Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro, Yury Kudryashov | |
-/ | |
import data.int.succ_pred | |
import data.nat.succ_pred | |
import order.partial_sups | |
import order.succ_pred.relation | |
import topology.subset_properties | |
/-! | |
# Connected subsets of topological spaces | |
In this file we define connected subsets of a topological spaces and various other properties and | |
classes related to connectivity. | |
## Main definitions | |
We define the following properties for sets in a topological space: | |
* `is_connected`: a nonempty set that has no non-trivial open partition. | |
See also the section below in the module doc. | |
* `connected_component` is the connected component of an element in the space. | |
* `is_totally_disconnected`: all of its connected components are singletons. | |
* `is_totally_separated`: any two points can be separated by two disjoint opens that cover the set. | |
For each of these definitions, we also have a class stating that the whole space | |
satisfies that property: | |
`connected_space`, `totally_disconnected_space`, `totally_separated_space`. | |
## On the definition of connected sets/spaces | |
In informal mathematics, connected spaces are assumed to be nonempty. | |
We formalise the predicate without that assumption as `is_preconnected`. | |
In other words, the only difference is whether the empty space counts as connected. | |
There are good reasons to consider the empty space to be “too simple to be simple” | |
See also https://ncatlab.org/nlab/show/too+simple+to+be+simple, | |
and in particular | |
https://ncatlab.org/nlab/show/too+simple+to+be+simple#relationship_to_biased_definitions. | |
-/ | |
open set function topological_space relation | |
open_locale classical topological_space | |
universes u v | |
variables {α : Type u} {β : Type v} {ι : Type*} {π : ι → Type*} [topological_space α] | |
{s t u v : set α} | |
section preconnected | |
/-- A preconnected set is one where there is no non-trivial open partition. -/ | |
def is_preconnected (s : set α) : Prop := | |
∀ (u v : set α), is_open u → is_open v → s ⊆ u ∪ v → | |
(s ∩ u).nonempty → (s ∩ v).nonempty → (s ∩ (u ∩ v)).nonempty | |
/-- A connected set is one that is nonempty and where there is no non-trivial open partition. -/ | |
def is_connected (s : set α) : Prop := | |
s.nonempty ∧ is_preconnected s | |
lemma is_connected.nonempty {s : set α} (h : is_connected s) : | |
s.nonempty := h.1 | |
lemma is_connected.is_preconnected {s : set α} (h : is_connected s) : | |
is_preconnected s := h.2 | |
theorem is_preirreducible.is_preconnected {s : set α} (H : is_preirreducible s) : | |
is_preconnected s := | |
λ _ _ hu hv _, H _ _ hu hv | |
theorem is_irreducible.is_connected {s : set α} (H : is_irreducible s) : is_connected s := | |
⟨H.nonempty, H.is_preirreducible.is_preconnected⟩ | |
theorem is_preconnected_empty : is_preconnected (∅ : set α) := | |
is_preirreducible_empty.is_preconnected | |
theorem is_connected_singleton {x} : is_connected ({x} : set α) := | |
is_irreducible_singleton.is_connected | |
theorem is_preconnected_singleton {x} : is_preconnected ({x} : set α) := | |
is_connected_singleton.is_preconnected | |
theorem set.subsingleton.is_preconnected {s : set α} (hs : s.subsingleton) : | |
is_preconnected s := | |
hs.induction_on is_preconnected_empty (λ x, is_preconnected_singleton) | |
/-- If any point of a set is joined to a fixed point by a preconnected subset, | |
then the original set is preconnected as well. -/ | |
theorem is_preconnected_of_forall {s : set α} (x : α) | |
(H : ∀ y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ is_preconnected t) : | |
is_preconnected s := | |
begin | |
rintros u v hu hv hs ⟨z, zs, zu⟩ ⟨y, ys, yv⟩, | |
have xs : x ∈ s, by { rcases H y ys with ⟨t, ts, xt, yt, ht⟩, exact ts xt }, | |
wlog xu : x ∈ u := hs xs using [u v y z, v u z y], | |
rcases H y ys with ⟨t, ts, xt, yt, ht⟩, | |
have := ht u v hu hv(subset.trans ts hs) ⟨x, xt, xu⟩ ⟨y, yt, yv⟩, | |
exact this.imp (λ z hz, ⟨ts hz.1, hz.2⟩) | |
end | |
/-- If any two points of a set are contained in a preconnected subset, | |
then the original set is preconnected as well. -/ | |
theorem is_preconnected_of_forall_pair {s : set α} | |
(H : ∀ x y ∈ s, ∃ t ⊆ s, x ∈ t ∧ y ∈ t ∧ is_preconnected t) : | |
is_preconnected s := | |
begin | |
rcases eq_empty_or_nonempty s with (rfl|⟨x, hx⟩), | |
exacts [is_preconnected_empty, is_preconnected_of_forall x $ λ y, H x hx y], | |
end | |
/-- A union of a family of preconnected sets with a common point is preconnected as well. -/ | |
theorem is_preconnected_sUnion (x : α) (c : set (set α)) (H1 : ∀ s ∈ c, x ∈ s) | |
(H2 : ∀ s ∈ c, is_preconnected s) : is_preconnected (⋃₀ c) := | |
begin | |
apply is_preconnected_of_forall x, | |
rintros y ⟨s, sc, ys⟩, | |
exact ⟨s, subset_sUnion_of_mem sc, H1 s sc, ys, H2 s sc⟩ | |
end | |
theorem is_preconnected_Union {ι : Sort*} {s : ι → set α} (h₁ : (⋂ i, s i).nonempty) | |
(h₂ : ∀ i, is_preconnected (s i)) : | |
is_preconnected (⋃ i, s i) := | |
exists.elim h₁ $ λ f hf, is_preconnected_sUnion f _ hf (forall_range_iff.2 h₂) | |
theorem is_preconnected.union (x : α) {s t : set α} (H1 : x ∈ s) (H2 : x ∈ t) | |
(H3 : is_preconnected s) (H4 : is_preconnected t) : is_preconnected (s ∪ t) := | |
sUnion_pair s t ▸ is_preconnected_sUnion x {s, t} | |
(by rintro r (rfl | rfl | h); assumption) | |
(by rintro r (rfl | rfl | h); assumption) | |
theorem is_preconnected.union' {s t : set α} (H : (s ∩ t).nonempty) | |
(hs : is_preconnected s) (ht : is_preconnected t) : is_preconnected (s ∪ t) := | |
by { rcases H with ⟨x, hxs, hxt⟩, exact hs.union x hxs hxt ht } | |
theorem is_connected.union {s t : set α} (H : (s ∩ t).nonempty) | |
(Hs : is_connected s) (Ht : is_connected t) : is_connected (s ∪ t) := | |
begin | |
rcases H with ⟨x, hx⟩, | |
refine ⟨⟨x, mem_union_left t (mem_of_mem_inter_left hx)⟩, _⟩, | |
exact is_preconnected.union x (mem_of_mem_inter_left hx) (mem_of_mem_inter_right hx) | |
Hs.is_preconnected Ht.is_preconnected | |
end | |
/-- The directed sUnion of a set S of preconnected subsets is preconnected. -/ | |
theorem is_preconnected.sUnion_directed {S : set (set α)} | |
(K : directed_on (⊆) S) | |
(H : ∀ s ∈ S, is_preconnected s) : is_preconnected (⋃₀ S) := | |
begin | |
rintros u v hu hv Huv ⟨a, ⟨s, hsS, has⟩, hau⟩ ⟨b, ⟨t, htS, hbt⟩, hbv⟩, | |
obtain ⟨r, hrS, hsr, htr⟩ : ∃ r ∈ S, s ⊆ r ∧ t ⊆ r := K s hsS t htS, | |
have Hnuv : (r ∩ (u ∩ v)).nonempty, | |
from H _ hrS u v hu hv ((subset_sUnion_of_mem hrS).trans Huv) | |
⟨a, hsr has, hau⟩ ⟨b, htr hbt, hbv⟩, | |
have Kruv : r ∩ (u ∩ v) ⊆ ⋃₀ S ∩ (u ∩ v), | |
from inter_subset_inter_left _ (subset_sUnion_of_mem hrS), | |
exact Hnuv.mono Kruv | |
end | |
/-- The bUnion of a family of preconnected sets is preconnected if the graph determined by | |
whether two sets intersect is preconnected. -/ | |
theorem is_preconnected.bUnion_of_refl_trans_gen {ι : Type*} {t : set ι} {s : ι → set α} | |
(H : ∀ i ∈ t, is_preconnected (s i)) | |
(K : ∀ i j ∈ t, refl_trans_gen (λ i j : ι, (s i ∩ s j).nonempty ∧ i ∈ t) i j) : | |
is_preconnected (⋃ n ∈ t, s n) := | |
begin | |
let R := λ i j : ι, (s i ∩ s j).nonempty ∧ i ∈ t, | |
have P : ∀ (i j ∈ t), refl_trans_gen R i j → | |
∃ (p ⊆ t), i ∈ p ∧ j ∈ p ∧ is_preconnected (⋃ j ∈ p, s j), | |
{ intros i hi j hj h, | |
induction h, | |
case refl | |
{ refine ⟨{i}, singleton_subset_iff.mpr hi, mem_singleton i, mem_singleton i, _⟩, | |
rw [bUnion_singleton], | |
exact H i hi }, | |
case tail : j k hij hjk ih | |
{ obtain ⟨p, hpt, hip, hjp, hp⟩ := ih hjk.2, | |
refine ⟨insert k p, insert_subset.mpr ⟨hj, hpt⟩, mem_insert_of_mem k hip, mem_insert k p, _⟩, | |
rw [bUnion_insert], | |
refine (H k hj).union' _ hp, | |
refine hjk.1.mono _, | |
