Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2018 Sébastien Gouëzel. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Sébastien Gouëzel, Mario Carneiro, Yury Kudryashov, Heather Macbeth | |
-/ | |
import analysis.normed_space.lattice_ordered_group | |
import analysis.normed_space.operator_norm | |
import analysis.normed_space.star.basic | |
import data.real.sqrt | |
import topology.continuous_function.algebra | |
/-! | |
# Bounded continuous functions | |
The type of bounded continuous functions taking values in a metric space, with | |
the uniform distance. | |
-/ | |
noncomputable theory | |
open_locale topological_space classical nnreal | |
open set filter metric function | |
universes u v w | |
variables {F : Type*} {α : Type u} {β : Type v} {γ : Type w} | |
/-- `α →ᵇ β` is the type of bounded continuous functions `α → β` from a topological space to a | |
metric space. | |
When possible, instead of parametrizing results over `(f : α →ᵇ β)`, | |
you should parametrize over `(F : Type*) [bounded_continuous_map_class F α β] (f : F)`. | |
When you extend this structure, make sure to extend `bounded_continuous_map_class`. -/ | |
structure bounded_continuous_function (α : Type u) (β : Type v) | |
[topological_space α] [pseudo_metric_space β] extends continuous_map α β : | |
Type (max u v) := | |
(map_bounded' : ∃ C, ∀ x y, dist (to_fun x) (to_fun y) ≤ C) | |
localized "infixr ` →ᵇ `:25 := bounded_continuous_function" in bounded_continuous_function | |
/-- `bounded_continuous_map_class F α β` states that `F` is a type of bounded continuous maps. | |
You should also extend this typeclass when you extend `bounded_continuous_function`. -/ | |
class bounded_continuous_map_class (F α β : Type*) [topological_space α] [pseudo_metric_space β] | |
extends continuous_map_class F α β := | |
(map_bounded (f : F) : ∃ C, ∀ x y, dist (f x) (f y) ≤ C) | |
export bounded_continuous_map_class (map_bounded) | |
namespace bounded_continuous_function | |
section basics | |
variables [topological_space α] [pseudo_metric_space β] [pseudo_metric_space γ] | |
variables {f g : α →ᵇ β} {x : α} {C : ℝ} | |
instance : bounded_continuous_map_class (α →ᵇ β) α β := | |
{ coe := λ f, f.to_fun, | |
coe_injective' := λ f g h, by { obtain ⟨⟨_, _⟩, _⟩ := f, obtain ⟨⟨_, _⟩, _⟩ := g, congr' }, | |
map_continuous := λ f, f.continuous_to_fun, | |
map_bounded := λ f, f.map_bounded' } | |
/-- Helper instance for when there's too many metavariables to apply `fun_like.has_coe_to_fun` | |
directly. -/ | |
instance : has_coe_to_fun (α →ᵇ β) (λ _, α → β) := fun_like.has_coe_to_fun | |
instance [bounded_continuous_map_class F α β] : has_coe_t F (α →ᵇ β) := | |
⟨λ f, { to_fun := f, continuous_to_fun := map_continuous f, map_bounded' := map_bounded f }⟩ | |
@[simp] lemma coe_to_continuous_fun (f : α →ᵇ β) : (f.to_continuous_map : α → β) = f := rfl | |
/-- See Note [custom simps projection]. We need to specify this projection explicitly in this case, | |
because it is a composition of multiple projections. -/ | |
def simps.apply (h : α →ᵇ β) : α → β := h | |
initialize_simps_projections bounded_continuous_function (to_continuous_map_to_fun → apply) | |
protected lemma bounded (f : α →ᵇ β) : ∃C, ∀ x y : α, dist (f x) (f y) ≤ C := f.map_bounded' | |
protected lemma continuous (f : α →ᵇ β) : continuous f := f.to_continuous_map.continuous | |
@[ext] lemma ext (h : ∀ x, f x = g x) : f = g := fun_like.ext _ _ h | |
lemma bounded_range (f : α →ᵇ β) : bounded (range f) := | |
bounded_range_iff.2 f.bounded | |
lemma bounded_image (f : α →ᵇ β) (s : set α) : bounded (f '' s) := | |
f.bounded_range.mono $ image_subset_range _ _ | |
lemma eq_of_empty [is_empty α] (f g : α →ᵇ β) : f = g := | |
ext $ is_empty.elim ‹_› | |
/-- A continuous function with an explicit bound is a bounded continuous function. -/ | |
def mk_of_bound (f : C(α, β)) (C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β := | |
⟨f, ⟨C, h⟩⟩ | |
@[simp] lemma mk_of_bound_coe {f} {C} {h} : (mk_of_bound f C h : α → β) = (f : α → β) := | |
rfl | |
/-- A continuous function on a compact space is automatically a bounded continuous function. -/ | |
def mk_of_compact [compact_space α] (f : C(α, β)) : α →ᵇ β := | |
⟨f, bounded_range_iff.1 (is_compact_range f.continuous).bounded⟩ | |
@[simp] lemma mk_of_compact_apply [compact_space α] (f : C(α, β)) (a : α) : | |
mk_of_compact f a = f a := | |
rfl | |
/-- If a function is bounded on a discrete space, it is automatically continuous, | |
and therefore gives rise to an element of the type of bounded continuous functions -/ | |
@[simps] def mk_of_discrete [discrete_topology α] (f : α → β) | |
(C : ℝ) (h : ∀ x y : α, dist (f x) (f y) ≤ C) : α →ᵇ β := | |
⟨⟨f, continuous_of_discrete_topology⟩, ⟨C, h⟩⟩ | |
/-- The uniform distance between two bounded continuous functions -/ | |
instance : has_dist (α →ᵇ β) := | |
⟨λf g, Inf {C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C}⟩ | |
lemma dist_eq : dist f g = Inf {C | 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C} := rfl | |
lemma dist_set_exists : ∃ C, 0 ≤ C ∧ ∀ x : α, dist (f x) (g x) ≤ C := | |
begin | |
rcases f.bounded_range.union g.bounded_range with ⟨C, hC⟩, | |
refine ⟨max 0 C, le_max_left _ _, λ x, (hC _ _ _ _).trans (le_max_right _ _)⟩; | |
[left, right]; apply mem_range_self | |
end | |
/-- The pointwise distance is controlled by the distance between functions, by definition. -/ | |
lemma dist_coe_le_dist (x : α) : dist (f x) (g x) ≤ dist f g := | |
le_cInf dist_set_exists $ λb hb, hb.2 x | |
/- This lemma will be needed in the proof of the metric space instance, but it will become | |
useless afterwards as it will be superseded by the general result that the distance is nonnegative | |
in metric spaces. -/ | |
private lemma dist_nonneg' : 0 ≤ dist f g := | |
le_cInf dist_set_exists (λ C, and.left) | |
/-- The distance between two functions is controlled by the supremum of the pointwise distances -/ | |
lemma dist_le (C0 : (0 : ℝ) ≤ C) : dist f g ≤ C ↔ ∀x:α, dist (f x) (g x) ≤ C := | |
⟨λ h x, le_trans (dist_coe_le_dist x) h, λ H, cInf_le ⟨0, λ C, and.left⟩ ⟨C0, H⟩⟩ | |
lemma dist_le_iff_of_nonempty [nonempty α] : | |
dist f g ≤ C ↔ ∀ x, dist (f x) (g x) ≤ C := | |
⟨λ h x, le_trans (dist_coe_le_dist x) h, | |
λ w, (dist_le (le_trans dist_nonneg (w (nonempty.some ‹_›)))).mpr w⟩ | |
lemma dist_lt_of_nonempty_compact [nonempty α] [compact_space α] | |
(w : ∀x:α, dist (f x) (g x) < C) : dist f g < C := | |
begin | |
have c : continuous (λ x, dist (f x) (g x)), { continuity, }, | |
obtain ⟨x, -, le⟩ := | |
is_compact.exists_forall_ge compact_univ set.univ_nonempty (continuous.continuous_on c), | |
exact lt_of_le_of_lt (dist_le_iff_of_nonempty.mpr (λ y, le y trivial)) (w x), | |
end | |
lemma dist_lt_iff_of_compact [compact_space α] (C0 : (0 : ℝ) < C) : | |
dist f g < C ↔ ∀x:α, dist (f x) (g x) < C := | |
begin | |
fsplit, | |
{ intros w x, | |
exact lt_of_le_of_lt (dist_coe_le_dist x) w, }, | |
{ by_cases h : nonempty α, | |
{ resetI, | |
exact dist_lt_of_nonempty_compact, }, | |
{ rintro -, | |
convert C0, | |
apply le_antisymm _ dist_nonneg', | |
rw [dist_eq], | |
exact cInf_le ⟨0, λ C, and.left⟩ ⟨le_rfl, λ x, false.elim (h (nonempty.intro x))⟩, }, }, | |
end | |
lemma dist_lt_iff_of_nonempty_compact [nonempty α] [compact_space α] : | |
dist f g < C ↔ ∀x:α, dist (f x) (g x) < C := | |
⟨λ w x, lt_of_le_of_lt (dist_coe_le_dist x) w, dist_lt_of_nonempty_compact⟩ | |
