Zhangir Azerbayev
squashed?
4365a98
raw
history blame
18.7 kB
/-
Copyright (c) 2021 Yourong Zang. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yourong Zang, Yury Kudryashov
-/
import topology.separation
import topology.sets.opens
/-!
# The Alexandroff Compactification
We construct the Alexandroff compactification (the one-point compactification) of an arbitrary
topological space `X` and prove some properties inherited from `X`.
## Main definitions
* `alexandroff`: the Alexandroff compactification, we use coercion for the canonical embedding
`X → alexandroff X`; when `X` is already compact, the compactification adds an isolated point
to the space.
* `alexandroff.infty`: the extra point
## Main results
* The topological structure of `alexandroff X`
* The connectedness of `alexandroff X` for a noncompact, preconnected `X`
* `alexandroff X` is `T₀` for a T₀ space `X`
* `alexandroff X` is `T₁` for a T₁ space `X`
* `alexandroff X` is normal if `X` is a locally compact Hausdorff space
## Tags
one-point compactification, compactness
-/
open set filter
open_locale classical topological_space filter
/-!
### Definition and basic properties
In this section we define `alexandroff X` to be the disjoint union of `X` and `∞`, implemented as
`option X`. Then we restate some lemmas about `option X` for `alexandroff X`.
-/
variables {X : Type*}
/-- The Alexandroff extension of an arbitrary topological space `X` -/
def alexandroff (X : Type*) := option X
/-- The repr uses the notation from the `alexandroff` locale. -/
instance [has_repr X] : has_repr (alexandroff X) :=
⟨λ o, match o with | none := "∞" | (some a) := "↑" ++ repr a end⟩
namespace alexandroff
/-- The point at infinity -/
def infty : alexandroff X := none
localized "notation `∞` := alexandroff.infty" in alexandroff
instance : has_coe_t X (alexandroff X) := ⟨option.some⟩
instance : inhabited (alexandroff X) := ⟨∞⟩
instance [fintype X] : fintype (alexandroff X) := option.fintype
instance infinite [infinite X] : infinite (alexandroff X) := option.infinite
lemma coe_injective : function.injective (coe : X → alexandroff X) :=
option.some_injective X
@[norm_cast] lemma coe_eq_coe {x y : X} : (x : alexandroff X) = y ↔ x = y :=
coe_injective.eq_iff
@[simp] lemma coe_ne_infty (x : X) : (x : alexandroff X) ≠ ∞ .
@[simp] lemma infty_ne_coe (x : X) : ∞ ≠ (x : alexandroff X) .
/-- Recursor for `alexandroff` using the preferred forms `∞` and `↑x`. -/
@[elab_as_eliminator]
protected def rec (C : alexandroff X → Sort*) (h₁ : C ∞) (h₂ : Π x : X, C x) :
Π (z : alexandroff X), C z :=
option.rec h₁ h₂
lemma is_compl_range_coe_infty : is_compl (range (coe : X → alexandroff X)) {∞} :=
is_compl_range_some_none X
@[simp] lemma range_coe_union_infty : (range (coe : X → alexandroff X) ∪ {∞}) = univ :=
range_some_union_none X
@[simp] lemma range_coe_inter_infty : (range (coe : X → alexandroff X) ∩ {∞}) = ∅ :=
range_some_inter_none X
@[simp] lemma compl_range_coe : (range (coe : X → alexandroff X))ᶜ = {∞} :=
compl_range_some X
lemma compl_infty : ({∞}ᶜ : set (alexandroff X)) = range (coe : X → alexandroff X) :=
(@is_compl_range_coe_infty X).symm.compl_eq
lemma compl_image_coe (s : set X) : (coe '' s : set (alexandroff X))ᶜ = coe '' sᶜ ∪ {∞} :=
by rw [coe_injective.compl_image_eq, compl_range_coe]
lemma ne_infty_iff_exists {x : alexandroff X} :
x ≠ ∞ ↔ ∃ (y : X), (y : alexandroff X) = x :=
by induction x using alexandroff.rec; simp
instance : can_lift (alexandroff X) X :=
{ coe := coe,
cond := λ x, x ≠ ∞,
prf := λ x, ne_infty_iff_exists.1 }
lemma not_mem_range_coe_iff {x : alexandroff X} :
x ∉ range (coe : X → alexandroff X) ↔ x = ∞ :=
by rw [← mem_compl_iff, compl_range_coe, mem_singleton_iff]
lemma infty_not_mem_range_coe : ∞ ∉ range (coe : X → alexandroff X) :=
not_mem_range_coe_iff.2 rfl
lemma infty_not_mem_image_coe {s : set X} : ∞ ∉ (coe : X → alexandroff X) '' s :=
not_mem_subset (image_subset_range _ _) infty_not_mem_range_coe
@[simp] lemma coe_preimage_infty : (coe : X → alexandroff X) ⁻¹' {∞} = ∅ :=
by { ext, simp }
/-!