rw [inter_comm], | |
refine inter_subset_inter subset.rfl (subset_bUnion_of_mem hjp) } }, | |
refine is_preconnected_of_forall_pair _, | |
intros x hx y hy, | |
obtain ⟨i: ι, hi : i ∈ t, hxi : x ∈ s i⟩ := mem_Union₂.1 hx, | |
obtain ⟨j: ι, hj : j ∈ t, hyj : y ∈ s j⟩ := mem_Union₂.1 hy, | |
obtain ⟨p, hpt, hip, hjp, hp⟩ := P i hi j hj (K i hi j hj), | |
exact ⟨⋃ j ∈ p, s j, bUnion_subset_bUnion_left hpt, mem_bUnion hip hxi, mem_bUnion hjp hyj, hp⟩ | |
end | |
/-- The bUnion of a family of preconnected sets is preconnected if the graph determined by | |
whether two sets intersect is preconnected. -/ | |
theorem is_connected.bUnion_of_refl_trans_gen {ι : Type*} {t : set ι} {s : ι → set α} | |
(ht : t.nonempty) | |
(H : ∀ i ∈ t, is_connected (s i)) | |
(K : ∀ i j ∈ t, refl_trans_gen (λ i j : ι, (s i ∩ s j).nonempty ∧ i ∈ t) i j) : | |
is_connected (⋃ n ∈ t, s n) := | |
⟨nonempty_bUnion.2 $ ⟨ht.some, ht.some_mem, (H _ ht.some_mem).nonempty⟩, | |
is_preconnected.bUnion_of_refl_trans_gen (λ i hi, (H i hi).is_preconnected) K⟩ | |
/-- Preconnectedness of the Union of a family of preconnected sets | |
indexed by the vertices of a preconnected graph, | |
where two vertices are joined when the corresponding sets intersect. -/ | |
theorem is_preconnected.Union_of_refl_trans_gen {ι : Type*} {s : ι → set α} | |
(H : ∀ i, is_preconnected (s i)) | |
(K : ∀ i j, refl_trans_gen (λ i j : ι, (s i ∩ s j).nonempty) i j) : | |
is_preconnected (⋃ n, s n) := | |
by { rw [← bUnion_univ], exact is_preconnected.bUnion_of_refl_trans_gen (λ i _, H i) | |
(λ i _ j _, by simpa [mem_univ] using K i j) } | |
theorem is_connected.Union_of_refl_trans_gen {ι : Type*} [nonempty ι] {s : ι → set α} | |
(H : ∀ i, is_connected (s i)) | |
(K : ∀ i j, refl_trans_gen (λ i j : ι, (s i ∩ s j).nonempty) i j) : | |
is_connected (⋃ n, s n) := | |
⟨nonempty_Union.2 $ nonempty.elim ‹_› $ λ i : ι, ⟨i, (H _).nonempty⟩, | |
is_preconnected.Union_of_refl_trans_gen (λ i, (H i).is_preconnected) K⟩ | |
section succ_order | |
open order | |
variables [linear_order β] [succ_order β] [is_succ_archimedean β] | |
/-- The Union of connected sets indexed by a type with an archimedean successor (like `ℕ` or `ℤ`) | |
such that any two neighboring sets meet is preconnected. -/ | |
theorem is_preconnected.Union_of_chain {s : β → set α} | |
(H : ∀ n, is_preconnected (s n)) | |
(K : ∀ n, (s n ∩ s (succ n)).nonempty) : | |
is_preconnected (⋃ n, s n) := | |
is_preconnected.Union_of_refl_trans_gen H $ | |
λ i j, refl_trans_gen_of_succ _ (λ i _, K i) $ λ i _, by { rw inter_comm, exact K i } | |
/-- The Union of connected sets indexed by a type with an archimedean successor (like `ℕ` or `ℤ`) | |
such that any two neighboring sets meet is connected. -/ | |
theorem is_connected.Union_of_chain [nonempty β] {s : β → set α} | |
(H : ∀ n, is_connected (s n)) | |
(K : ∀ n, (s n ∩ s (succ n)).nonempty) : | |
is_connected (⋃ n, s n) := | |
is_connected.Union_of_refl_trans_gen H $ | |
λ i j, refl_trans_gen_of_succ _ (λ i _, K i) $ λ i _, by { rw inter_comm, exact K i } | |
/-- The Union of preconnected sets indexed by a subset of a type with an archimedean successor | |
(like `ℕ` or `ℤ`) such that any two neighboring sets meet is preconnected. -/ | |
theorem is_preconnected.bUnion_of_chain | |
{s : β → set α} {t : set β} (ht : ord_connected t) | |
(H : ∀ n ∈ t, is_preconnected (s n)) | |
(K : ∀ n : β, n ∈ t → succ n ∈ t → (s n ∩ s (succ n)).nonempty) : | |
is_preconnected (⋃ n ∈ t, s n) := | |
begin | |
have h1 : ∀ {i j k : β}, i ∈ t → j ∈ t → k ∈ Ico i j → k ∈ t := | |
λ i j k hi hj hk, ht.out hi hj (Ico_subset_Icc_self hk), | |
have h2 : ∀ {i j k : β}, i ∈ t → j ∈ t → k ∈ Ico i j → succ k ∈ t := λ i j k hi hj hk, | |
ht.out hi hj ⟨hk.1.trans $ le_succ k, succ_le_of_lt hk.2⟩, | |
have h3 : ∀ {i j k : β}, i ∈ t → j ∈ t → k ∈ Ico i j → (s k ∩ s (succ k)).nonempty := | |
λ i j k hi hj hk, K _ (h1 hi hj hk) (h2 hi hj hk), | |
refine is_preconnected.bUnion_of_refl_trans_gen H (λ i hi j hj, _), | |
exact refl_trans_gen_of_succ _ (λ k hk, ⟨h3 hi hj hk, h1 hi hj hk⟩) | |
(λ k hk, ⟨by { rw [inter_comm], exact h3 hj hi hk }, h2 hj hi hk⟩), | |
end | |
/-- The Union of connected sets indexed by a subset of a type with an archimedean successor | |
(like `ℕ` or `ℤ`) such that any two neighboring sets meet is preconnected. -/ | |
theorem is_connected.bUnion_of_chain | |
{s : β → set α} {t : set β} (hnt : t.nonempty) (ht : ord_connected t) | |
(H : ∀ n ∈ t, is_connected (s n)) | |
(K : ∀ n : β, n ∈ t → succ n ∈ t → (s n ∩ s (succ n)).nonempty) : | |
is_connected (⋃ n ∈ t, s n) := | |
⟨nonempty_bUnion.2 $ ⟨hnt.some, hnt.some_mem, (H _ hnt.some_mem).nonempty⟩, | |
is_preconnected.bUnion_of_chain ht (λ i hi, (H i hi).is_preconnected) K⟩ | |
end succ_order | |
/-- Theorem of bark and tree : | |
if a set is within a (pre)connected set and its closure, | |
then it is (pre)connected as well. -/ | |
theorem is_preconnected.subset_closure {s : set α} {t : set α} | |
(H : is_preconnected s) (Kst : s ⊆ t) (Ktcs : t ⊆ closure s) : | |
is_preconnected t := | |
λ u v hu hv htuv ⟨y, hyt, hyu⟩ ⟨z, hzt, hzv⟩, | |
let ⟨p, hpu, hps⟩ := mem_closure_iff.1 (Ktcs hyt) u hu hyu, | |
⟨q, hqv, hqs⟩ := mem_closure_iff.1 (Ktcs hzt) v hv hzv, | |
⟨r, hrs, hruv⟩ := H u v hu hv (subset.trans Kst htuv) ⟨p, hps, hpu⟩ ⟨q, hqs, hqv⟩ in | |
⟨r, Kst hrs, hruv⟩ | |
theorem is_connected.subset_closure {s : set α} {t : set α} | |
(H : is_connected s) (Kst : s ⊆ t) (Ktcs : t ⊆ closure s): is_connected t := | |
let hsne := H.left, | |
ht := Kst, | |
htne := nonempty.mono ht hsne in | |
⟨nonempty.mono Kst H.left, is_preconnected.subset_closure H.right Kst Ktcs ⟩ | |
/-- The closure of a (pre)connected set is (pre)connected as well. -/ | |
theorem is_preconnected.closure {s : set α} (H : is_preconnected s) : | |
is_preconnected (closure s) := | |
is_preconnected.subset_closure H subset_closure $ subset.refl $ closure s | |
theorem is_connected.closure {s : set α} (H : is_connected s) : | |
is_connected (closure s) := | |
is_connected.subset_closure H subset_closure $ subset.refl $ closure s | |
/-- The image of a (pre)connected set is (pre)connected as well. -/ | |
theorem is_preconnected.image [topological_space β] {s : set α} (H : is_preconnected s) | |
(f : α → β) (hf : continuous_on f s) : is_preconnected (f '' s) := | |
begin | |
-- Unfold/destruct definitions in hypotheses | |
rintros u v hu hv huv ⟨_, ⟨x, xs, rfl⟩, xu⟩ ⟨_, ⟨y, ys, rfl⟩, yv⟩, | |
rcases continuous_on_iff'.1 hf u hu with ⟨u', hu', u'_eq⟩, | |
rcases continuous_on_iff'.1 hf v hv with ⟨v', hv', v'_eq⟩, | |
-- Reformulate `huv : f '' s ⊆ u ∪ v` in terms of `u'` and `v'` | |
replace huv : s ⊆ u' ∪ v', | |
{ rw [image_subset_iff, preimage_union] at huv, | |
replace huv := subset_inter huv (subset.refl _), | |
rw [inter_distrib_right, u'_eq, v'_eq, ← inter_distrib_right] at huv, | |
exact (subset_inter_iff.1 huv).1 }, | |
-- Now `s ⊆ u' ∪ v'`, so we can apply `‹is_preconnected s›` | |
obtain ⟨z, hz⟩ : (s ∩ (u' ∩ v')).nonempty, | |
{ refine H u' v' hu' hv' huv ⟨x, _⟩ ⟨y, _⟩; rw inter_comm, | |
exacts [u'_eq ▸ ⟨xu, xs⟩, v'_eq ▸ ⟨yv, ys⟩] }, | |
rw [← inter_self s, inter_assoc, inter_left_comm s u', ← inter_assoc, | |
inter_comm s, inter_comm s, ← u'_eq, ← v'_eq] at hz, | |
exact ⟨f z, ⟨z, hz.1.2, rfl⟩, hz.1.1, hz.2.1⟩ | |
end | |
theorem is_connected.image [topological_space β] {s : set α} (H : is_connected s) | |
(f : α → β) (hf : continuous_on f s) : is_connected (f '' s) := | |
⟨nonempty_image_iff.mpr H.nonempty, H.is_preconnected.image f hf⟩ | |
theorem is_preconnected_closed_iff {s : set α} : | |
is_preconnected s ↔ ∀ t t', is_closed t → is_closed t' → s ⊆ t ∪ t' → | |
(s ∩ t).nonempty → (s ∩ t').nonempty → (s ∩ (t ∩ t')).nonempty := | |
⟨begin | |
