Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Patrick Massot. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Massot, Johannes Hölzl | |
-/ | |
import algebra.hom.group_instances | |
import topology.algebra.uniform_group | |
import topology.algebra.uniform_mul_action | |
import topology.uniform_space.completion | |
/-! | |
# Completion of topological groups: | |
This files endows the completion of a topological abelian group with a group structure. | |
More precisely the instance `uniform_space.completion.add_group` builds an abelian group structure | |
on the completion of an abelian group endowed with a compatible uniform structure. | |
Then the instance `uniform_space.completion.uniform_add_group` proves this group structure is | |
compatible with the completed uniform structure. The compatibility condition is `uniform_add_group`. | |
## Main declarations: | |
Beyond the instances explained above (that don't have to be explicitly invoked), | |
the main constructions deal with continuous group morphisms. | |
* `add_monoid_hom.extension`: extends a continuous group morphism from `G` | |
to a complete separated group `H` to `completion G`. | |
* `add_monoid_hom.completion`: promotes a continuous group morphism | |
from `G` to `H` into a continuous group morphism | |
from `completion G` to `completion H`. | |
-/ | |
noncomputable theory | |
variables {M R α β : Type*} | |
section group | |
open uniform_space Cauchy filter set | |
variables [uniform_space α] | |
instance [has_zero α] : has_zero (completion α) := ⟨(0 : α)⟩ | |
instance [has_neg α] : has_neg (completion α) := ⟨completion.map (λa, -a : α → α)⟩ | |
instance [has_add α] : has_add (completion α) := ⟨completion.map₂ (+)⟩ | |
instance [has_sub α] : has_sub (completion α) := ⟨completion.map₂ has_sub.sub⟩ | |
@[norm_cast] | |
lemma uniform_space.completion.coe_zero [has_zero α] : ((0 : α) : completion α) = 0 := rfl | |
end group | |
namespace uniform_space.completion | |
open uniform_space | |
section has_zero | |
instance [uniform_space α] [monoid_with_zero M] [has_zero α] [mul_action_with_zero M α] | |
[has_uniform_continuous_const_smul M α] : | |
mul_action_with_zero M (completion α) := | |
{ smul := (•), | |
smul_zero := λ r, by rw [← coe_zero, ← coe_smul, mul_action_with_zero.smul_zero r], | |
zero_smul := ext' (continuous_const_smul _) continuous_const $ λ a, | |
by rw [← coe_smul, zero_smul, coe_zero], | |
.. completion.mul_action M α } | |
end has_zero | |
section uniform_add_group | |
variables [uniform_space α] [add_group α] [uniform_add_group α] | |
@[norm_cast] | |
lemma coe_neg (a : α) : ((- a : α) : completion α) = - a := | |
(map_coe uniform_continuous_neg a).symm | |
@[norm_cast] | |
lemma coe_sub (a b : α) : ((a - b : α) : completion α) = a - b := | |
(map₂_coe_coe a b has_sub.sub uniform_continuous_sub).symm | |
@[norm_cast] | |
lemma coe_add (a b : α) : ((a + b : α) : completion α) = a + b := | |
(map₂_coe_coe a b (+) uniform_continuous_add).symm | |
instance : add_monoid (completion α) := | |
{ zero_add := assume a, completion.induction_on a | |
(is_closed_eq (continuous_map₂ continuous_const continuous_id) continuous_id) | |
(assume a, show 0 + (a : completion α) = a, by rw_mod_cast zero_add), | |
add_zero := assume a, completion.induction_on a | |
(is_closed_eq (continuous_map₂ continuous_id continuous_const) continuous_id) | |
(assume a, show (a : completion α) + 0 = a, by rw_mod_cast add_zero), | |
