Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Alex Kontorovich, Heather Macbeth. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Alex Kontorovich, Heather Macbeth | |
-/ | |
import topology.algebra.constructions | |
import topology.homeomorph | |
import group_theory.group_action.basic | |
/-! | |
# Monoid actions continuous in the second variable | |
In this file we define class `has_continuous_const_smul`. We say `has_continuous_const_smul Γ T` if | |
`Γ` acts on `T` and for each `γ`, the map `x ↦ γ • x` is continuous. (This differs from | |
`has_continuous_smul`, which requires simultaneous continuity in both variables.) | |
## Main definitions | |
* `has_continuous_const_smul Γ T` : typeclass saying that the map `x ↦ γ • x` is continuous on `T`; | |
* `properly_discontinuous_smul`: says that the scalar multiplication `(•) : Γ → T → T` | |
is properly discontinuous, that is, for any pair of compact sets `K, L` in `T`, only finitely | |
many `γ:Γ` move `K` to have nontrivial intersection with `L`. | |
* `homeomorph.smul`: scalar multiplication by an element of a group `Γ` acting on `T` | |
is a homeomorphism of `T`. | |
## Main results | |
* `is_open_map_quotient_mk_mul` : The quotient map by a group action is open. | |
* `t2_space_of_properly_discontinuous_smul_of_t2_space` : The quotient by a discontinuous group | |
action of a locally compact t2 space is t2. | |
## Tags | |
Hausdorff, discrete group, properly discontinuous, quotient space | |
-/ | |
open_locale topological_space pointwise | |
open filter set | |
local attribute [instance] mul_action.orbit_rel | |
/-- Class `has_continuous_const_smul Γ T` says that the scalar multiplication `(•) : Γ → T → T` | |
is continuous in the second argument. We use the same class for all kinds of multiplicative | |
actions, including (semi)modules and algebras. | |
-/ | |
class has_continuous_const_smul (Γ : Type*) (T : Type*) [topological_space T] [has_smul Γ T] | |
: Prop := | |
(continuous_const_smul : ∀ γ : Γ, continuous (λ x : T, γ • x)) | |
/-- Class `has_continuous_const_vadd Γ T` says that the additive action `(+ᵥ) : Γ → T → T` | |
is continuous in the second argument. We use the same class for all kinds of additive actions, | |
including (semi)modules and algebras. | |
-/ | |
class has_continuous_const_vadd (Γ : Type*) (T : Type*) [topological_space T] | |
[has_vadd Γ T] : Prop := | |
(continuous_const_vadd : ∀ γ : Γ, continuous (λ x : T, γ +ᵥ x)) | |
attribute [to_additive] has_continuous_const_smul | |
export has_continuous_const_smul (continuous_const_smul) | |
export has_continuous_const_vadd (continuous_const_vadd) | |
variables {M α β : Type*} | |
section has_smul | |
variables [topological_space α] [has_smul M α] [has_continuous_const_smul M α] | |
@[to_additive] | |
lemma filter.tendsto.const_smul {f : β → α} {l : filter β} {a : α} (hf : tendsto f l (𝓝 a)) | |
(c : M) : | |
tendsto (λ x, c • f x) l (𝓝 (c • a)) := | |
((continuous_const_smul _).tendsto _).comp hf | |
variables [topological_space β] {f : β → M} {g : β → α} {b : β} {s : set β} | |