rintros h t t' ht ht' htt' ⟨x, xs, xt⟩ ⟨y, ys, yt'⟩, | |
rw [←not_disjoint_iff_nonempty_inter, ←subset_compl_iff_disjoint_right, compl_inter], | |
intros h', | |
have xt' : x ∉ t', from (h' xs).resolve_left (absurd xt), | |
have yt : y ∉ t, from (h' ys).resolve_right (absurd yt'), | |
have := h _ _ ht.is_open_compl ht'.is_open_compl h' ⟨y, ys, yt⟩ ⟨x, xs, xt'⟩, | |
rw ←compl_union at this, | |
exact this.ne_empty htt'.disjoint_compl_right.inter_eq, | |
end, | |
begin | |
rintros h u v hu hv huv ⟨x, xs, xu⟩ ⟨y, ys, yv⟩, | |
rw [←not_disjoint_iff_nonempty_inter, ←subset_compl_iff_disjoint_right, compl_inter], | |
intros h', | |
have xv : x ∉ v, from (h' xs).elim (absurd xu) id, | |
have yu : y ∉ u, from (h' ys).elim id (absurd yv), | |
have := h _ _ hu.is_closed_compl hv.is_closed_compl h' ⟨y, ys, yu⟩ ⟨x, xs, xv⟩, | |
rw ←compl_union at this, | |
exact this.ne_empty huv.disjoint_compl_right.inter_eq, | |
end⟩ | |
lemma inducing.is_preconnected_image [topological_space β] {s : set α} {f : α → β} | |
(hf : inducing f) : is_preconnected (f '' s) ↔ is_preconnected s := | |
begin | |
refine ⟨λ h, _, λ h, h.image _ hf.continuous.continuous_on⟩, | |
rintro u v hu' hv' huv ⟨x, hxs, hxu⟩ ⟨y, hys, hyv⟩, | |
rcases hf.is_open_iff.1 hu' with ⟨u, hu, rfl⟩, | |
rcases hf.is_open_iff.1 hv' with ⟨v, hv, rfl⟩, | |
replace huv : f '' s ⊆ u ∪ v, by rwa image_subset_iff, | |
rcases h u v hu hv huv ⟨f x, mem_image_of_mem _ hxs, hxu⟩ ⟨f y, mem_image_of_mem _ hys, hyv⟩ | |
with ⟨_, ⟨z, hzs, rfl⟩, hzuv⟩, | |
exact ⟨z, hzs, hzuv⟩ | |
end | |
/- TODO: The following lemmas about connection of preimages hold more generally for strict maps | |
(the quotient and subspace topologies of the image agree) whose fibers are preconnected. -/ | |
lemma is_preconnected.preimage_of_open_map [topological_space β] {s : set β} | |
(hs : is_preconnected s) {f : α → β} (hinj : function.injective f) (hf : is_open_map f) | |
(hsf : s ⊆ range f) : | |
is_preconnected (f ⁻¹' s) := | |
λ u v hu hv hsuv hsu hsv, | |
begin | |
obtain ⟨b, hbs, hbu, hbv⟩ := hs (f '' u) (f '' v) (hf u hu) (hf v hv) _ _ _, | |
obtain ⟨a, rfl⟩ := hsf hbs, | |
rw hinj.mem_set_image at hbu hbv, | |
exact ⟨a, hbs, hbu, hbv⟩, | |
{ have := image_subset f hsuv, | |
rwa [set.image_preimage_eq_of_subset hsf, image_union] at this }, | |
{ obtain ⟨x, hx1, hx2⟩ := hsu, | |
exact ⟨f x, hx1, x, hx2, rfl⟩ }, | |
{ obtain ⟨y, hy1, hy2⟩ := hsv, | |
exact ⟨f y, hy1, y, hy2, rfl⟩ } | |
end | |
lemma is_preconnected.preimage_of_closed_map [topological_space β] {s : set β} | |
(hs : is_preconnected s) {f : α → β} (hinj : function.injective f) (hf : is_closed_map f) | |
(hsf : s ⊆ range f) : | |
is_preconnected (f ⁻¹' s) := | |
is_preconnected_closed_iff.2 $ λ u v hu hv hsuv hsu hsv, | |
begin | |
obtain ⟨b, hbs, hbu, hbv⟩ := | |
is_preconnected_closed_iff.1 hs (f '' u) (f '' v) (hf u hu) (hf v hv) _ _ _, | |
obtain ⟨a, rfl⟩ := hsf hbs, | |
rw hinj.mem_set_image at hbu hbv, | |
exact ⟨a, hbs, hbu, hbv⟩, | |
{ have := image_subset f hsuv, | |
rwa [set.image_preimage_eq_of_subset hsf, image_union] at this }, | |
{ obtain ⟨x, hx1, hx2⟩ := hsu, | |
exact ⟨f x, hx1, x, hx2, rfl⟩ }, | |
{ obtain ⟨y, hy1, hy2⟩ := hsv, | |
exact ⟨f y, hy1, y, hy2, rfl⟩ } | |
end | |
lemma is_connected.preimage_of_open_map [topological_space β] {s : set β} (hs : is_connected s) | |
{f : α → β} (hinj : function.injective f) (hf : is_open_map f) (hsf : s ⊆ range f) : | |
is_connected (f ⁻¹' s) := | |
⟨hs.nonempty.preimage' hsf, hs.is_preconnected.preimage_of_open_map hinj hf hsf⟩ | |
lemma is_connected.preimage_of_closed_map [topological_space β] {s : set β} (hs : is_connected s) | |
{f : α → β} (hinj : function.injective f) (hf : is_closed_map f) (hsf : s ⊆ range f) : | |
is_connected (f ⁻¹' s) := | |
⟨hs.nonempty.preimage' hsf, hs.is_preconnected.preimage_of_closed_map hinj hf hsf⟩ | |
lemma is_preconnected.subset_or_subset (hu : is_open u) (hv : is_open v) (huv : disjoint u v) | |
(hsuv : s ⊆ u ∪ v) (hs : is_preconnected s) : | |
s ⊆ u ∨ s ⊆ v := | |
begin | |
specialize hs u v hu hv hsuv, | |
obtain hsu | hsu := (s ∩ u).eq_empty_or_nonempty, | |
{ exact or.inr ((set.disjoint_iff_inter_eq_empty.2 hsu).subset_right_of_subset_union hsuv) }, | |
{ replace hs := mt (hs hsu), | |
simp_rw [set.not_nonempty_iff_eq_empty, ←set.disjoint_iff_inter_eq_empty, | |
disjoint_iff_inter_eq_empty.1 huv] at hs, | |
exact or.inl ((hs s.disjoint_empty).subset_left_of_subset_union hsuv) } | |
end | |
lemma is_preconnected.subset_left_of_subset_union (hu : is_open u) (hv : is_open v) | |
(huv : disjoint u v) (hsuv : s ⊆ u ∪ v) (hsu : (s ∩ u).nonempty) (hs : is_preconnected s) : | |
s ⊆ u := | |
disjoint.subset_left_of_subset_union hsuv | |
begin | |
by_contra hsv, | |
rw not_disjoint_iff_nonempty_inter at hsv, | |
obtain ⟨x, _, hx⟩ := hs u v hu hv hsuv hsu hsv, | |
exact set.disjoint_iff.1 huv hx, | |
end | |
lemma is_preconnected.subset_right_of_subset_union (hu : is_open u) (hv : is_open v) | |
(huv : disjoint u v) (hsuv : s ⊆ u ∪ v) (hsv : (s ∩ v).nonempty) (hs : is_preconnected s) : | |
s ⊆ v := | |
hs.subset_left_of_subset_union hv hu huv.symm (union_comm u v ▸ hsuv) hsv | |
theorem is_preconnected.prod [topological_space β] {s : set α} {t : set β} | |
(hs : is_preconnected s) (ht : is_preconnected t) : | |
is_preconnected (s ×ˢ t) := | |
begin | |
apply is_preconnected_of_forall_pair, | |
rintro ⟨a₁, b₁⟩ ⟨ha₁, hb₁⟩ ⟨a₂, b₂⟩ ⟨ha₂, hb₂⟩, | |
refine ⟨prod.mk a₁ '' t ∪ flip prod.mk b₂ '' s, _, | |
or.inl ⟨b₁, hb₁, rfl⟩, or.inr ⟨a₂, ha₂, rfl⟩, _⟩, | |
{ rintro _ (⟨y, hy, rfl⟩|⟨x, hx, rfl⟩), | |
exacts [⟨ha₁, hy⟩, ⟨hx, hb₂⟩] }, | |
{ exact (ht.image _ (continuous.prod.mk _).continuous_on).union (a₁, b₂) ⟨b₂, hb₂, rfl⟩ | |
⟨a₁, ha₁, rfl⟩ (hs.image _ (continuous_id.prod_mk continuous_const).continuous_on) } | |
end | |
theorem is_connected.prod [topological_space β] {s : set α} {t : set β} | |
(hs : is_connected s) (ht : is_connected t) : is_connected (s ×ˢ t) := | |
⟨hs.1.prod ht.1, hs.2.prod ht.2⟩ | |
theorem is_preconnected_univ_pi [Π i, topological_space (π i)] {s : Π i, set (π i)} | |
(hs : ∀ i, is_preconnected (s i)) : | |
is_preconnected (pi univ s) := | |
begin | |
rintros u v uo vo hsuv ⟨f, hfs, hfu⟩ ⟨g, hgs, hgv⟩, | |
rcases exists_finset_piecewise_mem_of_mem_nhds (uo.mem_nhds hfu) g with ⟨I, hI⟩, | |
induction I using finset.induction_on with i I hi ihI, | |
{ refine ⟨g, hgs, ⟨_, hgv⟩⟩, simpa using hI }, | |
{ rw [finset.piecewise_insert] at hI, | |
have := I.piecewise_mem_set_pi hfs hgs, | |
refine (hsuv this).elim ihI (λ h, _), | |
set S := update (I.piecewise f g) i '' (s i), | |
have hsub : S ⊆ pi univ s, | |
{ refine image_subset_iff.2 (λ z hz, _), | |
rwa update_preimage_univ_pi, | |
exact λ j hj, this j trivial }, | |
have hconn : is_preconnected S, | |
from (hs i).image _ (continuous_const.update i continuous_id).continuous_on, | |
have hSu : (S ∩ u).nonempty, | |
from ⟨_, mem_image_of_mem _ (hfs _ trivial), hI⟩, | |
have hSv : (S ∩ v).nonempty, | |
from ⟨_, ⟨_, this _ trivial, update_eq_self _ _⟩, h⟩, | |
refine (hconn u v uo vo (hsub.trans hsuv) hSu hSv).mono _, | |
exact inter_subset_inter_left _ hsub } | |
end | |
@[simp] theorem is_connected_univ_pi [Π i, topological_space (π i)] {s : Π i, set (π i)} : | |
is_connected (pi univ s) ↔ ∀ i, is_connected (s i) := | |
begin | |
simp only [is_connected, ← univ_pi_nonempty_iff, forall_and_distrib, and.congr_right_iff], | |
refine λ hne, ⟨λ hc i, _, is_preconnected_univ_pi⟩, | |
rw [← eval_image_univ_pi hne], | |
exact hc.image _ (continuous_apply _).continuous_on | |
end | |
lemma sigma.is_connected_iff [Π i, topological_space (π i)] {s : set (Σ i, π i)} : | |
is_connected s ↔ ∃ i t, is_connected t ∧ s = sigma.mk i '' t := | |
begin | |
refine ⟨λ hs, _, _⟩, | |
