Zhangir Azerbayev
squashed?
4365a98
raw
history blame
9.49 kB
/-
Copyright (c) 2021 Johan Commelin. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johan Commelin
-/
import algebra.algebra.basic
import topology.locally_constant.basic
/-!
# Algebraic structure on locally constant functions
This file puts algebraic structure (`add_group`, etc)
on the type of locally constant functions.
-/
namespace locally_constant
variables {X Y : Type*} [topological_space X]
@[to_additive] instance [has_one Y] : has_one (locally_constant X Y) :=
{ one := const X 1 }
@[simp, to_additive] lemma coe_one [has_one Y] : ⇑(1 : locally_constant X Y) = (1 : X → Y) := rfl
@[to_additive] lemma one_apply [has_one Y] (x : X) : (1 : locally_constant X Y) x = 1 := rfl
@[to_additive] instance [has_inv Y] : has_inv (locally_constant X Y) :=
{ inv := λ f, ⟨f⁻¹ , f.is_locally_constant.inv⟩ }
@[simp, to_additive] lemma coe_inv [has_inv Y] (f : locally_constant X Y) : ⇑(f⁻¹) = f⁻¹ := rfl
@[to_additive] lemma inv_apply [has_inv Y] (f : locally_constant X Y) (x : X) :
f⁻¹ x = (f x)⁻¹ := rfl
@[to_additive] instance [has_mul Y] : has_mul (locally_constant X Y) :=
{ mul := λ f g, ⟨f * g, f.is_locally_constant.mul g.is_locally_constant⟩ }
@[simp, to_additive] lemma coe_mul [has_mul Y] (f g : locally_constant X Y) :
⇑(f * g) = f * g :=
rfl
@[to_additive] lemma mul_apply [has_mul Y] (f g : locally_constant X Y) (x : X) :
(f * g) x = f x * g x := rfl
@[to_additive] instance [mul_one_class Y] : mul_one_class (locally_constant X Y) :=
{ one_mul := by { intros, ext, simp only [mul_apply, one_apply, one_mul] },
mul_one := by { intros, ext, simp only [mul_apply, one_apply, mul_one] },
.. locally_constant.has_one,
.. locally_constant.has_mul }
/-- `coe_fn` is a `monoid_hom`. -/
@[to_additive "`coe_fn` is an `add_monoid_hom`.", simps]
def coe_fn_monoid_hom [mul_one_class Y] : locally_constant X Y →* (X → Y) :=
{ to_fun := coe_fn,
map_one' := rfl,
map_mul' := λ _ _, rfl }
/-- The constant-function embedding, as a multiplicative monoid hom. -/
@[to_additive "The constant-function embedding, as an additive monoid hom.", simps]
def const_monoid_hom [mul_one_class Y] : Y →* locally_constant X Y :=
{ to_fun := const X,
map_one' := rfl,
map_mul' := λ _ _, rfl, }
instance [mul_zero_class Y] : mul_zero_class (locally_constant X Y) :=
{ zero_mul := by { intros, ext, simp only [mul_apply, zero_apply, zero_mul] },
mul_zero := by { intros, ext, simp only [mul_apply, zero_apply, mul_zero] },
.. locally_constant.has_zero,
.. locally_constant.has_mul }
instance [mul_zero_one_class Y] : mul_zero_one_class (locally_constant X Y) :=
{ .. locally_constant.mul_zero_class, .. locally_constant.mul_one_class }
section char_fn
variables (Y) [mul_zero_one_class Y] {U V : set X}
/-- Characteristic functions are locally constant functions taking `x : X` to `1` if `x ∈ U`,
where `U` is a clopen set, and `0` otherwise. -/
noncomputable def char_fn (hU : is_clopen U) : locally_constant X Y := indicator 1 hU
lemma coe_char_fn (hU : is_clopen U) : (char_fn Y hU : X → Y) = set.indicator U 1 :=
rfl
lemma char_fn_eq_one [nontrivial Y] (x : X) (hU : is_clopen U) :
char_fn Y hU x = (1 : Y) ↔ x ∈ U := set.indicator_eq_one_iff_mem _
lemma char_fn_eq_zero [nontrivial Y] (x : X) (hU : is_clopen U) :
char_fn Y hU x = (0 : Y) ↔ x ∉ U := set.indicator_eq_zero_iff_not_mem _
