Zhangir Azerbayev
squashed?
4365a98
raw
history blame
30 kB
/-
Copyright (c) 2018 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot, Johannes Hölzl
-/
import topology.uniform_space.uniform_convergence
import topology.uniform_space.uniform_embedding
import topology.uniform_space.complete_separated
import topology.algebra.group
import tactic.abel
/-!
# Uniform structure on topological groups
This file defines uniform groups and its additive counterpart. These typeclasses should be
preferred over using `[topological_space α] [topological_group α]` since every topological
group naturally induces a uniform structure.
## Main declarations
* `uniform_group` and `uniform_add_group`: Multiplicative and additive uniform groups, that
i.e., groups with uniformly continuous `(*)` and `(⁻¹)` / `(+)` and `(-)`.
## Main results
* `topological_add_group.to_uniform_space` and `topological_add_group_is_uniform` can be used to
construct a canonical uniformity for a topological add group.
* extension of ℤ-bilinear maps to complete groups (useful for ring completions)
-/
noncomputable theory
open_locale classical uniformity topological_space filter pointwise
section uniform_group
open filter set
variables {α : Type*} {β : Type*}
/-- A uniform group is a group in which multiplication and inversion are uniformly continuous. -/
class uniform_group (α : Type*) [uniform_space α] [group α] : Prop :=
(uniform_continuous_div : uniform_continuous (λp:α×α, p.1 / p.2))
/-- A uniform additive group is an additive group in which addition
and negation are uniformly continuous.-/
class uniform_add_group (α : Type*) [uniform_space α] [add_group α] : Prop :=
(uniform_continuous_sub : uniform_continuous (λp:α×α, p.1 - p.2))
attribute [to_additive] uniform_group
@[to_additive] theorem uniform_group.mk' {α} [uniform_space α] [group α]
(h₁ : uniform_continuous (λp:α×α, p.1 * p.2))
(h₂ : uniform_continuous (λp:α, p⁻¹)) : uniform_group α :=
⟨by simpa only [div_eq_mul_inv] using
h₁.comp (uniform_continuous_fst.prod_mk (h₂.comp uniform_continuous_snd))⟩
variables [uniform_space α] [group α] [uniform_group α]
@[to_additive] lemma uniform_continuous_div : uniform_continuous (λp:α×α, p.1 / p.2) :=
uniform_group.uniform_continuous_div
@[to_additive] lemma uniform_continuous.div [uniform_space β] {f : β → α} {g : β → α}
(hf : uniform_continuous f) (hg : uniform_continuous g) : uniform_continuous (λx, f x / g x) :=
uniform_continuous_div.comp (hf.prod_mk hg)
@[to_additive] lemma uniform_continuous.inv [uniform_space β] {f : β → α}
(hf : uniform_continuous f) : uniform_continuous (λx, (f x)⁻¹) :=
have uniform_continuous (λx, 1 / f x),
from uniform_continuous_const.div hf,
by simp * at *
@[to_additive] lemma uniform_continuous_inv : uniform_continuous (λx:α, x⁻¹) :=
uniform_continuous_id.inv
@[to_additive] lemma uniform_continuous.mul [uniform_space β] {f : β → α} {g : β → α}
(hf : uniform_continuous f) (hg : uniform_continuous g) : uniform_continuous (λx, f x * g x) :=
have uniform_continuous (λx, f x / (g x)⁻¹), from hf.div hg.inv,
by simp * at *
@[to_additive] lemma uniform_continuous_mul : uniform_continuous (λp:α×α, p.1 * p.2) :=
uniform_continuous_fst.mul uniform_continuous_snd
@[to_additive uniform_continuous.const_nsmul]
lemma uniform_continuous.pow_const [uniform_space β] {f : β → α}
(hf : uniform_continuous f) : ∀ n : ℕ, uniform_continuous (λ x, f x ^ n)
| 0 := by { simp_rw pow_zero, exact uniform_continuous_const }
| (n + 1) := by { simp_rw pow_succ, exact hf.mul (uniform_continuous.pow_const n) }
@[to_additive uniform_continuous_const_nsmul] lemma uniform_continuous_pow_const (n : ℕ) :
uniform_continuous (λx:α, x ^ n) :=
uniform_continuous_id.pow_const n