{ obtain ⟨⟨i, x⟩, hx⟩ := hs.nonempty, | |
have : s ⊆ range (sigma.mk i), | |
{ have h : range (sigma.mk i) = sigma.fst ⁻¹' {i}, by { ext, simp }, | |
rw h, | |
exact is_preconnected.subset_left_of_subset_union | |
(is_open_sigma_fst_preimage _) (is_open_sigma_fst_preimage {x | x ≠ i}) | |
(set.disjoint_iff.2 $ λ x hx, hx.2 hx.1) | |
(λ y hy, by simp [classical.em]) ⟨⟨i, x⟩, hx, rfl⟩ hs.2 }, | |
exact ⟨i, sigma.mk i ⁻¹' s, | |
hs.preimage_of_open_map sigma_mk_injective is_open_map_sigma_mk this, | |
(set.image_preimage_eq_of_subset this).symm⟩ }, | |
{ rintro ⟨i, t, ht, rfl⟩, | |
exact ht.image _ continuous_sigma_mk.continuous_on } | |
end | |
lemma sigma.is_preconnected_iff [hι : nonempty ι] [Π i, topological_space (π i)] | |
{s : set (Σ i, π i)} : | |
is_preconnected s ↔ ∃ i t, is_preconnected t ∧ s = sigma.mk i '' t := | |
begin | |
refine ⟨λ hs, _, _⟩, | |
{ obtain rfl | h := s.eq_empty_or_nonempty, | |
{ exact ⟨classical.choice hι, ∅, is_preconnected_empty, (set.image_empty _).symm⟩ }, | |
{ obtain ⟨a, t, ht, rfl⟩ := sigma.is_connected_iff.1 ⟨h, hs⟩, | |
refine ⟨a, t, ht.is_preconnected, rfl⟩ } }, | |
{ rintro ⟨a, t, ht, rfl⟩, | |
exact ht.image _ continuous_sigma_mk.continuous_on } | |
end | |
lemma sum.is_connected_iff [topological_space β] {s : set (α ⊕ β)} : | |
is_connected s ↔ | |
(∃ t, is_connected t ∧ s = sum.inl '' t) ∨ ∃ t, is_connected t ∧ s = sum.inr '' t := | |
begin | |
refine ⟨λ hs, _, _⟩, | |
{ let u : set (α ⊕ β):= range sum.inl, | |
let v : set (α ⊕ β) := range sum.inr, | |
have hu : is_open u, exact is_open_range_inl, | |
obtain ⟨x | x, hx⟩ := hs.nonempty, | |
{ have h := is_preconnected.subset_left_of_subset_union | |
is_open_range_inl is_open_range_inr is_compl_range_inl_range_inr.disjoint | |
(show s ⊆ range sum.inl ∪ range sum.inr, by simp) ⟨sum.inl x, hx, x, rfl⟩ hs.2, | |
refine or.inl ⟨sum.inl ⁻¹' s, _, _⟩, | |
{ exact hs.preimage_of_open_map sum.inl_injective open_embedding_inl.is_open_map h }, | |
{ exact (set.image_preimage_eq_of_subset h).symm } }, | |
{ have h := is_preconnected.subset_right_of_subset_union | |
is_open_range_inl is_open_range_inr is_compl_range_inl_range_inr.disjoint | |
(show s ⊆ range sum.inl ∪ range sum.inr, by simp) ⟨sum.inr x, hx, x, rfl⟩ hs.2, | |
refine or.inr ⟨sum.inr ⁻¹' s, _, _⟩, | |
{ exact hs.preimage_of_open_map sum.inr_injective open_embedding_inr.is_open_map h }, | |
{ exact (set.image_preimage_eq_of_subset h).symm } } }, | |
{ rintro (⟨t, ht, rfl⟩ | ⟨t, ht, rfl⟩), | |
{ exact ht.image _ continuous_inl.continuous_on }, | |
{ exact ht.image _ continuous_inr.continuous_on } } | |
end | |
lemma sum.is_preconnected_iff [topological_space β] {s : set (α ⊕ β)} : | |
is_preconnected s ↔ | |
(∃ t, is_preconnected t ∧ s = sum.inl '' t) ∨ ∃ t, is_preconnected t ∧ s = sum.inr '' t := | |
begin | |
refine ⟨λ hs, _, _⟩, | |
{ obtain rfl | h := s.eq_empty_or_nonempty, | |
{ exact or.inl ⟨∅, is_preconnected_empty, (set.image_empty _).symm⟩ }, | |
obtain ⟨t, ht, rfl⟩ | ⟨t, ht, rfl⟩ := sum.is_connected_iff.1 ⟨h, hs⟩, | |
{ exact or.inl ⟨t, ht.is_preconnected, rfl⟩ }, | |
{ exact or.inr ⟨t, ht.is_preconnected, rfl⟩ } }, | |
{ rintro (⟨t, ht, rfl⟩ | ⟨t, ht, rfl⟩), | |
{ exact ht.image _ continuous_inl.continuous_on }, | |
{ exact ht.image _ continuous_inr.continuous_on } } | |
end | |
/-- The connected component of a point is the maximal connected set | |
that contains this point. -/ | |
def connected_component (x : α) : set α := | |
⋃₀ { s : set α | is_preconnected s ∧ x ∈ s } | |
/-- The connected component of a point inside a set. -/ | |
def connected_component_in (F : set α) (x : F) : set α := coe '' (connected_component x) | |
theorem mem_connected_component {x : α} : x ∈ connected_component x := | |
mem_sUnion_of_mem (mem_singleton x) ⟨is_connected_singleton.is_preconnected, mem_singleton x⟩ | |
theorem is_preconnected_connected_component {x : α} : is_preconnected (connected_component x) := | |
is_preconnected_sUnion x _ (λ _, and.right) (λ _, and.left) | |
theorem is_connected_connected_component {x : α} : is_connected (connected_component x) := | |
⟨⟨x, mem_connected_component⟩, is_preconnected_connected_component⟩ | |
theorem is_preconnected.subset_connected_component {x : α} {s : set α} | |
(H1 : is_preconnected s) (H2 : x ∈ s) : s ⊆ connected_component x := | |
λ z hz, mem_sUnion_of_mem hz ⟨H1, H2⟩ | |
theorem is_connected.subset_connected_component {x : α} {s : set α} | |
(H1 : is_connected s) (H2 : x ∈ s) : s ⊆ connected_component x := | |
H1.2.subset_connected_component H2 | |
theorem connected_component_eq {x y : α} (h : y ∈ connected_component x) : | |
connected_component x = connected_component y := | |
eq_of_subset_of_subset | |
(is_connected_connected_component.subset_connected_component h) | |
(is_connected_connected_component.subset_connected_component | |
(set.mem_of_mem_of_subset mem_connected_component | |
(is_connected_connected_component.subset_connected_component h))) | |
lemma connected_component_disjoint {x y : α} (h : connected_component x ≠ connected_component y) : | |
disjoint (connected_component x) (connected_component y) := | |
set.disjoint_left.2 (λ a h1 h2, h | |
((connected_component_eq h1).trans (connected_component_eq h2).symm)) | |
theorem is_closed_connected_component {x : α} : | |
is_closed (connected_component x) := | |
closure_eq_iff_is_closed.1 $ subset.antisymm | |
(is_connected_connected_component.closure.subset_connected_component | |
(subset_closure mem_connected_component)) | |
subset_closure | |
lemma continuous.image_connected_component_subset [topological_space β] {f : α → β} | |
(h : continuous f) (a : α) : f '' connected_component a ⊆ connected_component (f a) := | |
(is_connected_connected_component.image f h.continuous_on).subset_connected_component | |
((mem_image f (connected_component a) (f a)).2 ⟨a, mem_connected_component, rfl⟩) | |
lemma continuous.maps_to_connected_component [topological_space β] {f : α → β} | |
(h : continuous f) (a : α) : maps_to f (connected_component a) (connected_component (f a)) := | |
maps_to'.2 $ h.image_connected_component_subset a | |
theorem irreducible_component_subset_connected_component {x : α} : | |
irreducible_component x ⊆ connected_component x := | |
is_irreducible_irreducible_component.is_connected.subset_connected_component | |
mem_irreducible_component | |
/-- A preconnected space is one where there is no non-trivial open partition. -/ | |
class preconnected_space (α : Type u) [topological_space α] : Prop := | |
(is_preconnected_univ : is_preconnected (univ : set α)) | |
export preconnected_space (is_preconnected_univ) | |
/-- A connected space is a nonempty one where there is no non-trivial open partition. -/ | |
class connected_space (α : Type u) [topological_space α] extends preconnected_space α : Prop := | |
(to_nonempty : nonempty α) | |
attribute [instance, priority 50] connected_space.to_nonempty -- see Note [lower instance priority] | |
lemma is_connected_univ [connected_space α] : is_connected (univ : set α) := | |
⟨univ_nonempty, is_preconnected_univ⟩ | |
lemma is_preconnected_range [topological_space β] [preconnected_space α] {f : α → β} | |
(h : continuous f) : is_preconnected (range f) := | |
@image_univ _ _ f ▸ is_preconnected_univ.image _ h.continuous_on | |
lemma is_connected_range [topological_space β] [connected_space α] {f : α → β} (h : continuous f) : | |
is_connected (range f) := | |
⟨range_nonempty f, is_preconnected_range h⟩ | |
lemma dense_range.preconnected_space [topological_space β] [preconnected_space α] {f : α → β} | |
(hf : dense_range f) (hc : continuous f) : | |
preconnected_space β := | |
⟨hf.closure_eq ▸ (is_preconnected_range hc).closure⟩ | |
lemma connected_space_iff_connected_component : | |