add_assoc := assume a b c, completion.induction_on₃ a b c | |
(is_closed_eq | |
(continuous_map₂ | |
(continuous_map₂ continuous_fst (continuous_fst.comp continuous_snd)) | |
(continuous_snd.comp continuous_snd)) | |
(continuous_map₂ continuous_fst | |
(continuous_map₂ | |
(continuous_fst.comp continuous_snd) | |
(continuous_snd.comp continuous_snd)))) | |
(assume a b c, show (a : completion α) + b + c = a + (b + c), | |
by repeat { rw_mod_cast add_assoc }), | |
nsmul := (•), | |
nsmul_zero' := λ a, completion.induction_on a (is_closed_eq continuous_map continuous_const) | |
(λ a, by rw [←coe_smul, ←coe_zero, zero_smul]), | |
nsmul_succ' := λ n a, completion.induction_on a | |
(is_closed_eq continuous_map $ continuous_map₂ continuous_id continuous_map) | |
(λ a, by rw_mod_cast succ_nsmul ), | |
.. completion.has_zero, ..completion.has_add, } | |
instance : sub_neg_monoid (completion α) := | |
{ sub_eq_add_neg := λ a b, completion.induction_on₂ a b | |
(is_closed_eq (continuous_map₂ continuous_fst continuous_snd) | |
(continuous_map₂ continuous_fst (completion.continuous_map.comp continuous_snd))) | |
(λ a b, by exact_mod_cast congr_arg coe (sub_eq_add_neg a b)), | |
zsmul := (•), | |
zsmul_zero' := λ a, completion.induction_on a (is_closed_eq continuous_map continuous_const) | |
(λ a, by { rw_mod_cast zero_smul, refl} ), | |
zsmul_succ' := λ n a, completion.induction_on a | |
(is_closed_eq continuous_map $ continuous_map₂ continuous_id continuous_map) | |
(λ a, by rw_mod_cast (show int.of_nat n.succ • a = a + int.of_nat n • a, | |
from sub_neg_monoid.zsmul_succ' n a) ), | |
zsmul_neg' := λ n a, completion.induction_on a | |
(is_closed_eq continuous_map $ completion.continuous_map.comp continuous_map) | |
(λ a, by rw [←coe_smul, ←coe_smul, ←coe_neg, show -[1+ n] • a = -((n.succ : ℤ) • a), | |
from sub_neg_monoid.zsmul_neg' n a]), | |
.. completion.add_monoid, .. completion.has_neg, .. completion.has_sub } | |
instance : add_group (completion α) := | |
{ add_left_neg := assume a, completion.induction_on a | |
(is_closed_eq (continuous_map₂ completion.continuous_map continuous_id) continuous_const) | |
(assume a, show - (a : completion α) + a = 0, by { rw_mod_cast add_left_neg, refl }), | |
.. completion.sub_neg_monoid } | |
instance : uniform_add_group (completion α) := | |
⟨uniform_continuous_map₂ has_sub.sub⟩ | |
instance {M} [monoid M] [distrib_mul_action M α] [has_uniform_continuous_const_smul M α] : | |
distrib_mul_action M (completion α) := | |
{ smul := (•), | |
smul_add := λ r x y, induction_on₂ x y | |
(is_closed_eq ((continuous_fst.add continuous_snd).const_smul _) | |
((continuous_fst.const_smul _).add (continuous_snd.const_smul _))) | |
(λ a b, by simp only [← coe_add, ← coe_smul, smul_add]), | |
smul_zero := λ r, by rw [← coe_zero, ← coe_smul, smul_zero r], | |
.. completion.mul_action M α } | |
/-- The map from a group to its completion as a group hom. -/ | |
@[simps] def to_compl : α →+ completion α := | |
{ to_fun := coe, | |
map_add' := coe_add, | |
map_zero' := coe_zero } | |
lemma continuous_to_compl : continuous (to_compl : α → completion α) := | |
continuous_coe α | |
end uniform_add_group | |
section uniform_add_comm_group | |
variables [uniform_space α] [add_comm_group α] [uniform_add_group α] | |
instance : add_comm_group (completion α) := | |
{ add_comm := assume a b, completion.induction_on₂ a b | |
(is_closed_eq (continuous_map₂ continuous_fst continuous_snd) | |