@[to_additive uniform_continuous.const_zsmul]
lemma uniform_continuous.zpow_const [uniform_space β] {f : β → α}
(hf : uniform_continuous f) : ∀ n : ℤ, uniform_continuous (λ x, f x ^ n)
| (n : ℕ) := by { simp_rw zpow_coe_nat, exact hf.pow_const _, }
| -[1+ n] := by { simp_rw zpow_neg_succ_of_nat, exact (hf.pow_const _).inv }
@[to_additive uniform_continuous_const_zsmul] lemma uniform_continuous_zpow_const (n : ℤ) :
uniform_continuous (λx:α, x ^ n) :=
uniform_continuous_id.zpow_const n
@[priority 10, to_additive]
instance uniform_group.to_topological_group : topological_group α :=
{ continuous_mul := uniform_continuous_mul.continuous,
continuous_inv := uniform_continuous_inv.continuous }
@[to_additive] instance [uniform_space β] [group β] [uniform_group β] : uniform_group (α × β) :=
⟨((uniform_continuous_fst.comp uniform_continuous_fst).div
(uniform_continuous_fst.comp uniform_continuous_snd)).prod_mk
((uniform_continuous_snd.comp uniform_continuous_fst).div
(uniform_continuous_snd.comp uniform_continuous_snd))⟩
@[to_additive] lemma uniformity_translate_mul (a : α) :
(𝓤 α).map (λx:α×α, (x.1 * a, x.2 * a)) = 𝓤 α :=
le_antisymm
(uniform_continuous_id.mul uniform_continuous_const)
(calc 𝓤 α =
((𝓤 α).map (λx:α×α, (x.1 * a⁻¹, x.2 * a⁻¹))).map (λx:α×α, (x.1 * a, x.2 * a)) :
by simp [filter.map_map, (∘)]; exact filter.map_id.symm
... ≤ (𝓤 α).map (λx:α×α, (x.1 * a, x.2 * a)) :
filter.map_mono (uniform_continuous_id.mul uniform_continuous_const))
@[to_additive] lemma uniform_embedding_translate_mul (a : α) : uniform_embedding (λx:α, x * a) :=
{ comap_uniformity := begin
rw [← uniformity_translate_mul a, comap_map] {occs := occurrences.pos [1]},
rintros ⟨p₁, p₂⟩ ⟨q₁, q₂⟩,
simp [prod.eq_iff_fst_eq_snd_eq] {contextual := tt}
end,
inj := mul_left_injective a }
namespace mul_opposite
@[to_additive] instance : uniform_group αᵐᵒᵖ :=
⟨uniform_continuous_op.comp ((uniform_continuous_unop.comp uniform_continuous_snd).inv.mul $
uniform_continuous_unop.comp uniform_continuous_fst)⟩
end mul_opposite
namespace subgroup
@[to_additive] instance (S : subgroup α) : uniform_group S :=
⟨uniform_continuous_comap' (uniform_continuous_div.comp $
uniform_continuous_subtype_val.prod_map uniform_continuous_subtype_val)⟩
end subgroup
section lattice_ops
variables [group β]
@[to_additive] lemma uniform_group_Inf {us : set (uniform_space β)}
(h : ∀ u ∈ us, @uniform_group β u _) :
@uniform_group β (Inf us) _ :=
{ uniform_continuous_div := uniform_continuous_Inf_rng (λ u hu, uniform_continuous_Inf_dom₂ hu hu
(@uniform_group.uniform_continuous_div β u _ (h u hu))) }
@[to_additive] lemma uniform_group_infi {ι : Sort*} {us' : ι → uniform_space β}
(h' : ∀ i, @uniform_group β (us' i) _) :
@uniform_group β (⨅ i, us' i) _ :=
by {rw ← Inf_range, exact uniform_group_Inf (set.forall_range_iff.mpr h')}
@[to_additive] lemma uniform_group_inf {u₁ u₂ : uniform_space β}
(h₁ : @uniform_group β u₁ _) (h₂ : @uniform_group β u₂ _) :
@uniform_group β (u₁ ⊓ u₂) _ :=
by {rw inf_eq_infi, refine uniform_group_infi (λ b, _), cases b; assumption}
@[to_additive] lemma uniform_group_comap {γ : Type*} [group γ] {u : uniform_space γ}
[uniform_group γ] {F : Type*} [monoid_hom_class F β γ] (f : F) :
@uniform_group β (u.comap f) _ :=
{ uniform_continuous_div :=
begin
letI : uniform_space β := u.comap f,
refine uniform_continuous_comap' _,
simp_rw [function.comp, map_div],
change uniform_continuous ((λ p : γ × γ, p.1 / p.2) ∘ (prod.map f f)),
exact uniform_continuous_div.comp
(uniform_continuous_comap.prod_map uniform_continuous_comap),
end }
end lattice_ops
section
variables (α)
@[to_additive] lemma uniformity_eq_comap_nhds_one : 𝓤 α = comap (λx:α×α, x.2 / x.1) (𝓝 (1:α)) :=