/-- The type of bounded continuous functions, with the uniform distance, is a pseudometric space. -/ | |
instance : pseudo_metric_space (α →ᵇ β) := | |
{ dist_self := λ f, le_antisymm ((dist_le le_rfl).2 $ λ x, by simp) dist_nonneg', | |
dist_comm := λ f g, by simp [dist_eq, dist_comm], | |
dist_triangle := λ f g h, | |
(dist_le (add_nonneg dist_nonneg' dist_nonneg')).2 $ λ x, | |
le_trans (dist_triangle _ _ _) (add_le_add (dist_coe_le_dist _) (dist_coe_le_dist _)) } | |
/-- The type of bounded continuous functions, with the uniform distance, is a metric space. -/ | |
instance {α β} [topological_space α] [metric_space β] : metric_space (α →ᵇ β) := | |
{ eq_of_dist_eq_zero := λ f g hfg, by ext x; exact | |
eq_of_dist_eq_zero (le_antisymm (hfg ▸ dist_coe_le_dist _) dist_nonneg) } | |
lemma nndist_eq : nndist f g = Inf {C | ∀ x : α, nndist (f x) (g x) ≤ C} := | |
subtype.ext $ dist_eq.trans $ begin | |
rw [nnreal.coe_Inf, nnreal.coe_image], | |
simp_rw [mem_set_of_eq, ←nnreal.coe_le_coe, subtype.coe_mk, exists_prop, coe_nndist], | |
end | |
lemma nndist_set_exists : ∃ C, ∀ x : α, nndist (f x) (g x) ≤ C := | |
subtype.exists.mpr $ dist_set_exists.imp $ λ a ⟨ha, h⟩, ⟨ha, h⟩ | |
lemma nndist_coe_le_nndist (x : α) : nndist (f x) (g x) ≤ nndist f g := | |
dist_coe_le_dist x | |
/-- On an empty space, bounded continuous functions are at distance 0 -/ | |
lemma dist_zero_of_empty [is_empty α] : dist f g = 0 := | |
by rw [(ext is_empty_elim : f = g), dist_self] | |
lemma dist_eq_supr : dist f g = ⨆ x : α, dist (f x) (g x) := | |
begin | |
casesI is_empty_or_nonempty α, { rw [supr_of_empty', real.Sup_empty, dist_zero_of_empty] }, | |
refine (dist_le_iff_of_nonempty.mpr $ le_csupr _).antisymm (csupr_le dist_coe_le_dist), | |
exact dist_set_exists.imp (λ C hC, forall_range_iff.2 hC.2) | |
end | |
lemma nndist_eq_supr : nndist f g = ⨆ x : α, nndist (f x) (g x) := | |
subtype.ext $ dist_eq_supr.trans $ by simp_rw [nnreal.coe_supr, coe_nndist] | |
lemma tendsto_iff_tendsto_uniformly {ι : Type*} {F : ι → (α →ᵇ β)} {f : α →ᵇ β} {l : filter ι} : | |
tendsto F l (𝓝 f) ↔ tendsto_uniformly (λ i, F i) f l := | |
iff.intro | |
(λ h, tendsto_uniformly_iff.2 | |
(λ ε ε0, (metric.tendsto_nhds.mp h ε ε0).mp (eventually_of_forall $ | |
λ n hn x, lt_of_le_of_lt (dist_coe_le_dist x) (dist_comm (F n) f ▸ hn)))) | |
(λ h, metric.tendsto_nhds.mpr $ λ ε ε_pos, | |
(h _ (dist_mem_uniformity $ half_pos ε_pos)).mp (eventually_of_forall $ | |
λ n hn, lt_of_le_of_lt ((dist_le (half_pos ε_pos).le).mpr $ | |
λ x, dist_comm (f x) (F n x) ▸ le_of_lt (hn x)) (half_lt_self ε_pos))) | |
variables (α) {β} | |
/-- Constant as a continuous bounded function. -/ | |
@[simps {fully_applied := ff}] def const (b : β) : α →ᵇ β := | |
⟨continuous_map.const α b, 0, by simp [le_rfl]⟩ | |
variable {α} | |
lemma const_apply' (a : α) (b : β) : (const α b : α → β) a = b := rfl | |
/-- If the target space is inhabited, so is the space of bounded continuous functions -/ | |
instance [inhabited β] : inhabited (α →ᵇ β) := ⟨const α default⟩ | |
lemma lipschitz_evalx (x : α) : lipschitz_with 1 (λ f : α →ᵇ β, f x) := | |
lipschitz_with.mk_one $ λ f g, dist_coe_le_dist x | |
theorem uniform_continuous_coe : @uniform_continuous (α →ᵇ β) (α → β) _ _ coe_fn := | |
uniform_continuous_pi.2 $ λ x, (lipschitz_evalx x).uniform_continuous | |
lemma continuous_coe : continuous (λ (f : α →ᵇ β) x, f x) := | |
uniform_continuous.continuous uniform_continuous_coe | |
/-- When `x` is fixed, `(f : α →ᵇ β) ↦ f x` is continuous -/ | |
@[continuity] theorem continuous_eval_const {x : α} : continuous (λ f : α →ᵇ β, f x) := | |
(continuous_apply x).comp continuous_coe | |
/-- The evaluation map is continuous, as a joint function of `u` and `x` -/ | |
@[continuity] theorem continuous_eval : continuous (λ p : (α →ᵇ β) × α, p.1 p.2) := | |
continuous_prod_of_continuous_lipschitz _ 1 (λ f, f.continuous) $ lipschitz_evalx | |
/-- Bounded continuous functions taking values in a complete space form a complete space. -/ | |
instance [complete_space β] : complete_space (α →ᵇ β) := | |
complete_of_cauchy_seq_tendsto $ λ (f : ℕ → α →ᵇ β) (hf : cauchy_seq f), | |
begin | |
/- We have to show that `f n` converges to a bounded continuous function. | |
For this, we prove pointwise convergence to define the limit, then check | |
it is a continuous bounded function, and then check the norm convergence. -/ | |
rcases cauchy_seq_iff_le_tendsto_0.1 hf with ⟨b, b0, b_bound, b_lim⟩, | |
have f_bdd := λx n m N hn hm, le_trans (dist_coe_le_dist x) (b_bound n m N hn hm), | |
have fx_cau : ∀x, cauchy_seq (λn, f n x) := | |
λx, cauchy_seq_iff_le_tendsto_0.2 ⟨b, b0, f_bdd x, b_lim⟩, | |
choose F hF using λx, cauchy_seq_tendsto_of_complete (fx_cau x), | |
/- F : α → β, hF : ∀ (x : α), tendsto (λ (n : ℕ), f n x) at_top (𝓝 (F x)) | |
`F` is the desired limit function. Check that it is uniformly approximated by `f N` -/ | |
have fF_bdd : ∀x N, dist (f N x) (F x) ≤ b N := | |
λ x N, le_of_tendsto (tendsto_const_nhds.dist (hF x)) | |
(filter.eventually_at_top.2 ⟨N, λn hn, f_bdd x N n N (le_refl N) hn⟩), | |
refine ⟨⟨⟨F, _⟩, _⟩, _⟩, | |
{ /- Check that `F` is continuous, as a uniform limit of continuous functions -/ | |
have : tendsto_uniformly (λn x, f n x) F at_top, | |
{ refine metric.tendsto_uniformly_iff.2 (λ ε ε0, _), | |
refine ((tendsto_order.1 b_lim).2 ε ε0).mono (λ n hn x, _), | |
rw dist_comm, | |
exact lt_of_le_of_lt (fF_bdd x n) hn }, | |
exact this.continuous (eventually_of_forall $ λ N, (f N).continuous) }, | |
{ /- Check that `F` is bounded -/ | |
rcases (f 0).bounded with ⟨C, hC⟩, | |
refine ⟨C + (b 0 + b 0), λ x y, _⟩, | |
calc dist (F x) (F y) ≤ dist (f 0 x) (f 0 y) + (dist (f 0 x) (F x) + dist (f 0 y) (F y)) : | |
dist_triangle4_left _ _ _ _ | |
... ≤ C + (b 0 + b 0) : by mono* }, | |
{ /- Check that `F` is close to `f N` in distance terms -/ | |
refine tendsto_iff_dist_tendsto_zero.2 (squeeze_zero (λ _, dist_nonneg) _ b_lim), | |
exact λ N, (dist_le (b0 _)).2 (λx, fF_bdd x N) } | |
end | |
/-- Composition of a bounded continuous function and a continuous function. -/ | |
@[simps { fully_applied := ff }] | |
def comp_continuous {δ : Type*} [topological_space δ] (f : α →ᵇ β) (g : C(δ, α)) : δ →ᵇ β := | |
{ to_continuous_map := f.1.comp g, | |
map_bounded' := f.map_bounded'.imp (λ C hC x y, hC _ _) } | |
lemma lipschitz_comp_continuous {δ : Type*} [topological_space δ] (g : C(δ, α)) : | |
lipschitz_with 1 (λ f : α →ᵇ β, f.comp_continuous g) := | |
lipschitz_with.mk_one $ λ f₁ f₂, (dist_le dist_nonneg).2 $ λ x, dist_coe_le_dist (g x) | |
lemma continuous_comp_continuous {δ : Type*} [topological_space δ] (g : C(δ, α)) : | |
continuous (λ f : α →ᵇ β, f.comp_continuous g) := | |
(lipschitz_comp_continuous g).continuous | |
/-- Restrict a bounded continuous function to a set. -/ | |
@[simps apply { fully_applied := ff }] | |
def restrict (f : α →ᵇ β) (s : set α) : s →ᵇ β := | |
f.comp_continuous $ (continuous_map.id _).restrict s | |
/-- Composition (in the target) of a bounded continuous function with a Lipschitz map again | |
gives a bounded continuous function -/ | |
def comp (G : β → γ) {C : ℝ≥0} (H : lipschitz_with C G) | |
(f : α →ᵇ β) : α →ᵇ γ := | |
⟨⟨λx, G (f x), H.continuous.comp f.continuous⟩, | |
let ⟨D, hD⟩ := f.bounded in | |
⟨max C 0 * D, λ x y, calc | |
dist (G (f x)) (G (f y)) ≤ C * dist (f x) (f y) : H.dist_le_mul _ _ | |
... ≤ max C 0 * dist (f x) (f y) : mul_le_mul_of_nonneg_right (le_max_left C 0) dist_nonneg | |
