Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /topology /algebra /with_zero_topology.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
12.1 kB
/-
Copyright (c) 2021 Patrick Massot. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Patrick Massot
-/
import algebra.order.with_zero
import topology.algebra.order.basic
/-!
# The topology on linearly ordered commutative groups with zero
Let `Γ₀` be a linearly ordered commutative group to which we have adjoined a zero element.
Then `Γ₀` may naturally be endowed with a topology that turns `Γ₀` into a topological monoid.
Neighborhoods of zero are sets containing `{γ | γ < γ₀}` for some invertible element `γ₀`
and every invertible element is open.
In particular the topology is the following:
"a subset `U ⊆ Γ₀` is open if `0 ∉ U` or if there is an invertible
`γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ U`", but this fact is not proven here since the neighborhoods
description is what is actually useful.
We prove this topology is ordered and T₃ (in addition to be compatible with the monoid
structure).
All this is useful to extend a valuation to a completion. This is an abstract version of how the
absolute value (resp. `p`-adic absolute value) on `ℚ` is extended to `ℝ` (resp. `ℚₚ`).
## Implementation notes
This topology is not defined as an instance since it may not be the desired topology on
a linearly ordered commutative group with zero. You can locally activate this topology using
`local attribute [instance] linear_ordered_comm_group_with_zero.topological_space`
All other instances will (`ordered_topology`, `t3_space`, `has_continuous_mul`) then follow.
-/
open_locale topological_space
open topological_space filter set
namespace linear_ordered_comm_group_with_zero
variables (Γ₀ : Type*) [linear_ordered_comm_group_with_zero Γ₀]
/-- The neighbourhoods around γ ∈ Γ₀, used in the definition of the topology on Γ₀.
These neighbourhoods are defined as follows:
A set s is a neighbourhood of 0 if there is an invertible γ₀ ∈ Γ₀ such that {γ | γ < γ₀} ⊆ s.
If γ ≠ 0, then every set that contains γ is a neighbourhood of γ. -/
def nhds_fun (x : Γ₀) : filter Γ₀ :=
if x = 0 then ⨅ (γ₀ : Γ₀ˣ), principal {γ | γ < γ₀} else pure x
/-- The topology on a linearly ordered commutative group with a zero element adjoined.
A subset U is open if 0 ∉ U or if there is an invertible element γ₀ such that {γ | γ < γ₀} ⊆ U. -/
protected def topological_space : topological_space Γ₀ :=
topological_space.mk_of_nhds (nhds_fun Γ₀)
local attribute [instance] linear_ordered_comm_group_with_zero.topological_space
/-- The neighbourhoods {γ | γ < γ₀} of 0 form a directed set indexed by the invertible
elements γ₀. -/
lemma directed_lt : directed (≥) (λ γ₀ : Γ₀ˣ, principal {γ : Γ₀ | γ < γ₀}) :=
begin
intros γ₁ γ₂,
use linear_order.min γ₁ γ₂ ; dsimp only,
split ; rw [ge_iff_le, principal_mono] ; intros x x_in,
{ calc x < ↑(linear_order.min γ₁ γ₂) : x_in
... ≤ γ₁ : min_le_left γ₁ γ₂ },
{ calc x < ↑(linear_order.min γ₁ γ₂) : x_in
... ≤ γ₂ : min_le_right γ₁ γ₂ }
end
-- We need two auxilliary lemmas to show that nhds_fun accurately describes the neighbourhoods
-- coming from the topology (that is defined in terms of nhds_fun).
/-- At all points of a linearly ordered commutative group with a zero element adjoined,
the pure filter is smaller than the filter given by nhds_fun. -/
lemma pure_le_nhds_fun : pure ≤ nhds_fun Γ₀ :=
λ x, by { by_cases hx : x = 0; simp [hx, nhds_fun] }
/-- For every point Γ₀, and every “neighbourhood” s of it (described by nhds_fun), there is a
smaller “neighbourhood” t ⊆ s, such that s is a “neighbourhood“ of all the points in t. -/