begin
rw [nhds_eq_comap_uniformity, filter.comap_comap],
refine le_antisymm (filter.map_le_iff_le_comap.1 _) _,
{ assume s hs,
rcases mem_uniformity_of_uniform_continuous_invariant uniform_continuous_div hs
with ⟨t, ht, hts⟩,
refine mem_map.2 (mem_of_superset ht _),
rintros ⟨a, b⟩,
simpa [subset_def] using hts a b a },
{ assume s hs,
rcases mem_uniformity_of_uniform_continuous_invariant uniform_continuous_mul hs
with ⟨t, ht, hts⟩,
refine ⟨_, ht, _⟩,
rintros ⟨a, b⟩, simpa [subset_def] using hts 1 (b / a) a }
end
@[to_additive] lemma uniformity_eq_comap_nhds_one_swapped :
𝓤 α = comap (λx:α×α, x.1 / x.2) (𝓝 (1:α)) :=
by { rw [← comap_swap_uniformity, uniformity_eq_comap_nhds_one, comap_comap, (∘)], refl }
open mul_opposite
@[to_additive]
lemma uniformity_eq_comap_inv_mul_nhds_one : 𝓤 α = comap (λx:α×α, x.1⁻¹ * x.2) (𝓝 (1:α)) :=
begin
rw [← comap_uniformity_mul_opposite, uniformity_eq_comap_nhds_one, ← op_one, ← comap_unop_nhds,
comap_comap, comap_comap],
simp [(∘)]
end
@[to_additive] lemma uniformity_eq_comap_inv_mul_nhds_one_swapped :
𝓤 α = comap (λx:α×α, x.2⁻¹ * x.1) (𝓝 (1:α)) :=
by { rw [← comap_swap_uniformity, uniformity_eq_comap_inv_mul_nhds_one, comap_comap, (∘)], refl }
end
@[to_additive] lemma filter.has_basis.uniformity_of_nhds_one {ι} {p : ι → Prop} {U : ι → set α}
(h : (𝓝 (1 : α)).has_basis p U) :
(𝓤 α).has_basis p (λ i, {x : α × α | x.2 / x.1 ∈ U i}) :=
by { rw uniformity_eq_comap_nhds_one, exact h.comap _ }
@[to_additive] lemma filter.has_basis.uniformity_of_nhds_one_inv_mul
{ι} {p : ι → Prop} {U : ι → set α} (h : (𝓝 (1 : α)).has_basis p U) :
(𝓤 α).has_basis p (λ i, {x : α × α | x.1⁻¹ * x.2 ∈ U i}) :=
by { rw uniformity_eq_comap_inv_mul_nhds_one, exact h.comap _ }
@[to_additive] lemma filter.has_basis.uniformity_of_nhds_one_swapped
{ι} {p : ι → Prop} {U : ι → set α} (h : (𝓝 (1 : α)).has_basis p U) :
(𝓤 α).has_basis p (λ i, {x : α × α | x.1 / x.2 ∈ U i}) :=
by { rw uniformity_eq_comap_nhds_one_swapped, exact h.comap _ }
@[to_additive] lemma filter.has_basis.uniformity_of_nhds_one_inv_mul_swapped
{ι} {p : ι → Prop} {U : ι → set α} (h : (𝓝 (1 : α)).has_basis p U) :
(𝓤 α).has_basis p (λ i, {x : α × α | x.2⁻¹ * x.1 ∈ U i}) :=
by { rw uniformity_eq_comap_inv_mul_nhds_one_swapped, exact h.comap _ }
@[to_additive] lemma group_separation_rel (x y : α) :
(x, y) ∈ separation_rel α ↔ x / y ∈ closure ({1} : set α) :=
have embedding (λa, a * (y / x)), from (uniform_embedding_translate_mul (y / x)).embedding,
show (x, y) ∈ ⋂₀ (𝓤 α).sets ↔ x / y ∈ closure ({1} : set α),
begin
rw [this.closure_eq_preimage_closure_image, uniformity_eq_comap_nhds_one α, sInter_comap_sets],
simp [mem_closure_iff_nhds, inter_singleton_nonempty, sub_eq_add_neg, add_assoc]
end
@[to_additive] lemma uniform_continuous_of_tendsto_one {hom : Type*} [uniform_space β] [group β]
[uniform_group β] [monoid_hom_class hom α β] {f : hom} (h : tendsto f (𝓝 1) (𝓝 1)) :
uniform_continuous f :=
begin
have : ((λx:β×β, x.2 / x.1) ∘ (λx:α×α, (f x.1, f x.2))) = (λx:α×α, f (x.2 / x.1)),
{ simp only [map_div] },
rw [uniform_continuous, uniformity_eq_comap_nhds_one α, uniformity_eq_comap_nhds_one β,
tendsto_comap_iff, this],
exact tendsto.comp h tendsto_comap
end
/-- A group homomorphism (a bundled morphism of a type that implements `monoid_hom_class`) between
two uniform groups is uniformly continuous provided that it is continuous at one. See also
`continuous_of_continuous_at_one`. -/
@[to_additive "An additive group homomorphism (a bundled morphism of a type that implements
`add_monoid_hom_class`) between two uniform additive groups is uniformly continuous provided that it
is continuous at zero. See also `continuous_of_continuous_at_zero`."]
