Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
10.3 kB
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
-/
import algebra.hom.group_instances
import topology.algebra.uniform_group
import topology.algebra.uniform_mul_action
import topology.uniform_space.completion
/-!
# Completion of topological groups:
This files endows the completion of a topological abelian group with a group structure.
More precisely the instance `uniform_space.completion.add_group` builds an abelian group structure
on the completion of an abelian group endowed with a compatible uniform structure.
Then the instance `uniform_space.completion.uniform_add_group` proves this group structure is
compatible with the completed uniform structure. The compatibility condition is `uniform_add_group`.
## Main declarations:
Beyond the instances explained above (that don't have to be explicitly invoked),
the main constructions deal with continuous group morphisms.
* `add_monoid_hom.extension`: extends a continuous group morphism from `G`
to a complete separated group `H` to `completion G`.
* `add_monoid_hom.completion`: promotes a continuous group morphism
from `G` to `H` into a continuous group morphism
from `completion G` to `completion H`.
-/
noncomputable theory
variables {M R α β : Type*}
section group
open uniform_space Cauchy filter set
variables [uniform_space α]
instance [has_zero α] : has_zero (completion α) := ⟨(0 : α)⟩
instance [has_neg α] : has_neg (completion α) := ⟨completion.map (λa, -a : α → α)⟩
instance [has_add α] : has_add (completion α) := ⟨completion.map₂ (+)⟩
instance [has_sub α] : has_sub (completion α) := ⟨completion.map₂ has_sub.sub⟩
@[norm_cast]
lemma uniform_space.completion.coe_zero [has_zero α] : ((0 : α) : completion α) = 0 := rfl
end group
namespace uniform_space.completion
open uniform_space
section has_zero
instance [uniform_space α] [monoid_with_zero M] [has_zero α] [mul_action_with_zero M α]
[has_uniform_continuous_const_smul M α] :
mul_action_with_zero M (completion α) :=
{ smul := (•),
smul_zero := λ r, by rw [← coe_zero, ← coe_smul, mul_action_with_zero.smul_zero r],
zero_smul := ext' (continuous_const_smul _) continuous_const $ λ a,
by rw [← coe_smul, zero_smul, coe_zero],
.. completion.mul_action M α }
end has_zero
section uniform_add_group
variables [uniform_space α] [add_group α] [uniform_add_group α]
@[norm_cast]
lemma coe_neg (a : α) : ((- a : α) : completion α) = - a :=
(map_coe uniform_continuous_neg a).symm
@[norm_cast]
lemma coe_sub (a b : α) : ((a - b : α) : completion α) = a - b :=
(map₂_coe_coe a b has_sub.sub uniform_continuous_sub).symm
@[norm_cast]
lemma coe_add (a b : α) : ((a + b : α) : completion α) = a + b :=
(map₂_coe_coe a b (+) uniform_continuous_add).symm
instance : add_monoid (completion α) :=
{ zero_add := assume a, completion.induction_on a
(is_closed_eq (continuous_map₂ continuous_const continuous_id) continuous_id)
(assume a, show 0 + (a : completion α) = a, by rw_mod_cast zero_add),
add_zero := assume a, completion.induction_on a
(is_closed_eq (continuous_map₂ continuous_id continuous_const) continuous_id)
(assume a, show (a : completion α) + 0 = a, by rw_mod_cast add_zero),
add_assoc := assume a b c, completion.induction_on₃ a b c
(is_closed_eq
(continuous_map₂
(continuous_map₂ continuous_fst (continuous_fst.comp continuous_snd))
(continuous_snd.comp continuous_snd))
(continuous_map₂ continuous_fst
(continuous_map₂
(continuous_fst.comp continuous_snd)
(continuous_snd.comp continuous_snd))))
(assume a b c, show (a : completion α) + b + c = a + (b + c),
by repeat { rw_mod_cast add_assoc }),
nsmul := (•),
nsmul_zero' := λ a, completion.induction_on a (is_closed_eq continuous_map continuous_const)
(λ a, by rw [←coe_smul, ←coe_zero, zero_smul]),
nsmul_succ' := λ n a, completion.induction_on a
(is_closed_eq continuous_map $ continuous_map₂ continuous_id continuous_map)
(λ a, by rw_mod_cast succ_nsmul ),
.. completion.has_zero, ..completion.has_add, }
instance : sub_neg_monoid (completion α) :=
{ sub_eq_add_neg := λ a b, completion.induction_on₂ a b
(is_closed_eq (continuous_map₂ continuous_fst continuous_snd)
(continuous_map₂ continuous_fst (completion.continuous_map.comp continuous_snd)))
(λ a b, by exact_mod_cast congr_arg coe (sub_eq_add_neg a b)),
zsmul := (•),
zsmul_zero' := λ a, completion.induction_on a (is_closed_eq continuous_map continuous_const)
(λ a, by { rw_mod_cast zero_smul, refl} ),
zsmul_succ' := λ n a, completion.induction_on a
(is_closed_eq continuous_map $ continuous_map₂ continuous_id continuous_map)
(λ a, by rw_mod_cast (show int.of_nat n.succ • a = a + int.of_nat n • a,
from sub_neg_monoid.zsmul_succ' n a) ),
zsmul_neg' := λ n a, completion.induction_on a
(is_closed_eq continuous_map $ completion.continuous_map.comp continuous_map)