... ≤ max C 0 * D : mul_le_mul_of_nonneg_left (hD _ _) (le_max_right C 0)⟩⟩ | |
/-- The composition operator (in the target) with a Lipschitz map is Lipschitz -/ | |
lemma lipschitz_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) : | |
lipschitz_with C (comp G H : (α →ᵇ β) → α →ᵇ γ) := | |
lipschitz_with.of_dist_le_mul $ λ f g, | |
(dist_le (mul_nonneg C.2 dist_nonneg)).2 $ λ x, | |
calc dist (G (f x)) (G (g x)) ≤ C * dist (f x) (g x) : H.dist_le_mul _ _ | |
... ≤ C * dist f g : mul_le_mul_of_nonneg_left (dist_coe_le_dist _) C.2 | |
/-- The composition operator (in the target) with a Lipschitz map is uniformly continuous -/ | |
lemma uniform_continuous_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) : | |
uniform_continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) := | |
(lipschitz_comp H).uniform_continuous | |
/-- The composition operator (in the target) with a Lipschitz map is continuous -/ | |
lemma continuous_comp {G : β → γ} {C : ℝ≥0} (H : lipschitz_with C G) : | |
continuous (comp G H : (α →ᵇ β) → α →ᵇ γ) := | |
(lipschitz_comp H).continuous | |
/-- Restriction (in the target) of a bounded continuous function taking values in a subset -/ | |
def cod_restrict (s : set β) (f : α →ᵇ β) (H : ∀x, f x ∈ s) : α →ᵇ s := | |
⟨⟨s.cod_restrict f H, continuous_subtype_mk _ f.continuous⟩, f.bounded⟩ | |
section extend | |
variables {δ : Type*} [topological_space δ] [discrete_topology δ] | |
/-- A version of `function.extend` for bounded continuous maps. We assume that the domain has | |
discrete topology, so we only need to verify boundedness. -/ | |
def extend (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : δ →ᵇ β := | |
{ to_fun := extend f g h, | |
continuous_to_fun := continuous_of_discrete_topology, | |
map_bounded' := | |
begin | |
rw [← bounded_range_iff, range_extend f.injective, metric.bounded_union], | |
exact ⟨g.bounded_range, h.bounded_image _⟩ | |
end } | |
@[simp] lemma extend_apply (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) (x : α) : | |
extend f g h (f x) = g x := | |
extend_apply f.injective _ _ _ | |
@[simp] lemma extend_comp (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : extend f g h ∘ f = g := | |
extend_comp f.injective _ _ | |
lemma extend_apply' {f : α ↪ δ} {x : δ} (hx : x ∉ range f) (g : α →ᵇ β) (h : δ →ᵇ β) : | |
extend f g h x = h x := | |
extend_apply' _ _ _ hx | |
lemma extend_of_empty [is_empty α] (f : α ↪ δ) (g : α →ᵇ β) (h : δ →ᵇ β) : | |
extend f g h = h := | |
fun_like.coe_injective $ function.extend_of_empty f g h | |
@[simp] lemma dist_extend_extend (f : α ↪ δ) (g₁ g₂ : α →ᵇ β) (h₁ h₂ : δ →ᵇ β) : | |
dist (g₁.extend f h₁) (g₂.extend f h₂) = | |
max (dist g₁ g₂) (dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ)) := | |
begin | |
refine le_antisymm ((dist_le $ le_max_iff.2 $ or.inl dist_nonneg).2 $ λ x, _) (max_le _ _), | |
{ rcases em (∃ y, f y = x) with (⟨x, rfl⟩|hx), | |
{ simp only [extend_apply], | |
exact (dist_coe_le_dist x).trans (le_max_left _ _) }, | |
{ simp only [extend_apply' hx], | |
lift x to ((range f)ᶜ : set δ) using hx, | |
calc dist (h₁ x) (h₂ x) = dist (h₁.restrict (range f)ᶜ x) (h₂.restrict (range f)ᶜ x) : rfl | |
... ≤ dist (h₁.restrict (range f)ᶜ) (h₂.restrict (range f)ᶜ) : dist_coe_le_dist x | |
... ≤ _ : le_max_right _ _ } }, | |
{ refine (dist_le dist_nonneg).2 (λ x, _), | |
rw [← extend_apply f g₁ h₁, ← extend_apply f g₂ h₂], | |
exact dist_coe_le_dist _ }, | |
{ refine (dist_le dist_nonneg).2 (λ x, _), | |
calc dist (h₁ x) (h₂ x) = dist (extend f g₁ h₁ x) (extend f g₂ h₂ x) : | |
by rw [extend_apply' x.coe_prop, extend_apply' x.coe_prop] | |
... ≤ _ : dist_coe_le_dist _ } | |
end | |
lemma isometry_extend (f : α ↪ δ) (h : δ →ᵇ β) : | |
isometry (λ g : α →ᵇ β, extend f g h) := | |
isometry.of_dist_eq $ λ g₁ g₂, by simp [dist_nonneg] | |
end extend | |
end basics | |
section arzela_ascoli | |
variables [topological_space α] [compact_space α] [pseudo_metric_space β] | |
variables {f g : α →ᵇ β} {x : α} {C : ℝ} | |
/- Arzela-Ascoli theorem asserts that, on a compact space, a set of functions sharing | |
a common modulus of continuity and taking values in a compact set forms a compact | |
subset for the topology of uniform convergence. In this section, we prove this theorem | |
and several useful variations around it. -/ | |
/-- First version, with pointwise equicontinuity and range in a compact space -/ | |
theorem arzela_ascoli₁ [compact_space β] | |
(A : set (α →ᵇ β)) | |
(closed : is_closed A) | |
(H : ∀ (x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), | |
f ∈ A → dist (f y) (f z) < ε) : | |
is_compact A := | |
begin | |
refine compact_of_totally_bounded_is_closed _ closed, | |
refine totally_bounded_of_finite_discretization (λ ε ε0, _), | |
rcases exists_between ε0 with ⟨ε₁, ε₁0, εε₁⟩, | |
let ε₂ := ε₁/2/2, | |
/- We have to find a finite discretization of `u`, i.e., finite information | |
that is sufficient to reconstruct `u` up to ε. This information will be | |
provided by the values of `u` on a sufficiently dense set tα, | |
slightly translated to fit in a finite ε₂-dense set tβ in the image. Such | |
sets exist by compactness of the source and range. Then, to check that these | |
data determine the function up to ε, one uses the control on the modulus of | |
continuity to extend the closeness on tα to closeness everywhere. -/ | |
have ε₂0 : ε₂ > 0 := half_pos (half_pos ε₁0), | |
have : ∀x:α, ∃U, x ∈ U ∧ is_open U ∧ ∀ (y z ∈ U) {f : α →ᵇ β}, | |
f ∈ A → dist (f y) (f z) < ε₂ := λ x, | |
let ⟨U, nhdsU, hU⟩ := H x _ ε₂0, | |
⟨V, VU, openV, xV⟩ := _root_.mem_nhds_iff.1 nhdsU in | |
⟨V, xV, openV, λy hy z hz f hf, hU y (VU hy) z (VU hz) f hf⟩, | |
choose U hU using this, | |
/- For all x, the set hU x is an open set containing x on which the elements of A | |
fluctuate by at most ε₂. | |
We extract finitely many of these sets that cover the whole space, by compactness -/ | |
rcases compact_univ.elim_finite_subcover_image | |
(λx _, (hU x).2.1) (λx hx, mem_bUnion (mem_univ _) (hU x).1) | |
with ⟨tα, _, ⟨_⟩, htα⟩, | |
/- tα : set α, htα : univ ⊆ ⋃x ∈ tα, U x -/ | |
rcases @finite_cover_balls_of_compact β _ _ compact_univ _ ε₂0 | |
with ⟨tβ, _, ⟨_⟩, htβ⟩, resetI, | |
/- tβ : set β, htβ : univ ⊆ ⋃y ∈ tβ, ball y ε₂ -/ | |
/- Associate to every point `y` in the space a nearby point `F y` in tβ -/ | |
choose F hF using λy, show ∃z∈tβ, dist y z < ε₂, by simpa using htβ (mem_univ y), | |
/- F : β → β, hF : ∀ (y : β), F y ∈ tβ ∧ dist y (F y) < ε₂ -/ | |
/- Associate to every function a discrete approximation, mapping each point in `tα` | |
to a point in `tβ` close to its true image by the function. -/ | |
refine ⟨tα → tβ, by apply_instance, λ f a, ⟨F (f a), (hF (f a)).1⟩, _⟩, | |
rintro ⟨f, hf⟩ ⟨g, hg⟩ f_eq_g, | |
/- If two functions have the same approximation, then they are within distance ε -/ | |
refine lt_of_le_of_lt ((dist_le $ le_of_lt ε₁0).2 (λ x, _)) εε₁, | |
obtain ⟨x', x'tα, hx'⟩ : ∃x' ∈ tα, x ∈ U x' := mem_Union₂.1 (htα (mem_univ x)), | |
calc dist (f x) (g x) | |
≤ dist (f x) (f x') + dist (g x) (g x') + dist (f x') (g x') : dist_triangle4_right _ _ _ _ | |
... ≤ ε₂ + ε₂ + ε₁/2 : le_of_lt (add_lt_add (add_lt_add _ _) _) | |
... = ε₁ : by rw [add_halves, add_halves], | |
{ exact (hU x').2.2 _ hx' _ ((hU x').1) hf }, | |
{ exact (hU x').2.2 _ hx' _ ((hU x').1) hg }, | |
{ have F_f_g : F (f x') = F (g x') := | |
(congr_arg (λ f:tα → tβ, (f ⟨x', x'tα⟩ : β)) f_eq_g : _), | |
calc dist (f x') (g x') | |
