Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
19.3 kB
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
-/
import algebra.ring.prod
import ring_theory.ideal.quotient
import ring_theory.subring.basic
import topology.algebra.group
/-!
# Topological (semi)rings
A topological (semi)ring is a (semi)ring equipped with a topology such that all operations are
continuous. Besides this definition, this file proves that the topological closure of a subring
(resp. an ideal) is a subring (resp. an ideal) and defines products and quotients
of topological (semi)rings.
## Main Results
- `subring.topological_closure`/`subsemiring.topological_closure`: the topological closure of a
`subring`/`subsemiring` is itself a `sub(semi)ring`.
- `prod.topological_semiring`/`prod.topological_ring`: The product of two topological
(semi)rings.
- `pi.topological_semiring`/`pi.topological_ring`: The arbitrary product of topological
(semi)rings.
- `ideal.closure`: The closure of an ideal is an ideal.
- `topological_ring_quotient`: The quotient of a topological semiring by an ideal is a
topological ring.
-/
open classical set filter topological_space function
open_locale classical topological_space filter
section topological_semiring
variables (α : Type*)
/-- a topological semiring is a semiring `R` where addition and multiplication are continuous.
We allow for non-unital and non-associative semirings as well.
The `topological_semiring` class should *only* be instantiated in the presence of a
`non_unital_non_assoc_semiring` instance; if there is an instance of `non_unital_non_assoc_ring`,
then `topological_ring` should be used. Note: in the presence of `non_assoc_ring`, these classes are
mathematically equivalent (see `topological_semiring.has_continuous_neg_of_mul` or
`topological_semiring.to_topological_ring`). -/
class topological_semiring [topological_space α] [non_unital_non_assoc_semiring α]
extends has_continuous_add α, has_continuous_mul α : Prop
/-- A topological ring is a ring `R` where addition, multiplication and negation are continuous.
If `R` is a (unital) ring, then continuity of negation can be derived from continuity of
multiplication as it is multiplication with `-1`. (See
`topological_semiring.has_continuous_neg_of_mul` and
`topological_semiring.to_topological_add_group`) -/
class topological_ring [topological_space α] [non_unital_non_assoc_ring α]
extends topological_semiring α, has_continuous_neg α : Prop
variables {α}
/-- If `R` is a ring with a continuous multiplication, then negation is continuous as well since it
is just multiplication with `-1`. -/
lemma topological_semiring.has_continuous_neg_of_mul [topological_space α] [non_assoc_ring α]
[has_continuous_mul α] : has_continuous_neg α :=
{ continuous_neg :=
by simpa using (continuous_const.mul continuous_id : continuous (λ x : α, (-1) * x)) }
/-- If `R` is a ring which is a topological semiring, then it is automatically a topological
ring. This exists so that one can place a topological ring structure on `R` without explicitly
proving `continuous_neg`. -/
lemma topological_semiring.to_topological_ring [topological_space α] [non_assoc_ring α]
(h : topological_semiring α) : topological_ring α :=
{ ..h,
..(by { haveI := h.to_has_continuous_mul,
exact topological_semiring.has_continuous_neg_of_mul } : has_continuous_neg α) }
@[priority 100] -- See note [lower instance priority]
instance topological_ring.to_topological_add_group [non_unital_non_assoc_ring α]
[topological_space α] [topological_ring α] : topological_add_group α :=
{ ..topological_ring.to_topological_semiring.to_has_continuous_add,
