Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Patrick Massot. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Patrick Massot | |
-/ | |
import algebra.order.with_zero | |
import topology.algebra.order.basic | |
/-! | |
# The topology on linearly ordered commutative groups with zero | |
Let `Γ₀` be a linearly ordered commutative group to which we have adjoined a zero element. | |
Then `Γ₀` may naturally be endowed with a topology that turns `Γ₀` into a topological monoid. | |
Neighborhoods of zero are sets containing `{γ | γ < γ₀}` for some invertible element `γ₀` | |
and every invertible element is open. | |
In particular the topology is the following: | |
"a subset `U ⊆ Γ₀` is open if `0 ∉ U` or if there is an invertible | |
`γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ U`", but this fact is not proven here since the neighborhoods | |
description is what is actually useful. | |
We prove this topology is ordered and T₃ (in addition to be compatible with the monoid | |
structure). | |
All this is useful to extend a valuation to a completion. This is an abstract version of how the | |
absolute value (resp. `p`-adic absolute value) on `ℚ` is extended to `ℝ` (resp. `ℚₚ`). | |
## Implementation notes | |
This topology is not defined as an instance since it may not be the desired topology on | |
a linearly ordered commutative group with zero. You can locally activate this topology using | |
`local attribute [instance] linear_ordered_comm_group_with_zero.topological_space` | |
All other instances will (`ordered_topology`, `t3_space`, `has_continuous_mul`) then follow. | |
-/ | |
open_locale topological_space | |
open topological_space filter set | |
namespace linear_ordered_comm_group_with_zero | |
variables (Γ₀ : Type*) [linear_ordered_comm_group_with_zero Γ₀] | |
/-- The neighbourhoods around γ ∈ Γ₀, used in the definition of the topology on Γ₀. | |
These neighbourhoods are defined as follows: | |
A set s is a neighbourhood of 0 if there is an invertible γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ s. | |
If γ ≠ 0, then every set that contains γ is a neighbourhood of γ. -/ | |
def nhds_fun (x : Γ₀) : filter Γ₀ := | |
if x = 0 then ⨅ (γ₀ : Γ₀ˣ), principal {γ | γ < γ₀} else pure x | |
/-- The topology on a linearly ordered commutative group with a zero element adjoined. | |
A subset U is open if 0 ∉ U or if there is an invertible element γ₀ such that {γ | γ < γ₀} ⊆ U. -/ | |
protected def topological_space : topological_space Γ₀ := | |
topological_space.mk_of_nhds (nhds_fun Γ₀) | |
local attribute [instance] linear_ordered_comm_group_with_zero.topological_space | |
/-- The neighbourhoods {γ | γ < γ₀} of 0 form a directed set indexed by the invertible | |
elements γ₀. -/ | |
lemma directed_lt : directed (≥) (λ γ₀ : Γ₀ˣ, principal {γ : Γ₀ | γ < γ₀}) := | |
begin | |
intros γ₁ γ₂, | |
use linear_order.min γ₁ γ₂ ; dsimp only, | |
split ; rw [ge_iff_le, principal_mono] ; intros x x_in, | |