@[to_additive] | |
lemma continuous_within_at.const_smul (hg : continuous_within_at g s b) (c : M) : | |
continuous_within_at (λ x, c • g x) s b := | |
hg.const_smul c | |
@[to_additive] | |
lemma continuous_at.const_smul (hg : continuous_at g b) (c : M) : | |
continuous_at (λ x, c • g x) b := | |
hg.const_smul c | |
@[to_additive] | |
lemma continuous_on.const_smul (hg : continuous_on g s) (c : M) : | |
continuous_on (λ x, c • g x) s := | |
λ x hx, (hg x hx).const_smul c | |
@[continuity, to_additive] | |
lemma continuous.const_smul (hg : continuous g) (c : M) : | |
continuous (λ x, c • g x) := | |
(continuous_const_smul _).comp hg | |
/-- If a scalar is central, then its right action is continuous when its left action is. -/ | |
instance has_continuous_const_smul.op [has_smul Mᵐᵒᵖ α] [is_central_scalar M α] : | |
has_continuous_const_smul Mᵐᵒᵖ α := | |
⟨ mul_opposite.rec $ λ c, by simpa only [op_smul_eq_smul] using continuous_const_smul c ⟩ | |
@[to_additive] instance mul_opposite.has_continuous_const_smul : | |
has_continuous_const_smul M αᵐᵒᵖ := | |
⟨λ c, mul_opposite.continuous_op.comp $ mul_opposite.continuous_unop.const_smul c⟩ | |
@[to_additive] | |
instance [has_smul M β] [has_continuous_const_smul M β] : | |
has_continuous_const_smul M (α × β) := | |
⟨λ _, (continuous_fst.const_smul _).prod_mk (continuous_snd.const_smul _)⟩ | |
@[to_additive] | |
instance {ι : Type*} {γ : ι → Type*} [∀ i, topological_space (γ i)] [Π i, has_smul M (γ i)] | |
[∀ i, has_continuous_const_smul M (γ i)] : has_continuous_const_smul M (Π i, γ i) := | |
⟨λ _, continuous_pi $ λ i, (continuous_apply i).const_smul _⟩ | |
end has_smul | |
section monoid | |
variables [topological_space α] | |
variables [monoid M] [mul_action M α] [has_continuous_const_smul M α] | |
@[to_additive] instance units.has_continuous_const_smul : has_continuous_const_smul Mˣ α := | |
{ continuous_const_smul := λ m, (continuous_const_smul (m : M) : _) } | |
@[to_additive] | |
lemma smul_closure_subset (c : M) (s : set α) : c • closure s ⊆ closure (c • s) := | |
((set.maps_to_image _ _).closure $ continuous_id.const_smul c).image_subset | |
@[to_additive] | |
lemma smul_closure_orbit_subset (c : M) (x : α) : | |
c • closure (mul_action.orbit M x) ⊆ closure (mul_action.orbit M x) := | |
(smul_closure_subset c _).trans $ closure_mono $ mul_action.smul_orbit_subset _ _ | |
end monoid | |
section group | |
variables {G : Type*} [topological_space α] [group G] [mul_action G α] | |
[has_continuous_const_smul G α] | |
@[to_additive] | |
lemma tendsto_const_smul_iff {f : β → α} {l : filter β} {a : α} (c : G) : | |
tendsto (λ x, c • f x) l (𝓝 $ c • a) ↔ tendsto f l (𝓝 a) := | |
⟨λ h, by simpa only [inv_smul_smul] using h.const_smul c⁻¹, | |
λ h, h.const_smul _⟩ | |
variables [topological_space β] {f : β → α} {b : β} {s : set β} | |
@[to_additive] | |
lemma continuous_within_at_const_smul_iff (c : G) : | |
continuous_within_at (λ x, c • f x) s b ↔ continuous_within_at f s b := | |
tendsto_const_smul_iff c | |
@[to_additive] | |