(λ a, by rw [←coe_smul, ←coe_smul, ←coe_neg, show -[1+ n] • a = -((n.succ : ℤ) • a),
from sub_neg_monoid.zsmul_neg' n a]),
.. completion.add_monoid, .. completion.has_neg, .. completion.has_sub }
instance : add_group (completion α) :=
{ add_left_neg := assume a, completion.induction_on a
(is_closed_eq (continuous_map₂ completion.continuous_map continuous_id) continuous_const)
(assume a, show - (a : completion α) + a = 0, by { rw_mod_cast add_left_neg, refl }),
.. completion.sub_neg_monoid }
instance : uniform_add_group (completion α) :=
⟨uniform_continuous_map₂ has_sub.sub⟩
instance {M} [monoid M] [distrib_mul_action M α] [has_uniform_continuous_const_smul M α] :
distrib_mul_action M (completion α) :=
{ smul := (•),
smul_add := λ r x y, induction_on₂ x y
(is_closed_eq ((continuous_fst.add continuous_snd).const_smul _)
((continuous_fst.const_smul _).add (continuous_snd.const_smul _)))
(λ a b, by simp only [← coe_add, ← coe_smul, smul_add]),
smul_zero := λ r, by rw [← coe_zero, ← coe_smul, smul_zero r],
.. completion.mul_action M α }
/-- The map from a group to its completion as a group hom. -/
@[simps] def to_compl : α →+ completion α :=
{ to_fun := coe,
map_add' := coe_add,
map_zero' := coe_zero }
lemma continuous_to_compl : continuous (to_compl : α → completion α) :=
continuous_coe α
end uniform_add_group
section uniform_add_comm_group
variables [uniform_space α] [add_comm_group α] [uniform_add_group α]
instance : add_comm_group (completion α) :=
{ add_comm := assume a b, completion.induction_on₂ a b
(is_closed_eq (continuous_map₂ continuous_fst continuous_snd)
(continuous_map₂ continuous_snd continuous_fst))
(assume x y, by { change ↑x + ↑y = ↑y + ↑x, rw [← coe_add, ← coe_add, add_comm]}),
.. completion.add_group }
instance [semiring R] [module R α] [has_uniform_continuous_const_smul R α] :
module R (completion α) :=
{ smul := (•),
add_smul := λ a b, ext' (continuous_const_smul _)
((continuous_const_smul _).add (continuous_const_smul _)) $ λ x, by { norm_cast, rw add_smul },
.. completion.distrib_mul_action, .. completion.mul_action_with_zero }
end uniform_add_comm_group
end uniform_space.completion
section add_monoid_hom
variables [uniform_space α] [add_group α] [uniform_add_group α]
[uniform_space β] [add_group β] [uniform_add_group β]
open uniform_space uniform_space.completion
/-- Extension to the completion of a continuous group hom. -/
def add_monoid_hom.extension [complete_space β] [separated_space β] (f : α →+ β)
(hf : continuous f) : completion α →+ β :=
have hf : uniform_continuous f, from uniform_continuous_add_monoid_hom_of_continuous hf,
{ to_fun := completion.extension f,
map_zero' := by rw [← coe_zero, extension_coe hf, f.map_zero],
map_add' := assume a b, completion.induction_on₂ a b
(is_closed_eq
(continuous_extension.comp continuous_add)
((continuous_extension.comp continuous_fst).add (continuous_extension.comp continuous_snd)))
(λ a b, by rw_mod_cast [extension_coe hf, extension_coe hf, extension_coe hf,
f.map_add]) }
lemma add_monoid_hom.extension_coe [complete_space β] [separated_space β] (f : α →+ β)
(hf : continuous f) (a : α) : f.extension hf a = f a :=
extension_coe (uniform_continuous_add_monoid_hom_of_continuous hf) a
@[continuity]
lemma add_monoid_hom.continuous_extension [complete_space β] [separated_space β] (f : α →+ β)
(hf : continuous f) : continuous (f.extension hf) :=
continuous_extension
/-- Completion of a continuous group hom, as a group hom. -/
def add_monoid_hom.completion (f : α →+ β) (hf : continuous f) : completion α →+ completion β :=
(to_compl.comp f).extension (continuous_to_compl.comp hf)
@[continuity]
lemma add_monoid_hom.continuous_completion (f : α →+ β)
(hf : continuous f) : continuous (f.completion hf : completion α → completion β) :=
continuous_map
lemma add_monoid_hom.completion_coe (f : α →+ β)
(hf : continuous f) (a : α) : f.completion hf a = f a :=
map_coe (uniform_continuous_add_monoid_hom_of_continuous hf) a
lemma add_monoid_hom.completion_zero : (0 : α →+ β).completion continuous_const = 0 :=
begin
ext x,
apply completion.induction_on x,
{ apply is_closed_eq ((0 : α →+ β).continuous_completion continuous_const),
simp [continuous_const] },
{ intro a,
simp [(0 : α →+ β).completion_coe continuous_const, coe_zero] }
end
lemma add_monoid_hom.completion_add {γ : Type*} [add_comm_group γ] [uniform_space γ]
[uniform_add_group γ] (f g : α →+ γ) (hf : continuous f) (hg : continuous g) :
(f + g).completion (hf.add hg) = f.completion hf + g.completion hg :=
begin
have hfg := hf.add hg,
ext x,
apply completion.induction_on x,
{ exact is_closed_eq ((f+g).continuous_completion hfg)
((f.continuous_completion hf).add (g.continuous_completion hg)) },
{ intro a,
simp [(f+g).completion_coe hfg, coe_add, f.completion_coe hf, g.completion_coe hg] }
end
end add_monoid_hom