≤ dist (f x') (F (f x')) + dist (g x') (F (f x')) : dist_triangle_right _ _ _ | |
... = dist (f x') (F (f x')) + dist (g x') (F (g x')) : by rw F_f_g | |
... < ε₂ + ε₂ : add_lt_add (hF (f x')).2 (hF (g x')).2 | |
... = ε₁/2 : add_halves _ } | |
end | |
/-- Second version, with pointwise equicontinuity and range in a compact subset -/ | |
theorem arzela_ascoli₂ | |
(s : set β) (hs : is_compact s) | |
(A : set (α →ᵇ β)) | |
(closed : is_closed A) | |
(in_s : ∀(f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s) | |
(H : ∀(x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), | |
f ∈ A → dist (f y) (f z) < ε) : | |
is_compact A := | |
/- This version is deduced from the previous one by restricting to the compact type in the target, | |
using compactness there and then lifting everything to the original space. -/ | |
begin | |
have M : lipschitz_with 1 coe := lipschitz_with.subtype_coe s, | |
let F : (α →ᵇ s) → α →ᵇ β := comp coe M, | |
refine compact_of_is_closed_subset | |
((_ : is_compact (F ⁻¹' A)).image (continuous_comp M)) closed (λ f hf, _), | |
{ haveI : compact_space s := is_compact_iff_compact_space.1 hs, | |
refine arzela_ascoli₁ _ (continuous_iff_is_closed.1 (continuous_comp M) _ closed) | |
(λ x ε ε0, bex.imp_right (λ U U_nhds hU y hy z hz f hf, _) (H x ε ε0)), | |
calc dist (f y) (f z) = dist (F f y) (F f z) : rfl | |
... < ε : hU y hy z hz (F f) hf }, | |
{ let g := cod_restrict s f (λx, in_s f x hf), | |
rw [show f = F g, by ext; refl] at hf ⊢, | |
exact ⟨g, hf, rfl⟩ } | |
end | |
/-- Third (main) version, with pointwise equicontinuity and range in a compact subset, but | |
without closedness. The closure is then compact -/ | |
theorem arzela_ascoli [t2_space β] | |
(s : set β) (hs : is_compact s) | |
(A : set (α →ᵇ β)) | |
(in_s : ∀(f : α →ᵇ β) (x : α), f ∈ A → f x ∈ s) | |
(H : ∀(x:α) (ε > 0), ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), | |
f ∈ A → dist (f y) (f z) < ε) : | |
is_compact (closure A) := | |
/- This version is deduced from the previous one by checking that the closure of A, in | |
addition to being closed, still satisfies the properties of compact range and equicontinuity -/ | |
arzela_ascoli₂ s hs (closure A) is_closed_closure | |
(λ f x hf, (mem_of_closed' hs.is_closed).2 $ λ ε ε0, | |
let ⟨g, gA, dist_fg⟩ := metric.mem_closure_iff.1 hf ε ε0 in | |
⟨g x, in_s g x gA, lt_of_le_of_lt (dist_coe_le_dist _) dist_fg⟩) | |
(λ x ε ε0, show ∃ U ∈ 𝓝 x, | |
∀ y z ∈ U, ∀ (f : α →ᵇ β), f ∈ closure A → dist (f y) (f z) < ε, | |
begin | |
refine bex.imp_right (λ U U_set hU y hy z hz f hf, _) (H x (ε/2) (half_pos ε0)), | |
rcases metric.mem_closure_iff.1 hf (ε/2/2) (half_pos (half_pos ε0)) with ⟨g, gA, dist_fg⟩, | |
replace dist_fg := λ x, lt_of_le_of_lt (dist_coe_le_dist x) dist_fg, | |
calc dist (f y) (f z) ≤ dist (f y) (g y) + dist (f z) (g z) + dist (g y) (g z) : | |
dist_triangle4_right _ _ _ _ | |
... < ε/2/2 + ε/2/2 + ε/2 : | |
add_lt_add (add_lt_add (dist_fg y) (dist_fg z)) (hU y hy z hz g gA) | |
... = ε : by rw [add_halves, add_halves] | |
end) | |
/- To apply the previous theorems, one needs to check the equicontinuity. An important | |
instance is when the source space is a metric space, and there is a fixed modulus of continuity | |
for all the functions in the set A -/ | |
lemma equicontinuous_of_continuity_modulus {α : Type u} [pseudo_metric_space α] | |
(b : ℝ → ℝ) (b_lim : tendsto b (𝓝 0) (𝓝 0)) | |
(A : set (α →ᵇ β)) | |
(H : ∀(x y:α) (f : α →ᵇ β), f ∈ A → dist (f x) (f y) ≤ b (dist x y)) | |
(x:α) (ε : ℝ) (ε0 : 0 < ε) : ∃U ∈ 𝓝 x, ∀ (y z ∈ U) (f : α →ᵇ β), | |
f ∈ A → dist (f y) (f z) < ε := | |
begin | |
rcases tendsto_nhds_nhds.1 b_lim ε ε0 with ⟨δ, δ0, hδ⟩, | |
refine ⟨ball x (δ/2), ball_mem_nhds x (half_pos δ0), λ y hy z hz f hf, _⟩, | |
have : dist y z < δ := calc | |
dist y z ≤ dist y x + dist z x : dist_triangle_right _ _ _ | |
... < δ/2 + δ/2 : add_lt_add hy hz | |
... = δ : add_halves _, | |
calc | |
dist (f y) (f z) ≤ b (dist y z) : H y z f hf | |
... ≤ |b (dist y z)| : le_abs_self _ | |
... = dist (b (dist y z)) 0 : by simp [real.dist_eq] | |
... < ε : hδ (by simpa [real.dist_eq] using this), | |
end | |
end arzela_ascoli | |
section has_one | |
variables [topological_space α] [pseudo_metric_space β] [has_one β] | |
@[to_additive] instance : has_one (α →ᵇ β) := ⟨const α 1⟩ | |
@[simp, to_additive] lemma coe_one : ((1 : α →ᵇ β) : α → β) = 1 := rfl | |
@[simp, to_additive] | |
lemma mk_of_compact_one [compact_space α] : mk_of_compact (1 : C(α, β)) = 1 := rfl | |
@[to_additive] lemma forall_coe_one_iff_one (f : α →ᵇ β) : (∀ x, f x = 1) ↔ f = 1 := | |
(@fun_like.ext_iff _ _ _ _ f 1).symm | |
@[simp, to_additive] lemma one_comp_continuous [topological_space γ] (f : C(γ, α)) : | |
(1 : α →ᵇ β).comp_continuous f = 1 := rfl | |
end has_one | |
section has_lipschitz_add | |
/- In this section, if `β` is an `add_monoid` whose addition operation is Lipschitz, then we show | |
that the space of bounded continuous functions from `α` to `β` inherits a topological `add_monoid` | |
structure, by using pointwise operations and checking that they are compatible with the uniform | |
distance. | |
Implementation note: The material in this section could have been written for `has_lipschitz_mul` | |
and transported by `@[to_additive]`. We choose not to do this because this causes a few lemma | |
names (for example, `coe_mul`) to conflict with later lemma names for normed rings; this is only a | |
trivial inconvenience, but in any case there are no obvious applications of the multiplicative | |
version. -/ | |
variables [topological_space α] [pseudo_metric_space β] [add_monoid β] | |
variables [has_lipschitz_add β] | |
variables (f g : α →ᵇ β) {x : α} {C : ℝ} | |
/-- The pointwise sum of two bounded continuous functions is again bounded continuous. -/ | |
instance : has_add (α →ᵇ β) := | |
{ add := λ f g, | |
bounded_continuous_function.mk_of_bound (f.to_continuous_map + g.to_continuous_map) | |
(↑(has_lipschitz_add.C β) * max (classical.some f.bounded) (classical.some g.bounded)) | |
begin | |
intros x y, | |
refine le_trans (lipschitz_with_lipschitz_const_add ⟨f x, g x⟩ ⟨f y, g y⟩) _, | |
rw prod.dist_eq, | |
refine mul_le_mul_of_nonneg_left _ (has_lipschitz_add.C β).coe_nonneg, | |
apply max_le_max, | |
exact classical.some_spec f.bounded x y, | |
exact classical.some_spec g.bounded x y, | |
end } | |
@[simp] lemma coe_add : ⇑(f + g) = f + g := rfl | |
lemma add_apply : (f + g) x = f x + g x := rfl | |
@[simp] lemma mk_of_compact_add [compact_space α] (f g : C(α, β)) : | |
mk_of_compact (f + g) = mk_of_compact f + mk_of_compact g := rfl | |
lemma add_comp_continuous [topological_space γ] (h : C(γ, α)) : | |
(g + f).comp_continuous h = g.comp_continuous h + f.comp_continuous h := rfl | |
@[simp] lemma coe_nsmul_rec : ∀ n, ⇑(nsmul_rec n f) = n • f | |
| 0 := by rw [nsmul_rec, zero_smul, coe_zero] | |
| (n + 1) := by rw [nsmul_rec, succ_nsmul, coe_add, coe_nsmul_rec] | |
instance has_nat_scalar : has_smul ℕ (α →ᵇ β) := | |
{ smul := λ n f, | |
{ to_continuous_map := n • f.to_continuous_map, | |
map_bounded' := by simpa [coe_nsmul_rec] using (nsmul_rec n f).map_bounded' } } | |
@[simp] lemma coe_nsmul (r : ℕ) (f : α →ᵇ β) : ⇑(r • f) = r • f := rfl | |
@[simp] lemma nsmul_apply (r : ℕ) (f : α →ᵇ β) (v : α) : (r • f) v = r • f v := rfl | |
instance : add_monoid (α →ᵇ β) := | |
fun_like.coe_injective.add_monoid _ coe_zero coe_add (λ _ _, coe_nsmul _ _) | |
instance : has_lipschitz_add (α →ᵇ β) := | |