connected_space α ↔ ∃ x : α, connected_component x = univ := | |
begin | |
split, | |
{ rintros ⟨h, ⟨x⟩⟩, | |
exactI ⟨x, eq_univ_of_univ_subset $ | |
is_preconnected_univ.subset_connected_component (mem_univ x)⟩ }, | |
{ rintros ⟨x, h⟩, | |
haveI : preconnected_space α := ⟨by { rw ← h, exact is_preconnected_connected_component }⟩, | |
exact ⟨⟨x⟩⟩ } | |
end | |
lemma preconnected_space_iff_connected_component : | |
preconnected_space α ↔ ∀ x : α, connected_component x = univ := | |
begin | |
split, | |
{ intros h x, | |
exactI (eq_univ_of_univ_subset $ | |
is_preconnected_univ.subset_connected_component (mem_univ x)) }, | |
{ intros h, | |
casesI is_empty_or_nonempty α with hα hα, | |
{ exact ⟨by { rw (univ_eq_empty_iff.mpr hα), exact is_preconnected_empty }⟩ }, | |
{ exact ⟨by { rw ← h (classical.choice hα), exact is_preconnected_connected_component }⟩ } } | |
end | |
@[simp] lemma preconnected_space.connected_component_eq_univ {X : Type*} [topological_space X] | |
[h : preconnected_space X] (x : X) : connected_component x = univ := | |
preconnected_space_iff_connected_component.mp h x | |
instance [topological_space β] [preconnected_space α] [preconnected_space β] : | |
preconnected_space (α × β) := | |
⟨by { rw ← univ_prod_univ, exact is_preconnected_univ.prod is_preconnected_univ }⟩ | |
instance [topological_space β] [connected_space α] [connected_space β] : | |
connected_space (α × β) := | |
⟨prod.nonempty⟩ | |
instance [Π i, topological_space (π i)] [∀ i, preconnected_space (π i)] : | |
preconnected_space (Π i, π i) := | |
⟨by { rw ← pi_univ univ, exact is_preconnected_univ_pi (λ i, is_preconnected_univ) }⟩ | |
instance [Π i, topological_space (π i)] [∀ i, connected_space (π i)] : connected_space (Π i, π i) := | |
⟨classical.nonempty_pi.2 $ λ i, by apply_instance⟩ | |
@[priority 100] -- see Note [lower instance priority] | |
instance preirreducible_space.preconnected_space (α : Type u) [topological_space α] | |
[preirreducible_space α] : preconnected_space α := | |
⟨(preirreducible_space.is_preirreducible_univ α).is_preconnected⟩ | |
@[priority 100] -- see Note [lower instance priority] | |
instance irreducible_space.connected_space (α : Type u) [topological_space α] | |
[irreducible_space α] : connected_space α := | |
{ to_nonempty := irreducible_space.to_nonempty α } | |
theorem nonempty_inter [preconnected_space α] {s t : set α} : | |
is_open s → is_open t → s ∪ t = univ → s.nonempty → t.nonempty → (s ∩ t).nonempty := | |
by simpa only [univ_inter, univ_subset_iff] using | |
@preconnected_space.is_preconnected_univ α _ _ s t | |
theorem is_clopen_iff [preconnected_space α] {s : set α} : is_clopen s ↔ s = ∅ ∨ s = univ := | |
⟨λ hs, classical.by_contradiction $ λ h, | |
have h1 : s ≠ ∅ ∧ sᶜ ≠ ∅, from ⟨mt or.inl h, | |
mt (λ h2, or.inr $ (by rw [← compl_compl s, h2, compl_empty] : s = univ)) h⟩, | |
let ⟨_, h2, h3⟩ := nonempty_inter hs.1 hs.2.is_open_compl (union_compl_self s) | |
(ne_empty_iff_nonempty.1 h1.1) (ne_empty_iff_nonempty.1 h1.2) in | |
h3 h2, | |
by rintro (rfl | rfl); [exact is_clopen_empty, exact is_clopen_univ]⟩ | |
lemma eq_univ_of_nonempty_clopen [preconnected_space α] {s : set α} | |
(h : s.nonempty) (h' : is_clopen s) : s = univ := | |
by { rw is_clopen_iff at h', exact h'.resolve_left h.ne_empty } | |
lemma frontier_eq_empty_iff [preconnected_space α] {s : set α} : | |
frontier s = ∅ ↔ s = ∅ ∨ s = univ := | |
is_clopen_iff_frontier_eq_empty.symm.trans is_clopen_iff | |
lemma nonempty_frontier_iff [preconnected_space α] {s : set α} : | |
(frontier s).nonempty ↔ s.nonempty ∧ s ≠ univ := | |
by simp only [← ne_empty_iff_nonempty, ne.def, frontier_eq_empty_iff, not_or_distrib] | |
lemma subtype.preconnected_space {s : set α} (h : is_preconnected s) : | |
preconnected_space s := | |
{ is_preconnected_univ := by rwa [← embedding_subtype_coe.to_inducing.is_preconnected_image, | |
image_univ, subtype.range_coe] } | |
lemma subtype.connected_space {s : set α} (h : is_connected s) : | |
connected_space s := | |
{ to_preconnected_space := subtype.preconnected_space h.is_preconnected, | |
to_nonempty := h.nonempty.to_subtype } | |
lemma is_preconnected_iff_preconnected_space {s : set α} : | |
is_preconnected s ↔ preconnected_space s := | |
⟨subtype.preconnected_space, | |
begin | |
introI, | |
simpa using is_preconnected_univ.image (coe : s → α) continuous_subtype_coe.continuous_on | |
end⟩ | |
lemma is_connected_iff_connected_space {s : set α} : is_connected s ↔ connected_space s := | |
⟨subtype.connected_space, | |
λ h, ⟨nonempty_subtype.mp h.2, is_preconnected_iff_preconnected_space.mpr h.1⟩⟩ | |
/-- A set `s` is preconnected if and only if | |
for every cover by two open sets that are disjoint on `s`, | |
it is contained in one of the two covering sets. -/ | |
lemma is_preconnected_iff_subset_of_disjoint {s : set α} : | |
is_preconnected s ↔ | |
∀ (u v : set α) (hu : is_open u) (hv : is_open v) (hs : s ⊆ u ∪ v) (huv : s ∩ (u ∩ v) = ∅), | |
s ⊆ u ∨ s ⊆ v := | |
begin | |
split; intro h, | |
{ intros u v hu hv hs huv, | |
specialize h u v hu hv hs, | |
contrapose! huv, | |
rw ne_empty_iff_nonempty, | |
simp [not_subset] at huv, | |
rcases huv with ⟨⟨x, hxs, hxu⟩, ⟨y, hys, hyv⟩⟩, | |
have hxv : x ∈ v := or_iff_not_imp_left.mp (hs hxs) hxu, | |
have hyu : y ∈ u := or_iff_not_imp_right.mp (hs hys) hyv, | |
exact h ⟨y, hys, hyu⟩ ⟨x, hxs, hxv⟩ }, | |
{ intros u v hu hv hs hsu hsv, | |
rw ← ne_empty_iff_nonempty, | |
intro H, | |
specialize h u v hu hv hs H, | |
contrapose H, | |
apply ne_empty_iff_nonempty.mpr, | |
cases h, | |
{ rcases hsv with ⟨x, hxs, hxv⟩, exact ⟨x, hxs, ⟨h hxs, hxv⟩⟩ }, | |
{ rcases hsu with ⟨x, hxs, hxu⟩, exact ⟨x, hxs, ⟨hxu, h hxs⟩⟩ } } | |
end | |
/-- A set `s` is connected if and only if | |
for every cover by a finite collection of open sets that are pairwise disjoint on `s`, | |
it is contained in one of the members of the collection. -/ | |
lemma is_connected_iff_sUnion_disjoint_open {s : set α} : | |
is_connected s ↔ | |
∀ (U : finset (set α)) (H : ∀ (u v : set α), u ∈ U → v ∈ U → (s ∩ (u ∩ v)).nonempty → u = v) | |
(hU : ∀ u ∈ U, is_open u) (hs : s ⊆ ⋃₀ ↑U), | |
∃ u ∈ U, s ⊆ u := | |
begin | |
rw [is_connected, is_preconnected_iff_subset_of_disjoint], | |
split; intro h, | |
{ intro U, apply finset.induction_on U, | |
{ rcases h.left, | |
suffices : s ⊆ ∅ → false, { simpa }, | |
intro, solve_by_elim }, | |
{ intros u U hu IH hs hU H, | |
rw [finset.coe_insert, sUnion_insert] at H, | |
cases h.2 u (⋃₀ ↑U) _ _ H _ with hsu hsU, | |
{ exact ⟨u, finset.mem_insert_self _ _, hsu⟩ }, | |
{ rcases IH _ _ hsU with ⟨v, hvU, hsv⟩, | |
{ exact ⟨v, finset.mem_insert_of_mem hvU, hsv⟩ }, | |
{ intros, apply hs; solve_by_elim [finset.mem_insert_of_mem] }, | |
{ intros, solve_by_elim [finset.mem_insert_of_mem] } }, | |
{ solve_by_elim [finset.mem_insert_self] }, | |
{ apply is_open_sUnion, | |
intros, solve_by_elim [finset.mem_insert_of_mem] }, | |
{ apply eq_empty_of_subset_empty, | |
rintro x ⟨hxs, hxu, hxU⟩, | |
rw mem_sUnion at hxU, | |
rcases hxU with ⟨v, hvU, hxv⟩, | |
rcases hs u v (finset.mem_insert_self _ _) (finset.mem_insert_of_mem hvU) _ with rfl, | |
{ contradiction }, | |
{ exact ⟨x, hxs, hxu, hxv⟩ } } } }, | |
{ split, | |
{ rw ← ne_empty_iff_nonempty, | |
by_contradiction hs, subst hs, | |
simpa using h ∅ _ _ _; simp }, | |
intros u v hu hv hs hsuv, | |
rcases h {u, v} _ _ _ with ⟨t, ht, ht'⟩, | |
{ rw [finset.mem_insert, finset.mem_singleton] at ht, | |
rcases ht with rfl|rfl; tauto }, | |
{ intros t₁ t₂ ht₁ ht₂ hst, | |
rw ← ne_empty_iff_nonempty at hst, | |
rw [finset.mem_insert, finset.mem_singleton] at ht₁ ht₂, | |
rcases ht₁ with rfl|rfl; rcases ht₂ with rfl|rfl, | |
all_goals { refl <|> contradiction <|> skip }, | |
rw inter_comm t₁ at hst, contradiction }, | |