lemma nhds_fun_ok (x : Γ₀) {s} (s_in : s ∈ nhds_fun Γ₀ x) :
(∃ t ∈ nhds_fun Γ₀ x, t ⊆ s ∧ ∀ y ∈ t, s ∈ nhds_fun Γ₀ y) :=
begin
by_cases hx : x = 0,
{ simp only [hx, nhds_fun, exists_prop, if_true, eq_self_iff_true] at s_in ⊢,
cases (mem_infi_of_directed (directed_lt Γ₀) _).mp s_in with γ₀ h,
use {γ : Γ₀ | γ < γ₀},
rw mem_principal at h,
split,
{ apply mem_infi_of_mem γ₀,
rw mem_principal },
{ refine ⟨h, λ y y_in, _⟩,
by_cases hy : y = 0,
{ simp only [hy, if_true, eq_self_iff_true],
apply mem_infi_of_mem γ₀,
rwa mem_principal },
{ simp [hy, h y_in] } } },
{ simp only [hx, nhds_fun, exists_prop, if_false, mem_pure] at s_in ⊢,
refine ⟨{x}, mem_singleton _, singleton_subset_iff.2 s_in, λ y y_in, _⟩,
simpa [mem_singleton_iff.mp y_in, hx] }
end
variables {Γ₀}
/-- The neighbourhood filter of an invertible element consists of all sets containing that
element. -/
lemma nhds_coe_units (γ : Γ₀ˣ) : 𝓝 (γ : Γ₀) = pure (γ : Γ₀) :=
calc 𝓝 (γ : Γ₀) = nhds_fun Γ₀ γ : nhds_mk_of_nhds (nhds_fun Γ₀) γ (pure_le_nhds_fun Γ₀)
(nhds_fun_ok Γ₀)
... = pure (γ : Γ₀) : if_neg γ.ne_zero
/-- The neighbourhood filter of a nonzero element consists of all sets containing that
element. -/
@[simp] lemma nhds_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) :
𝓝 γ = pure γ :=
nhds_coe_units (units.mk0 _ h)
/-- If γ is an invertible element of a linearly ordered group with zero element adjoined,
then {γ} is a neighbourhood of γ. -/
lemma singleton_nhds_of_units (γ : Γ₀ˣ) : ({γ} : set Γ₀) ∈ 𝓝 (γ : Γ₀) :=
by simp
/-- If γ is a nonzero element of a linearly ordered group with zero element adjoined,
then {γ} is a neighbourhood of γ. -/
lemma singleton_nhds_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : ({γ} : set Γ₀) ∈ 𝓝 (γ : Γ₀) :=
by simp [h]
/-- If U is a neighbourhood of 0 in a linearly ordered group with zero element adjoined,
then there exists an invertible element γ₀ such that {γ | γ < γ₀} ⊆ U. -/
lemma has_basis_nhds_zero :
has_basis (𝓝 (0 : Γ₀)) (λ _, true) (λ γ₀ : Γ₀ˣ, {γ : Γ₀ | γ < γ₀}) :=
⟨begin
intro U,
rw nhds_mk_of_nhds (nhds_fun Γ₀) 0 (pure_le_nhds_fun Γ₀) (nhds_fun_ok Γ₀),
simp only [nhds_fun, if_true, eq_self_iff_true, exists_true_left],
simp_rw [mem_infi_of_directed (directed_lt Γ₀), mem_principal]
end
/-- If γ is an invertible element of a linearly ordered group with zero element adjoined,
then {x | x < γ} is a neighbourhood of 0. -/
lemma nhds_zero_of_units (γ : Γ₀ˣ) : {x : Γ₀ | x < γ} ∈ 𝓝 (0 : Γ₀) :=
by { rw has_basis_nhds_zero.mem_iff, use γ, simp }
lemma tendsto_zero {α : Type*} {F : filter α} {f : α → Γ₀} :
tendsto f F (𝓝 (0 : Γ₀)) ↔ ∀ γ₀ : Γ₀ˣ, { x : α | f x < γ₀ } ∈ F :=
by simpa using has_basis_nhds_zero.tendsto_right_iff
/-- If γ is a nonzero element of a linearly ordered group with zero element adjoined,
then {x | x < γ} is a neighbourhood of 0. -/
lemma nhds_zero_of_ne_zero (γ : Γ₀) (h : γ ≠ 0) : {x : Γ₀ | x < γ} ∈ 𝓝 (0 : Γ₀) :=
nhds_zero_of_units (units.mk0 _ h)
lemma has_basis_nhds_units (γ : Γ₀ˣ) :
has_basis (𝓝 (γ : Γ₀)) (λ i : unit, true) (λ i, {γ}) :=
begin
rw nhds_of_ne_zero _ γ.ne_zero,
exact has_basis_pure γ
end
lemma has_basis_nhds_of_ne_zero {x : Γ₀} (h : x ≠ 0) :
has_basis (𝓝 x) (λ i : unit, true) (λ i, {x}) :=
has_basis_nhds_units (units.mk0 x h)
lemma singleton_mem_nhds_of_ne_zero {x : Γ₀} (h : x ≠ 0) : {x} ∈ 𝓝 x :=
begin
apply (has_basis_nhds_of_ne_zero h).mem_of_mem true.intro,
exact unit.star,
end
lemma tendsto_units {α : Type*} {F : filter α} {f : α → Γ₀} {γ₀ : Γ₀ˣ} :
tendsto f F (𝓝 (γ₀ : Γ₀)) ↔ { x : α | f x = γ₀ } ∈ F :=
begin
rw (has_basis_nhds_units γ₀).tendsto_right_iff,
simpa
end