{ lipschitz_add := ⟨has_lipschitz_add.C β, begin | |
have C_nonneg := (has_lipschitz_add.C β).coe_nonneg, | |
rw lipschitz_with_iff_dist_le_mul, | |
rintros ⟨f₁, g₁⟩ ⟨f₂, g₂⟩, | |
rw dist_le (mul_nonneg C_nonneg dist_nonneg), | |
intros x, | |
refine le_trans (lipschitz_with_lipschitz_const_add ⟨f₁ x, g₁ x⟩ ⟨f₂ x, g₂ x⟩) _, | |
refine mul_le_mul_of_nonneg_left _ C_nonneg, | |
apply max_le_max; exact dist_coe_le_dist x, | |
end⟩ } | |
/-- Coercion of a `normed_add_group_hom` is an `add_monoid_hom`. Similar to | |
`add_monoid_hom.coe_fn`. -/ | |
@[simps] def coe_fn_add_hom : (α →ᵇ β) →+ (α → β) := | |
{ to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add } | |
variables (α β) | |
/-- The additive map forgetting that a bounded continuous function is bounded. | |
-/ | |
@[simps] def to_continuous_map_add_hom : (α →ᵇ β) →+ C(α, β) := | |
{ to_fun := to_continuous_map, | |
map_zero' := by { ext, simp, }, | |
map_add' := by { intros, ext, simp, }, } | |
end has_lipschitz_add | |
section comm_has_lipschitz_add | |
variables [topological_space α] [pseudo_metric_space β] [add_comm_monoid β] [has_lipschitz_add β] | |
@[to_additive] instance : add_comm_monoid (α →ᵇ β) := | |
{ add_comm := assume f g, by ext; simp [add_comm], | |
.. bounded_continuous_function.add_monoid } | |
open_locale big_operators | |
@[simp] lemma coe_sum {ι : Type*} (s : finset ι) (f : ι → (α →ᵇ β)) : | |
⇑(∑ i in s, f i) = (∑ i in s, (f i : α → β)) := | |
(@coe_fn_add_hom α β _ _ _ _).map_sum f s | |
lemma sum_apply {ι : Type*} (s : finset ι) (f : ι → (α →ᵇ β)) (a : α) : | |
(∑ i in s, f i) a = (∑ i in s, f i a) := | |
by simp | |
end comm_has_lipschitz_add | |
section normed_add_comm_group | |
/- In this section, if β is a normed group, then we show that the space of bounded | |
continuous functions from α to β inherits a normed group structure, by using | |
pointwise operations and checking that they are compatible with the uniform distance. -/ | |
variables [topological_space α] [seminormed_add_comm_group β] | |
variables (f g : α →ᵇ β) {x : α} {C : ℝ} | |
instance : has_norm (α →ᵇ β) := ⟨λu, dist u 0⟩ | |
lemma norm_def : ∥f∥ = dist f 0 := rfl | |
/-- The norm of a bounded continuous function is the supremum of `∥f x∥`. | |
We use `Inf` to ensure that the definition works if `α` has no elements. -/ | |
lemma norm_eq (f : α →ᵇ β) : | |
∥f∥ = Inf {C : ℝ | 0 ≤ C ∧ ∀ (x : α), ∥f x∥ ≤ C} := | |
by simp [norm_def, bounded_continuous_function.dist_eq] | |
/-- When the domain is non-empty, we do not need the `0 ≤ C` condition in the formula for ∥f∥ as an | |
`Inf`. -/ | |
lemma norm_eq_of_nonempty [h : nonempty α] : ∥f∥ = Inf {C : ℝ | ∀ (x : α), ∥f x∥ ≤ C} := | |
begin | |
unfreezingI { obtain ⟨a⟩ := h, }, | |
rw norm_eq, | |
congr, | |
ext, | |
simp only [and_iff_right_iff_imp], | |
exact λ h', le_trans (norm_nonneg (f a)) (h' a), | |
end | |
@[simp] lemma norm_eq_zero_of_empty [h : is_empty α] : ∥f∥ = 0 := | |
dist_zero_of_empty | |
lemma norm_coe_le_norm (x : α) : ∥f x∥ ≤ ∥f∥ := calc | |
∥f x∥ = dist (f x) ((0 : α →ᵇ β) x) : by simp [dist_zero_right] | |
... ≤ ∥f∥ : dist_coe_le_dist _ | |
lemma dist_le_two_norm' {f : γ → β} {C : ℝ} (hC : ∀ x, ∥f x∥ ≤ C) (x y : γ) : | |
dist (f x) (f y) ≤ 2 * C := | |
calc dist (f x) (f y) ≤ ∥f x∥ + ∥f y∥ : dist_le_norm_add_norm _ _ | |
... ≤ C + C : add_le_add (hC x) (hC y) | |
... = 2 * C : (two_mul _).symm | |
/-- Distance between the images of any two points is at most twice the norm of the function. -/ | |
lemma dist_le_two_norm (x y : α) : dist (f x) (f y) ≤ 2 * ∥f∥ := | |
dist_le_two_norm' f.norm_coe_le_norm x y | |
variable {f} | |
/-- The norm of a function is controlled by the supremum of the pointwise norms -/ | |
lemma norm_le (C0 : (0 : ℝ) ≤ C) : ∥f∥ ≤ C ↔ ∀x:α, ∥f x∥ ≤ C := | |
by simpa using @dist_le _ _ _ _ f 0 _ C0 | |
lemma norm_le_of_nonempty [nonempty α] | |
{f : α →ᵇ β} {M : ℝ} : ∥f∥ ≤ M ↔ ∀ x, ∥f x∥ ≤ M := | |
begin | |
simp_rw [norm_def, ←dist_zero_right], | |
exact dist_le_iff_of_nonempty, | |
end | |
lemma norm_lt_iff_of_compact [compact_space α] | |
{f : α →ᵇ β} {M : ℝ} (M0 : 0 < M) : ∥f∥ < M ↔ ∀ x, ∥f x∥ < M := | |
begin | |
simp_rw [norm_def, ←dist_zero_right], | |
exact dist_lt_iff_of_compact M0, | |
end | |
lemma norm_lt_iff_of_nonempty_compact [nonempty α] [compact_space α] | |
{f : α →ᵇ β} {M : ℝ} : ∥f∥ < M ↔ ∀ x, ∥f x∥ < M := | |
begin | |
simp_rw [norm_def, ←dist_zero_right], | |
exact dist_lt_iff_of_nonempty_compact, | |
end | |
variable (f) | |
/-- Norm of `const α b` is less than or equal to `∥b∥`. If `α` is nonempty, | |
then it is equal to `∥b∥`. -/ | |
lemma norm_const_le (b : β) : ∥const α b∥ ≤ ∥b∥ := | |
(norm_le (norm_nonneg b)).2 $ λ x, le_rfl | |
@[simp] lemma norm_const_eq [h : nonempty α] (b : β) : ∥const α b∥ = ∥b∥ := | |
le_antisymm (norm_const_le b) $ h.elim $ λ x, (const α b).norm_coe_le_norm x | |
/-- Constructing a bounded continuous function from a uniformly bounded continuous | |
function taking values in a normed group. -/ | |
def of_normed_add_comm_group {α : Type u} {β : Type v} [topological_space α] | |
[seminormed_add_comm_group β] (f : α → β) (Hf : continuous f) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) : | |
α →ᵇ β := | |
⟨⟨λn, f n, Hf⟩, ⟨_, dist_le_two_norm' H⟩⟩ | |
@[simp] lemma coe_of_normed_add_comm_group | |
{α : Type u} {β : Type v} [topological_space α] [seminormed_add_comm_group β] | |
(f : α → β) (Hf : continuous f) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) : | |
(of_normed_add_comm_group f Hf C H : α → β) = f := rfl | |
lemma norm_of_normed_add_comm_group_le {f : α → β} (hfc : continuous f) {C : ℝ} (hC : 0 ≤ C) | |
(hfC : ∀ x, ∥f x∥ ≤ C) : ∥of_normed_add_comm_group f hfc C hfC∥ ≤ C := | |
(norm_le hC).2 hfC | |
/-- Constructing a bounded continuous function from a uniformly bounded | |
function on a discrete space, taking values in a normed group -/ | |
def of_normed_add_comm_group_discrete {α : Type u} {β : Type v} | |
[topological_space α] [discrete_topology α] [seminormed_add_comm_group β] | |
(f : α → β) (C : ℝ) (H : ∀x, norm (f x) ≤ C) : α →ᵇ β := | |
of_normed_add_comm_group f continuous_of_discrete_topology C H | |
@[simp] lemma coe_of_normed_add_comm_group_discrete {α : Type u} {β : Type v} [topological_space α] | |
[discrete_topology α] [seminormed_add_comm_group β] (f : α → β) (C : ℝ) (H : ∀x, ∥f x∥ ≤ C) : | |
(of_normed_add_comm_group_discrete f C H : α → β) = f := rfl | |
/-- Taking the pointwise norm of a bounded continuous function with values in a | |
`seminormed_add_comm_group` yields a bounded continuous function with values in ℝ. -/ | |
def norm_comp : α →ᵇ ℝ := | |
f.comp norm lipschitz_with_one_norm | |
@[simp] lemma coe_norm_comp : (f.norm_comp : α → ℝ) = norm ∘ f := rfl | |
@[simp] lemma norm_norm_comp : ∥f.norm_comp∥ = ∥f∥ := | |
by simp only [norm_eq, coe_norm_comp, norm_norm] | |
lemma bdd_above_range_norm_comp : bdd_above $ set.range $ norm ∘ f := | |
(real.bounded_iff_bdd_below_bdd_above.mp $ @bounded_range _ _ _ _ f.norm_comp).2 | |
lemma norm_eq_supr_norm : ∥f∥ = ⨆ x : α, ∥f x∥ := | |
by simp_rw [norm_def, dist_eq_supr, coe_zero, pi.zero_apply, dist_zero_right] | |
/-- The pointwise opposite of a bounded continuous function is again bounded continuous. -/ | |
instance : has_neg (α →ᵇ β) := | |
⟨λf, of_normed_add_comm_group (-f) f.continuous.neg ∥f∥ $ λ x, | |
trans_rel_right _ (norm_neg _) (f.norm_coe_le_norm x)⟩ | |
/-- The pointwise difference of two bounded continuous functions is again bounded continuous. -/ | |