{ intro t, | |
rw [finset.mem_insert, finset.mem_singleton], | |
rintro (rfl|rfl); assumption }, | |
{ simpa using hs } } | |
end | |
/-- Preconnected sets are either contained in or disjoint to any given clopen set. -/ | |
theorem is_preconnected.subset_clopen {s t : set α} (hs : is_preconnected s) (ht : is_clopen t) | |
(hne : (s ∩ t).nonempty) : s ⊆ t := | |
begin | |
by_contra h, | |
have : (s ∩ tᶜ).nonempty := inter_compl_nonempty_iff.2 h, | |
obtain ⟨x, -, hx, hx'⟩ : (s ∩ (t ∩ tᶜ)).nonempty, | |
from hs t tᶜ ht.is_open ht.compl.is_open (λ x hx, em _) hne this, | |
exact hx' hx | |
end | |
/-- Preconnected sets are either contained in or disjoint to any given clopen set. -/ | |
theorem disjoint_or_subset_of_clopen {s t : set α} (hs : is_preconnected s) (ht : is_clopen t) : | |
disjoint s t ∨ s ⊆ t := | |
(disjoint_or_nonempty_inter s t).imp_right $ hs.subset_clopen ht | |
/-- A set `s` is preconnected if and only if | |
for every cover by two closed sets that are disjoint on `s`, | |
it is contained in one of the two covering sets. -/ | |
theorem is_preconnected_iff_subset_of_disjoint_closed : | |
is_preconnected s ↔ | |
∀ (u v : set α) (hu : is_closed u) (hv : is_closed v) (hs : s ⊆ u ∪ v) (huv : s ∩ (u ∩ v) = ∅), | |
s ⊆ u ∨ s ⊆ v := | |
begin | |
split; intro h, | |
{ intros u v hu hv hs huv, | |
rw is_preconnected_closed_iff at h, | |
specialize h u v hu hv hs, | |
contrapose! huv, | |
rw ne_empty_iff_nonempty, | |
simp [not_subset] at huv, | |
rcases huv with ⟨⟨x, hxs, hxu⟩, ⟨y, hys, hyv⟩⟩, | |
have hxv : x ∈ v := or_iff_not_imp_left.mp (hs hxs) hxu, | |
have hyu : y ∈ u := or_iff_not_imp_right.mp (hs hys) hyv, | |
exact h ⟨y, hys, hyu⟩ ⟨x, hxs, hxv⟩ }, | |
{ rw is_preconnected_closed_iff, | |
intros u v hu hv hs hsu hsv, | |
rw ← ne_empty_iff_nonempty, | |
intro H, | |
specialize h u v hu hv hs H, | |
contrapose H, | |
apply ne_empty_iff_nonempty.mpr, | |
cases h, | |
{ rcases hsv with ⟨x, hxs, hxv⟩, exact ⟨x, hxs, ⟨h hxs, hxv⟩⟩ }, | |
{ rcases hsu with ⟨x, hxs, hxu⟩, exact ⟨x, hxs, ⟨hxu, h hxs⟩⟩ } } | |
end | |
/-- A closed set `s` is preconnected if and only if | |
for every cover by two closed sets that are disjoint, | |
it is contained in one of the two covering sets. -/ | |
theorem is_preconnected_iff_subset_of_fully_disjoint_closed {s : set α} (hs : is_closed s) : | |
is_preconnected s ↔ | |
∀ (u v : set α) (hu : is_closed u) (hv : is_closed v) (hss : s ⊆ u ∪ v) (huv : disjoint u v), | |
s ⊆ u ∨ s ⊆ v := | |
begin | |
split, | |
{ intros h u v hu hv hss huv, | |
apply is_preconnected_iff_subset_of_disjoint_closed.1 h u v hu hv hss, | |
rw [huv.inter_eq, inter_empty] }, | |
intro H, | |
rw is_preconnected_iff_subset_of_disjoint_closed, | |
intros u v hu hv hss huv, | |
have H1 := H (u ∩ s) (v ∩ s), | |
rw [subset_inter_iff, subset_inter_iff] at H1, | |
simp only [subset.refl, and_true] at H1, | |
apply H1 (is_closed.inter hu hs) (is_closed.inter hv hs), | |
{ rw ←inter_distrib_right, | |
exact subset_inter hss subset.rfl }, | |
{ rwa [disjoint_iff_inter_eq_empty, ←inter_inter_distrib_right, inter_comm] } | |
end | |
lemma is_clopen.connected_component_subset {x} (hs : is_clopen s) (hx : x ∈ s) : | |
connected_component x ⊆ s := | |
is_preconnected_connected_component.subset_clopen hs ⟨x, mem_connected_component, hx⟩ | |
/-- The connected component of a point is always a subset of the intersection of all its clopen | |
neighbourhoods. -/ | |
lemma connected_component_subset_Inter_clopen {x : α} : | |
connected_component x ⊆ ⋂ Z : {Z : set α // is_clopen Z ∧ x ∈ Z}, Z := | |
subset_Inter $ λ Z, Z.2.1.connected_component_subset Z.2.2 | |
/-- A clopen set is the union of its connected components. -/ | |
lemma is_clopen.bUnion_connected_component_eq {Z : set α} (h : is_clopen Z) : | |
(⋃ x ∈ Z, connected_component x) = Z := | |
subset.antisymm (Union₂_subset $ λ x, h.connected_component_subset) $ | |
λ x hx, mem_Union₂_of_mem hx mem_connected_component | |
/-- The preimage of a connected component is preconnected if the function has connected fibers | |
and a subset is closed iff the preimage is. -/ | |
lemma preimage_connected_component_connected [topological_space β] {f : α → β} | |
(connected_fibers : ∀ t : β, is_connected (f ⁻¹' {t})) | |
(hcl : ∀ (T : set β), is_closed T ↔ is_closed (f ⁻¹' T)) (t : β) : | |
is_connected (f ⁻¹' connected_component t) := | |
begin | |
-- The following proof is essentially https://stacks.math.columbia.edu/tag/0377 | |
-- although the statement is slightly different | |
have hf : surjective f := surjective.of_comp (λ t : β, (connected_fibers t).1), | |
split, | |
{ cases hf t with s hs, | |
use s, | |
rw [mem_preimage, hs], | |
exact mem_connected_component }, | |
have hT : is_closed (f ⁻¹' connected_component t) := | |
(hcl (connected_component t)).1 is_closed_connected_component, | |
-- To show it's preconnected we decompose (f ⁻¹' connected_component t) as a subset of two | |
-- closed disjoint sets in α. We want to show that it's a subset of either. | |
rw is_preconnected_iff_subset_of_fully_disjoint_closed hT, | |
intros u v hu hv huv uv_disj, | |
-- To do this we decompose connected_component t into T₁ and T₂ | |
-- we will show that connected_component t is a subset of either and hence | |
-- (f ⁻¹' connected_component t) is a subset of u or v | |
let T₁ := {t' ∈ connected_component t | f ⁻¹' {t'} ⊆ u}, | |
let T₂ := {t' ∈ connected_component t | f ⁻¹' {t'} ⊆ v}, | |
have fiber_decomp : ∀ t' ∈ connected_component t, f ⁻¹' {t'} ⊆ u ∨ f ⁻¹' {t'} ⊆ v, | |
{ intros t' ht', | |
apply is_preconnected_iff_subset_of_disjoint_closed.1 (connected_fibers t').2 u v hu hv, | |
{ exact subset.trans (hf.preimage_subset_preimage_iff.2 (singleton_subset_iff.2 ht')) huv }, | |
rw [uv_disj.inter_eq, inter_empty] }, | |
have T₁_u : f ⁻¹' T₁ = (f ⁻¹' connected_component t) ∩ u, | |
{ apply eq_of_subset_of_subset, | |
{ rw ←bUnion_preimage_singleton, | |
refine Union₂_subset (λ t' ht', subset_inter _ ht'.2), | |
rw [hf.preimage_subset_preimage_iff, singleton_subset_iff], | |
exact ht'.1 }, | |
rintros a ⟨hat, hau⟩, | |
constructor, | |
{ exact mem_preimage.1 hat }, | |
dsimp only, | |
cases fiber_decomp (f a) (mem_preimage.1 hat), | |
{ exact h }, | |
{ cases (nonempty_of_mem $ mem_inter hau $ h rfl).not_disjoint uv_disj } }, | |
-- This proof is exactly the same as the above (modulo some symmetry) | |
have T₂_v : f ⁻¹' T₂ = (f ⁻¹' connected_component t) ∩ v, | |
{ apply eq_of_subset_of_subset, | |
{ rw ←bUnion_preimage_singleton, | |
refine Union₂_subset (λ t' ht', subset_inter _ ht'.2), | |
rw [hf.preimage_subset_preimage_iff, singleton_subset_iff], | |
exact ht'.1 }, | |
rintros a ⟨hat, hav⟩, | |
constructor, | |
{ exact mem_preimage.1 hat }, | |
dsimp only, | |
cases fiber_decomp (f a) (mem_preimage.1 hat), | |
{ cases (nonempty_of_mem (mem_inter (h rfl) hav)).not_disjoint uv_disj }, | |
{ exact h } }, | |
-- Now we show T₁, T₂ are closed, cover connected_component t and are disjoint. | |
have hT₁ : is_closed T₁ := ((hcl T₁).2 (T₁_u.symm ▸ (is_closed.inter hT hu))), | |
have hT₂ : is_closed T₂ := ((hcl T₂).2 (T₂_v.symm ▸ (is_closed.inter hT hv))), | |
have T_decomp : connected_component t ⊆ T₁ ∪ T₂, | |
{ intros t' ht', | |
rw mem_union t' T₁ T₂, | |
cases fiber_decomp t' ht' with htu htv, | |
{ left, exact ⟨ht', htu⟩ }, | |
right, exact ⟨ht', htv⟩ }, | |
have T_disjoint : disjoint T₁ T₂, | |
{ refine disjoint.of_preimage hf _, | |
rw [T₁_u, T₂_v, disjoint_iff_inter_eq_empty, ←inter_inter_distrib_left, uv_disj.inter_eq, | |
inter_empty] }, | |
-- Now we do cases on whether (connected_component t) is a subset of T₁ or T₂ to show | |
-- that the preimage is a subset of u or v. | |
cases (is_preconnected_iff_subset_of_fully_disjoint_closed is_closed_connected_component).1 | |