{ calc x < ↑(linear_order.min γ₁ γ₂) : x_in | |
... ≤ γ₁ : min_le_left γ₁ γ₂ }, | |
{ calc x < ↑(linear_order.min γ₁ γ₂) : x_in | |
... ≤ γ₂ : min_le_right γ₁ γ₂ } | |
end | |
-- We need two auxilliary lemmas to show that nhds_fun accurately describes the neighbourhoods | |
-- coming from the topology (that is defined in terms of nhds_fun). | |
/-- At all points of a linearly ordered commutative group with a zero element adjoined, | |
the pure filter is smaller than the filter given by nhds_fun. -/ | |
lemma pure_le_nhds_fun : pure ≤ nhds_fun Γ₀ := | |
λ x, by { by_cases hx : x = 0; simp [hx, nhds_fun] } | |
/-- For every point Γ₀, and every “neighbourhood” s of it (described by nhds_fun), there is a | |
smaller “neighbourhood” t ⊆ s, such that s is a “neighbourhood“ of all the points in t. -/ | |
lemma nhds_fun_ok (x : Γ₀) {s} (s_in : s ∈ nhds_fun Γ₀ x) : | |
(∃ t ∈ nhds_fun Γ₀ x, t ⊆ s ∧ ∀ y ∈ t, s ∈ nhds_fun Γ₀ y) := | |
begin | |
by_cases hx : x = 0, | |
{ simp only [hx, nhds_fun, exists_prop, if_true, eq_self_iff_true] at s_in ⊢, | |
cases (mem_infi_of_directed (directed_lt Γ₀) _).mp s_in with γ₀ h, | |
use {γ : Γ₀ | γ < γ₀}, | |
rw mem_principal at h, | |
split, | |
{ apply mem_infi_of_mem γ₀, | |
rw mem_principal }, | |
{ refine ⟨h, λ y y_in, _⟩, | |
by_cases hy : y = 0, | |
{ simp only [hy, if_true, eq_self_iff_true], | |
apply mem_infi_of_mem γ₀, | |
rwa mem_principal }, | |
{ simp [hy, h y_in] } } }, | |
{ simp only [hx, nhds_fun, exists_prop, if_false, mem_pure] at s_in ⊢, | |
refine ⟨{x}, mem_singleton _, singleton_subset_iff.2 s_in, λ y y_in, _⟩, | |
simpa [mem_singleton_iff.mp y_in, hx] } | |
end | |
variables {Γ₀} | |
/-- The neighbourhood filter of an invertible element consists of all sets containing that | |
element. -/ | |
lemma nhds_coe_units (γ : Γ₀ˣ) : 𝓝 (γ : Γ₀) = pure (γ : Γ₀) := | |
calc 𝓝 (γ : Γ₀) = nhds_fun Γ₀ γ : nhds_mk_of_nhds (nhds_fun Γ₀) γ (pure_le_nhds_fun Γ₀) | |
(nhds_fun_ok Γ₀) | |
... = pure (γ : Γ₀) : if_neg γ.ne_zero | |
/-- The neighbourhood filter of a nonzero element consists of all sets containing that | |
element. -/ | |
@[simp] lemma nhds_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : | |
𝓝 γ = pure γ := | |
nhds_coe_units (units.mk0 _ h) | |
/-- If γ is an invertible element of a linearly ordered group with zero element adjoined, | |
then {γ} is a neighbourhood of γ. -/ | |
lemma singleton_nhds_of_units (γ : Γ₀ˣ) : ({γ} : set Γ₀) ∈ 𝓝 (γ : Γ₀) := | |
by simp | |
/-- If γ is a nonzero element of a linearly ordered group with zero element adjoined, | |
then {γ} is a neighbourhood of γ. -/ | |
lemma singleton_nhds_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : ({γ} : set Γ₀) ∈ 𝓝 (γ : Γ₀) := | |
by simp [h] | |
/-- If U is a neighbourhood of 0 in a linearly ordered group with zero element adjoined, | |
then there exists an invertible element γ₀ such that {γ | γ < γ₀} ⊆ U. -/ | |
lemma has_basis_nhds_zero : | |