..topological_ring.to_has_continuous_neg }
@[priority 50]
instance discrete_topology.topological_semiring [topological_space α]
[non_unital_non_assoc_semiring α] [discrete_topology α] : topological_semiring α := ⟨⟩
@[priority 50]
instance discrete_topology.topological_ring [topological_space α]
[non_unital_non_assoc_ring α] [discrete_topology α] : topological_ring α := ⟨⟩
section
variables [topological_space α] [semiring α] [topological_semiring α]
namespace subsemiring
instance (S : subsemiring α) :
topological_semiring S :=
{ ..S.to_submonoid.has_continuous_mul,
..S.to_add_submonoid.has_continuous_add }
end subsemiring
/-- The (topological-space) closure of a subsemiring of a topological semiring is
itself a subsemiring. -/
def subsemiring.topological_closure (s : subsemiring α) : subsemiring α :=
{ carrier := closure (s : set α),
..(s.to_submonoid.topological_closure),
..(s.to_add_submonoid.topological_closure ) }
@[simp] lemma subsemiring.topological_closure_coe (s : subsemiring α) :
(s.topological_closure : set α) = closure (s : set α) :=
rfl
lemma subsemiring.subring_topological_closure (s : subsemiring α) :
s ≤ s.topological_closure :=
subset_closure
lemma subsemiring.is_closed_topological_closure (s : subsemiring α) :
is_closed (s.topological_closure : set α) :=
by convert is_closed_closure
lemma subsemiring.topological_closure_minimal
(s : subsemiring α) {t : subsemiring α} (h : s ≤ t) (ht : is_closed (t : set α)) :
s.topological_closure ≤ t :=
closure_minimal h ht
/-- If a subsemiring of a topological semiring is commutative, then so is its
topological closure. -/
def subsemiring.comm_semiring_topological_closure [t2_space α] (s : subsemiring α)
(hs : ∀ (x y : s), x * y = y * x) : comm_semiring s.topological_closure :=
{ ..s.topological_closure.to_semiring,
..s.to_submonoid.comm_monoid_topological_closure hs }
end
section
variables {β : Type*} [topological_space α] [topological_space β]
/-- The product topology on the cartesian product of two topological semirings
makes the product into a topological semiring. -/
instance [non_unital_non_assoc_semiring α] [non_unital_non_assoc_semiring β]
[topological_semiring α] [topological_semiring β] : topological_semiring (α × β) := {}
/-- The product topology on the cartesian product of two topological rings
makes the product into a topological ring. -/
instance [non_unital_non_assoc_ring α] [non_unital_non_assoc_ring β]
[topological_ring α] [topological_ring β] : topological_ring (α × β) := {}
end
instance {β : Type*} {C : β → Type*} [∀ b, topological_space (C b)]
[Π b, non_unital_non_assoc_semiring (C b)]
[Π b, topological_semiring (C b)] : topological_semiring (Π b, C b) := {}
instance {β : Type*} {C : β → Type*} [∀ b, topological_space (C b)]
[Π b, non_unital_non_assoc_ring (C b)]
[Π b, topological_ring (C b)] : topological_ring (Π b, C b) := {}
section mul_opposite
open mul_opposite
instance [non_unital_non_assoc_semiring α] [topological_space α] [has_continuous_add α] :
has_continuous_add αᵐᵒᵖ :=
{ continuous_add := continuous_induced_rng.2 $ (@continuous_add α _ _ _).comp
(continuous_unop.prod_map continuous_unop) }
instance [non_unital_non_assoc_semiring α] [topological_space α] [topological_semiring α] :
topological_semiring αᵐᵒᵖ := {}
instance [non_unital_non_assoc_ring α] [topological_space α] [has_continuous_neg α] :
has_continuous_neg αᵐᵒᵖ :=
{ continuous_neg := continuous_induced_rng.2 $ (@continuous_neg α _ _ _).comp continuous_unop }
instance [non_unital_non_assoc_ring α] [topological_space α] [topological_ring α] :
topological_ring αᵐᵒᵖ := {}
end mul_opposite
section add_opposite