is_preconnected_connected_component T₁ T₂ hT₁ hT₂ T_decomp T_disjoint, | |
{ left, | |
rw subset.antisymm_iff at T₁_u, | |
suffices : f ⁻¹' connected_component t ⊆ f ⁻¹' T₁, | |
{ exact subset.trans (subset.trans this T₁_u.1) (inter_subset_right _ _) }, | |
exact preimage_mono h }, | |
right, | |
rw subset.antisymm_iff at T₂_v, | |
suffices : f ⁻¹' connected_component t ⊆ f ⁻¹' T₂, | |
{ exact subset.trans (subset.trans this T₂_v.1) (inter_subset_right _ _) }, | |
exact preimage_mono h, | |
end | |
lemma quotient_map.preimage_connected_component [topological_space β] {f : α → β} | |
(hf : quotient_map f) (h_fibers : ∀ y : β, is_connected (f ⁻¹' {y})) (a : α) : | |
f ⁻¹' connected_component (f a) = connected_component a := | |
((preimage_connected_component_connected h_fibers | |
(λ _, hf.is_closed_preimage.symm) _).subset_connected_component mem_connected_component).antisymm | |
(hf.continuous.maps_to_connected_component a) | |
lemma quotient_map.image_connected_component [topological_space β] {f : α → β} | |
(hf : quotient_map f) (h_fibers : ∀ y : β, is_connected (f ⁻¹' {y})) (a : α) : | |
f '' connected_component a = connected_component (f a) := | |
by rw [← hf.preimage_connected_component h_fibers, image_preimage_eq _ hf.surjective] | |
end preconnected | |
section totally_disconnected | |
/-- A set `s` is called totally disconnected if every subset `t ⊆ s` which is preconnected is | |
a subsingleton, ie either empty or a singleton.-/ | |
def is_totally_disconnected (s : set α) : Prop := | |
∀ t, t ⊆ s → is_preconnected t → t.subsingleton | |
theorem is_totally_disconnected_empty : is_totally_disconnected (∅ : set α) := | |
λ _ ht _ _ x_in _ _, (ht x_in).elim | |
theorem is_totally_disconnected_singleton {x} : is_totally_disconnected ({x} : set α) := | |
λ _ ht _, subsingleton.mono subsingleton_singleton ht | |
/-- A space is totally disconnected if all of its connected components are singletons. -/ | |
class totally_disconnected_space (α : Type u) [topological_space α] : Prop := | |
(is_totally_disconnected_univ : is_totally_disconnected (univ : set α)) | |
lemma is_preconnected.subsingleton [totally_disconnected_space α] | |
{s : set α} (h : is_preconnected s) : s.subsingleton := | |
totally_disconnected_space.is_totally_disconnected_univ s (subset_univ s) h | |
instance pi.totally_disconnected_space {α : Type*} {β : α → Type*} | |
[t₂ : Πa, topological_space (β a)] [∀a, totally_disconnected_space (β a)] : | |
totally_disconnected_space (Π (a : α), β a) := | |
⟨λ t h1 h2, | |
have this : ∀ a, is_preconnected ((λ x : Π a, β a, x a) '' t), | |
from λ a, h2.image (λ x, x a) (continuous_apply a).continuous_on, | |
λ x x_in y y_in, funext $ λ a, (this a).subsingleton ⟨x, x_in, rfl⟩ ⟨y, y_in, rfl⟩⟩ | |
instance prod.totally_disconnected_space [topological_space β] | |
[totally_disconnected_space α] [totally_disconnected_space β] : | |
totally_disconnected_space (α × β) := | |
⟨λ t h1 h2, | |
have H1 : is_preconnected (prod.fst '' t), from h2.image prod.fst continuous_fst.continuous_on, | |
have H2 : is_preconnected (prod.snd '' t), from h2.image prod.snd continuous_snd.continuous_on, | |
λ x hx y hy, prod.ext | |
(H1.subsingleton ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩) | |
(H2.subsingleton ⟨x, hx, rfl⟩ ⟨y, hy, rfl⟩)⟩ | |
instance [topological_space β] [totally_disconnected_space α] [totally_disconnected_space β] : | |
totally_disconnected_space (α ⊕ β) := | |
begin | |
refine ⟨λ s _ hs, _⟩, | |
obtain (⟨t, ht, rfl⟩ | ⟨t, ht, rfl⟩) := sum.is_preconnected_iff.1 hs, | |
{ exact ht.subsingleton.image _ }, | |
{ exact ht.subsingleton.image _ } | |
end | |
instance [Π i, topological_space (π i)] [∀ i, totally_disconnected_space (π i)] : | |
totally_disconnected_space (Σ i, π i) := | |
begin | |
refine ⟨λ s _ hs, _⟩, | |
obtain rfl | h := s.eq_empty_or_nonempty, | |
{ exact subsingleton_empty }, | |
{ obtain ⟨a, t, ht, rfl⟩ := sigma.is_connected_iff.1 ⟨h, hs⟩, | |
exact ht.is_preconnected.subsingleton.image _ } | |
end | |
/-- Let `X` be a topological space, and suppose that for all distinct `x,y ∈ X`, there | |
is some clopen set `U` such that `x ∈ U` and `y ∉ U`. Then `X` is totally disconnected. -/ | |
lemma is_totally_disconnected_of_clopen_set {X : Type*} [topological_space X] | |
(hX : ∀ {x y : X} (h_diff : x ≠ y), ∃ (U : set X) (h_clopen : is_clopen U), x ∈ U ∧ y ∉ U) : | |
is_totally_disconnected (set.univ : set X) := | |
begin | |
rintro S - hS, | |
unfold set.subsingleton, | |
by_contra' h_contra, | |
rcases h_contra with ⟨x, hx, y, hy, hxy⟩, | |
obtain ⟨U, h_clopen, hxU, hyU⟩ := hX hxy, | |
specialize hS U Uᶜ h_clopen.1 h_clopen.compl.1 (λ a ha, em (a ∈ U)) ⟨x, hx, hxU⟩ ⟨y, hy, hyU⟩, | |
rw [inter_compl_self, set.inter_empty] at hS, | |
exact set.not_nonempty_empty hS, | |
end | |
/-- A space is totally disconnected iff its connected components are subsingletons. -/ | |
lemma totally_disconnected_space_iff_connected_component_subsingleton : | |
totally_disconnected_space α ↔ ∀ x : α, (connected_component x).subsingleton := | |
begin | |
split, | |
{ intros h x, | |
apply h.1, | |
{ exact subset_univ _ }, | |
exact is_preconnected_connected_component }, | |
intro h, constructor, | |
intros s s_sub hs, | |
rcases eq_empty_or_nonempty s with rfl | ⟨x, x_in⟩, | |
{ exact subsingleton_empty }, | |
{ exact (h x).mono (hs.subset_connected_component x_in) } | |
end | |
/-- A space is totally disconnected iff its connected components are singletons. -/ | |
lemma totally_disconnected_space_iff_connected_component_singleton : | |
totally_disconnected_space α ↔ ∀ x : α, connected_component x = {x} := | |
begin | |
rw totally_disconnected_space_iff_connected_component_subsingleton, | |
apply forall_congr (λ x, _), | |
rw subsingleton_iff_singleton, | |
exact mem_connected_component | |
end | |
/-- The image of a connected component in a totally disconnected space is a singleton. -/ | |
@[simp] lemma continuous.image_connected_component_eq_singleton {β : Type*} [topological_space β] | |
[totally_disconnected_space β] {f : α → β} (h : continuous f) (a : α) : | |
f '' connected_component a = {f a} := | |
(set.subsingleton_iff_singleton $ mem_image_of_mem f mem_connected_component).mp | |
(is_preconnected_connected_component.image f h.continuous_on).subsingleton | |
lemma is_totally_disconnected_of_totally_disconnected_space [totally_disconnected_space α] | |
(s : set α) : is_totally_disconnected s := | |
λ t hts ht, totally_disconnected_space.is_totally_disconnected_univ _ t.subset_univ ht | |
lemma is_totally_disconnected_of_image [topological_space β] {f : α → β} (hf : continuous_on f s) | |
(hf' : injective f) (h : is_totally_disconnected (f '' s)) : is_totally_disconnected s := | |
λ t hts ht x x_in y y_in, hf' $ h _ (image_subset f hts) (ht.image f $ hf.mono hts) | |
(mem_image_of_mem f x_in) (mem_image_of_mem f y_in) | |
lemma embedding.is_totally_disconnected [topological_space β] {f : α → β} (hf : embedding f) | |
{s : set α} (h : is_totally_disconnected (f '' s)) : is_totally_disconnected s := | |
is_totally_disconnected_of_image hf.continuous.continuous_on hf.inj h | |
instance subtype.totally_disconnected_space {α : Type*} {p : α → Prop} [topological_space α] | |
[totally_disconnected_space α] : totally_disconnected_space (subtype p) := | |
⟨embedding_subtype_coe.is_totally_disconnected | |
(is_totally_disconnected_of_totally_disconnected_space _)⟩ | |
end totally_disconnected | |
section totally_separated | |
/-- A set `s` is called totally separated if any two points of this set can be separated | |
by two disjoint open sets covering `s`. -/ | |
def is_totally_separated (s : set α) : Prop := | |
∀ x ∈ s, ∀ y ∈ s, x ≠ y → ∃ u v : set α, is_open u ∧ is_open v ∧ | |