has_basis (𝓝 (0 : Γ₀)) (λ _, true) (λ γ₀ : Γ₀ˣ, {γ : Γ₀ | γ < γ₀}) := | |
⟨begin | |
intro U, | |
rw nhds_mk_of_nhds (nhds_fun Γ₀) 0 (pure_le_nhds_fun Γ₀) (nhds_fun_ok Γ₀), | |
simp only [nhds_fun, if_true, eq_self_iff_true, exists_true_left], | |
simp_rw [mem_infi_of_directed (directed_lt Γ₀), mem_principal] | |
end⟩ | |
/-- If γ is an invertible element of a linearly ordered group with zero element adjoined, | |
then {x | x < γ} is a neighbourhood of 0. -/ | |
lemma nhds_zero_of_units (γ : Γ₀ˣ) : {x : Γ₀ | x < γ} ∈ 𝓝 (0 : Γ₀) := | |
by { rw has_basis_nhds_zero.mem_iff, use γ, simp } | |
lemma tendsto_zero {α : Type*} {F : filter α} {f : α → Γ₀} : | |
tendsto f F (𝓝 (0 : Γ₀)) ↔ ∀ γ₀ : Γ₀ˣ, { x : α | f x < γ₀ } ∈ F := | |
by simpa using has_basis_nhds_zero.tendsto_right_iff | |
/-- If γ is a nonzero element of a linearly ordered group with zero element adjoined, | |
then {x | x < γ} is a neighbourhood of 0. -/ | |
lemma nhds_zero_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : {x : Γ₀ | x < γ} ∈ 𝓝 (0 : Γ₀) := | |
nhds_zero_of_units (units.mk0 _ h) | |
lemma has_basis_nhds_units (γ : Γ₀ˣ) : | |
has_basis (𝓝 (γ : Γ₀)) (λ i : unit, true) (λ i, {γ}) := | |
begin | |
rw nhds_of_ne_zero _ γ.ne_zero, | |
exact has_basis_pure γ | |
end | |
lemma has_basis_nhds_of_ne_zero {x : Γ₀} (h : x ≠ 0) : | |
has_basis (𝓝 x) (λ i : unit, true) (λ i, {x}) := | |
has_basis_nhds_units (units.mk0 x h) | |
lemma singleton_mem_nhds_of_ne_zero {x : Γ₀} (h : x ≠ 0) : {x} ∈ 𝓝 x := | |
begin | |
apply (has_basis_nhds_of_ne_zero h).mem_of_mem true.intro, | |
exact unit.star, | |
end | |
lemma tendsto_units {α : Type*} {F : filter α} {f : α → Γ₀} {γ₀ : Γ₀ˣ} : | |
tendsto f F (𝓝 (γ₀ : Γ₀)) ↔ { x : α | f x = γ₀ } ∈ F := | |
begin | |
rw (has_basis_nhds_units γ₀).tendsto_right_iff, | |
simpa | |
end | |
lemma tendsto_of_ne_zero {α : Type*} {F : filter α} {f : α → Γ₀} {γ : Γ₀} (h : γ ≠ 0) : | |
tendsto f F (𝓝 γ) ↔ { x : α | f x = γ } ∈ F := | |
@tendsto_units _ _ _ F f (units.mk0 γ h) | |
variable (Γ₀) | |
/-- The topology on a linearly ordered group with zero element adjoined | |
is compatible with the order structure. -/ | |
@[priority 100] | |
instance ordered_topology : order_closed_topology Γ₀ := | |
{ is_closed_le' := | |
begin | |
rw ← is_open_compl_iff, | |
show is_open {p : Γ₀ × Γ₀ | ¬p.fst ≤ p.snd}, | |
simp only [not_le], | |
rw is_open_iff_mem_nhds, | |
rintros ⟨a,b⟩ hab, | |
change b < a at hab, | |
have ha : a ≠ 0 := ne_zero_of_lt hab, | |
rw [nhds_prod_eq, mem_prod_iff], | |
by_cases hb : b = 0, | |
{ subst b, | |
use [{a}, singleton_nhds_of_ne_zero _ ha, {x : Γ₀ | x < a}, nhds_zero_of_ne_zero _ ha], | |
intros p p_in, | |
cases mem_prod.1 p_in with h1 h2, | |
rw mem_singleton_iff at h1, | |
change p.2 < p.1, | |
rwa h1 }, | |
{ use [{a}, singleton_nhds_of_ne_zero _ ha, {b}, singleton_nhds_of_ne_zero _ hb], | |
intros p p_in, | |
cases mem_prod.1 p_in with h1 h2, | |