(continuous_map₂ continuous_snd continuous_fst)) | |
(assume x y, by { change ↑x + ↑y = ↑y + ↑x, rw [← coe_add, ← coe_add, add_comm]}), | |
.. completion.add_group } | |
instance [semiring R] [module R α] [has_uniform_continuous_const_smul R α] : | |
module R (completion α) := | |
{ smul := (•), | |
add_smul := λ a b, ext' (continuous_const_smul _) | |
((continuous_const_smul _).add (continuous_const_smul _)) $ λ x, by { norm_cast, rw add_smul }, | |
.. completion.distrib_mul_action, .. completion.mul_action_with_zero } | |
end uniform_add_comm_group | |
end uniform_space.completion | |
section add_monoid_hom | |
variables [uniform_space α] [add_group α] [uniform_add_group α] | |
[uniform_space β] [add_group β] [uniform_add_group β] | |
open uniform_space uniform_space.completion | |
/-- Extension to the completion of a continuous group hom. -/ | |
def add_monoid_hom.extension [complete_space β] [separated_space β] (f : α →+ β) | |
(hf : continuous f) : completion α →+ β := | |
have hf : uniform_continuous f, from uniform_continuous_add_monoid_hom_of_continuous hf, | |
{ to_fun := completion.extension f, | |
map_zero' := by rw [← coe_zero, extension_coe hf, f.map_zero], | |
map_add' := assume a b, completion.induction_on₂ a b | |
(is_closed_eq | |
(continuous_extension.comp continuous_add) | |
((continuous_extension.comp continuous_fst).add (continuous_extension.comp continuous_snd))) | |
(λ a b, by rw_mod_cast [extension_coe hf, extension_coe hf, extension_coe hf, | |
f.map_add]) } | |
lemma add_monoid_hom.extension_coe [complete_space β] [separated_space β] (f : α →+ β) | |
(hf : continuous f) (a : α) : f.extension hf a = f a := | |
extension_coe (uniform_continuous_add_monoid_hom_of_continuous hf) a | |
@[continuity] | |
lemma add_monoid_hom.continuous_extension [complete_space β] [separated_space β] (f : α →+ β) | |
(hf : continuous f) : continuous (f.extension hf) := | |
continuous_extension | |
/-- Completion of a continuous group hom, as a group hom. -/ | |
def add_monoid_hom.completion (f : α →+ β) (hf : continuous f) : completion α →+ completion β := | |
(to_compl.comp f).extension (continuous_to_compl.comp hf) | |
@[continuity] | |
lemma add_monoid_hom.continuous_completion (f : α →+ β) | |
(hf : continuous f) : continuous (f.completion hf : completion α → completion β) := | |
continuous_map | |
lemma add_monoid_hom.completion_coe (f : α →+ β) | |
(hf : continuous f) (a : α) : f.completion hf a = f a := | |
map_coe (uniform_continuous_add_monoid_hom_of_continuous hf) a | |
lemma add_monoid_hom.completion_zero : (0 : α →+ β).completion continuous_const = 0 := | |
begin | |
ext x, | |
apply completion.induction_on x, | |
{ apply is_closed_eq ((0 : α →+ β).continuous_completion continuous_const), | |
simp [continuous_const] }, | |
{ intro a, | |
simp [(0 : α →+ β).completion_coe continuous_const, coe_zero] } | |
end | |
lemma add_monoid_hom.completion_add {γ : Type*} [add_comm_group γ] [uniform_space γ] | |
[uniform_add_group γ] (f g : α →+ γ) (hf : continuous f) (hg : continuous g) : | |
(f + g).completion (hf.add hg) = f.completion hf + g.completion hg := | |
begin | |
have hfg := hf.add hg, | |
ext x, | |
apply completion.induction_on x, | |
{ exact is_closed_eq ((f+g).continuous_completion hfg) | |
((f.continuous_completion hf).add (g.continuous_completion hg)) }, | |
{ intro a, | |
simp [(f+g).completion_coe hfg, coe_add, f.completion_coe hf, g.completion_coe hg] } | |
end | |
end add_monoid_hom | |