Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Patrick Massot. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Massot | |
-/ | |
import topology.algebra.nonarchimedean.bases | |
import topology.algebra.uniform_filter_basis | |
import ring_theory.valuation.basic | |
/-! | |
# The topology on a valued ring | |
In this file, we define the non archimedean topology induced by a valuation on a ring. | |
The main definition is a `valued` type class which equips a ring with a valuation taking | |
values in a group with zero. Other instances are then deduced from this. | |
-/ | |
open_locale classical topological_space uniformity | |
open set valuation | |
noncomputable theory | |
universes v u | |
variables {R : Type u} [ring R] {Γ₀ : Type v} [linear_ordered_comm_group_with_zero Γ₀] | |
namespace valuation | |
variables (v : valuation R Γ₀) | |
/-- The basis of open subgroups for the topology on a ring determined by a valuation. -/ | |
lemma subgroups_basis : | |
ring_subgroups_basis (λ γ : Γ₀ˣ, (v.lt_add_subgroup γ : add_subgroup R)) := | |
{ inter := begin | |
rintros γ₀ γ₁, | |
use min γ₀ γ₁, | |
simp [valuation.lt_add_subgroup] ; tauto | |
end, | |
mul := begin | |
rintros γ, | |
cases exists_square_le γ with γ₀ h, | |
use γ₀, | |
rintro - ⟨r, s, r_in, s_in, rfl⟩, | |
calc (v (r*s) : Γ₀) = v r * v s : valuation.map_mul _ _ _ | |
... < γ₀*γ₀ : mul_lt_mul₀ r_in s_in | |
... ≤ γ : by exact_mod_cast h | |
end, | |
left_mul := begin | |
rintros x γ, | |
rcases group_with_zero.eq_zero_or_unit (v x) with Hx | ⟨γx, Hx⟩, | |
{ use (1 : Γ₀ˣ), | |
rintros y (y_in : (v y : Γ₀) < 1), | |
change v (x * y) < _, | |
rw [valuation.map_mul, Hx, zero_mul], | |
exact units.zero_lt γ }, | |
{ simp only [image_subset_iff, set_of_subset_set_of, preimage_set_of_eq, valuation.map_mul], | |
use γx⁻¹*γ, | |
rintros y (vy_lt : v y < ↑(γx⁻¹ * γ)), | |
change (v (x * y) : Γ₀) < γ, | |
rw [valuation.map_mul, Hx, mul_comm], | |
rw [units.coe_mul, mul_comm] at vy_lt, | |
simpa using mul_inv_lt_of_lt_mul₀ vy_lt } | |
end, | |
right_mul := begin | |
rintros x γ, | |
rcases group_with_zero.eq_zero_or_unit (v x) with Hx | ⟨γx, Hx⟩, | |
{ use 1, | |
rintros y (y_in : (v y : Γ₀) < 1), | |
change v (y * x) < _, | |
rw [valuation.map_mul, Hx, mul_zero], | |
exact units.zero_lt γ }, | |
{ use γx⁻¹*γ, | |
rintros y (vy_lt : v y < ↑(γx⁻¹ * γ)), | |
change (v (y * x) : Γ₀) < γ, | |
rw [valuation.map_mul, Hx], | |
rw [units.coe_mul, mul_comm] at vy_lt, | |
simpa using mul_inv_lt_of_lt_mul₀ vy_lt } | |
end } | |
end valuation | |
/-- A valued ring is a ring that comes equipped with a distinguished valuation. The class `valued` | |
is designed for the situation that there is a canonical valuation on the ring. | |
TODO: show that there always exists an equivalent valuation taking values in a type belonging to | |
the same universe as the ring. | |
See Note [forgetful inheritance] for why we extend `uniform_space`, `uniform_add_group`. -/ | |
class valued (R : Type u) [ring R] (Γ₀ : out_param (Type v)) | |
