Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
6.21 kB
/-
Copyright (c) 2021 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-/
import topology.algebra.nonarchimedean.bases
import topology.algebra.uniform_filter_basis
import ring_theory.valuation.basic
/-!
# The topology on a valued ring
In this file, we define the non archimedean topology induced by a valuation on a ring.
The main definition is a `valued` type class which equips a ring with a valuation taking
values in a group with zero. Other instances are then deduced from this.
-/
open_locale classical topological_space uniformity
open set valuation
noncomputable theory
universes v u
variables {R : Type u} [ring R] {Γ₀ : Type v} [linear_ordered_comm_group_with_zero Γ₀]
namespace valuation
variables (v : valuation R Γ₀)
/-- The basis of open subgroups for the topology on a ring determined by a valuation. -/
lemma subgroups_basis :
ring_subgroups_basis (λ γ : Γ₀ˣ, (v.lt_add_subgroup γ : add_subgroup R)) :=
{ inter := begin
rintros γ₀ γ₁,
use min γ₀ γ₁,
simp [valuation.lt_add_subgroup] ; tauto
end,
mul := begin
rintros γ,
cases exists_square_le γ with γ₀ h,
use γ₀,
rintro - ⟨r, s, r_in, s_in, rfl⟩,
calc (v (r*s) : Γ₀) = v r * v s : valuation.map_mul _ _ _
... < γ₀*γ₀ : mul_lt_mul₀ r_in s_in
... ≤ γ : by exact_mod_cast h
end,
left_mul := begin
rintros x γ,
rcases group_with_zero.eq_zero_or_unit (v x) with Hx | ⟨γx, Hx⟩,
{ use (1 : Γ₀ˣ),
rintros y (y_in : (v y : Γ₀) < 1),
change v (x * y) < _,
rw [valuation.map_mul, Hx, zero_mul],
exact units.zero_lt γ },
{ simp only [image_subset_iff, set_of_subset_set_of, preimage_set_of_eq, valuation.map_mul],
use γx⁻¹*γ,
rintros y (vy_lt : v y < ↑(γx⁻¹ * γ)),
change (v (x * y) : Γ₀) < γ,
rw [valuation.map_mul, Hx, mul_comm],
rw [units.coe_mul, mul_comm] at vy_lt,
simpa using mul_inv_lt_of_lt_mul₀ vy_lt }
end,
right_mul := begin
rintros x γ,
rcases group_with_zero.eq_zero_or_unit (v x) with Hx | ⟨γx, Hx⟩,
{ use 1,
rintros y (y_in : (v y : Γ₀) < 1),
change v (y * x) < _,
rw [valuation.map_mul, Hx, mul_zero],
exact units.zero_lt γ },
{ use γx⁻¹*γ,
rintros y (vy_lt : v y < ↑(γx⁻¹ * γ)),
change (v (y * x) : Γ₀) < γ,
rw [valuation.map_mul, Hx],
rw [units.coe_mul, mul_comm] at vy_lt,
simpa using mul_inv_lt_of_lt_mul₀ vy_lt }
end }
end valuation
/-- A valued ring is a ring that comes equipped with a distinguished valuation. The class `valued`
is designed for the situation that there is a canonical valuation on the ring.
TODO: show that there always exists an equivalent valuation taking values in a type belonging to
the same universe as the ring.
See Note [forgetful inheritance] for why we extend `uniform_space`, `uniform_add_group`. -/
class valued (R : Type u) [ring R] (Γ₀ : out_param (Type v))
[linear_ordered_comm_group_with_zero Γ₀] extends uniform_space R, uniform_add_group R :=
(v : valuation R Γ₀)
(is_topological_valuation : ∀ s, s ∈ 𝓝 (0 : R) ↔ ∃ (γ : Γ₀ˣ), { x : R | v x < γ } ⊆ s)
/-- The `dangerous_instance` linter does not check whether the metavariables only occur in
arguments marked with `out_param`, so in this instance it gives a false positive. -/
attribute [nolint dangerous_instance] valued.to_uniform_space
namespace valued
/-- Alternative `valued` constructor for use when there is no preferred `uniform_space`
structure. -/
def mk' (v : valuation R Γ₀) : valued R Γ₀ :=
{ v := v,
to_uniform_space := @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _,
to_uniform_add_group := @topological_add_group_is_uniform _ _ v.subgroups_basis.topology _,
is_topological_valuation :=
begin
letI := @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _,
intros s,
rw filter.has_basis_iff.mp v.subgroups_basis.has_basis_nhds_zero s,
exact exists_congr (λ γ, by simpa),
end }
variables (R Γ₀) [_i : valued R Γ₀]
include _i
lemma has_basis_nhds_zero :
(𝓝 (0 : R)).has_basis (λ _, true) (λ (γ : Γ₀ˣ), { x | v x < (γ : Γ₀) }) :=
by simp [filter.has_basis_iff, is_topological_valuation]
lemma has_basis_uniformity :
(𝓤 R).has_basis (λ _, true) (λ (γ : Γ₀ˣ), { p : R × R | v (p.2 - p.1) < (γ : Γ₀) }) :=
begin
rw uniformity_eq_comap_nhds_zero,
exact (has_basis_nhds_zero R Γ₀).comap _,
end
lemma to_uniform_space_eq :
to_uniform_space = @topological_add_group.to_uniform_space R _ v.subgroups_basis.topology _ :=
uniform_space_eq
((has_basis_uniformity R Γ₀).eq_of_same_basis $ v.subgroups_basis.has_basis_nhds_zero.comap _)
variables {R Γ₀}
lemma mem_nhds {s : set R} {x : R} :
(s ∈ 𝓝 x) ↔ ∃ (γ : Γ₀ˣ), {y | (v (y - x) : Γ₀) < γ } ⊆ s :=
by simp only [← nhds_translation_add_neg x, ← sub_eq_add_neg, preimage_set_of_eq, exists_true_left,
((has_basis_nhds_zero R Γ₀).comap (λ y, y - x)).mem_iff]
lemma mem_nhds_zero {s : set R} :
(s ∈ 𝓝 (0 : R)) ↔ ∃ γ : Γ₀ˣ, {x | v x < (γ : Γ₀) } ⊆ s :=
by simp only [mem_nhds, sub_zero]
lemma loc_const {x : R} (h : (v x : Γ₀) ≠ 0) : {y : R | v y = v x} ∈ 𝓝 x :=
begin
rw mem_nhds,
rcases units.exists_iff_ne_zero.mpr h with ⟨γ, hx⟩,
use γ,
rw hx,
intros y y_in,
exact valuation.map_eq_of_sub_lt _ y_in
end
@[priority 100]
instance : topological_ring R :=
(to_uniform_space_eq R Γ₀).symm ▸ v.subgroups_basis.to_ring_filter_basis.is_topological_ring
lemma cauchy_iff {F : filter R} :
cauchy F ↔ F.ne_bot ∧ ∀ γ : Γ₀ˣ, ∃ M ∈ F, ∀ x y ∈ M, (v (y - x) : Γ₀) < γ :=
begin
rw [to_uniform_space_eq, add_group_filter_basis.cauchy_iff],
apply and_congr iff.rfl,
simp_rw valued.v.subgroups_basis.mem_add_group_filter_basis_iff,
split,
{ intros h γ,
exact h _ (valued.v.subgroups_basis.mem_add_group_filter_basis _) },
{ rintros h - ⟨γ, rfl⟩,
exact h γ }
end
end valued