Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /topology /discrete_quotient.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
14.1 kB
/-
Copyright (c) 2021 Adam Topaz. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Calle Sönne, Adam Topaz
-/
import topology.separation
import topology.subset_properties
import topology.locally_constant.basic
/-!
# Discrete quotients of a topological space.
This file defines the type of discrete quotients of a topological space,
denoted `discrete_quotient X`. To avoid quantifying over types, we model such
quotients as setoids whose equivalence classes are clopen.
## Definitions
1. `discrete_quotient X` is the type of discrete quotients of `X`.
It is endowed with a coercion to `Type`, which is defined as the
quotient associated to the setoid in question, and each such quotient
is endowed with the discrete topology.
2. Given `S : discrete_quotient X`, the projection `X → S` is denoted
`S.proj`.
3. When `X` is compact and `S : discrete_quotient X`, the space `S` is
endowed with a `fintype` instance.
## Order structure
The type `discrete_quotient X` is endowed with an instance of a `semilattice_inf` with `order_top`.
The partial ordering `A ≤ B` mathematically means that `B.proj` factors through `A.proj`.
The top element `⊤` is the trivial quotient, meaning that every element of `X` is collapsed
to a point. Given `h : A ≤ B`, the map `A → B` is `discrete_quotient.of_le h`.
Whenever `X` is discrete, the type `discrete_quotient X` is also endowed with an instance of a
`semilattice_inf` with `order_bot`, where the bot element `⊥` is `X` itself.
Given `f : X → Y` and `h : continuous f`, we define a predicate `le_comap h A B` for
`A : discrete_quotient X` and `B : discrete_quotient Y`, asserting that `f` descends to `A → B`.
If `cond : le_comap h A B`, the function `A → B` is obtained by `discrete_quotient.map cond`.
## Theorems
The two main results proved in this file are:
1. `discrete_quotient.eq_of_proj_eq` which states that when `X` is compact, t2 and totally
disconnected, any two elements of `X` agree if their projections in `Q` agree for all
`Q : discrete_quotient X`.
2. `discrete_quotient.exists_of_compat` which states that when `X` is compact, then any
system of elements of `Q` as `Q : discrete_quotient X` varies, which is compatible with
respect to `discrete_quotient.of_le`, must arise from some element of `X`.
## Remarks
The constructions in this file will be used to show that any profinite space is a limit
of finite discrete spaces.
-/
variables (X : Type*) [topological_space X]
/-- The type of discrete quotients of a topological space. -/
@[ext]
structure discrete_quotient :=
(rel : X → X → Prop)
(equiv : equivalence rel)
(clopen : ∀ x, is_clopen (set_of (rel x)))
namespace discrete_quotient
variables {X} (S : discrete_quotient X)
/-- Construct a discrete quotient from a clopen set. -/
def of_clopen {A : set X} (h : is_clopen A) : discrete_quotient X :=
{ rel := λ x y, x ∈ A ∧ y ∈ A ∨ x ∉ A ∧ y ∉ A,
equiv := ⟨by tauto!, by tauto!, by tauto!⟩,
clopen := begin
intros x,
by_cases hx : x ∈ A,
{ apply is_clopen.union,
{ convert h,
ext,
exact ⟨λ i, i.2, λ i, ⟨hx,i⟩⟩ },
{ convert is_clopen_empty,
tidy } },
{ apply is_clopen.union,
{ convert is_clopen_empty,
tidy },
{ convert is_clopen.compl h,
ext,
exact ⟨λ i, i.2, λ i, ⟨hx, i⟩⟩ } },