[linear_ordered_comm_group_with_zero Γ₀] extends uniform_space R, uniform_add_group R := | |
(v : valuation R Γ₀) | |
(is_topological_valuation : ∀ s, s ∈ 𝓝 (0 : R) ↔ ∃ (γ : Γ₀ˣ), { x : R | v x < γ } ⊆ s) | |
/-- The `dangerous_instance` linter does not check whether the metavariables only occur in | |
arguments marked with `out_param`, so in this instance it gives a false positive. -/ | |
attribute [nolint dangerous_instance] valued.to_uniform_space | |
namespace valued | |
/-- Alternative `valued` constructor for use when there is no preferred `uniform_space` | |
structure. -/ | |
def mk' (v : valuation R Γ₀) : valued R Γ₀ := | |
{ v := v, | |
to_uniform_space := @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _, | |
to_uniform_add_group := @topological_add_group_is_uniform _ _ v.subgroups_basis.topology _, | |
is_topological_valuation := | |
begin | |
letI := @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _, | |
intros s, | |
rw filter.has_basis_iff.mp v.subgroups_basis.has_basis_nhds_zero s, | |
exact exists_congr (λ γ, by simpa), | |
end } | |
variables (R Γ₀) [_i : valued R Γ₀] | |
include _i | |
lemma has_basis_nhds_zero : | |
(𝓝 (0 : R)).has_basis (λ _, true) (λ (γ : Γ₀ˣ), { x | v x < (γ : Γ₀) }) := | |
by simp [filter.has_basis_iff, is_topological_valuation] | |
lemma has_basis_uniformity : | |
(𝓤 R).has_basis (λ _, true) (λ (γ : Γ₀ˣ), { p : R × R | v (p.2 - p.1) < (γ : Γ₀) }) := | |
begin | |
rw uniformity_eq_comap_nhds_zero, | |
exact (has_basis_nhds_zero R Γ₀).comap _, | |
end | |
lemma to_uniform_space_eq : | |
to_uniform_space = @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _ := | |
uniform_space_eq | |
((has_basis_uniformity R Γ₀).eq_of_same_basis $ v.subgroups_basis.has_basis_nhds_zero.comap _) | |
variables {R Γ₀} | |
lemma mem_nhds {s : set R} {x : R} : | |
(s ∈ 𝓝 x) ↔ ∃ (γ : Γ₀ˣ), {y | (v (y - x) : Γ₀) < γ } ⊆ s := | |
by simp only [← nhds_translation_add_neg x, ← sub_eq_add_neg, preimage_set_of_eq, exists_true_left, | |
((has_basis_nhds_zero R Γ₀).comap (λ y, y - x)).mem_iff] | |
lemma mem_nhds_zero {s : set R} : | |
(s ∈ 𝓝 (0 : R)) ↔ ∃ γ : Γ₀ˣ, {x | v x < (γ : Γ₀) } ⊆ s := | |
by simp only [mem_nhds, sub_zero] | |
lemma loc_const {x : R} (h : (v x : Γ₀) ≠ 0) : {y : R | v y = v x} ∈ 𝓝 x := | |
begin | |
rw mem_nhds, | |
rcases units.exists_iff_ne_zero.mpr h with ⟨γ, hx⟩, | |
use γ, | |
rw hx, | |
intros y y_in, | |
exact valuation.map_eq_of_sub_lt _ y_in | |
end | |
@[priority 100] | |
instance : topological_ring R := | |
(to_uniform_space_eq R Γ₀).symm ▸ v.subgroups_basis.to_ring_filter_basis.is_topological_ring | |
lemma cauchy_iff {F : filter R} : | |
cauchy F ↔ F.ne_bot ∧ ∀ γ : Γ₀ˣ, ∃ M ∈ F, ∀ x y ∈ M, (v (y - x) : Γ₀) < γ := | |
begin | |
rw [to_uniform_space_eq, add_group_filter_basis.cauchy_iff], | |
apply and_congr iff.rfl, | |
simp_rw valued.v.subgroups_basis.mem_add_group_filter_basis_iff, | |
split, | |
{ intros h γ, | |
exact h _ (valued.v.subgroups_basis.mem_add_group_filter_basis _) }, | |
{ rintros h - ⟨γ, rfl⟩, | |
exact h γ } | |
end | |
end valued | |