lemma continuous_on_const_smul_iff (c : G) : continuous_on (λ x, c • f x) s ↔ continuous_on f s := | |
forall₂_congr $ λ b hb, continuous_within_at_const_smul_iff c | |
@[to_additive] | |
lemma continuous_at_const_smul_iff (c : G) : | |
continuous_at (λ x, c • f x) b ↔ continuous_at f b := | |
tendsto_const_smul_iff c | |
@[to_additive] | |
lemma continuous_const_smul_iff (c : G) : | |
continuous (λ x, c • f x) ↔ continuous f := | |
by simp only [continuous_iff_continuous_at, continuous_at_const_smul_iff] | |
/-- The homeomorphism given by scalar multiplication by a given element of a group `Γ` acting on | |
`T` is a homeomorphism from `T` to itself. -/ | |
@[to_additive] def homeomorph.smul (γ : G) : α ≃ₜ α := | |
{ to_equiv := mul_action.to_perm γ, | |
continuous_to_fun := continuous_const_smul γ, | |
continuous_inv_fun := continuous_const_smul γ⁻¹ } | |
/-- The homeomorphism given by affine-addition by an element of an additive group `Γ` acting on | |
`T` is a homeomorphism from `T` to itself. -/ | |
add_decl_doc homeomorph.vadd | |
@[to_additive] | |
lemma is_open_map_smul (c : G) : is_open_map (λ x : α, c • x) := | |
(homeomorph.smul c).is_open_map | |
@[to_additive] lemma is_open.smul {s : set α} (hs : is_open s) (c : G) : is_open (c • s) := | |
is_open_map_smul c s hs | |
@[to_additive] | |
lemma is_closed_map_smul (c : G) : is_closed_map (λ x : α, c • x) := | |
(homeomorph.smul c).is_closed_map | |
@[to_additive] lemma is_closed.smul {s : set α} (hs : is_closed s) (c : G) : is_closed (c • s) := | |
is_closed_map_smul c s hs | |
@[to_additive] lemma closure_smul (c : G) (s : set α) : closure (c • s) = c • closure s := | |
((homeomorph.smul c).image_closure s).symm | |
@[to_additive] lemma interior_smul (c : G) (s : set α) : interior (c • s) = c • interior s := | |
((homeomorph.smul c).image_interior s).symm | |
end group | |
section group_with_zero | |
variables {G₀ : Type*} [topological_space α] [group_with_zero G₀] [mul_action G₀ α] | |
[has_continuous_const_smul G₀ α] | |
lemma tendsto_const_smul_iff₀ {f : β → α} {l : filter β} {a : α} {c : G₀} (hc : c ≠ 0) : | |
tendsto (λ x, c • f x) l (𝓝 $ c • a) ↔ tendsto f l (𝓝 a) := | |
tendsto_const_smul_iff (units.mk0 c hc) | |
variables [topological_space β] {f : β → α} {b : β} {c : G₀} {s : set β} | |
lemma continuous_within_at_const_smul_iff₀ (hc : c ≠ 0) : | |
continuous_within_at (λ x, c • f x) s b ↔ continuous_within_at f s b := | |
tendsto_const_smul_iff (units.mk0 c hc) | |
lemma continuous_on_const_smul_iff₀ (hc : c ≠ 0) : | |
continuous_on (λ x, c • f x) s ↔ continuous_on f s := | |
continuous_on_const_smul_iff (units.mk0 c hc) | |
lemma continuous_at_const_smul_iff₀ (hc : c ≠ 0) : | |
continuous_at (λ x, c • f x) b ↔ continuous_at f b := | |
continuous_at_const_smul_iff (units.mk0 c hc) | |
lemma continuous_const_smul_iff₀ (hc : c ≠ 0) : | |
continuous (λ x, c • f x) ↔ continuous f := | |
continuous_const_smul_iff (units.mk0 c hc) | |
/-- Scalar multiplication by a non-zero element of a group with zero acting on `α` is a | |