### Topological space structure on `alexandroff X`
We define a topological space structure on `alexandroff X` so that `s` is open if and only if
* `coe ⁻¹' s` is open in `X`;
* if `∞ ∈ s`, then `(coe ⁻¹' s)ᶜ` is compact.
Then we reformulate this definition in a few different ways, and prove that
`coe : X → alexandroff X` is an open embedding. If `X` is not a compact space, then we also prove
that `coe` has dense range, so it is a dense embedding.
-/
variables [topological_space X]
instance : topological_space (alexandroff X) :=
{ is_open := λ s, (∞ ∈ s → is_compact ((coe : X → alexandroff X) ⁻¹' s)ᶜ) ∧
is_open ((coe : X → alexandroff X) ⁻¹' s),
is_open_univ := by simp,
is_open_inter := λ s t,
begin
rintros ⟨hms, hs⟩ ⟨hmt, ht⟩,
refine ⟨_, hs.inter ht⟩,
rintros ⟨hms', hmt'⟩,
simpa [compl_inter] using (hms hms').union (hmt hmt')
end,
is_open_sUnion := λ S ho,
begin
suffices : is_open (coe ⁻¹' ⋃₀ S : set X),
{ refine ⟨_, this⟩,
rintro ⟨s, hsS : s ∈ S, hs : ∞ ∈ s⟩,
refine compact_of_is_closed_subset ((ho s hsS).1 hs) this.is_closed_compl _,
exact compl_subset_compl.mpr (preimage_mono $ subset_sUnion_of_mem hsS) },
rw [preimage_sUnion],
exact is_open_bUnion (λ s hs, (ho s hs).2)
end }
variables {s : set (alexandroff X)} {t : set X}
lemma is_open_def :
is_open s ↔ (∞ ∈ s → is_compact (coe ⁻¹' s : set X)ᶜ) ∧ is_open (coe ⁻¹' s : set X) :=
iff.rfl
lemma is_open_iff_of_mem' (h : ∞ ∈ s) :
is_open s ↔ is_compact (coe ⁻¹' s : set X)ᶜ ∧ is_open (coe ⁻¹' s : set X) :=
by simp [is_open_def, h]
lemma is_open_iff_of_mem (h : ∞ ∈ s) :
is_open s ↔ is_closed (coe ⁻¹' s : set X)ᶜ ∧ is_compact (coe ⁻¹' s : set X)ᶜ :=
by simp only [is_open_iff_of_mem' h, is_closed_compl_iff, and.comm]
lemma is_open_iff_of_not_mem (h : ∞ ∉ s) :
is_open s ↔ is_open (coe ⁻¹' s : set X) :=
by simp [is_open_def, h]
lemma is_closed_iff_of_mem (h : ∞ ∈ s) :
is_closed s ↔ is_closed (coe ⁻¹' s : set X) :=
have ∞ ∉ sᶜ, from λ H, H h,
by rw [← is_open_compl_iff, is_open_iff_of_not_mem this, ← is_open_compl_iff, preimage_compl]
lemma is_closed_iff_of_not_mem (h : ∞ ∉ s) :
is_closed s ↔ is_closed (coe ⁻¹' s : set X) ∧ is_compact (coe ⁻¹' s : set X) :=
by rw [← is_open_compl_iff, is_open_iff_of_mem (mem_compl h), ← preimage_compl, compl_compl]
@[simp] lemma is_open_image_coe {s : set X} :
is_open (coe '' s : set (alexandroff X)) ↔ is_open s :=
by rw [is_open_iff_of_not_mem infty_not_mem_image_coe, preimage_image_eq _ coe_injective]
lemma is_open_compl_image_coe {s : set X} :
is_open (coe '' s : set (alexandroff X))ᶜ ↔ is_closed s ∧ is_compact s :=
begin
rw [is_open_iff_of_mem, ← preimage_compl, compl_compl, preimage_image_eq _ coe_injective],
exact infty_not_mem_image_coe