end }
lemma refl : ∀ x : X, S.rel x x := S.equiv.1
lemma symm : ∀ x y : X, S.rel x y → S.rel y x := S.equiv.2.1
lemma trans : ∀ x y z : X, S.rel x y → S.rel y z → S.rel x z := S.equiv.2.2
/-- The setoid whose quotient yields the discrete quotient. -/
def setoid : setoid X := ⟨S.rel, S.equiv⟩
instance : has_coe_to_sort (discrete_quotient X) Type* :=
⟨λ S, quotient S.setoid⟩
instance : topological_space S := ⊥
/-- The projection from `X` to the given discrete quotient. -/
def proj : X → S := quotient.mk'
lemma proj_surjective : function.surjective S.proj := quotient.surjective_quotient_mk'
lemma fiber_eq (x : X) : S.proj ⁻¹' {S.proj x} = set_of (S.rel x) :=
begin
ext1 y,
simp only [set.mem_preimage, set.mem_singleton_iff, quotient.eq',
discrete_quotient.proj.equations._eqn_1, set.mem_set_of_eq],
exact ⟨λ h, S.symm _ _ h, λ h, S.symm _ _ h⟩,
end
lemma proj_is_locally_constant : is_locally_constant S.proj :=
begin
rw (is_locally_constant.tfae S.proj).out 0 3,
intros x,
rcases S.proj_surjective x with ⟨x,rfl⟩,
simp [fiber_eq, (S.clopen x).1],
end
lemma proj_continuous : continuous S.proj :=
is_locally_constant.continuous $ proj_is_locally_constant _
lemma fiber_closed (A : set S) : is_closed (S.proj ⁻¹' A) :=
is_closed.preimage S.proj_continuous ⟨trivial⟩
lemma fiber_open (A : set S) : is_open (S.proj ⁻¹' A) :=
is_open.preimage S.proj_continuous trivial
lemma fiber_clopen (A : set S) : is_clopen (S.proj ⁻¹' A) := ⟨fiber_open _ _, fiber_closed _ _⟩
instance : partial_order (discrete_quotient X) :=
{ le := λ A B, ∀ x y : X, A.rel x y → B.rel x y,
le_refl := λ a, by tauto,
le_trans := λ a b c h1 h2, by tauto,
le_antisymm := λ a b h1 h2, by { ext, tauto } }
instance : order_top (discrete_quotient X) :=
{ top := ⟨λ a b, true, ⟨by tauto, by tauto, by tauto⟩, λ _, is_clopen_univ⟩,
le_top := λ a, by tauto }
instance : semilattice_inf (discrete_quotient X) :=
{ inf := λ A B,
{ rel := λ x y, A.rel x y ∧ B.rel x y,
equiv := ⟨λ a, ⟨A.refl _,B.refl _⟩, λ a b h, ⟨A.symm _ _ h.1, B.symm _ _ h.2⟩,
λ a b c h1 h2, ⟨A.trans _ _ _ h1.1 h2.1, B.trans _ _ _ h1.2 h2.2⟩⟩,
clopen := λ x, is_clopen.inter (A.clopen _) (B.clopen _) },
inf_le_left := λ a b, by tauto,
inf_le_right := λ a b, by tauto,
le_inf := λ a b c h1 h2, by tauto,
..discrete_quotient.partial_order }
instance : inhabited (discrete_quotient X) := ⟨⊤⟩
section comap
variables {Y : Type*} [topological_space Y] {f : Y → X} (cont : continuous f)
/-- Comap a discrete quotient along a continuous map. -/
def comap : discrete_quotient Y :=
{ rel := λ a b, S.rel (f a) (f b),
equiv := ⟨λ a, S.refl _, λ a b h, S.symm _ _ h, λ a b c h1 h2, S.trans _ _ _ h1 h2⟩,
clopen := λ y, ⟨is_open.preimage cont (S.clopen _).1, is_closed.preimage cont (S.clopen _).2⟩ }
@[simp]
lemma comap_id : S.comap (continuous_id : continuous (id : X → X)) = S := by { ext, refl }
@[simp]
lemma comap_comp {Z : Type*} [topological_space Z] {g : Z → Y} (cont' : continuous g) :
S.comap (continuous.comp cont cont') = (S.comap cont).comap cont' := by { ext, refl }
lemma comap_mono {A B : discrete_quotient X} (h : A ≤ B) : A.comap cont ≤ B.comap cont :=
by tauto
end comap
section of_le
/-- The map induced by a refinement of a discrete quotient. -/
def of_le {A B : discrete_quotient X} (h : A ≤ B) : A → B :=
λ a, quotient.lift_on' a (λ x, B.proj x) (λ a b i, quotient.sound' (h _ _ i))
@[simp]