instance : has_sub (α →ᵇ β) := | |
⟨λf g, of_normed_add_comm_group (f - g) (f.continuous.sub g.continuous) (∥f∥ + ∥g∥) $ λ x, | |
by { simp only [sub_eq_add_neg], | |
exact le_trans (norm_add_le _ _) (add_le_add (f.norm_coe_le_norm x) $ | |
trans_rel_right _ (norm_neg _) (g.norm_coe_le_norm x)) }⟩ | |
@[simp] lemma coe_neg : ⇑(-f) = -f := rfl | |
lemma neg_apply : (-f) x = -f x := rfl | |
@[simp] lemma coe_sub : ⇑(f - g) = f - g := rfl | |
lemma sub_apply : (f - g) x = f x - g x := rfl | |
@[simp] lemma mk_of_compact_neg [compact_space α] (f : C(α, β)) : | |
mk_of_compact (-f) = -mk_of_compact f := rfl | |
@[simp] lemma mk_of_compact_sub [compact_space α] (f g : C(α, β)) : | |
mk_of_compact (f - g) = mk_of_compact f - mk_of_compact g := rfl | |
@[simp] lemma coe_zsmul_rec : ∀ z, ⇑(zsmul_rec z f) = z • f | |
| (int.of_nat n) := by rw [zsmul_rec, int.of_nat_eq_coe, coe_nsmul_rec, coe_nat_zsmul] | |
| -[1+ n] := by rw [zsmul_rec, zsmul_neg_succ_of_nat, coe_neg, coe_nsmul_rec] | |
instance has_int_scalar : has_smul ℤ (α →ᵇ β) := | |
{ smul := λ n f, | |
{ to_continuous_map := n • f.to_continuous_map, | |
map_bounded' := by simpa using (zsmul_rec n f).map_bounded' } } | |
@[simp] lemma coe_zsmul (r : ℤ) (f : α →ᵇ β) : ⇑(r • f) = r • f := rfl | |
@[simp] lemma zsmul_apply (r : ℤ) (f : α →ᵇ β) (v : α) : (r • f) v = r • f v := rfl | |
instance : add_comm_group (α →ᵇ β) := | |
fun_like.coe_injective.add_comm_group _ coe_zero coe_add coe_neg coe_sub (λ _ _, coe_nsmul _ _) | |
(λ _ _, coe_zsmul _ _) | |
instance : seminormed_add_comm_group (α →ᵇ β) := | |
{ dist_eq := λ f g, by simp only [norm_eq, dist_eq, dist_eq_norm, sub_apply] } | |
instance {α β} [topological_space α] [normed_add_comm_group β] : normed_add_comm_group (α →ᵇ β) := | |
{ ..bounded_continuous_function.seminormed_add_comm_group } | |
lemma nnnorm_def : ∥f∥₊ = nndist f 0 := rfl | |
lemma nnnorm_coe_le_nnnorm (x : α) : ∥f x∥₊ ≤ ∥f∥₊ := norm_coe_le_norm _ _ | |
lemma nndist_le_two_nnnorm (x y : α) : nndist (f x) (f y) ≤ 2 * ∥f∥₊ := dist_le_two_norm _ _ _ | |
/-- The nnnorm of a function is controlled by the supremum of the pointwise nnnorms -/ | |
lemma nnnorm_le (C : ℝ≥0) : ∥f∥₊ ≤ C ↔ ∀x:α, ∥f x∥₊ ≤ C := | |
norm_le C.prop | |
lemma nnnorm_const_le (b : β) : ∥const α b∥₊ ≤ ∥b∥₊ := | |
norm_const_le _ | |
@[simp] lemma nnnorm_const_eq [h : nonempty α] (b : β) : ∥const α b∥₊ = ∥b∥₊ := | |
subtype.ext $ norm_const_eq _ | |
lemma nnnorm_eq_supr_nnnorm : ∥f∥₊ = ⨆ x : α, ∥f x∥₊ := | |
subtype.ext $ (norm_eq_supr_norm f).trans $ by simp_rw [nnreal.coe_supr, coe_nnnorm] | |
lemma abs_diff_coe_le_dist : ∥f x - g x∥ ≤ dist f g := | |
by { rw dist_eq_norm, exact (f - g).norm_coe_le_norm x } | |
lemma coe_le_coe_add_dist {f g : α →ᵇ ℝ} : f x ≤ g x + dist f g := | |
sub_le_iff_le_add'.1 $ (abs_le.1 $ @dist_coe_le_dist _ _ _ _ f g x).2 | |
lemma norm_comp_continuous_le [topological_space γ] (f : α →ᵇ β) (g : C(γ, α)) : | |
∥f.comp_continuous g∥ ≤ ∥f∥ := | |
((lipschitz_comp_continuous g).dist_le_mul f 0).trans $ | |
by rw [nnreal.coe_one, one_mul, dist_zero_right] | |
end normed_add_comm_group | |
section has_bounded_smul | |
/-! | |
### `has_bounded_smul` (in particular, topological module) structure | |
In this section, if `β` is a metric space and a `𝕜`-module whose addition and scalar multiplication | |
are compatible with the metric structure, then we show that the space of bounded continuous | |
functions from `α` to `β` inherits a so-called `has_bounded_smul` structure (in particular, a | |
`has_continuous_mul` structure, which is the mathlib formulation of being a topological module), by | |
using pointwise operations and checking that they are compatible with the uniform distance. -/ | |
variables {𝕜 : Type*} [pseudo_metric_space 𝕜] [topological_space α] [pseudo_metric_space β] | |
section has_smul | |
variables [has_zero 𝕜] [has_zero β] [has_smul 𝕜 β] [has_bounded_smul 𝕜 β] | |
instance : has_smul 𝕜 (α →ᵇ β) := | |
{ smul := λ c f, | |
{ to_continuous_map := c • f.to_continuous_map, | |
map_bounded' := let ⟨b, hb⟩ := f.bounded in ⟨dist c 0 * b, λ x y, begin | |
refine (dist_smul_pair c (f x) (f y)).trans _, | |
refine mul_le_mul_of_nonneg_left _ dist_nonneg, | |
exact hb x y | |
end⟩ } } | |
@[simp] lemma coe_smul (c : 𝕜) (f : α →ᵇ β) : ⇑(c • f) = λ x, c • (f x) := rfl | |
lemma smul_apply (c : 𝕜) (f : α →ᵇ β) (x : α) : (c • f) x = c • f x := rfl | |
instance [has_smul 𝕜ᵐᵒᵖ β] [is_central_scalar 𝕜 β] : is_central_scalar 𝕜 (α →ᵇ β) := | |
{ op_smul_eq_smul := λ _ _, ext $ λ _, op_smul_eq_smul _ _ } | |
instance : has_bounded_smul 𝕜 (α →ᵇ β) := | |
{ dist_smul_pair' := λ c f₁ f₂, begin | |
rw dist_le (mul_nonneg dist_nonneg dist_nonneg), | |
intros x, | |
refine (dist_smul_pair c (f₁ x) (f₂ x)).trans _, | |
exact mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg | |
end, | |
dist_pair_smul' := λ c₁ c₂ f, begin | |
rw dist_le (mul_nonneg dist_nonneg dist_nonneg), | |
intros x, | |
refine (dist_pair_smul c₁ c₂ (f x)).trans _, | |
convert mul_le_mul_of_nonneg_left (dist_coe_le_dist x) dist_nonneg, | |
simp | |
end } | |
end has_smul | |
section mul_action | |
variables [monoid_with_zero 𝕜] [has_zero β] [mul_action 𝕜 β] [has_bounded_smul 𝕜 β] | |
instance : mul_action 𝕜 (α →ᵇ β) := fun_like.coe_injective.mul_action _ coe_smul | |
end mul_action | |
section distrib_mul_action | |
variables [monoid_with_zero 𝕜] [add_monoid β] [distrib_mul_action 𝕜 β] [has_bounded_smul 𝕜 β] | |
variables [has_lipschitz_add β] | |
instance : distrib_mul_action 𝕜 (α →ᵇ β) := | |
function.injective.distrib_mul_action ⟨_, coe_zero, coe_add⟩ fun_like.coe_injective coe_smul | |
end distrib_mul_action | |
section module | |
variables [semiring 𝕜] [add_comm_monoid β] [module 𝕜 β] [has_bounded_smul 𝕜 β] | |
variables {f g : α →ᵇ β} {x : α} {C : ℝ} | |
variables [has_lipschitz_add β] | |
instance : module 𝕜 (α →ᵇ β) := | |
function.injective.module _ ⟨_, coe_zero, coe_add⟩ fun_like.coe_injective coe_smul | |
variables (𝕜) | |
/-- The evaluation at a point, as a continuous linear map from `α →ᵇ β` to `β`. -/ | |
def eval_clm (x : α) : (α →ᵇ β) →L[𝕜] β := | |
{ to_fun := λ f, f x, | |
map_add' := λ f g, add_apply _ _, | |
map_smul' := λ c f, smul_apply _ _ _ } | |
@[simp] lemma eval_clm_apply (x : α) (f : α →ᵇ β) : | |
eval_clm 𝕜 x f = f x := rfl | |
variables (α β) | |
/-- The linear map forgetting that a bounded continuous function is bounded. -/ | |
@[simps] | |
def to_continuous_map_linear_map : (α →ᵇ β) →ₗ[𝕜] C(α, β) := | |
{ to_fun := to_continuous_map, | |
map_smul' := λ f g, rfl, | |
map_add' := λ c f, rfl } | |
end module | |
end has_bounded_smul | |
section normed_space | |
/-! | |
### Normed space structure | |
In this section, if `β` is a normed space, then we show that the space of bounded | |
continuous functions from `α` to `β` inherits a normed space structure, by using | |
pointwise operations and checking that they are compatible with the uniform distance. -/ | |
variables {𝕜 : Type*} | |
variables [topological_space α] [seminormed_add_comm_group β] | |
variables {f g : α →ᵇ β} {x : α} {C : ℝ} | |
instance [normed_field 𝕜] [normed_space 𝕜 β] : normed_space 𝕜 (α →ᵇ β) := ⟨λ c f, begin | |
refine norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _, | |
exact (λ x, trans_rel_right _ (norm_smul _ _) | |
(mul_le_mul_of_nonneg_left (f.norm_coe_le_norm _) (norm_nonneg _))) end⟩ | |
variables [nontrivially_normed_field 𝕜] [normed_space 𝕜 β] | |
variables [seminormed_add_comm_group γ] [normed_space 𝕜 γ] | |