rw mem_singleton_iff at h1 h2, | |
change p.2 < p.1, | |
rwa [h1, h2] } | |
end } | |
/-- The topology on a linearly ordered group with zero element adjoined is T₃. -/ | |
@[priority 100] | |
instance t3_space : t3_space Γ₀ := | |
begin | |
haveI : t1_space Γ₀ := t2_space.t1_space, | |
split, | |
intros s x s_closed x_not_in_s, | |
by_cases hx : x = 0, | |
{ refine ⟨s, _, subset.rfl, _⟩, | |
{ subst x, | |
rw is_open_iff_mem_nhds, | |
intros y hy, | |
by_cases hy' : y = 0, { subst y, contradiction }, | |
simpa [hy'] }, | |
{ erw inf_eq_bot_iff, | |
use sᶜ, | |
simp only [exists_prop, mem_principal], | |
exact ⟨s_closed.compl_mem_nhds x_not_in_s, ⟨s, subset.refl s, by simp⟩⟩ } }, | |
{ simp only [nhds_within, inf_eq_bot_iff, exists_prop, mem_principal], | |
exact ⟨{x}ᶜ, is_open_compl_iff.mpr is_closed_singleton, by rwa subset_compl_singleton_iff, | |
{x}, singleton_nhds_of_ne_zero x hx, {x}ᶜ, by simp [subset.refl]⟩ } | |
end | |
/-- The topology on a linearly ordered group with zero element adjoined makes it a topological | |
monoid. -/ | |
@[priority 100] | |
instance : has_continuous_mul Γ₀ := | |
⟨begin | |
have common : ∀ y ≠ (0 : Γ₀), continuous_at (λ (p : Γ₀ × Γ₀), p.fst * p.snd) (0, y), | |
{ intros y hy, | |
set γ := units.mk0 y hy, | |
suffices : tendsto (λ (p : Γ₀ × Γ₀), p.fst * p.snd) ((𝓝 0).prod (𝓝 γ)) (𝓝 0), | |
by simpa [continuous_at, nhds_prod_eq], | |
suffices : ∀ (γ' : Γ₀ˣ), ∃ (γ'' : Γ₀ˣ), ∀ (a b : Γ₀), a < γ'' → b = y → a * b < γ', | |
{ rw (has_basis_nhds_zero.prod $ has_basis_nhds_units γ).tendsto_iff has_basis_nhds_zero, | |
simpa }, | |
intros γ', | |
use γ⁻¹*γ', | |
rintros a b ha hb, | |
rw [hb, mul_comm], | |
rw [units.coe_mul] at ha, | |
simpa using inv_mul_lt_of_lt_mul₀ ha }, | |
rw continuous_iff_continuous_at, | |
rintros ⟨x, y⟩, | |
by_cases hx : x = 0; by_cases hy : y = 0, | |
{ suffices : tendsto (λ (p : Γ₀ × Γ₀), p.fst * p.snd) (𝓝 (0, 0)) (𝓝 0), | |
by simpa [hx, hy, continuous_at], | |
suffices : ∀ (γ : Γ₀ˣ), ∃ (γ' : Γ₀ˣ), ∀ (a b : Γ₀), a < γ' → b < γ' → a * b < γ, | |
by simpa [nhds_prod_eq, has_basis_nhds_zero.prod_self.tendsto_iff has_basis_nhds_zero], | |
intros γ, | |
rcases exists_square_le γ with ⟨γ', h⟩, | |
use γ', | |
intros a b ha hb, | |
calc a*b < γ'*γ' : mul_lt_mul₀ ha hb | |
... ≤ γ : by exact_mod_cast h }, | |
{ rw hx, | |
exact common y hy }, | |
{ rw hy, | |
have : (λ (p : Γ₀ × Γ₀), p.fst * p.snd) = | |
(λ (p : Γ₀ × Γ₀), p.fst * p.snd) ∘ (λ p : Γ₀ × Γ₀, (p.2, p.1)), | |
by { ext, rw [mul_comm] }, | |
rw this, | |
apply continuous_at.comp _ continuous_swap.continuous_at, | |
exact common x hx }, | |
{ change tendsto _ _ _, | |
rw [nhds_prod_eq], | |
rw ((has_basis_nhds_of_ne_zero hx).prod (has_basis_nhds_of_ne_zero hy)).tendsto_iff | |
(has_basis_nhds_of_ne_zero $ mul_ne_zero hx hy), | |
suffices : ∀ (a b : Γ₀), a = x → b = y → a * b = x * y, by simpa, | |
rintros a b rfl rfl, | |
refl }, | |
end⟩ | |
end linear_ordered_comm_group_with_zero | |