lemma of_le_refl {A : discrete_quotient X} : of_le (le_refl A) = id := by { ext ⟨⟩, refl }
lemma of_le_refl_apply {A : discrete_quotient X} (a : A) : of_le (le_refl A) a = a := by simp
@[simp]
lemma of_le_comp {A B C : discrete_quotient X} (h1 : A ≤ B) (h2 : B ≤ C) :
of_le (le_trans h1 h2) = of_le h2 ∘ of_le h1 := by { ext ⟨⟩, refl }
lemma of_le_comp_apply {A B C : discrete_quotient X} (h1 : A ≤ B) (h2 : B ≤ C) (a : A) :
of_le (le_trans h1 h2) a = of_le h2 (of_le h1 a) := by simp
lemma of_le_continuous {A B : discrete_quotient X} (h : A ≤ B) :
continuous (of_le h) := continuous_of_discrete_topology
@[simp]
lemma of_le_proj {A B : discrete_quotient X} (h : A ≤ B) :
of_le h ∘ A.proj = B.proj := by { ext, exact quotient.sound' (B.refl _) }
@[simp]
lemma of_le_proj_apply {A B : discrete_quotient X} (h : A ≤ B) (x : X) :
of_le h (A.proj x) = B.proj x := by { change (of_le h ∘ A.proj) x = _, simp }
end of_le
/--
When X is discrete, there is a `order_bot` instance on `discrete_quotient X`
-/
instance [discrete_topology X] : order_bot (discrete_quotient X) :=
{ bot :=
{ rel := (=),
equiv := eq_equivalence,
clopen := λ x, is_clopen_discrete _ },
bot_le := by { rintro S a b (h : a = b), rw h, exact S.refl _ } }
lemma proj_bot_injective [discrete_topology X] :
function.injective (⊥ : discrete_quotient X).proj := λ a b h, quotient.exact' h
lemma proj_bot_bijective [discrete_topology X] :
function.bijective (⊥ : discrete_quotient X).proj := ⟨proj_bot_injective, proj_surjective _⟩
section map
variables {Y : Type*} [topological_space Y] {f : Y → X}
(cont : continuous f) (A : discrete_quotient Y) (B : discrete_quotient X)
/--
Given `cont : continuous f`, `le_comap cont A B` is defined as `A ≤ B.comap f`.
Mathematically this means that `f` descends to a morphism `A → B`.
-/
def le_comap : Prop := A ≤ B.comap cont
variables {cont A B}
lemma le_comap_id (A : discrete_quotient X) : le_comap continuous_id A A := by tauto
lemma le_comap_comp {Z : Type*} [topological_space Z] {g : Z → Y} {cont' : continuous g}
{C : discrete_quotient Z} : le_comap cont' C A → le_comap cont A B →
le_comap (continuous.comp cont cont') C B := by tauto
lemma le_comap_trans {C : discrete_quotient X} :
le_comap cont A B → B ≤ C → le_comap cont A C := λ h1 h2, le_trans h1 $ comap_mono _ h2
/-- Map a discrete quotient along a continuous map. -/
def map (cond : le_comap cont A B) : A → B := quotient.map' f cond
lemma map_continuous (cond : le_comap cont A B) : continuous (map cond) :=
continuous_of_discrete_topology
@[simp]
lemma map_proj (cond : le_comap cont A B) : map cond ∘ A.proj = B.proj ∘ f := rfl
@[simp]
lemma map_proj_apply (cond : le_comap cont A B) (y : Y) : map cond (A.proj y) = B.proj (f y) := rfl
@[simp]
lemma map_id : map (le_comap_id A) = id := by { ext ⟨⟩, refl }
@[simp]
lemma map_comp {Z : Type*} [topological_space Z] {g : Z → Y} {cont' : continuous g}
{C : discrete_quotient Z} (h1 : le_comap cont' C A) (h2 : le_comap cont A B) :
map (le_comap_comp h1 h2) = map h2 ∘ map h1 := by { ext ⟨⟩, refl }
@[simp]
lemma of_le_map {C : discrete_quotient X} (cond : le_comap cont A B) (h : B ≤ C) :
map (le_comap_trans cond h) = of_le h ∘ map cond := by { ext ⟨⟩, refl }
@[simp]
lemma of_le_map_apply {C : discrete_quotient X} (cond : le_comap cont A B) (h : B ≤ C) (a : A) :
map (le_comap_trans cond h) a = of_le h (map cond a) := by { rcases a, refl }