lemma uniform_continuous_of_continuous_at_one {hom : Type*}
[uniform_space β] [group β] [uniform_group β] [monoid_hom_class hom α β]
(f : hom) (hf : continuous_at f 1) :
uniform_continuous f :=
uniform_continuous_of_tendsto_one (by simpa using hf.tendsto)
@[to_additive] lemma monoid_hom.uniform_continuous_of_continuous_at_one
[uniform_space β] [group β] [uniform_group β]
(f : α →* β) (hf : continuous_at f 1) :
uniform_continuous f :=
uniform_continuous_of_continuous_at_one f hf
/-- A homomorphism from a uniform group to a discrete uniform group is continuous if and only if
its kernel is open. -/
@[to_additive "A homomorphism from a uniform additive group to a discrete uniform additive group is
continuous if and only if its kernel is open."]
lemma uniform_group.uniform_continuous_iff_open_ker {hom : Type*} [uniform_space β]
[discrete_topology β] [group β] [uniform_group β] [monoid_hom_class hom α β] {f : hom} :
uniform_continuous f ↔ is_open ((f : α →* β).ker : set α) :=
begin
refine ⟨λ hf, _, λ hf, _⟩,
{ apply (is_open_discrete ({1} : set β)).preimage (uniform_continuous.continuous hf) },
{ apply uniform_continuous_of_continuous_at_one,
rw [continuous_at, nhds_discrete β, map_one, tendsto_pure],
exact hf.mem_nhds (map_one f) }
end
@[to_additive] lemma uniform_continuous_monoid_hom_of_continuous {hom : Type*} [uniform_space β]
[group β] [uniform_group β] [monoid_hom_class hom α β] {f : hom} (h : continuous f) :
uniform_continuous f :=
uniform_continuous_of_tendsto_one $
suffices tendsto f (𝓝 1) (𝓝 (f 1)), by rwa map_one at this,
h.tendsto 1
@[to_additive] lemma cauchy_seq.mul {ι : Type*} [semilattice_sup ι] {u v : ι → α}
(hu : cauchy_seq u) (hv : cauchy_seq v) : cauchy_seq (u * v) :=
uniform_continuous_mul.comp_cauchy_seq (hu.prod hv)
@[to_additive] lemma cauchy_seq.mul_const {ι : Type*} [semilattice_sup ι]
{u : ι → α} {x : α} (hu : cauchy_seq u) : cauchy_seq (λ n, u n * x) :=
(uniform_continuous_id.mul uniform_continuous_const).comp_cauchy_seq hu
@[to_additive] lemma cauchy_seq.const_mul {ι : Type*} [semilattice_sup ι]
{u : ι → α} {x : α} (hu : cauchy_seq u) : cauchy_seq (λ n, x * u n) :=
(uniform_continuous_const.mul uniform_continuous_id).comp_cauchy_seq hu
@[to_additive] lemma cauchy_seq.inv {ι : Type*} [semilattice_sup ι]
{u : ι → α} (h : cauchy_seq u) : cauchy_seq (u⁻¹) :=
uniform_continuous_inv.comp_cauchy_seq h
@[to_additive] lemma totally_bounded_iff_subset_finite_Union_nhds_one {s : set α} :
totally_bounded s ↔ ∀ U ∈ 𝓝 (1 : α), ∃ (t : set α), t.finite ∧ s ⊆ ⋃ y ∈ t, y • U :=
(𝓝 (1 : α)).basis_sets.uniformity_of_nhds_one_inv_mul_swapped.totally_bounded_iff.trans $
by simp [← preimage_smul_inv, preimage]
section uniform_convergence
variables {ι : Type*} {l : filter ι} {f f' : ι → β → α} {g g' : β → α} {s : set β}
@[to_additive] lemma tendsto_uniformly_on.mul (hf : tendsto_uniformly_on f g l s)
(hf' : tendsto_uniformly_on f' g' l s) : tendsto_uniformly_on (f * f') (g * g') l s :=
λ u hu, ((uniform_continuous_mul.comp_tendsto_uniformly_on (hf.prod hf')) u hu).diag_of_prod
@[to_additive] lemma tendsto_uniformly_on.div (hf : tendsto_uniformly_on f g l s)
(hf' : tendsto_uniformly_on f' g' l s) : tendsto_uniformly_on (f / f') (g / g') l s :=
