k s ks IH,
{ simp only [finset.sum_empty, variance_zero] },
rw [variance_def' (mem_ℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks],
simp only [add_sq'],
calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2
= (𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i])
- (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 :
begin
rw [integral_add', integral_add', integral_add'],
{ exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _)) },
{ apply integrable_finset_sum' _ (λ i hi, _),
exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi)) },
{ exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) },
{ apply mem_ℒp.integrable_sq,
exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) },
{ apply integrable.add,
{ exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) },
{ apply mem_ℒp.integrable_sq,
exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) } },
{ rw mul_assoc,
apply integrable.const_mul _ 2,
simp only [mul_sum, sum_apply, pi.mul_apply],
apply integrable_finset_sum _ (λ i hi, _),
apply indep_fun.integrable_mul _
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _)))
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi))),
apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
exact (λ hki, ks (hki.symm ▸ hi)) }
end
... = Var[X k] + Var[∑ i in s, X i] +
(𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) :
begin
rw [variance_def' (hs _ (mem_insert_self _ _)),
variance_def' (mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))))],
ring,
end
... = Var[X k] + Var[∑ i in s, X i] :
begin
simp only [mul_assoc, integral_mul_left, pi.mul_apply, pi.bit0_apply, pi.one_apply, sum_apply,
add_right_eq_self, mul_sum],
rw integral_finset_sum s (λ i hi, _), swap,
{ apply integrable.const_mul _ 2,
apply indep_fun.integrable_mul _
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _)))
(mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi))),
apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
exact (λ hki, ks (hki.symm ▸ hi)) },
rw [integral_finset_sum s
(λ i hi, (mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi)))),
mul_sum, mul_sum, ← sum_sub_distrib],
apply finset.sum_eq_zero (λ i hi, _),
rw [integral_mul_left, indep_fun.integral_mul_of_integrable', sub_self],
{ apply h (mem_insert_self _ _) (mem_insert_of_mem hi),
exact (λ hki, ks (hki.symm ▸ hi)) },
{ exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_self _ _)) },
{ exact mem_ℒp.integrable ennreal.one_le_two (hs _ (mem_insert_of_mem hi)) }
end
... = Var[X k] + ∑ i in s, Var[X i] :
by rw IH (λ i hi, hs i (mem_insert_of_mem hi))
(h.mono (by simp only [coe_insert, set.subset_insert]))
end
end probability_theory