end
@[simp] lemma is_closed_image_coe {s : set X} :
is_closed (coe '' s : set (alexandroff X)) ↔ is_closed s ∧ is_compact s :=
by rw [← is_open_compl_iff, is_open_compl_image_coe]
/-- An open set in `alexandroff X` constructed from a closed compact set in `X` -/
def opens_of_compl (s : set X) (h₁ : is_closed s) (h₂ : is_compact s) :
topological_space.opens (alexandroff X) :=
⟨(coe '' s)ᶜ, is_open_compl_image_coe.2 ⟨h₁, h₂⟩⟩
lemma infty_mem_opens_of_compl {s : set X} (h₁ : is_closed s) (h₂ : is_compact s) :
∞ ∈ opens_of_compl s h₁ h₂ :=
mem_compl infty_not_mem_image_coe
@[continuity] lemma continuous_coe : continuous (coe : X → alexandroff X) :=
continuous_def.mpr (λ s hs, hs.right)
lemma is_open_map_coe : is_open_map (coe : X → alexandroff X) :=
λ s, is_open_image_coe.2
lemma open_embedding_coe : open_embedding (coe : X → alexandroff X) :=
open_embedding_of_continuous_injective_open continuous_coe coe_injective is_open_map_coe
lemma is_open_range_coe : is_open (range (coe : X → alexandroff X)) :=
open_embedding_coe.open_range
lemma is_closed_infty : is_closed ({∞} : set (alexandroff X)) :=
by { rw [← compl_range_coe, is_closed_compl_iff], exact is_open_range_coe }
lemma nhds_coe_eq (x : X) : 𝓝 ↑x = map (coe : X → alexandroff X) (𝓝 x) :=
(open_embedding_coe.map_nhds_eq x).symm
lemma nhds_within_coe_image (s : set X) (x : X) :
𝓝[coe '' s] (x : alexandroff X) = map coe (𝓝[s] x) :=
(open_embedding_coe.to_embedding.map_nhds_within_eq _ _).symm
lemma nhds_within_coe (s : set (alexandroff X)) (x : X) :
𝓝[s] ↑x = map coe (𝓝[coe ⁻¹' s] x) :=
(open_embedding_coe.map_nhds_within_preimage_eq _ _).symm
lemma comap_coe_nhds (x : X) : comap (coe : X → alexandroff X) (𝓝 x) = 𝓝 x :=
(open_embedding_coe.to_inducing.nhds_eq_comap x).symm
/-- If `x` is not an isolated point of `X`, then `x : alexandroff X` is not an isolated point
of `alexandroff X`. -/
instance nhds_within_compl_coe_ne_bot (x : X) [h : ne_bot (𝓝[≠] x)] :
ne_bot (𝓝[≠] (x : alexandroff X)) :=
by simpa [nhds_within_coe, preimage, coe_eq_coe] using h.map coe
lemma nhds_within_compl_infty_eq : 𝓝[≠] (∞ : alexandroff X) = map coe (coclosed_compact X) :=
begin
refine (nhds_within_basis_open ∞ _).ext (has_basis_coclosed_compact.map _) _ _,
{ rintro s ⟨hs, hso⟩,
refine ⟨_, (is_open_iff_of_mem hs).mp hso, _⟩,
simp },
{ rintro s ⟨h₁, h₂⟩,
refine ⟨_, ⟨mem_compl infty_not_mem_image_coe, is_open_compl_image_coe.2 ⟨h₁, h₂⟩⟩, _⟩,
simp [compl_image_coe, ← diff_eq, subset_preimage_image] }
end
/-- If `X` is a non-compact space, then `∞` is not an isolated point of `alexandroff X`. -/
instance nhds_within_compl_infty_ne_bot [noncompact_space X] :
ne_bot (𝓝[≠] (∞ : alexandroff X)) :=