λ u hu, ((uniform_continuous_div.comp_tendsto_uniformly_on (hf.prod hf')) u hu).diag_of_prod
@[to_additive] lemma uniform_cauchy_seq_on.mul (hf : uniform_cauchy_seq_on f l s)
(hf' : uniform_cauchy_seq_on f' l s) : uniform_cauchy_seq_on (f * f') l s :=
λ u hu, by simpa using ((uniform_continuous_mul.comp_uniform_cauchy_seq_on (hf.prod' hf')) u hu)
@[to_additive] lemma uniform_cauchy_seq_on.div (hf : uniform_cauchy_seq_on f l s)
(hf' : uniform_cauchy_seq_on f' l s) : uniform_cauchy_seq_on (f / f') l s :=
λ u hu, by simpa using ((uniform_continuous_div.comp_uniform_cauchy_seq_on (hf.prod' hf')) u hu)
end uniform_convergence
end uniform_group
section topological_comm_group
open filter
variables (G : Type*) [comm_group G] [topological_space G] [topological_group G]
/-- The right uniformity on a topological group. -/
@[to_additive "The right uniformity on a topological group"]
def topological_group.to_uniform_space : uniform_space G :=
{ uniformity := comap (λp:G×G, p.2 / p.1) (𝓝 1),
refl :=
by refine map_le_iff_le_comap.1 (le_trans _ (pure_le_nhds 1));
simp [set.subset_def] {contextual := tt},
symm :=
begin
suffices : tendsto (λp:G×G, (p.2 / p.1)⁻¹) (comap (λp:G×G, p.2 / p.1) (𝓝 1)) (𝓝 1⁻¹),
{ simpa [tendsto_comap_iff], },
exact tendsto.comp (tendsto.inv tendsto_id) tendsto_comap
end,
comp :=
begin
intros D H,
rw mem_lift'_sets,
{ rcases H with ⟨U, U_nhds, U_sub⟩,
rcases exists_nhds_one_split U_nhds with ⟨V, ⟨V_nhds, V_sum⟩⟩,
existsi ((λp:G×G, p.2 / p.1) ⁻¹' V),
have H : (λp:G×G, p.2 / p.1) ⁻¹' V ∈ comap (λp:G×G, p.2 / p.1) (𝓝 (1 : G)),
by existsi [V, V_nhds] ; refl,
existsi H,
have comp_rel_sub :
comp_rel ((λp:G×G, p.2 / p.1) ⁻¹' V) ((λp, p.2 / p.1) ⁻¹' V) ⊆ (λp:G×G, p.2 / p.1) ⁻¹' U,
begin
intros p p_comp_rel,
rcases p_comp_rel with ⟨z, ⟨Hz1, Hz2⟩⟩,
simpa [sub_eq_add_neg, add_comm, add_left_comm] using V_sum _ Hz1 _ Hz2
end,
exact set.subset.trans comp_rel_sub U_sub },
{ exact monotone_comp_rel monotone_id monotone_id }
end,
is_open_uniformity :=
begin
intro S,
let S' := λ x, {p : G × G | p.1 = x → p.2 ∈ S},
show is_open S ↔ ∀ (x : G), x ∈ S → S' x ∈ comap (λp:G×G, p.2 / p.1) (𝓝 (1 : G)),
rw [is_open_iff_mem_nhds],
refine forall₂_congr (λ a ha, _),
rw [← nhds_translation_div, mem_comap, mem_comap],
refine exists₂_congr (λ t ht, _),
show (λ (y : G), y / a) ⁻¹' t ⊆ S ↔ (λ (p : G × G), p.snd / p.fst) ⁻¹' t ⊆ S' a,
split,
{ rintros h ⟨x, y⟩ hx rfl, exact h hx },
{ rintros h x hx, exact @h (a, x) hx rfl }
end }
variables {G}
@[to_additive] lemma topological_group.tendsto_uniformly_iff
{ι α : Type*} (F : ι → α → G) (f : α → G) (p : filter ι) :
@tendsto_uniformly α G ι (topological_group.to_uniform_space G) F f p
↔ ∀ u ∈ 𝓝 (1 : G), ∀ᶠ i in p, ∀ a, F i a / f a ∈ u :=
⟨λ h u hu, h _ ⟨u, hu, λ _, id⟩, λ h v ⟨u, hu, hv⟩,
mem_of_superset (h u hu) (λ i hi a, hv (by exact hi a))⟩
@[to_additive] lemma topological_group.tendsto_uniformly_on_iff
{ι α : Type*} (F : ι → α → G) (f : α → G) (p : filter ι) (s : set α) :
@tendsto_uniformly_on α G ι (topological_group.to_uniform_space G) F f p s
↔ ∀ u ∈ 𝓝 (1 : G), ∀ᶠ i in p, ∀ a ∈ s, F i a / f a ∈ u :=
⟨λ h u hu, h _ ⟨u, hu, λ _, id⟩, λ h v ⟨u, hu, hv⟩,
mem_of_superset (h u hu) (λ i hi a ha, hv (by exact hi a ha))⟩