lemma tendsto_of_ne_zero {α : Type*} {F : filter α} {f : α → Γ₀} {γ : Γ₀} (h : γ ≠ 0) :
tendsto f F (𝓝 γ) ↔ { x : α | f x = γ } ∈ F :=
@tendsto_units _ _ _ F f (units.mk0 γ h)
variable (Γ₀)
/-- The topology on a linearly ordered group with zero element adjoined
is compatible with the order structure. -/
@[priority 100]
instance ordered_topology : order_closed_topology Γ₀ :=
{ is_closed_le' :=
begin
rw ← is_open_compl_iff,
show is_open {p : Γ₀ × Γ₀ | ¬p.fst ≤ p.snd},
simp only [not_le],
rw is_open_iff_mem_nhds,
rintros ⟨a,b⟩ hab,
change b < a at hab,
have ha : a ≠ 0 := ne_zero_of_lt hab,
rw [nhds_prod_eq, mem_prod_iff],
by_cases hb : b = 0,
{ subst b,
use [{a}, singleton_nhds_of_ne_zero _ ha, {x : Γ₀ | x < a}, nhds_zero_of_ne_zero _ ha],
intros p p_in,
cases mem_prod.1 p_in with h1 h2,
rw mem_singleton_iff at h1,
change p.2 < p.1,
rwa h1 },
{ use [{a}, singleton_nhds_of_ne_zero _ ha, {b}, singleton_nhds_of_ne_zero _ hb],
intros p p_in,
cases mem_prod.1 p_in with h1 h2,
rw mem_singleton_iff at h1 h2,
change p.2 < p.1,
rwa [h1, h2] }
end }
/-- The topology on a linearly ordered group with zero element adjoined is T₃. -/
@[priority 100]
instance t3_space : t3_space Γ₀ :=
begin
haveI : t1_space Γ₀ := t2_space.t1_space,
split,
intros s x s_closed x_not_in_s,
by_cases hx : x = 0,
{ refine ⟨s, _, subset.rfl, _⟩,
{ subst x,
rw is_open_iff_mem_nhds,
intros y hy,
by_cases hy' : y = 0, { subst y, contradiction },
simpa [hy'] },
{ erw inf_eq_bot_iff,
use sᶜ,
simp only [exists_prop, mem_principal],
exact ⟨s_closed.compl_mem_nhds x_not_in_s, ⟨s, subset.refl s, by simp⟩⟩ } },
{ simp only [nhds_within, inf_eq_bot_iff, exists_prop, mem_principal],
exact ⟨{x}ᶜ, is_open_compl_iff.mpr is_closed_singleton, by rwa subset_compl_singleton_iff,
{x}, singleton_nhds_of_ne_zero x hx, {x}ᶜ, by simp [subset.refl]⟩ }
end
/-- The topology on a linearly ordered group with zero element adjoined makes it a topological
monoid. -/
@[priority 100]
instance : has_continuous_mul Γ₀ :=
⟨begin
have common : ∀ y ≠ (0 : Γ₀), continuous_at (λ (p : Γ₀ × Γ₀), p.fst * p.snd) (0, y),
{ intros y hy,
set γ := units.mk0 y hy,
suffices : tendsto (λ (p : Γ₀ × Γ₀), p.fst * p.snd) ((𝓝 0).prod (𝓝 γ)) (𝓝 0),
by simpa [continuous_at, nhds_prod_eq],
suffices : ∀ (γ' : Γ₀ˣ), ∃ (γ'' : Γ₀ˣ), ∀ (a b : Γ₀), a < γ'' → b = y → a * b < γ',
{ rw (has_basis_nhds_zero.prod $ has_basis_nhds_units γ).tendsto_iff has_basis_nhds_zero,
simpa },
intros γ',
use γ⁻¹*γ',
rintros a b ha hb,
rw [hb, mul_comm],
rw [units.coe_mul] at ha,
simpa using inv_mul_lt_of_lt_mul₀ ha },
rw continuous_iff_continuous_at,
rintros ⟨x, y⟩,
by_cases hx : x = 0; by_cases hy : y = 0,
{ suffices : tendsto (λ (p : Γ₀ × Γ₀), p.fst * p.snd) (𝓝 (0, 0)) (𝓝 0),
by simpa [hx, hy, continuous_at],
suffices : ∀ (γ : Γ₀ˣ), ∃ (γ' : Γ₀ˣ), ∀ (a b : Γ₀), a < γ' → b < γ' → a * b < γ,
by simpa [nhds_prod_eq, has_basis_nhds_zero.prod_self.tendsto_iff has_basis_nhds_zero],
intros γ,
rcases exists_square_le γ with ⟨γ', h⟩,
use γ',
intros a b ha hb,
calc a*b < γ'*γ' : mul_lt_mul₀ ha hb
... ≤ γ : by exact_mod_cast h },
{ rw hx,
exact common y hy },
{ rw hy,
have : (λ (p : Γ₀ × Γ₀), p.fst * p.snd) =
(λ (p : Γ₀ × Γ₀), p.fst * p.snd) ∘ (λ p : Γ₀ × Γ₀, (p.2, p.1)),
by { ext, rw [mul_comm] },
rw this,
apply continuous_at.comp _ continuous_swap.continuous_at,
exact common x hx },
{ change tendsto _ _ _,
rw [nhds_prod_eq],
rw ((has_basis_nhds_of_ne_zero hx).prod (has_basis_nhds_of_ne_zero hy)).tendsto_iff
(has_basis_nhds_of_ne_zero $ mul_ne_zero hx hy),
suffices : ∀ (a b : Γ₀), a = x → b = y → a * b = x * y, by simpa,
rintros a b rfl rfl,
refl },
end
end linear_ordered_comm_group_with_zero