homeomorphism from `α` onto itself. -/ | |
protected def homeomorph.smul_of_ne_zero (c : G₀) (hc : c ≠ 0) : α ≃ₜ α := | |
homeomorph.smul (units.mk0 c hc) | |
lemma is_open_map_smul₀ {c : G₀} (hc : c ≠ 0) : is_open_map (λ x : α, c • x) := | |
(homeomorph.smul_of_ne_zero c hc).is_open_map | |
lemma is_open.smul₀ {c : G₀} {s : set α} (hs : is_open s) (hc : c ≠ 0) : is_open (c • s) := | |
is_open_map_smul₀ hc s hs | |
lemma interior_smul₀ {c : G₀} (hc : c ≠ 0) (s : set α) : interior (c • s) = c • interior s := | |
((homeomorph.smul_of_ne_zero c hc).image_interior s).symm | |
lemma closure_smul₀ {E} [has_zero E] [mul_action_with_zero G₀ E] [topological_space E] | |
[t1_space E] [has_continuous_const_smul G₀ E] (c : G₀) (s : set E) : | |
closure (c • s) = c • closure s := | |
begin | |
rcases eq_or_ne c 0 with rfl|hc, | |
{ rcases eq_empty_or_nonempty s with rfl|hs, | |
{ simp }, | |
{ rw [zero_smul_set hs, zero_smul_set hs.closure], exact closure_singleton } }, | |
{ exact ((homeomorph.smul_of_ne_zero c hc).image_closure s).symm } | |
end | |
/-- `smul` is a closed map in the second argument. | |
The lemma that `smul` is a closed map in the first argument (for a normed space over a complete | |
normed field) is `is_closed_map_smul_left` in `analysis.normed_space.finite_dimension`. -/ | |
lemma is_closed_map_smul_of_ne_zero {c : G₀} (hc : c ≠ 0) : is_closed_map (λ x : α, c • x) := | |
(homeomorph.smul_of_ne_zero c hc).is_closed_map | |
lemma is_closed.smul_of_ne_zero {c : G₀} {s : set α} (hs : is_closed s) (hc : c ≠ 0) : | |
is_closed (c • s) := | |
is_closed_map_smul_of_ne_zero hc s hs | |
/-- `smul` is a closed map in the second argument. | |
The lemma that `smul` is a closed map in the first argument (for a normed space over a complete | |
normed field) is `is_closed_map_smul_left` in `analysis.normed_space.finite_dimension`. -/ | |
lemma is_closed_map_smul₀ {𝕜 M : Type*} [division_ring 𝕜] [add_comm_monoid M] [topological_space M] | |
[t1_space M] [module 𝕜 M] [has_continuous_const_smul 𝕜 M] (c : 𝕜) : | |
is_closed_map (λ x : M, c • x) := | |
begin | |
rcases eq_or_ne c 0 with (rfl|hne), | |
{ simp only [zero_smul], exact is_closed_map_const }, | |
{ exact (homeomorph.smul_of_ne_zero c hne).is_closed_map }, | |
end | |
lemma is_closed.smul₀ {𝕜 M : Type*} [division_ring 𝕜] [add_comm_monoid M] [topological_space M] | |
[t1_space M] [module 𝕜 M] [has_continuous_const_smul 𝕜 M] (c : 𝕜) {s : set M} (hs : is_closed s) : | |
is_closed (c • s) := | |
is_closed_map_smul₀ c s hs | |
end group_with_zero | |
namespace is_unit | |
variables [monoid M] [topological_space α] [mul_action M α] [has_continuous_const_smul M α] | |
lemma tendsto_const_smul_iff {f : β → α} {l : filter β} {a : α} {c : M} (hc : is_unit c) : | |
tendsto (λ x, c • f x) l (𝓝 $ c • a) ↔ tendsto f l (𝓝 a) := | |
let ⟨u, hu⟩ := hc in hu ▸ tendsto_const_smul_iff u | |
variables [topological_space β] {f : β → α} {b : β} {c : M} {s : set β} | |
lemma continuous_within_at_const_smul_iff (hc : is_unit c) : | |