@[to_additive] lemma topological_group.tendsto_locally_uniformly_iff
{ι α : Type*} [topological_space α] (F : ι → α → G) (f : α → G) (p : filter ι) :
@tendsto_locally_uniformly α G ι (topological_group.to_uniform_space G) _ F f p
↔ ∀ (u ∈ 𝓝 (1 : G)) (x : α), ∃ (t ∈ 𝓝 x), ∀ᶠ i in p, ∀ a ∈ t, F i a / f a ∈ u :=
⟨λ h u hu, h _ ⟨u, hu, λ _, id⟩, λ h v ⟨u, hu, hv⟩ x, exists_imp_exists (by exact λ a,
exists_imp_exists (λ ha hp, mem_of_superset hp (λ i hi a ha, hv (by exact hi a ha)))) (h u hu x)⟩
@[to_additive] lemma topological_group.tendsto_locally_uniformly_on_iff
{ι α : Type*} [topological_space α] (F : ι → α → G) (f : α → G) (p : filter ι) (s : set α) :
@tendsto_locally_uniformly_on α G ι (topological_group.to_uniform_space G) _ F f p s
↔ ∀ (u ∈ 𝓝 (1 : G)) (x ∈ s), ∃ (t ∈ 𝓝[s] x), ∀ᶠ i in p, ∀ a ∈ t, F i a / f a ∈ u :=
⟨λ h u hu, h _ ⟨u, hu, λ _, id⟩, λ h v ⟨u, hu, hv⟩ x, exists_imp_exists (by exact λ a,
exists_imp_exists (λ ha hp, mem_of_superset hp (λ i hi a ha, hv (by exact hi a ha)))) ∘ h u hu x⟩
end topological_comm_group
section topological_comm_group
universes u v w x
open filter
variables (G : Type*) [comm_group G] [topological_space G] [topological_group G]
section
local attribute [instance] topological_group.to_uniform_space
@[to_additive] lemma uniformity_eq_comap_nhds_one' :
𝓤 G = comap (λp:G×G, p.2 / p.1) (𝓝 (1 : G)) := rfl
variable {G}
@[to_additive] lemma topological_group_is_uniform : uniform_group G :=
have tendsto
((λp:(G×G), p.1 / p.2) ∘ (λp:(G×G)×(G×G), (p.1.2 / p.1.1, p.2.2 / p.2.1)))
(comap (λp:(G×G)×(G×G), (p.1.2 / p.1.1, p.2.2 / p.2.1)) ((𝓝 1).prod (𝓝 1)))
(𝓝 (1 / 1)) :=
(tendsto_fst.div' tendsto_snd).comp tendsto_comap,
begin
constructor,
rw [uniform_continuous, uniformity_prod_eq_prod, tendsto_map'_iff,
uniformity_eq_comap_nhds_one' G, tendsto_comap_iff, prod_comap_comap_eq],
simpa [(∘), div_eq_mul_inv, mul_comm, mul_left_comm] using this
end
open set
@[to_additive] lemma topological_group.t2_space_iff_one_closed :
t2_space G ↔ is_closed ({1} : set G) :=
begin
haveI : uniform_group G := topological_group_is_uniform,
rw [← separated_iff_t2, separated_space_iff, ← closure_eq_iff_is_closed],
split; intro h,
{ apply subset.antisymm,
{ intros x x_in,
have := group_separation_rel x 1,
rw div_one at this,
rw [← this, h] at x_in,
change x = 1 at x_in,
simp [x_in] },
{ exact subset_closure } },
{ ext p,
cases p with x y,
rw [group_separation_rel x, h, mem_singleton_iff, div_eq_one],
refl }
end
@[to_additive] lemma topological_group.t2_space_of_one_sep
(H : ∀ x : G, x ≠ 1 → ∃ U ∈ nhds (1 : G), x ∉ U) : t2_space G :=
begin
rw [topological_group.t2_space_iff_one_closed, ← is_open_compl_iff, is_open_iff_mem_nhds],
intros x x_not,
have : x ≠ 1, from mem_compl_singleton_iff.mp x_not,
rcases H x this with ⟨U, U_in, xU⟩,
rw ← nhds_one_symm G at U_in,
rcases U_in with ⟨W, W_in, UW⟩,
rw ← nhds_translation_mul_inv,
use [W, W_in],
rw subset_compl_comm,
suffices : x⁻¹ ∉ W, by simpa,
exact λ h, xU (UW h)
end
end
@[to_additive] lemma uniform_group.to_uniform_space_eq {G : Type*} [u : uniform_space G]
[comm_group G] [uniform_group G] : topological_group.to_uniform_space G = u :=
begin
ext : 1,
show @uniformity G (topological_group.to_uniform_space G) = 𝓤 G,