x ∈ u ∧ y ∈ v ∧ s ⊆ u ∪ v ∧ disjoint u v | |
theorem is_totally_separated_empty : is_totally_separated (∅ : set α) := | |
λ x, false.elim | |
theorem is_totally_separated_singleton {x} : is_totally_separated ({x} : set α) := | |
λ p hp q hq hpq, (hpq $ (eq_of_mem_singleton hp).symm ▸ (eq_of_mem_singleton hq).symm).elim | |
theorem is_totally_disconnected_of_is_totally_separated {s : set α} | |
(H : is_totally_separated s) : is_totally_disconnected s := | |
begin | |
intros t hts ht x x_in y y_in, | |
by_contra h, | |
obtain ⟨u : set α, v : set α, hu : is_open u, hv : is_open v, | |
hxu : x ∈ u, hyv : y ∈ v, hs : s ⊆ u ∪ v, huv⟩ := | |
H x (hts x_in) y (hts y_in) h, | |
refine (ht _ _ hu hv (hts.trans hs) ⟨x, x_in, hxu⟩ ⟨y, y_in, hyv⟩).ne_empty _, | |
rw [huv.inter_eq, inter_empty], | |
end | |
alias is_totally_disconnected_of_is_totally_separated ← is_totally_separated.is_totally_disconnected | |
/-- A space is totally separated if any two points can be separated by two disjoint open sets | |
covering the whole space. -/ | |
class totally_separated_space (α : Type u) [topological_space α] : Prop := | |
(is_totally_separated_univ [] : is_totally_separated (univ : set α)) | |
@[priority 100] -- see Note [lower instance priority] | |
instance totally_separated_space.totally_disconnected_space (α : Type u) [topological_space α] | |
[totally_separated_space α] : totally_disconnected_space α := | |
⟨is_totally_disconnected_of_is_totally_separated $ | |
totally_separated_space.is_totally_separated_univ α⟩ | |
@[priority 100] -- see Note [lower instance priority] | |
instance totally_separated_space.of_discrete | |
(α : Type*) [topological_space α] [discrete_topology α] : totally_separated_space α := | |
⟨λ a _ b _ h, ⟨{b}ᶜ, {b}, is_open_discrete _, is_open_discrete _, by simpa⟩⟩ | |
lemma exists_clopen_of_totally_separated {α : Type*} [topological_space α] | |
[totally_separated_space α] {x y : α} (hxy : x ≠ y) : | |
∃ (U : set α) (hU : is_clopen U), x ∈ U ∧ y ∈ Uᶜ := | |
begin | |
obtain ⟨U, V, hU, hV, Ux, Vy, f, disj⟩ := | |
totally_separated_space.is_totally_separated_univ α x (set.mem_univ x) y (set.mem_univ y) hxy, | |
have clopen_U := is_clopen_inter_of_disjoint_cover_clopen (is_clopen_univ) f hU hV disj, | |
rw univ_inter _ at clopen_U, | |
rw [←set.subset_compl_iff_disjoint_right, subset_compl_comm] at disj, | |
exact ⟨U, clopen_U, Ux, disj Vy⟩, | |
end | |
end totally_separated | |
section connected_component_setoid | |
/-- The setoid of connected components of a topological space -/ | |
def connected_component_setoid (α : Type*) [topological_space α] : setoid α := | |
⟨λ x y, connected_component x = connected_component y, | |
⟨λ x, by trivial, λ x y h1, h1.symm, λ x y z h1 h2, h1.trans h2⟩⟩ | |
/-- The quotient of a space by its connected components -/ | |
def connected_components (α : Type u) [topological_space α] := | |
quotient (connected_component_setoid α) | |
instance : has_coe_t α (connected_components α) := ⟨quotient.mk'⟩ | |
namespace connected_components | |
@[simp] lemma coe_eq_coe {x y : α} : | |
(x : connected_components α) = y ↔ connected_component x = connected_component y := | |
quotient.eq' | |
lemma coe_ne_coe {x y : α} : | |
(x : connected_components α) ≠ y ↔ connected_component x ≠ connected_component y := | |
not_congr coe_eq_coe | |
lemma coe_eq_coe' {x y : α} : | |
(x : connected_components α) = y ↔ x ∈ connected_component y := | |
coe_eq_coe.trans ⟨λ h, h ▸ mem_connected_component, λ h, (connected_component_eq h).symm⟩ | |
instance [inhabited α] : inhabited (connected_components α) := ⟨↑(default : α)⟩ | |
instance : topological_space (connected_components α) := | |
quotient.topological_space | |
lemma surjective_coe : surjective (coe : α → connected_components α) := surjective_quot_mk _ | |
lemma quotient_map_coe : quotient_map (coe : α → connected_components α) := quotient_map_quot_mk | |
@[continuity] | |
lemma continuous_coe : continuous (coe : α → connected_components α) := quotient_map_coe.continuous | |
@[simp] lemma range_coe : range (coe : α → connected_components α)= univ := | |
surjective_coe.range_eq | |
end connected_components | |
variables [topological_space β] [totally_disconnected_space β] {f : α → β} | |
lemma continuous.image_eq_of_connected_component_eq (h : continuous f) (a b : α) | |
(hab : connected_component a = connected_component b) : f a = f b := | |
singleton_eq_singleton_iff.1 $ | |
h.image_connected_component_eq_singleton a ▸ | |
h.image_connected_component_eq_singleton b ▸ hab ▸ rfl | |
/-- | |
The lift to `connected_components α` of a continuous map from `α` to a totally disconnected space | |
-/ | |
def continuous.connected_components_lift (h : continuous f) : | |
connected_components α → β := | |
λ x, quotient.lift_on' x f h.image_eq_of_connected_component_eq | |
@[continuity] lemma continuous.connected_components_lift_continuous (h : continuous f) : | |
continuous h.connected_components_lift := | |
continuous_quotient_lift_on' h.image_eq_of_connected_component_eq h | |
@[simp] lemma continuous.connected_components_lift_apply_coe (h : continuous f) (x : α) : | |
h.connected_components_lift x = f x := rfl | |
@[simp] lemma continuous.connected_components_lift_comp_coe (h : continuous f) : | |
h.connected_components_lift ∘ coe = f := rfl | |
lemma connected_components_lift_unique' {β : Sort*} {g₁ g₂ : connected_components α → β} | |
(hg : g₁ ∘ (coe : α → connected_components α) = g₂ ∘ coe) : | |
g₁ = g₂ := | |
connected_components.surjective_coe.injective_comp_right hg | |
lemma continuous.connected_components_lift_unique (h : continuous f) | |
(g : connected_components α → β) (hg : g ∘ coe = f) : g = h.connected_components_lift := | |
connected_components_lift_unique' $ hg.trans h.connected_components_lift_comp_coe.symm | |
/-- The preimage of a singleton in `connected_components` is the connected component | |
of an element in the equivalence class. -/ | |
lemma connected_components_preimage_singleton {x : α} : | |
coe ⁻¹' ({x} : set (connected_components α)) = connected_component x := | |
by { ext y, simp [connected_components.coe_eq_coe'] } | |
/-- The preimage of the image of a set under the quotient map to `connected_components α` | |
is the union of the connected components of the elements in it. -/ | |
lemma connected_components_preimage_image (U : set α) : | |
coe ⁻¹' (coe '' U : set (connected_components α)) = ⋃ x ∈ U, connected_component x := | |
by simp only [connected_components_preimage_singleton, preimage_Union₂, image_eq_Union] | |
instance connected_components.totally_disconnected_space : | |
totally_disconnected_space (connected_components α) := | |
begin | |
rw totally_disconnected_space_iff_connected_component_singleton, | |
refine connected_components.surjective_coe.forall.2 (λ x, _), | |
rw [← connected_components.quotient_map_coe.image_connected_component, | |
← connected_components_preimage_singleton, | |
image_preimage_eq _ connected_components.surjective_coe], | |
refine connected_components.surjective_coe.forall.2 (λ y, _), | |
rw connected_components_preimage_singleton, | |
exact is_connected_connected_component | |
end | |
/-- Functoriality of `connected_components` -/ | |
def continuous.connected_components_map {β : Type*} [topological_space β] {f : α → β} | |
(h : continuous f) : connected_components α → connected_components β := | |
continuous.connected_components_lift (continuous_quotient_mk.comp h) | |
lemma continuous.connected_components_map_continuous {β : Type*} [topological_space β] {f : α → β} | |
(h : continuous f) : continuous h.connected_components_map := | |
continuous.connected_components_lift_continuous (continuous_quotient_mk.comp h) | |
end connected_component_setoid | |