continuous_within_at (λ x, c • f x) s b ↔ continuous_within_at f s b := | |
let ⟨u, hu⟩ := hc in hu ▸ continuous_within_at_const_smul_iff u | |
lemma continuous_on_const_smul_iff (hc : is_unit c) : | |
continuous_on (λ x, c • f x) s ↔ continuous_on f s := | |
let ⟨u, hu⟩ := hc in hu ▸ continuous_on_const_smul_iff u | |
lemma continuous_at_const_smul_iff (hc : is_unit c) : | |
continuous_at (λ x, c • f x) b ↔ continuous_at f b := | |
let ⟨u, hu⟩ := hc in hu ▸ continuous_at_const_smul_iff u | |
lemma continuous_const_smul_iff (hc : is_unit c) : | |
continuous (λ x, c • f x) ↔ continuous f := | |
let ⟨u, hu⟩ := hc in hu ▸ continuous_const_smul_iff u | |
lemma is_open_map_smul (hc : is_unit c) : is_open_map (λ x : α, c • x) := | |
let ⟨u, hu⟩ := hc in hu ▸ is_open_map_smul u | |
lemma is_closed_map_smul (hc : is_unit c) : is_closed_map (λ x : α, c • x) := | |
let ⟨u, hu⟩ := hc in hu ▸ is_closed_map_smul u | |
end is_unit | |
/-- Class `properly_discontinuous_smul Γ T` says that the scalar multiplication `(•) : Γ → T → T` | |
is properly discontinuous, that is, for any pair of compact sets `K, L` in `T`, only finitely many | |
`γ:Γ` move `K` to have nontrivial intersection with `L`. | |
-/ | |
class properly_discontinuous_smul (Γ : Type*) (T : Type*) [topological_space T] | |
[has_smul Γ T] : Prop := | |
(finite_disjoint_inter_image : ∀ {K L : set T}, is_compact K → is_compact L → | |
set.finite {γ : Γ | (((•) γ) '' K) ∩ L ≠ ∅ }) | |
/-- Class `properly_discontinuous_vadd Γ T` says that the additive action `(+ᵥ) : Γ → T → T` | |
is properly discontinuous, that is, for any pair of compact sets `K, L` in `T`, only finitely many | |
`γ:Γ` move `K` to have nontrivial intersection with `L`. | |
-/ | |
class properly_discontinuous_vadd (Γ : Type*) (T : Type*) [topological_space T] | |
[has_vadd Γ T] : Prop := | |
(finite_disjoint_inter_image : ∀ {K L : set T}, is_compact K → is_compact L → | |
set.finite {γ : Γ | (((+ᵥ) γ) '' K) ∩ L ≠ ∅ }) | |
attribute [to_additive] properly_discontinuous_smul | |
variables {Γ : Type*} [group Γ] {T : Type*} [topological_space T] [mul_action Γ T] | |
/-- A finite group action is always properly discontinuous | |
-/ | |
@[priority 100, to_additive] instance fintype.properly_discontinuous_smul [fintype Γ] : | |
properly_discontinuous_smul Γ T := | |
{ finite_disjoint_inter_image := λ _ _ _ _, set.to_finite _} | |
export properly_discontinuous_smul (finite_disjoint_inter_image) | |
export properly_discontinuous_vadd (finite_disjoint_inter_image) | |
/-- The quotient map by a group action is open. -/ | |
@[to_additive] | |
lemma is_open_map_quotient_mk_mul [has_continuous_const_smul Γ T] : | |
is_open_map (quotient.mk : T → quotient (mul_action.orbit_rel Γ T)) := | |
begin | |
intros U hU, | |
rw [is_open_coinduced, mul_action.quotient_preimage_image_eq_union_mul U], | |
exact is_open_Union (λ γ, (homeomorph.smul γ).is_open_map U hU) | |
end | |
/-- The quotient by a discontinuous group action of a locally compact t2 space is t2. -/ | |
@[priority 100, to_additive] instance t2_space_of_properly_discontinuous_smul_of_t2_space | |