rw [uniformity_eq_comap_nhds_one' G, uniformity_eq_comap_nhds_one G]
end
end topological_comm_group
open comm_group filter set function
section
variables {α : Type*} {β : Type*} {hom : Type*}
variables [topological_space α] [comm_group α] [topological_group α]
-- β is a dense subgroup of α, inclusion is denoted by e
variables [topological_space β] [comm_group β]
variables [monoid_hom_class hom β α] {e : hom} (de : dense_inducing e)
include de
@[to_additive] lemma tendsto_div_comap_self (x₀ : α) :
tendsto (λt:β×β, t.2 / t.1) (comap (λp:β×β, (e p.1, e p.2)) $ 𝓝 (x₀, x₀)) (𝓝 1) :=
begin
have comm : (λx:α×α, x.2/x.1) ∘ (λt:β×β, (e t.1, e t.2)) = e ∘ (λt:β×β, t.2 / t.1),
{ ext t,
change e t.2 / e t.1 = e (t.2 / t.1),
rwa ← map_div e t.2 t.1 },
have lim : tendsto (λ x : α × α, x.2/x.1) (𝓝 (x₀, x₀)) (𝓝 (e 1)),
{ simpa using (continuous_div'.comp (@continuous_swap α α _ _)).tendsto (x₀, x₀) },
simpa using de.tendsto_comap_nhds_nhds lim comm
end
end
namespace dense_inducing
variables {α : Type*} {β : Type*} {γ : Type*} {δ : Type*}
variables {G : Type*}
-- β is a dense subgroup of α, inclusion is denoted by e
-- δ is a dense subgroup of γ, inclusion is denoted by f
variables [topological_space α] [add_comm_group α] [topological_add_group α]
variables [topological_space β] [add_comm_group β] [topological_add_group β]
variables [topological_space γ] [add_comm_group γ] [topological_add_group γ]
variables [topological_space δ] [add_comm_group δ] [topological_add_group δ]
variables [uniform_space G] [add_comm_group G] [uniform_add_group G] [separated_space G]
[complete_space G]
variables {e : β →+ α} (de : dense_inducing e)
variables {f : δ →+ γ} (df : dense_inducing f)
variables {φ : β →+ δ →+ G}
local notation `Φ` := λ p : β × δ, φ p.1 p.2
variables (hφ : continuous Φ)
include de df hφ
variables {W' : set G} (W'_nhd : W' ∈ 𝓝 (0 : G))
include W'_nhd
private lemma extend_Z_bilin_aux (x₀ : α) (y₁ : δ) :
∃ U₂ ∈ comap e (𝓝 x₀), ∀ x x' ∈ U₂, Φ (x' - x, y₁) ∈ W' :=
begin
let Nx := 𝓝 x₀,
let ee := λ u : β × β, (e u.1, e u.2),
have lim1 : tendsto (λ a : β × β, (a.2 - a.1, y₁)) (comap e Nx ×ᶠ comap e Nx) (𝓝 (0, y₁)),
{ have := tendsto.prod_mk (tendsto_sub_comap_self de x₀)
(tendsto_const_nhds : tendsto (λ (p : β × β), y₁) (comap ee $ 𝓝 (x₀, x₀)) (𝓝 y₁)),
rw [nhds_prod_eq, prod_comap_comap_eq, ←nhds_prod_eq],
exact (this : _) },
have lim2 : tendsto Φ (𝓝 (0, y₁)) (𝓝 0), by simpa using hφ.tendsto (0, y₁),
have lim := lim2.comp lim1,
rw tendsto_prod_self_iff at lim,
simp_rw ball_mem_comm,
exact lim W' W'_nhd
end
private lemma extend_Z_bilin_key (x₀ : α) (y₀ : γ) :
∃ U ∈ comap e (𝓝 x₀), ∃ V ∈ comap f (𝓝 y₀),
∀ x x' ∈ U, ∀ y y' ∈ V, Φ (x', y') - Φ (x, y) ∈ W' :=
begin
let Nx := 𝓝 x₀,
let Ny := 𝓝 y₀,
let dp := dense_inducing.prod de df,
let ee := λ u : β × β, (e u.1, e u.2),
let ff := λ u : δ × δ, (f u.1, f u.2),
have lim_φ : filter.tendsto Φ (𝓝 (0, 0)) (𝓝 0),
{ simpa using hφ.tendsto (0, 0) },
have lim_φ_sub_sub : tendsto (λ (p : (β × β) × (δ × δ)), Φ (p.1.2 - p.1.1, p.2.2 - p.2.1))
((comap ee $ 𝓝 (x₀, x₀)) ×ᶠ (comap ff $ 𝓝 (y₀, y₀))) (𝓝 0),
{ have lim_sub_sub : tendsto (λ (p : (β × β) × δ × δ), (p.1.2 - p.1.1, p.2.2 - p.2.1))
((comap ee (𝓝 (x₀, x₀))) ×ᶠ (comap ff (𝓝 (y₀, y₀)))) (𝓝 0 ×ᶠ 𝓝 0),