variables (α) | |
-- TODO does this work in the `has_bounded_smul` setting, too? | |
/-- | |
Postcomposition of bounded continuous functions into a normed module by a continuous linear map is | |
a continuous linear map. | |
Upgraded version of `continuous_linear_map.comp_left_continuous`, similar to | |
`linear_map.comp_left`. -/ | |
protected def _root_.continuous_linear_map.comp_left_continuous_bounded (g : β →L[𝕜] γ) : | |
(α →ᵇ β) →L[𝕜] (α →ᵇ γ) := | |
linear_map.mk_continuous | |
{ to_fun := λ f, of_normed_add_comm_group | |
(g ∘ f) | |
(g.continuous.comp f.continuous) | |
(∥g∥ * ∥f∥) | |
(λ x, (g.le_op_norm_of_le (f.norm_coe_le_norm x))), | |
map_add' := λ f g, by ext; simp, | |
map_smul' := λ c f, by ext; simp } | |
∥g∥ | |
(λ f, norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg g) (norm_nonneg f)) _) | |
@[simp] lemma _root_.continuous_linear_map.comp_left_continuous_bounded_apply (g : β →L[𝕜] γ) | |
(f : α →ᵇ β) (x : α) : | |
(g.comp_left_continuous_bounded α f) x = g (f x) := | |
rfl | |
end normed_space | |
section normed_ring | |
/-! | |
### Normed ring structure | |
In this section, if `R` is a normed ring, then we show that the space of bounded | |
continuous functions from `α` to `R` inherits a normed ring structure, by using | |
pointwise operations and checking that they are compatible with the uniform distance. -/ | |
variables [topological_space α] {R : Type*} | |
section non_unital | |
section semi_normed | |
variables [non_unital_semi_normed_ring R] | |
instance : has_mul (α →ᵇ R) := | |
{ mul := λ f g, of_normed_add_comm_group (f * g) (f.continuous.mul g.continuous) (∥f∥ * ∥g∥) $ λ x, | |
le_trans (norm_mul_le (f x) (g x)) $ | |
mul_le_mul (f.norm_coe_le_norm x) (g.norm_coe_le_norm x) (norm_nonneg _) (norm_nonneg _) } | |
@[simp] lemma coe_mul (f g : α →ᵇ R) : ⇑(f * g) = f * g := rfl | |
lemma mul_apply (f g : α →ᵇ R) (x : α) : (f * g) x = f x * g x := rfl | |
instance : non_unital_ring (α →ᵇ R) := | |
fun_like.coe_injective.non_unital_ring _ coe_zero coe_add coe_mul coe_neg coe_sub | |
(λ _ _, coe_nsmul _ _) (λ _ _, coe_zsmul _ _) | |
instance : non_unital_semi_normed_ring (α →ᵇ R) := | |
{ norm_mul := λ f g, norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) | |
_, | |
.. bounded_continuous_function.seminormed_add_comm_group } | |
end semi_normed | |
instance [non_unital_normed_ring R] : non_unital_normed_ring (α →ᵇ R) := | |
{ .. bounded_continuous_function.non_unital_semi_normed_ring, | |
.. bounded_continuous_function.normed_add_comm_group } | |
end non_unital | |
section semi_normed | |
variables [semi_normed_ring R] | |
@[simp] lemma coe_npow_rec (f : α →ᵇ R) : ∀ n, ⇑(npow_rec n f) = f ^ n | |
| 0 := by rw [npow_rec, pow_zero, coe_one] | |
| (n + 1) := by rw [npow_rec, pow_succ, coe_mul, coe_npow_rec] | |
instance has_nat_pow : has_pow (α →ᵇ R) ℕ := | |
{ pow := λ f n, | |
{ to_continuous_map := f.to_continuous_map ^ n, | |
map_bounded' := by simpa [coe_npow_rec] using (npow_rec n f).map_bounded' } } | |
@[simp] lemma coe_pow (n : ℕ) (f : α →ᵇ R) : ⇑(f ^ n) = f ^ n := rfl | |
@[simp] lemma pow_apply (n : ℕ) (f : α →ᵇ R) (v : α) : (f ^ n) v = f v ^ n := rfl | |
instance : has_nat_cast (α →ᵇ R) := | |
⟨λ n, bounded_continuous_function.const _ n⟩ | |
@[simp, norm_cast] lemma coe_nat_cast (n : ℕ) : ((n : α →ᵇ R) : α → R) = n := rfl | |
instance : has_int_cast (α →ᵇ R) := | |
⟨λ n, bounded_continuous_function.const _ n⟩ | |
@[simp, norm_cast] lemma coe_int_cast (n : ℤ) : ((n : α →ᵇ R) : α → R) = n := rfl | |
instance : ring (α →ᵇ R) := | |
fun_like.coe_injective.ring _ coe_zero coe_one coe_add coe_mul coe_neg coe_sub | |
(λ _ _, coe_nsmul _ _) | |
(λ _ _, coe_zsmul _ _) | |
(λ _ _, coe_pow _ _) | |
coe_nat_cast | |
coe_int_cast | |
instance : semi_normed_ring (α →ᵇ R) := | |
{ ..bounded_continuous_function.non_unital_semi_normed_ring } | |
end semi_normed | |
instance [normed_ring R] : normed_ring (α →ᵇ R) := | |
{ ..bounded_continuous_function.non_unital_normed_ring } | |
end normed_ring | |
section normed_comm_ring | |
/-! | |
### Normed commutative ring structure | |
In this section, if `R` is a normed commutative ring, then we show that the space of bounded | |
continuous functions from `α` to `R` inherits a normed commutative ring structure, by using | |
pointwise operations and checking that they are compatible with the uniform distance. -/ | |
variables [topological_space α] {R : Type*} | |
instance [semi_normed_comm_ring R] : comm_ring (α →ᵇ R) := | |
{ mul_comm := λ f₁ f₂, ext $ λ x, mul_comm _ _, | |
.. bounded_continuous_function.ring } | |
instance [semi_normed_comm_ring R] : semi_normed_comm_ring (α →ᵇ R) := | |
{ ..bounded_continuous_function.comm_ring, ..bounded_continuous_function.seminormed_add_comm_group } | |
instance [normed_comm_ring R] : normed_comm_ring (α →ᵇ R) := | |
{ .. bounded_continuous_function.comm_ring, .. bounded_continuous_function.normed_add_comm_group } | |
end normed_comm_ring | |
section normed_algebra | |
/-! | |
### Normed algebra structure | |
In this section, if `γ` is a normed algebra, then we show that the space of bounded | |
continuous functions from `α` to `γ` inherits a normed algebra structure, by using | |
pointwise operations and checking that they are compatible with the uniform distance. -/ | |
variables {𝕜 : Type*} [normed_field 𝕜] | |
variables [topological_space α] [seminormed_add_comm_group β] [normed_space 𝕜 β] | |
variables [normed_ring γ] [normed_algebra 𝕜 γ] | |
variables {f g : α →ᵇ γ} {x : α} {c : 𝕜} | |
/-- `bounded_continuous_function.const` as a `ring_hom`. -/ | |
def C : 𝕜 →+* (α →ᵇ γ) := | |
{ to_fun := λ (c : 𝕜), const α ((algebra_map 𝕜 γ) c), | |
map_one' := ext $ λ x, (algebra_map 𝕜 γ).map_one, | |
map_mul' := λ c₁ c₂, ext $ λ x, (algebra_map 𝕜 γ).map_mul _ _, | |
map_zero' := ext $ λ x, (algebra_map 𝕜 γ).map_zero, | |
map_add' := λ c₁ c₂, ext $ λ x, (algebra_map 𝕜 γ).map_add _ _ } | |
instance : algebra 𝕜 (α →ᵇ γ) := | |
{ to_ring_hom := C, | |
commutes' := λ c f, ext $ λ x, algebra.commutes' _ _, | |
smul_def' := λ c f, ext $ λ x, algebra.smul_def' _ _, | |
..bounded_continuous_function.module, | |
..bounded_continuous_function.ring } | |
@[simp] lemma algebra_map_apply (k : 𝕜) (a : α) : | |
algebra_map 𝕜 (α →ᵇ γ) k a = k • 1 := | |
by { rw algebra.algebra_map_eq_smul_one, refl, } | |
instance : normed_algebra 𝕜 (α →ᵇ γ) := | |
{ ..bounded_continuous_function.normed_space } | |
/-! | |
### Structure as normed module over scalar functions | |
If `β` is a normed `𝕜`-space, then we show that the space of bounded continuous | |
functions from `α` to `β` is naturally a module over the algebra of bounded continuous | |
functions from `α` to `𝕜`. -/ | |
instance has_smul' : has_smul (α →ᵇ 𝕜) (α →ᵇ β) := | |
⟨λ (f : α →ᵇ 𝕜) (g : α →ᵇ β), of_normed_add_comm_group (λ x, (f x) • (g x)) | |
(f.continuous.smul g.continuous) (∥f∥ * ∥g∥) (λ x, calc | |
∥f x • g x∥ ≤ ∥f x∥ * ∥g x∥ : normed_space.norm_smul_le _ _ | |
... ≤ ∥f∥ * ∥g∥ : mul_le_mul (f.norm_coe_le_norm _) (g.norm_coe_le_norm _) (norm_nonneg _) | |
(norm_nonneg _)) ⟩ | |
instance module' : module (α →ᵇ 𝕜) (α →ᵇ β) := | |
module.of_core $ | |
{ smul := (•), | |
smul_add := λ c f₁ f₂, ext $ λ x, smul_add _ _ _, | |
add_smul := λ c₁ c₂ f, ext $ λ x, add_smul _ _ _, | |
mul_smul := λ c₁ c₂ f, ext $ λ x, mul_smul _ _ _, | |
one_smul := λ f, ext $ λ x, one_smul 𝕜 (f x) } | |
lemma norm_smul_le (f : α →ᵇ 𝕜) (g : α →ᵇ β) : ∥f • g∥ ≤ ∥f∥ * ∥g∥ := | |
