Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Scott Morrison. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Scott Morrison | |
-/ | |
import topology.algebra.polynomial | |
import topology.continuous_function.algebra | |
import topology.continuous_function.compact | |
import topology.unit_interval | |
/-! | |
# Constructions relating polynomial functions and continuous functions. | |
## Main definitions | |
* `polynomial.to_continuous_map_on p X`: for `X : set R`, interprets a polynomial `p` | |
as a bundled continuous function in `C(X, R)`. | |
* `polynomial.to_continuous_map_on_alg_hom`: the same, as an `R`-algebra homomorphism. | |
* `polynomial_functions (X : set R) : subalgebra R C(X, R)`: polynomial functions as a subalgebra. | |
* `polynomial_functions_separates_points (X : set R) : (polynomial_functions X).separates_points`: | |
the polynomial functions separate points. | |
-/ | |
variables {R : Type*} | |
open_locale polynomial | |
namespace polynomial | |
section | |
variables [semiring R] [topological_space R] [topological_semiring R] | |
/-- | |
Every polynomial with coefficients in a topological semiring gives a (bundled) continuous function. | |
-/ | |
@[simps] | |
def to_continuous_map (p : R[X]) : C(R, R) := | |
⟨λ x : R, p.eval x, by continuity⟩ | |
/-- | |
A polynomial as a continuous function, | |
with domain restricted to some subset of the semiring of coefficients. | |
(This is particularly useful when restricting to compact sets, e.g. `[0,1]`.) | |
-/ | |
@[simps] | |
def to_continuous_map_on (p : R[X]) (X : set R) : C(X, R) := | |
⟨λ x : X, p.to_continuous_map x, by continuity⟩ | |
-- TODO some lemmas about when `to_continuous_map_on` is injective? | |
end | |
section | |
variables {α : Type*} [topological_space α] | |
[comm_semiring R] [topological_space R] [topological_semiring R] | |
@[simp] lemma aeval_continuous_map_apply (g : R[X]) (f : C(α, R)) (x : α) : | |
((polynomial.aeval f) g) x = g.eval (f x) := | |
begin | |
apply polynomial.induction_on' g, | |
{ intros p q hp hq, simp [hp, hq], }, | |
{ intros n a, simp [pi.pow_apply], }, | |
end | |
end | |
section | |
noncomputable theory | |
variables [comm_semiring R] [topological_space R] [topological_semiring R] | |
/-- | |
The algebra map from `polynomial R` to continuous functions `C(R, R)`. | |
-/ | |
@[simps] | |
def to_continuous_map_alg_hom : R[X] →ₐ[R] C(R, R) := | |
{ to_fun := λ p, p.to_continuous_map, | |
map_zero' := by { ext, simp, }, | |
map_add' := by { intros, ext, simp, }, | |
map_one' := by { ext, simp, }, | |
map_mul' := by { intros, ext, simp, }, | |
commutes' := by { intros, ext, simp [algebra.algebra_map_eq_smul_one], }, } | |
/-- | |
The algebra map from `polynomial R` to continuous functions `C(X, R)`, for any subset `X` of `R`. | |
-/ | |
@[simps] | |
def to_continuous_map_on_alg_hom (X : set R) : R[X] →ₐ[R] C(X, R) := | |
{ to_fun := λ p, p.to_continuous_map_on X, | |
map_zero' := by { ext, simp, }, | |
map_add' := by { intros, ext, simp, }, | |
map_one' := by { ext, simp, }, | |
map_mul' := by { intros, ext, simp, }, | |
commutes' := by { intros, ext, simp [algebra.algebra_map_eq_smul_one], }, } | |