by { rw nhds_within_compl_infty_eq, apply_instance }
@[priority 900]
instance nhds_within_compl_ne_bot [∀ x : X, ne_bot (𝓝[≠] x)] [noncompact_space X]
(x : alexandroff X) : ne_bot (𝓝[≠] x) :=
alexandroff.rec _ alexandroff.nhds_within_compl_infty_ne_bot
(λ y, alexandroff.nhds_within_compl_coe_ne_bot y) x
lemma nhds_infty_eq : 𝓝 (∞ : alexandroff X) = map coe (coclosed_compact X) ⊔ pure ∞ :=
by rw [← nhds_within_compl_infty_eq, nhds_within_compl_singleton_sup_pure]
lemma has_basis_nhds_infty :
(𝓝 (∞ : alexandroff X)).has_basis (λ s : set X, is_closed s ∧ is_compact s)
(λ s, coe '' sᶜ ∪ {∞}) :=
begin
rw nhds_infty_eq,
exact (has_basis_coclosed_compact.map _).sup_pure _
end
@[simp] lemma comap_coe_nhds_infty : comap (coe : X → alexandroff X) (𝓝 ∞) = coclosed_compact X :=
by simp [nhds_infty_eq, comap_sup, comap_map coe_injective]
lemma le_nhds_infty {f : filter (alexandroff X)} :
f ≤ 𝓝 ∞ ↔ ∀ s : set X, is_closed s → is_compact s → coe '' sᶜ ∪ {∞} ∈ f :=
by simp only [has_basis_nhds_infty.ge_iff, and_imp]
lemma ultrafilter_le_nhds_infty {f : ultrafilter (alexandroff X)} :
(f : filter (alexandroff X)) ≤ 𝓝 ∞ ↔ ∀ s : set X, is_closed s → is_compact s → coe '' s ∉ f :=
by simp only [le_nhds_infty, ← compl_image_coe, ultrafilter.mem_coe,
ultrafilter.compl_mem_iff_not_mem]
lemma tendsto_nhds_infty' {α : Type*} {f : alexandroff X → α} {l : filter α} :
tendsto f (𝓝 ∞) l ↔ tendsto f (pure ∞) l ∧ tendsto (f ∘ coe) (coclosed_compact X) l :=
by simp [nhds_infty_eq, and_comm]
lemma tendsto_nhds_infty {α : Type*} {f : alexandroff X → α} {l : filter α} :
tendsto f (𝓝 ∞) l ↔
∀ s ∈ l, f ∞ ∈ s ∧ ∃ t : set X, is_closed t ∧ is_compact t ∧ maps_to (f ∘ coe) tᶜ s :=
tendsto_nhds_infty'.trans $ by simp only [tendsto_pure_left,
has_basis_coclosed_compact.tendsto_left_iff, forall_and_distrib, and_assoc, exists_prop]
lemma continuous_at_infty' {Y : Type*} [topological_space Y] {f : alexandroff X → Y} :
continuous_at f ∞ ↔ tendsto (f ∘ coe) (coclosed_compact X) (𝓝 (f ∞)) :=
tendsto_nhds_infty'.trans $ and_iff_right (tendsto_pure_nhds _ _)
lemma continuous_at_infty {Y : Type*} [topological_space Y] {f : alexandroff X → Y} :
continuous_at f ∞ ↔
∀ s ∈ 𝓝 (f ∞), ∃ t : set X, is_closed t ∧ is_compact t ∧ maps_to (f ∘ coe) tᶜ s :=
continuous_at_infty'.trans $
by simp only [has_basis_coclosed_compact.tendsto_left_iff, exists_prop, and_assoc]
lemma continuous_at_coe {Y : Type*} [topological_space Y] {f : alexandroff X → Y} {x : X} :
continuous_at f x ↔ continuous_at (f ∘ coe) x :=
by rw [continuous_at, nhds_coe_eq, tendsto_map'_iff, continuous_at]
/-- If `X` is not a compact space, then the natural embedding `X → alexandroff X` has dense range.