@[simp]
lemma map_of_le {C : discrete_quotient Y} (cond : le_comap cont A B) (h : C ≤ A) :
map (le_trans h cond) = map cond ∘ of_le h := by { ext ⟨⟩, refl }
@[simp]
lemma map_of_le_apply {C : discrete_quotient Y} (cond : le_comap cont A B) (h : C ≤ A) (c : C) :
map (le_trans h cond) c = map cond (of_le h c) := by { rcases c, refl }
end map
lemma eq_of_proj_eq [t2_space X] [compact_space X] [disc : totally_disconnected_space X]
{x y : X} : (∀ Q : discrete_quotient X, Q.proj x = Q.proj y) → x = y :=
begin
intro h,
change x ∈ ({y} : set X),
rw totally_disconnected_space_iff_connected_component_singleton at disc,
rw [← disc y, connected_component_eq_Inter_clopen],
rintros U ⟨⟨U, hU1, hU2⟩, rfl⟩,
replace h : _ ∨ _ := quotient.exact' (h (of_clopen hU1)),
tauto,
end
lemma fiber_le_of_le {A B : discrete_quotient X} (h : A ≤ B) (a : A) :
A.proj ⁻¹' {a} ≤ B.proj ⁻¹' {of_le h a} :=
begin
induction a,
erw [fiber_eq, fiber_eq],
tidy,
end
lemma exists_of_compat [compact_space X] (Qs : Π (Q : discrete_quotient X), Q)
(compat : ∀ (A B : discrete_quotient X) (h : A ≤ B), of_le h (Qs _) = Qs _) :
∃ x : X, ∀ Q : discrete_quotient X, Q.proj x = Qs _ :=
begin
obtain ⟨x,hx⟩ := is_compact.nonempty_Inter_of_directed_nonempty_compact_closed
(λ (Q : discrete_quotient X), Q.proj ⁻¹' {Qs _}) (λ A B, _) (λ i, _)
(λ i, (fiber_closed _ _).is_compact) (λ i, fiber_closed _ _),
{ refine ⟨x, λ Q, _⟩,
exact hx _ ⟨Q,rfl⟩ },
{ refine ⟨A ⊓ B, λ a ha, _, λ a ha, _⟩,
{ dsimp only,
erw ← compat (A ⊓ B) A inf_le_left,
exact fiber_le_of_le _ _ ha },
{ dsimp only,
erw ← compat (A ⊓ B) B inf_le_right,
exact fiber_le_of_le _ _ ha } },
{ obtain ⟨x,hx⟩ := i.proj_surjective (Qs i),
refine ⟨x,_⟩,
dsimp only,
rw [← hx, fiber_eq],
apply i.refl },
end
noncomputable instance [compact_space X] : fintype S :=
begin
have cond : is_compact (⊤ : set X) := compact_univ,
rw is_compact_iff_finite_subcover at cond,
have h := @cond S (λ s, S.proj ⁻¹' {s}) (λ s, fiber_open _ _)
(λ x hx, ⟨S.proj ⁻¹' {S.proj x}, ⟨S.proj x, rfl⟩, rfl⟩),
let T := classical.some h,
have hT := classical.some_spec h,
refine ⟨T,λ s, _⟩,
rcases S.proj_surjective s with ⟨x,rfl⟩,
rcases hT (by tauto : x ∈ ⊤) with ⟨j, ⟨j,rfl⟩, h1, ⟨hj, rfl⟩, h2⟩,
dsimp only at h2,
suffices : S.proj x = j, by rwa this,
rcases j with ⟨j⟩,
apply quotient.sound',
erw fiber_eq at h2,
exact S.symm _ _ h2
end
end discrete_quotient
namespace locally_constant
variables {X} {α : Type*} (f : locally_constant X α)
/-- Any locally constant function induces a discrete quotient. -/
def discrete_quotient : discrete_quotient X :=
{ rel := λ a b, f b = f a,
equiv := ⟨by tauto, by tauto, λ a b c h1 h2, by rw [h2, h1]⟩,
clopen := λ x, f.is_locally_constant.is_clopen_fiber _ }
/-- The function from the discrete quotient associated to a locally constant function. -/
def lift : f.discrete_quotient → α := λ a, quotient.lift_on' a f (λ a b h, h.symm)
lemma lift_is_locally_constant : _root_.is_locally_constant f.lift := λ A, trivial
/-- A locally constant version of `locally_constant.lift`. -/
def locally_constant_lift : locally_constant f.discrete_quotient α :=
⟨f.lift, f.lift_is_locally_constant⟩
@[simp]
lemma lift_eq_coe : f.lift = f.locally_constant_lift := rfl
@[simp]
lemma factors : f.locally_constant_lift ∘ f.discrete_quotient.proj = f := by { ext, refl }
end locally_constant