open add_opposite
instance [non_unital_non_assoc_semiring α] [topological_space α] [has_continuous_mul α] :
has_continuous_mul αᵃᵒᵖ :=
{ continuous_mul := by convert
(continuous_op.comp $ (@continuous_mul α _ _ _).comp $ continuous_unop.prod_map continuous_unop) }
instance [non_unital_non_assoc_semiring α] [topological_space α] [topological_semiring α] :
topological_semiring αᵃᵒᵖ := {}
instance [non_unital_non_assoc_ring α] [topological_space α] [topological_ring α] :
topological_ring αᵃᵒᵖ := {}
end add_opposite
section
variables {R : Type*} [non_unital_non_assoc_ring R] [topological_space R]
lemma topological_ring.of_add_group_of_nhds_zero [topological_add_group R]
(hmul : tendsto (uncurry ((*) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) $ 𝓝 0)
(hmul_left : ∀ (x₀ : R), tendsto (λ x : R, x₀ * x) (𝓝 0) $ 𝓝 0)
(hmul_right : ∀ (x₀ : R), tendsto (λ x : R, x * x₀) (𝓝 0) $ 𝓝 0) : topological_ring R :=
begin
refine {..‹topological_add_group R›, ..},
have hleft : ∀ x₀ : R, 𝓝 x₀ = map (λ x, x₀ + x) (𝓝 0), by simp,
have hadd : tendsto (uncurry ((+) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) (𝓝 0),
{ rw ← nhds_prod_eq,
convert continuous_add.tendsto ((0 : R), (0 : R)),
rw zero_add },
rw continuous_iff_continuous_at,
rintro ⟨x₀, y₀⟩,
rw [continuous_at, nhds_prod_eq, hleft x₀, hleft y₀, hleft (x₀*y₀), filter.prod_map_map_eq,
tendsto_map'_iff],
suffices :
tendsto ((λ (x : R), x + x₀ * y₀) ∘ (λ (p : R × R), p.1 + p.2) ∘
(λ (p : R × R), (p.1*y₀ + x₀*p.2, p.1*p.2)))
((𝓝 0) ×ᶠ (𝓝 0)) (map (λ (x : R), x + x₀ * y₀) $ 𝓝 0),
{ convert this using 1,
{ ext, simp only [comp_app, mul_add, add_mul], abel },
{ simp only [add_comm] } },
refine tendsto_map.comp (hadd.comp (tendsto.prod_mk _ hmul)),
exact hadd.comp (((hmul_right y₀).comp tendsto_fst).prod_mk ((hmul_left x₀).comp tendsto_snd))
end
lemma topological_ring.of_nhds_zero
(hadd : tendsto (uncurry ((+) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) $ 𝓝 0)
(hneg : tendsto (λ x, -x : R → R) (𝓝 0) (𝓝 0))
(hmul : tendsto (uncurry ((*) : R → R → R)) ((𝓝 0) ×ᶠ (𝓝 0)) $ 𝓝 0)
(hmul_left : ∀ (x₀ : R), tendsto (λ x : R, x₀ * x) (𝓝 0) $ 𝓝 0)
(hmul_right : ∀ (x₀ : R), tendsto (λ x : R, x * x₀) (𝓝 0) $ 𝓝 0)
(hleft : ∀ x₀ : R, 𝓝 x₀ = map (λ x, x₀ + x) (𝓝 0)) : topological_ring R :=
begin
haveI := topological_add_group.of_comm_of_nhds_zero hadd hneg hleft,
exact topological_ring.of_add_group_of_nhds_zero hmul hmul_left hmul_right
end
end
variables {α} [topological_space α]
section
variables [non_unital_non_assoc_ring α] [topological_ring α]
/-- In a topological semiring, the left-multiplication `add_monoid_hom` is continuous. -/
lemma mul_left_continuous (x : α) : continuous (add_monoid_hom.mul_left x) :=
continuous_const.mul continuous_id
/-- In a topological semiring, the right-multiplication `add_monoid_hom` is continuous. -/
lemma mul_right_continuous (x : α) : continuous (add_monoid_hom.mul_right x) :=
continuous_id.mul continuous_const
end
variables [ring α] [topological_ring α]
namespace subring
instance (S : subring α) :
topological_ring S :=
topological_semiring.to_topological_ring S.to_subsemiring.topological_semiring
end subring
/-- The (topological-space) closure of a subring of a topological ring is
itself a subring. -/
def subring.topological_closure (S : subring α) : subring α :=
{ carrier := closure (S : set α),
..S.to_submonoid.topological_closure,
..S.to_add_subgroup.topological_closure }
lemma subring.subring_topological_closure (s : subring α) :
s ≤ s.topological_closure := subset_closure
lemma subring.is_closed_topological_closure (s : subring α) :