-/
lemma dense_range_coe [noncompact_space X] :
dense_range (coe : X → alexandroff X) :=
begin
rw [dense_range, ← compl_infty],
exact dense_compl_singleton _
end
lemma dense_embedding_coe [noncompact_space X] :
dense_embedding (coe : X → alexandroff X) :=
{ dense := dense_range_coe, .. open_embedding_coe }
@[simp] lemma specializes_coe {x y : X} : (x : alexandroff X) ⤳ y ↔ x ⤳ y :=
open_embedding_coe.to_inducing.specializes_iff
@[simp] lemma inseparable_coe {x y : X} : inseparable (x : alexandroff X) y ↔ inseparable x y :=
open_embedding_coe.to_inducing.inseparable_iff
lemma not_specializes_infty_coe {x : X} : ¬specializes ∞ (x : alexandroff X) :=
is_closed_infty.not_specializes rfl (coe_ne_infty x)
lemma not_inseparable_infty_coe {x : X} : ¬inseparable ∞ (x : alexandroff X) :=
λ h, not_specializes_infty_coe h.specializes
lemma not_inseparable_coe_infty {x : X} : ¬inseparable (x : alexandroff X) ∞ :=
λ h, not_specializes_infty_coe h.specializes'
lemma inseparable_iff {x y : alexandroff X} :
inseparable x y ↔ x = ∞ ∧ y = ∞ ∨ ∃ x' : X, x = x' ∧ ∃ y' : X, y = y' ∧ inseparable x' y' :=
by induction x using alexandroff.rec; induction y using alexandroff.rec;
simp [not_inseparable_infty_coe, not_inseparable_coe_infty, coe_eq_coe]
/-!
### Compactness and separation properties
In this section we prove that `alexandroff X` is a compact space; it is a T₀ (resp., T₁) space if
the original space satisfies the same separation axiom. If the original space is a locally compact
Hausdorff space, then `alexandroff X` is a normal (hence, T₃ and Hausdorff) space.
Finally, if the original space `X` is *not* compact and is a preconnected space, then
`alexandroff X` is a connected space.