{ have := filter.prod_mono (tendsto_sub_comap_self de x₀) (tendsto_sub_comap_self df y₀),
rwa prod_map_map_eq at this },
rw ← nhds_prod_eq at lim_sub_sub,
exact tendsto.comp lim_φ lim_sub_sub },
rcases exists_nhds_zero_quarter W'_nhd with ⟨W, W_nhd, W4⟩,
have : ∃ U₁ ∈ comap e (𝓝 x₀), ∃ V₁ ∈ comap f (𝓝 y₀),
∀ x x' ∈ U₁, ∀ y y' ∈ V₁, Φ (x'-x, y'-y) ∈ W,
{ have := tendsto_prod_iff.1 lim_φ_sub_sub W W_nhd,
repeat { rw [nhds_prod_eq, ←prod_comap_comap_eq] at this },
rcases this with ⟨U, U_in, V, V_in, H⟩,
rw [mem_prod_same_iff] at U_in V_in,
rcases U_in with ⟨U₁, U₁_in, HU₁⟩,
rcases V_in with ⟨V₁, V₁_in, HV₁⟩,
existsi [U₁, U₁_in, V₁, V₁_in],
intros x x_in x' x'_in y y_in y' y'_in,
exact H _ _ (HU₁ (mk_mem_prod x_in x'_in)) (HV₁ (mk_mem_prod y_in y'_in)) },
rcases this with ⟨U₁, U₁_nhd, V₁, V₁_nhd, H⟩,
obtain ⟨x₁, x₁_in⟩ : U₁.nonempty :=
((de.comap_nhds_ne_bot _).nonempty_of_mem U₁_nhd),
obtain ⟨y₁, y₁_in⟩ : V₁.nonempty :=
((df.comap_nhds_ne_bot _).nonempty_of_mem V₁_nhd),
have cont_flip : continuous (λ p : δ × β, φ.flip p.1 p.2),
{ show continuous (Φ ∘ prod.swap), from hφ.comp continuous_swap },
rcases (extend_Z_bilin_aux de df hφ W_nhd x₀ y₁) with ⟨U₂, U₂_nhd, HU⟩,
rcases (extend_Z_bilin_aux df de cont_flip W_nhd y₀ x₁) with ⟨V₂, V₂_nhd, HV⟩,
existsi [U₁ ∩ U₂, inter_mem U₁_nhd U₂_nhd,
V₁ ∩ V₂, inter_mem V₁_nhd V₂_nhd],
rintros x ⟨xU₁, xU₂⟩ x' ⟨x'U₁, x'U₂⟩ y ⟨yV₁, yV₂⟩ y' ⟨y'V₁, y'V₂⟩,
have key_formula : φ x' y' - φ x y =
φ(x' - x) y₁ + φ (x' - x) (y' - y₁) + φ x₁ (y' - y) + φ (x - x₁) (y' - y),
{ simp, abel },
rw key_formula,
have h₁ := HU x xU₂ x' x'U₂,
have h₂ := H x xU₁ x' x'U₁ y₁ y₁_in y' y'V₁,
have h₃ := HV y yV₂ y' y'V₂,
have h₄ := H x₁ x₁_in x xU₁ y yV₁ y' y'V₁,
exact W4 h₁ h₂ h₃ h₄
end
omit W'_nhd
open dense_inducing
/-- Bourbaki GT III.6.5 Theorem I:
ℤ-bilinear continuous maps from dense images into a complete Hausdorff group extend by continuity.
Note: Bourbaki assumes that α and β are also complete Hausdorff, but this is not necessary. -/
theorem extend_Z_bilin : continuous (extend (de.prod df) Φ) :=
begin
refine continuous_extend_of_cauchy _ _,
rintro ⟨x₀, y₀⟩,
split,
{ apply ne_bot.map,
apply comap_ne_bot,
intros U h,
rcases mem_closure_iff_nhds.1 ((de.prod df).dense (x₀, y₀)) U h with ⟨x, x_in, ⟨z, z_x⟩⟩,
existsi z,
cc },
{ suffices : map (λ (p : (β × δ) × (β × δ)), Φ p.2 - Φ p.1)
(comap (λ (p : (β × δ) × β × δ), ((e p.1.1, f p.1.2), (e p.2.1, f p.2.2)))
(𝓝 (x₀, y₀) ×ᶠ 𝓝 (x₀, y₀))) ≤ 𝓝 0,
by rwa [uniformity_eq_comap_nhds_zero G, prod_map_map_eq, ←map_le_iff_le_comap, filter.map_map,
prod_comap_comap_eq],
intros W' W'_nhd,
have key := extend_Z_bilin_key de df hφ W'_nhd x₀ y₀,
rcases key with ⟨U, U_nhd, V, V_nhd, h⟩,
rw mem_comap at U_nhd,
rcases U_nhd with ⟨U', U'_nhd, U'_sub⟩,
rw mem_comap at V_nhd,
rcases V_nhd with ⟨V', V'_nhd, V'_sub⟩,
rw [mem_map, mem_comap, nhds_prod_eq],
existsi (U' ×ˢ V') ×ˢ (U' ×ˢ V'),
rw mem_prod_same_iff,
simp only [exists_prop],
split,
{ change U' ∈ 𝓝 x₀ at U'_nhd,
change V' ∈ 𝓝 y₀ at V'_nhd,
have := prod_mem_prod U'_nhd V'_nhd,
tauto },
{ intros p h',
simp only [set.mem_preimage, set.prod_mk_mem_set_prod_eq] at h',
rcases p with ⟨⟨x, y⟩, ⟨x', y'⟩⟩,
apply h ; tauto } }
end
end dense_inducing