is_closed (s.topological_closure : set α) := by convert is_closed_closure
lemma subring.topological_closure_minimal
(s : subring α) {t : subring α} (h : s ≤ t) (ht : is_closed (t : set α)) :
s.topological_closure ≤ t := closure_minimal h ht
/-- If a subring of a topological ring is commutative, then so is its topological closure. -/
def subring.comm_ring_topological_closure [t2_space α] (s : subring α)
(hs : ∀ (x y : s), x * y = y * x) : comm_ring s.topological_closure :=
{ ..s.topological_closure.to_ring,
..s.to_submonoid.comm_monoid_topological_closure hs }
end topological_semiring
section topological_comm_ring
variables {α : Type*} [topological_space α] [comm_ring α] [topological_ring α]
/-- The closure of an ideal in a topological ring as an ideal. -/
def ideal.closure (S : ideal α) : ideal α :=
{ carrier := closure S,
smul_mem' := λ c x hx, map_mem_closure (mul_left_continuous _) hx $ λ a, S.mul_mem_left c,
..(add_submonoid.topological_closure S.to_add_submonoid) }
@[simp] lemma ideal.coe_closure (S : ideal α) : (S.closure : set α) = closure S := rfl
end topological_comm_ring
section topological_ring
variables {α : Type*} [topological_space α] [comm_ring α] (N : ideal α)
open ideal.quotient
instance topological_ring_quotient_topology : topological_space (α ⧸ N) :=
show topological_space (quotient _), by apply_instance
-- note for the reader: in the following, `mk` is `ideal.quotient.mk`, the canonical map `R → R/I`.
variable [topological_ring α]
lemma quotient_ring.is_open_map_coe : is_open_map (mk N) :=
begin
intros s s_op,
change is_open (mk N ⁻¹' (mk N '' s)),
rw quotient_ring_saturate,
exact is_open_Union (λ ⟨n, _⟩, is_open_map_add_left n s s_op)
end
lemma quotient_ring.quotient_map_coe_coe : quotient_map (λ p : α × α, (mk N p.1, mk N p.2)) :=
is_open_map.to_quotient_map
((quotient_ring.is_open_map_coe N).prod (quotient_ring.is_open_map_coe N))
((continuous_quot_mk.comp continuous_fst).prod_mk (continuous_quot_mk.comp continuous_snd))
(by rintro ⟨⟨x⟩, ⟨y⟩⟩; exact ⟨(x, y), rfl⟩)
instance topological_ring_quotient : topological_ring (α ⧸ N) :=
topological_semiring.to_topological_ring
{ continuous_add :=
have cont : continuous (mk N ∘ (λ (p : α × α), p.fst + p.snd)) :=
continuous_quot_mk.comp continuous_add,
(quotient_map.continuous_iff (quotient_ring.quotient_map_coe_coe N)).mpr cont,
continuous_mul :=
have cont : continuous (mk N ∘ (λ (p : α × α), p.fst * p.snd)) :=
continuous_quot_mk.comp continuous_mul,
(quotient_map.continuous_iff (quotient_ring.quotient_map_coe_coe N)).mpr cont }
end topological_ring
/-!
### Lattice of ring topologies
We define a type class `ring_topology α` which endows a ring `α` with a topology such that all ring
operations are continuous.
Ring topologies on a fixed ring `α` are ordered, by reverse inclusion. They form a complete lattice,
with `⊥` the discrete topology and `⊤` the indiscrete topology.
Any function `f : α → β` induces `coinduced f : topological_space α → ring_topology β`. -/
universes u v
/-- A ring topology on a ring `α` is a topology for which addition, negation and multiplication
are continuous. -/
@[ext]
structure ring_topology (α : Type u) [ring α]
extends topological_space α, topological_ring α : Type u
namespace ring_topology
variables {α : Type*} [ring α]
instance inhabited {α : Type u} [ring α] : inhabited (ring_topology α) :=
⟨{to_topological_space := ⊤,
continuous_add := continuous_top,
continuous_mul := continuous_top,
continuous_neg := continuous_top}⟩
@[ext]
lemma ext' {f g : ring_topology α} (h : f.is_open = g.is_open) : f = g :=
by { ext, rw h }
/-- The ordering on ring topologies on the ring `α`.
