Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import algebra.algebra.subalgebra.basic | |
import topology.algebra.module.basic | |
import topology.algebra.field | |
/-! | |
# Topological (sub)algebras | |
A topological algebra over a topological semiring `R` is a topological semiring with a compatible | |
continuous scalar multiplication by elements of `R`. We reuse typeclass `has_continuous_smul` for | |
topological algebras. | |
## Results | |
This is just a minimal stub for now! | |
The topological closure of a subalgebra is still a subalgebra, | |
which as an algebra is a topological algebra. | |
-/ | |
open classical set topological_space algebra | |
open_locale classical | |
universes u v w | |
section topological_algebra | |
variables (R : Type*) [topological_space R] [comm_semiring R] | |
variables (A : Type u) [topological_space A] | |
variables [semiring A] | |
lemma continuous_algebra_map_iff_smul [algebra R A] [topological_semiring A] : | |
continuous (algebra_map R A) ↔ continuous (λ p : R × A, p.1 • p.2) := | |
begin | |
refine ⟨λ h, _, λ h, _⟩, | |
{ simp only [algebra.smul_def], exact (h.comp continuous_fst).mul continuous_snd }, | |
{ rw algebra_map_eq_smul_one', exact h.comp (continuous_id.prod_mk continuous_const) } | |
end | |
@[continuity] | |
lemma continuous_algebra_map [algebra R A] [topological_semiring A] [has_continuous_smul R A] : | |
continuous (algebra_map R A) := | |
(continuous_algebra_map_iff_smul R A).2 continuous_smul | |
lemma has_continuous_smul_of_algebra_map [algebra R A] [topological_semiring A] | |
(h : continuous (algebra_map R A)) : | |
has_continuous_smul R A := | |
⟨(continuous_algebra_map_iff_smul R A).1 h⟩ | |
end topological_algebra | |
section topological_algebra | |
variables {R : Type*} [comm_semiring R] | |
variables {A : Type u} [topological_space A] | |
variables [semiring A] [algebra R A] | |
instance subalgebra.has_continuous_smul [topological_space R] [has_continuous_smul R A] | |
(s : subalgebra R A) : | |
has_continuous_smul R s := | |
s.to_submodule.has_continuous_smul | |
variables [topological_semiring A] | |
/-- The closure of a subalgebra in a topological algebra as a subalgebra. -/ | |
def subalgebra.topological_closure (s : subalgebra R A) : subalgebra R A := | |
{ carrier := closure (s : set A), | |
algebra_map_mem' := λ r, s.to_subsemiring.subring_topological_closure (s.algebra_map_mem r), | |
.. s.to_subsemiring.topological_closure } | |
@[simp] lemma subalgebra.topological_closure_coe (s : subalgebra R A) : | |
(s.topological_closure : set A) = closure (s : set A) := | |
rfl | |
instance subalgebra.topological_semiring (s : subalgebra R A) : topological_semiring s := | |
s.to_subsemiring.topological_semiring | |
lemma subalgebra.subalgebra_topological_closure (s : subalgebra R A) : | |
s ≤ s.topological_closure := | |
subset_closure | |
lemma subalgebra.is_closed_topological_closure (s : subalgebra R A) : | |
is_closed (s.topological_closure : set A) := | |
by convert is_closed_closure | |
lemma subalgebra.topological_closure_minimal | |
(s : subalgebra R A) {t : subalgebra R A} (h : s ≤ t) (ht : is_closed (t : set A)) : | |
s.topological_closure ≤ t := | |
closure_minimal h ht | |
/-- If a subalgebra of a topological algebra is commutative, then so is its topological closure. -/ | |
def subalgebra.comm_semiring_topological_closure [t2_space A] (s : subalgebra R A) | |
(hs : ∀ (x y : s), x * y = y * x) : comm_semiring s.topological_closure := | |
{ ..s.topological_closure.to_semiring, | |
..s.to_submonoid.comm_monoid_topological_closure hs } | |
/-- | |
This is really a statement about topological algebra isomorphisms, | |
but we don't have those, so we use the clunky approach of talking about | |
an algebra homomorphism, and a separate homeomorphism, | |
along with a witness that as functions they are the same. | |
-/ | |
lemma subalgebra.topological_closure_comap_homeomorph | |
(s : subalgebra R A) | |
{B : Type*} [topological_space B] [ring B] [topological_ring B] [algebra R B] | |
(f : B →ₐ[R] A) (f' : B ≃ₜ A) (w : (f : B → A) = f') : | |
s.topological_closure.comap f = (s.comap f).topological_closure := | |
begin | |
apply set_like.ext', | |
simp only [subalgebra.topological_closure_coe], | |
simp only [subalgebra.coe_comap, subsemiring.coe_comap, alg_hom.coe_to_ring_hom], | |
rw [w], | |
exact f'.preimage_closure _, | |
end | |
end topological_algebra | |
section ring | |
variables {R : Type*} [comm_ring R] | |
variables {A : Type u} [topological_space A] | |
variables [ring A] | |
variables [algebra R A] [topological_ring A] | |
/-- If a subalgebra of a topological algebra is commutative, then so is its topological closure. | |
See note [reducible non-instances]. -/ | |
@[reducible] def subalgebra.comm_ring_topological_closure [t2_space A] (s : subalgebra R A) | |
(hs : ∀ (x y : s), x * y = y * x) : comm_ring s.topological_closure := | |
{ ..s.topological_closure.to_ring, | |
..s.to_submonoid.comm_monoid_topological_closure hs } | |
variables (R) | |
/-- The topological closure of the subalgebra generated by a single element. -/ | |
def algebra.elemental_algebra (x : A) : subalgebra R A := | |
(algebra.adjoin R ({x} : set A)).topological_closure | |
lemma algebra.self_mem_elemental_algebra (x : A) : x ∈ algebra.elemental_algebra R x := | |
set_like.le_def.mp (subalgebra.subalgebra_topological_closure (algebra.adjoin R ({x} : set A))) $ | |
algebra.self_mem_adjoin_singleton R x | |
variables {R} | |
instance [t2_space A] {x : A} : comm_ring (algebra.elemental_algebra R x) := | |
subalgebra.comm_ring_topological_closure _ | |
begin | |
letI : comm_ring (algebra.adjoin R ({x} : set A)) := algebra.adjoin_comm_ring_of_comm R | |
(λ y hy z hz, by {rw [mem_singleton_iff] at hy hz, rw [hy, hz]}), | |
exact λ _ _, mul_comm _ _, | |
end | |
end ring | |
section division_ring | |
/-- The action induced by `algebra_rat` is continuous. -/ | |
instance division_ring.has_continuous_const_smul_rat | |
{A} [division_ring A] [topological_space A] [has_continuous_mul A] [char_zero A] : | |
has_continuous_const_smul ℚ A := | |
⟨λ r, by { simpa only [algebra.smul_def] using continuous_const.mul continuous_id }⟩ | |
end division_ring | |