end | |
end polynomial | |
section | |
variables [comm_semiring R] [topological_space R] [topological_semiring R] | |
/-- | |
The subalgebra of polynomial functions in `C(X, R)`, for `X` a subset of some topological semiring | |
`R`. | |
-/ | |
def polynomial_functions (X : set R) : subalgebra R C(X, R) := | |
(⊤ : subalgebra R R[X]).map (polynomial.to_continuous_map_on_alg_hom X) | |
@[simp] | |
lemma polynomial_functions_coe (X : set R) : | |
(polynomial_functions X : set C(X, R)) = set.range (polynomial.to_continuous_map_on_alg_hom X) := | |
by { ext, simp [polynomial_functions], } | |
-- TODO: | |
-- if `f : R → R` is an affine equivalence, then pulling back along `f` | |
-- induces a normed algebra isomorphism between `polynomial_functions X` and | |
-- `polynomial_functions (f ⁻¹' X)`, intertwining the pullback along `f` of `C(R, R)` to itself. | |
lemma polynomial_functions_separates_points (X : set R) : | |
(polynomial_functions X).separates_points := | |
λ x y h, | |
begin | |
-- We use `polynomial.X`, then clean up. | |
refine ⟨_, ⟨⟨_, ⟨⟨polynomial.X, ⟨algebra.mem_top, rfl⟩⟩, rfl⟩⟩, _⟩⟩, | |
dsimp, simp only [polynomial.eval_X], | |
exact (λ h', h (subtype.ext h')), | |
end | |
open_locale unit_interval | |
open continuous_map | |
/-- The preimage of polynomials on `[0,1]` under the pullback map by `x ↦ (b-a) * x + a` | |
is the polynomials on `[a,b]`. -/ | |
lemma polynomial_functions.comap_comp_right_alg_hom_Icc_homeo_I (a b : ℝ) (h : a < b) : | |
(polynomial_functions I).comap | |
(comp_right_alg_hom ℝ (Icc_homeo_I a b h).symm.to_continuous_map) = | |
polynomial_functions (set.Icc a b) := | |
begin | |
ext f, | |
fsplit, | |
{ rintro ⟨p, ⟨-,w⟩⟩, | |
rw fun_like.ext_iff at w, | |
dsimp at w, | |
let q := p.comp ((b - a)⁻¹ • polynomial.X + polynomial.C (-a * (b-a)⁻¹)), | |
refine ⟨q, ⟨_, _⟩⟩, | |
{ simp, }, | |
{ ext x, | |
simp only [neg_mul, | |
ring_hom.map_neg, ring_hom.map_mul, alg_hom.coe_to_ring_hom, | |
polynomial.eval_X, polynomial.eval_neg, polynomial.eval_C, polynomial.eval_smul, | |
smul_eq_mul, polynomial.eval_mul, polynomial.eval_add, polynomial.coe_aeval_eq_eval, | |
polynomial.eval_comp, polynomial.to_continuous_map_on_alg_hom_apply, | |
polynomial.to_continuous_map_on_apply, polynomial.to_continuous_map_apply], | |
convert w ⟨_, _⟩; clear w, | |
{ -- why does `comm_ring.add` appear here!? | |
change x = (Icc_homeo_I a b h).symm ⟨_ + _, _⟩, | |
ext, | |
simp only [Icc_homeo_I_symm_apply_coe, subtype.coe_mk], | |
replace h : b - a ≠ 0 := sub_ne_zero_of_ne h.ne.symm, | |
simp only [mul_add], | |
field_simp, ring, }, | |
{ change _ + _ ∈ I, | |
rw [mul_comm (b-a)⁻¹, ←neg_mul, ←add_mul, ←sub_eq_add_neg], | |
have w₁ : 0 < (b-a)⁻¹ := inv_pos.mpr (sub_pos.mpr h), | |
have w₂ : 0 ≤ (x : ℝ) - a := sub_nonneg.mpr x.2.1, | |
have w₃ : (x : ℝ) - a ≤ b - a := sub_le_sub_right x.2.2 a, | |
fsplit, | |
{ exact mul_nonneg w₂ (le_of_lt w₁), }, | |
{ rw [←div_eq_mul_inv, div_le_one (sub_pos.mpr h)], | |
exact w₃, }, }, }, }, | |
{ rintro ⟨p, ⟨-,rfl⟩⟩, | |
let q := p.comp ((b - a) • polynomial.X + polynomial.C a), | |
refine ⟨q, ⟨_, _⟩⟩, | |
{ simp, }, | |
{ ext x, simp [mul_comm], }, }, | |
end | |
end | |