`t ≤ s` if every set open in `s` is also open in `t` (`t` is finer than `s`). -/
instance : partial_order (ring_topology α) :=
partial_order.lift ring_topology.to_topological_space $ ext
local notation `cont` := @continuous _ _
private def def_Inf (S : set (ring_topology α)) : ring_topology α :=
let Inf_S' := Inf (to_topological_space '' S) in
{ to_topological_space := Inf_S',
continuous_add :=
begin
apply continuous_Inf_rng.2,
rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI,
have h := continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_id,
have h_continuous_id := @continuous.prod_map _ _ _ _ t t Inf_S' Inf_S' _ _ h h,
exact @continuous.comp _ _ _ (id _) (id _) t _ _ continuous_add h_continuous_id,
end,
continuous_mul :=
begin
apply continuous_Inf_rng.2,
rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI,
have h := continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_id,
have h_continuous_id := @continuous.prod_map _ _ _ _ t t Inf_S' Inf_S' _ _ h h,
exact @continuous.comp _ _ _ (id _) (id _) t _ _ continuous_mul h_continuous_id,
end,
continuous_neg :=
begin
apply continuous_Inf_rng.2,
rintros _ ⟨⟨t, tr⟩, haS, rfl⟩, resetI,
have h := continuous_Inf_dom (set.mem_image_of_mem to_topological_space haS) continuous_id,
exact @continuous.comp _ _ _ (id _) (id _) t _ _ continuous_neg h,
end }
/-- Ring topologies on `α` form a complete lattice, with `⊥` the discrete topology and `⊤` the
indiscrete topology.
The infimum of a collection of ring topologies is the topology generated by all their open sets
(which is a ring topology).
The supremum of two ring topologies `s` and `t` is the infimum of the family of all ring topologies
contained in the intersection of `s` and `t`. -/
instance : complete_semilattice_Inf (ring_topology α) :=
{ Inf := def_Inf,
Inf_le := λ S a haS, by { apply topological_space.complete_lattice.Inf_le, use [a, ⟨ haS, rfl⟩] },
le_Inf :=
begin
intros S a hab,
apply topological_space.complete_lattice.le_Inf,
rintros _ ⟨b, hbS, rfl⟩,
exact hab b hbS,
end,
..ring_topology.partial_order }
instance : complete_lattice (ring_topology α) :=
complete_lattice_of_complete_semilattice_Inf _
/-- Given `f : α → β` and a topology on `α`, the coinduced ring topology on `β` is the finest
topology such that `f` is continuous and `β` is a topological ring. -/
def coinduced {α β : Type*} [t : topological_space α] [ring β] (f : α → β) :
ring_topology β :=
Inf {b : ring_topology β | (topological_space.coinduced f t) ≤ b.to_topological_space}
lemma coinduced_continuous {α β : Type*} [t : topological_space α] [ring β] (f : α → β) :
cont t (coinduced f).to_topological_space f :=
begin
rw continuous_iff_coinduced_le,
refine le_Inf _,
rintros _ ⟨t', ht', rfl⟩,
exact ht',
end
/-- The forgetful functor from ring topologies on `a` to additive group topologies on `a`. -/
def to_add_group_topology (t : ring_topology α) : add_group_topology α :=
{ to_topological_space := t.to_topological_space,
to_topological_add_group := @topological_ring.to_topological_add_group _ _ t.to_topological_space
t.to_topological_ring }
/-- The order embedding from ring topologies on `a` to additive group topologies on `a`. -/
def to_add_group_topology.order_embedding : order_embedding (ring_topology α)
(add_group_topology α) :=
{ to_fun := λ t, t.to_add_group_topology,
inj' :=
begin
intros t₁ t₂ h_eq,
dsimp only at h_eq,
ext,
have h_t₁ : t₁.to_topological_space = t₁.to_add_group_topology.to_topological_space := rfl,
rw [h_t₁, h_eq],
refl,
end,
map_rel_iff' :=
begin
intros t₁ t₂,
rw [embedding.coe_fn_mk],
have h_le : t₁ ≤ t₂ ↔ t₁.to_topological_space ≤ t₂.to_topological_space := by refl,
rw h_le,
refl,
end }
end ring_topology