norm_of_normed_add_comm_group_le _ (mul_nonneg (norm_nonneg _) (norm_nonneg _)) _ | |
/- TODO: When `normed_module` has been added to `normed_space.basic`, the above facts | |
show that the space of bounded continuous functions from `α` to `β` is naturally a normed | |
module over the algebra of bounded continuous functions from `α` to `𝕜`. -/ | |
end normed_algebra | |
lemma nnreal.upper_bound {α : Type*} [topological_space α] | |
(f : α →ᵇ ℝ≥0) (x : α) : f x ≤ nndist f 0 := | |
begin | |
have key : nndist (f x) ((0 : α →ᵇ ℝ≥0) x) ≤ nndist f 0, | |
{ exact @dist_coe_le_dist α ℝ≥0 _ _ f 0 x, }, | |
simp only [coe_zero, pi.zero_apply] at key, | |
rwa nnreal.nndist_zero_eq_val' (f x) at key, | |
end | |
/-! | |
### Star structures | |
In this section, if `β` is a normed ⋆-group, then so is the space of bounded | |
continuous functions from `α` to `β`, by using the star operation pointwise. | |
If `𝕜` is normed field and a ⋆-ring over which `β` is a normed algebra and a | |
star module, then the space of bounded continuous functions from `α` to `β` | |
is a star module. | |
If `β` is a ⋆-ring in addition to being a normed ⋆-group, then `α →ᵇ β` | |
inherits a ⋆-ring structure. | |
In summary, if `β` is a C⋆-algebra over `𝕜`, then so is `α →ᵇ β`; note that | |
completeness is guaranteed when `β` is complete (see | |
`bounded_continuous_function.complete`). -/ | |
section normed_add_comm_group | |
variables {𝕜 : Type*} [normed_field 𝕜] [star_ring 𝕜] [topological_space α] | |
[seminormed_add_comm_group β] [star_add_monoid β] [normed_star_group β] | |
variables [normed_space 𝕜 β] [star_module 𝕜 β] | |
instance : star_add_monoid (α →ᵇ β) := | |
{ star := λ f, f.comp star star_normed_add_group_hom.lipschitz, | |
star_involutive := λ f, ext $ λ x, star_star (f x), | |
star_add := λ f g, ext $ λ x, star_add (f x) (g x) } | |
/-- The right-hand side of this equality can be parsed `star ∘ ⇑f` because of the | |
instance `pi.has_star`. Upon inspecting the goal, one sees `⊢ ⇑(star f) = star ⇑f`.-/ | |
@[simp] lemma coe_star (f : α →ᵇ β) : ⇑(star f) = star f := rfl | |
@[simp] lemma star_apply (f : α →ᵇ β) (x : α) : star f x = star (f x) := rfl | |
instance : normed_star_group (α →ᵇ β) := | |
{ norm_star := λ f, by simp only [norm_eq, star_apply, norm_star] } | |
instance : star_module 𝕜 (α →ᵇ β) := | |
{ star_smul := λ k f, ext $ λ x, star_smul k (f x) } | |
end normed_add_comm_group | |
section cstar_ring | |
variables [topological_space α] | |
variables [non_unital_normed_ring β] [star_ring β] | |
instance [normed_star_group β] : star_ring (α →ᵇ β) := | |
{ star_mul := λ f g, ext $ λ x, star_mul (f x) (g x), | |
..bounded_continuous_function.star_add_monoid } | |
variable [cstar_ring β] | |
instance : cstar_ring (α →ᵇ β) := | |
{ norm_star_mul_self := | |
begin | |
intro f, | |
refine le_antisymm _ _, | |
{ rw [←sq, norm_le (sq_nonneg _)], | |
dsimp [star_apply], | |
intro x, | |
rw [cstar_ring.norm_star_mul_self, ←sq], | |
refine sq_le_sq' _ _, | |
{ linarith [norm_nonneg (f x), norm_nonneg f] }, | |
{ exact norm_coe_le_norm f x }, }, | |
{ rw [←sq, ←real.le_sqrt (norm_nonneg _) (norm_nonneg _), norm_le (real.sqrt_nonneg _)], | |
intro x, | |
rw [real.le_sqrt (norm_nonneg _) (norm_nonneg _), sq, ←cstar_ring.norm_star_mul_self], | |
exact norm_coe_le_norm (star f * f) x } | |
end } | |
end cstar_ring | |
section normed_lattice_ordered_group | |
variables [topological_space α] [normed_lattice_add_comm_group β] | |
instance : partial_order (α →ᵇ β) := partial_order.lift (λ f, f.to_fun) (by tidy) | |
/-- | |
Continuous normed lattice group valued functions form a meet-semilattice | |
-/ | |
instance : semilattice_inf (α →ᵇ β) := | |
{ inf := λ f g, | |
{ to_fun := λ t, f t ⊓ g t, | |
continuous_to_fun := f.continuous.inf g.continuous, | |
map_bounded' := begin | |
obtain ⟨C₁, hf⟩ := f.bounded, | |
obtain ⟨C₂, hg⟩ := g.bounded, | |
refine ⟨C₁ + C₂, λ x y, _⟩, | |
simp_rw normed_add_comm_group.dist_eq at hf hg ⊢, | |
exact (norm_inf_sub_inf_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)), | |
end }, | |
inf_le_left := λ f g, continuous_map.le_def.mpr (λ _, inf_le_left), | |
inf_le_right := λ f g, continuous_map.le_def.mpr (λ _, inf_le_right), | |
le_inf := λ f g₁ g₂ w₁ w₂, continuous_map.le_def.mpr (λ _, le_inf (continuous_map.le_def.mp w₁ _) | |
(continuous_map.le_def.mp w₂ _)), | |
..bounded_continuous_function.partial_order } | |
instance : semilattice_sup (α →ᵇ β) := | |
{ sup := λ f g, | |
{ to_fun := λ t, f t ⊔ g t, | |
continuous_to_fun := f.continuous.sup g.continuous, | |
map_bounded' := begin | |
obtain ⟨C₁, hf⟩ := f.bounded, | |
obtain ⟨C₂, hg⟩ := g.bounded, | |
refine ⟨C₁ + C₂, λ x y, _⟩, | |
simp_rw normed_add_comm_group.dist_eq at hf hg ⊢, | |
exact (norm_sup_sub_sup_le_add_norm _ _ _ _).trans (add_le_add (hf _ _) (hg _ _)), | |
end }, | |
le_sup_left := λ f g, continuous_map.le_def.mpr (λ _, le_sup_left), | |
le_sup_right := λ f g, continuous_map.le_def.mpr (λ _, le_sup_right), | |
sup_le := λ f g₁ g₂ w₁ w₂, continuous_map.le_def.mpr (λ _, sup_le (continuous_map.le_def.mp w₁ _) | |
(continuous_map.le_def.mp w₂ _)), | |
..bounded_continuous_function.partial_order } | |
instance : lattice (α →ᵇ β) := | |
{ .. bounded_continuous_function.semilattice_sup, .. bounded_continuous_function.semilattice_inf } | |
@[simp] lemma coe_fn_sup (f g : α →ᵇ β) : ⇑(f ⊔ g) = f ⊔ g := rfl | |
@[simp] lemma coe_fn_abs (f : α →ᵇ β) : ⇑|f| = |f| := rfl | |
instance : normed_lattice_add_comm_group (α →ᵇ β) := | |
{ add_le_add_left := begin | |
intros f g h₁ h t, | |
simp only [coe_to_continuous_fun, pi.add_apply, add_le_add_iff_left, coe_add, | |
continuous_map.to_fun_eq_coe], | |
exact h₁ _, | |
end, | |
solid := | |
begin | |
intros f g h, | |
have i1: ∀ t, ∥f t∥ ≤ ∥g t∥ := λ t, solid (h t), | |
rw norm_le (norm_nonneg _), | |
exact λ t, (i1 t).trans (norm_coe_le_norm g t), | |
end, | |
..bounded_continuous_function.lattice, } | |
end normed_lattice_ordered_group | |
section nonnegative_part | |
variables [topological_space α] | |
/-- The nonnegative part of a bounded continuous `ℝ`-valued function as a bounded | |
continuous `ℝ≥0`-valued function. -/ | |
def nnreal_part (f : α →ᵇ ℝ) : α →ᵇ ℝ≥0 := | |
bounded_continuous_function.comp _ | |
(show lipschitz_with 1 real.to_nnreal, from lipschitz_with_pos) f | |
@[simp] lemma nnreal_part_coe_fun_eq (f : α →ᵇ ℝ) : ⇑(f.nnreal_part) = real.to_nnreal ∘ ⇑f := rfl | |
/-- The absolute value of a bounded continuous `ℝ`-valued function as a bounded | |
continuous `ℝ≥0`-valued function. -/ | |
def nnnorm (f : α →ᵇ ℝ) : α →ᵇ ℝ≥0 := | |
bounded_continuous_function.comp _ | |
(show lipschitz_with 1 (λ (x : ℝ), ∥x∥₊), from lipschitz_with_one_norm) f | |
@[simp] lemma nnnorm_coe_fun_eq (f : α →ᵇ ℝ) : ⇑(f.nnnorm) = has_nnnorm.nnnorm ∘ ⇑f := rfl | |
/-- Decompose a bounded continuous function to its positive and negative parts. -/ | |
lemma self_eq_nnreal_part_sub_nnreal_part_neg (f : α →ᵇ ℝ) : | |
⇑f = coe ∘ f.nnreal_part - coe ∘ (-f).nnreal_part := | |
by { funext x, dsimp, simp only [max_zero_sub_max_neg_zero_eq_self], } | |
/-- Express the absolute value of a bounded continuous function in terms of its | |
positive and negative parts. -/ | |
lemma abs_self_eq_nnreal_part_add_nnreal_part_neg (f : α →ᵇ ℝ) : | |
abs ∘ ⇑f = coe ∘ f.nnreal_part + coe ∘ (-f).nnreal_part := | |
by { funext x, dsimp, simp only [max_zero_add_max_neg_zero_eq_abs_self], } | |
end nonnegative_part | |
end bounded_continuous_function | |