-/
/-- For any topological space `X`, its one point compactification is a compact space. -/
instance : compact_space (alexandroff X) :=
{ compact_univ :=
begin
have : tendsto (coe : X → alexandroff X) (cocompact X) (𝓝 ∞),
{ rw [nhds_infty_eq],
exact (tendsto_map.mono_left cocompact_le_coclosed_compact).mono_right le_sup_left },
convert ← this.is_compact_insert_range_of_cocompact continuous_coe,
exact insert_none_range_some X
end }
/-- The one point compactification of a `t0_space` space is a `t0_space`. -/
instance [t0_space X] : t0_space (alexandroff X) :=
begin
refine ⟨λ x y hxy, _⟩,
rcases inseparable_iff.1 hxy with ⟨rfl, rfl⟩|⟨x, rfl, y, rfl, h⟩,
exacts [rfl, congr_arg coe h.eq]
end
/-- The one point compactification of a `t1_space` space is a `t1_space`. -/
instance [t1_space X] : t1_space (alexandroff X) :=
{ t1 := λ z,
begin
induction z using alexandroff.rec,
{ exact is_closed_infty },
{ rw [← image_singleton, is_closed_image_coe],
exact ⟨is_closed_singleton, is_compact_singleton⟩ }
end }
/-- The one point compactification of a locally compact Hausdorff space is a normal (hence,
Hausdorff and regular) topological space. -/
instance [locally_compact_space X] [t2_space X] : normal_space (alexandroff X) :=
begin
have key : ∀ z : X,
∃ u v : set (alexandroff X), is_open u ∧ is_open v ∧ ↑z ∈ u ∧ ∞ ∈ v ∧ disjoint u v,
{ intro z,
rcases exists_open_with_compact_closure z with ⟨u, hu, huy', Hu⟩,
exact ⟨coe '' u, (coe '' closure u)ᶜ, is_open_image_coe.2 hu,
is_open_compl_image_coe.2 ⟨is_closed_closure, Hu⟩, mem_image_of_mem _ huy',
mem_compl infty_not_mem_image_coe, (image_subset _ subset_closure).disjoint_compl_right⟩ },
refine @normal_of_compact_t2 _ _ _ ⟨λ x y hxy, _⟩,
induction x using alexandroff.rec; induction y using alexandroff.rec,
{ exact (hxy rfl).elim },
{ rcases key y with ⟨u, v, hu, hv, hxu, hyv, huv⟩,
exact ⟨v, u, hv, hu, hyv, hxu, huv.symm⟩ },
{ exact key x },
{ exact separated_by_open_embedding open_embedding_coe (mt coe_eq_coe.mpr hxy) }
end
/-- If `X` is not a compact space, then `alexandroff X` is a connected space. -/
instance [preconnected_space X] [noncompact_space X] : connected_space (alexandroff X) :=
{ to_preconnected_space := dense_embedding_coe.to_dense_inducing.preconnected_space,
to_nonempty := infer_instance }
/-- If `X` is an infinite type with discrete topology (e.g., `ℕ`), then the identity map from
`cofinite_topology (alexandroff X)` to `alexandroff X` is not continuous. -/
lemma not_continuous_cofinite_topology_of_symm [infinite X] [discrete_topology X] :
¬(continuous (@cofinite_topology.of (alexandroff X)).symm) :=
begin
inhabit X,
simp only [continuous_iff_continuous_at, continuous_at, not_forall],
use [cofinite_topology.of ↑(default : X)],
simpa [nhds_coe_eq, nhds_discrete, cofinite_topology.nhds_eq]
using (finite_singleton ((default : X) : alexandroff X)).infinite_compl
end
end alexandroff
/--
A concrete counterexample shows that `continuous.homeo_of_equiv_compact_to_t2`
cannot be generalized from `t2_space` to `t1_space`.
Let `α = alexandroff ℕ` be the one-point compactification of `ℕ`, and let `β` be the same space
`alexandroff ℕ` with the cofinite topology. Then `α` is compact, `β` is T1, and the identity map
`id : α → β` is a continuous equivalence that is not a homeomorphism.
-/
lemma continuous.homeo_of_equiv_compact_to_t2.t1_counterexample :
∃ (α β : Type) (Iα : topological_space α) (Iβ : topological_space β), by exactI
compact_space α ∧ t1_space β ∧ ∃ f : α ≃ β, continuous f ∧ ¬ continuous f.symm :=
⟨alexandroff ℕ, cofinite_topology (alexandroff ℕ), infer_instance, infer_instance,
infer_instance, infer_instance, cofinite_topology.of, cofinite_topology.continuous_of,
alexandroff.not_continuous_cofinite_topology_of_symm⟩