[t2_space T] [locally_compact_space T] [has_continuous_const_smul Γ T] | |
[properly_discontinuous_smul Γ T] : t2_space (quotient (mul_action.orbit_rel Γ T)) := | |
begin | |
set Q := quotient (mul_action.orbit_rel Γ T), | |
rw t2_space_iff_nhds, | |
let f : T → Q := quotient.mk, | |
have f_op : is_open_map f := is_open_map_quotient_mk_mul, | |
rintros ⟨x₀⟩ ⟨y₀⟩ (hxy : f x₀ ≠ f y₀), | |
show ∃ (U ∈ 𝓝 (f x₀)) (V ∈ 𝓝 (f y₀)), _, | |
have hx₀y₀ : x₀ ≠ y₀ := ne_of_apply_ne _ hxy, | |
have hγx₀y₀ : ∀ γ : Γ, γ • x₀ ≠ y₀ := not_exists.mp (mt quotient.sound hxy.symm : _), | |
obtain ⟨K₀, L₀, K₀_in, L₀_in, hK₀, hL₀, hK₀L₀⟩ := t2_separation_compact_nhds hx₀y₀, | |
let bad_Γ_set := {γ : Γ | (((•) γ) '' K₀) ∩ L₀ ≠ ∅ }, | |
have bad_Γ_finite : bad_Γ_set.finite := finite_disjoint_inter_image hK₀ hL₀, | |
choose u v hu hv u_v_disjoint using λ γ, t2_separation_nhds (hγx₀y₀ γ), | |
let U₀₀ := ⋂ γ ∈ bad_Γ_set, ((•) γ) ⁻¹' (u γ), | |
let U₀ := U₀₀ ∩ K₀, | |
let V₀₀ := ⋂ γ ∈ bad_Γ_set, v γ, | |
let V₀ := V₀₀ ∩ L₀, | |
have U_nhds : f '' U₀ ∈ 𝓝 (f x₀), | |
{ apply f_op.image_mem_nhds (inter_mem ((bInter_mem bad_Γ_finite).mpr $ λ γ hγ, _) K₀_in), | |
exact (continuous_const_smul _).continuous_at (hu γ) }, | |
have V_nhds : f '' V₀ ∈ 𝓝 (f y₀), | |
from f_op.image_mem_nhds (inter_mem ((bInter_mem bad_Γ_finite).mpr $ λ γ hγ, hv γ) L₀_in), | |
refine ⟨f '' U₀, U_nhds, f '' V₀, V_nhds, mul_action.disjoint_image_image_iff.2 _⟩, | |
rintros x ⟨x_in_U₀₀, x_in_K₀⟩ γ, | |
by_cases H : γ ∈ bad_Γ_set, | |
{ exact λ h, u_v_disjoint γ ⟨mem_Inter₂.mp x_in_U₀₀ γ H, mem_Inter₂.mp h.1 γ H⟩ }, | |
{ rintros ⟨-, h'⟩, | |
simp only [image_smul, not_not, mem_set_of_eq, ne.def] at H, | |
exact eq_empty_iff_forall_not_mem.mp H (γ • x) ⟨mem_image_of_mem _ x_in_K₀, h'⟩ }, | |
end | |
section nhds | |
section mul_action | |
variables {G₀ : Type*} [group_with_zero G₀] [mul_action G₀ α] | |
[topological_space α] [has_continuous_const_smul G₀ α] | |
/-- Scalar multiplication preserves neighborhoods. -/ | |
lemma set_smul_mem_nhds_smul {c : G₀} {s : set α} {x : α} (hs : s ∈ 𝓝 x) (hc : c ≠ 0) : | |
c • s ∈ 𝓝 (c • x : α) := | |
begin | |
rw mem_nhds_iff at hs ⊢, | |
obtain ⟨U, hs', hU, hU'⟩ := hs, | |
exact ⟨c • U, set.smul_set_mono hs', hU.smul₀ hc, set.smul_mem_smul_set hU'⟩, | |
end | |
lemma set_smul_mem_nhds_smul_iff {c : G₀} {s : set α} {x : α} (hc : c ≠ 0) : | |
c • s ∈ 𝓝 (c • x : α) ↔ s ∈ 𝓝 x := | |
begin | |
refine ⟨λ h, _, λ h, set_smul_mem_nhds_smul h hc⟩, | |
rw [←inv_smul_smul₀ hc x, ←inv_smul_smul₀ hc s], | |
exact set_smul_mem_nhds_smul h (inv_ne_zero hc), | |
end | |
end mul_action | |
section distrib_mul_action | |
variables {G₀ : Type*} [group_with_zero G₀] [add_monoid α] [distrib_mul_action G₀ α] | |
[topological_space α] [has_continuous_const_smul G₀ α] | |
lemma set_smul_mem_nhds_zero_iff {s : set α} {c : G₀} (hc : c ≠ 0) : | |
c • s ∈ 𝓝 (0 : α) ↔ s ∈ 𝓝 (0 : α) := | |
begin | |
refine iff.trans _ (set_smul_mem_nhds_smul_iff hc), | |
rw smul_zero, | |
end | |
end distrib_mul_action | |
end nhds | |