lemma char_fn_inj [nontrivial Y] (hU : is_clopen U) (hV : is_clopen V)
(h : char_fn Y hU = char_fn Y hV) : U = V :=
set.indicator_one_inj Y $ coe_inj.mpr h
end char_fn
@[to_additive] instance [has_div Y] : has_div (locally_constant X Y) :=
{ div := λ f g, ⟨f / g, f.is_locally_constant.div g.is_locally_constant⟩ }
@[to_additive] lemma coe_div [has_div Y] (f g : locally_constant X Y) :
⇑(f / g) = f / g := rfl
@[to_additive] lemma div_apply [has_div Y] (f g : locally_constant X Y) (x : X) :
(f / g) x = f x / g x := rfl
@[to_additive] instance [semigroup Y] : semigroup (locally_constant X Y) :=
{ mul_assoc := by { intros, ext, simp only [mul_apply, mul_assoc] },
.. locally_constant.has_mul }
instance [semigroup_with_zero Y] : semigroup_with_zero (locally_constant X Y) :=
{ .. locally_constant.mul_zero_class,
.. locally_constant.semigroup }
@[to_additive] instance [comm_semigroup Y] : comm_semigroup (locally_constant X Y) :=
{ mul_comm := by { intros, ext, simp only [mul_apply, mul_comm] },
.. locally_constant.semigroup }
@[to_additive] instance [monoid Y] : monoid (locally_constant X Y) :=
{ mul := (*),
.. locally_constant.semigroup, .. locally_constant.mul_one_class }
instance [add_monoid_with_one Y] : add_monoid_with_one (locally_constant X Y) :=
{ nat_cast := λ n, const X n,
nat_cast_zero := by ext; simp [nat.cast],
nat_cast_succ := λ _, by ext; simp [nat.cast],
.. locally_constant.add_monoid, .. locally_constant.has_one }
@[to_additive] instance [comm_monoid Y] : comm_monoid (locally_constant X Y) :=
{ .. locally_constant.comm_semigroup, .. locally_constant.monoid }
@[to_additive] instance [group Y] : group (locally_constant X Y) :=
{ mul_left_inv := by { intros, ext, simp only [mul_apply, inv_apply, one_apply, mul_left_inv] },
div_eq_mul_inv := by { intros, ext, simp only [mul_apply, inv_apply, div_apply, div_eq_mul_inv] },
.. locally_constant.monoid, .. locally_constant.has_inv, .. locally_constant.has_div }
@[to_additive] instance [comm_group Y] : comm_group (locally_constant X Y) :=
{ .. locally_constant.comm_monoid, .. locally_constant.group }
instance [distrib Y] : distrib (locally_constant X Y) :=
{ left_distrib := by { intros, ext, simp only [mul_apply, add_apply, mul_add] },
right_distrib := by { intros, ext, simp only [mul_apply, add_apply, add_mul] },
.. locally_constant.has_add, .. locally_constant.has_mul }
instance [non_unital_non_assoc_semiring Y] : non_unital_non_assoc_semiring (locally_constant X Y) :=
{ .. locally_constant.add_comm_monoid, .. locally_constant.has_mul,
.. locally_constant.distrib, .. locally_constant.mul_zero_class }
instance [non_unital_semiring Y] : non_unital_semiring (locally_constant X Y) :=
{ .. locally_constant.semigroup, .. locally_constant.non_unital_non_assoc_semiring }
instance [non_assoc_semiring Y] : non_assoc_semiring (locally_constant X Y) :=
{ .. locally_constant.mul_one_class, .. locally_constant.add_monoid_with_one,
.. locally_constant.non_unital_non_assoc_semiring }
/-- The constant-function embedding, as a ring hom. -/
@[simps] def const_ring_hom [non_assoc_semiring Y] : Y →+* locally_constant X Y :=
{ to_fun := const X,
.. const_monoid_hom,
.. const_add_monoid_hom, }
instance [semiring Y] : semiring (locally_constant X Y) :=
{ .. locally_constant.non_assoc_semiring, .. locally_constant.monoid }
instance [non_unital_comm_semiring Y] : non_unital_comm_semiring (locally_constant X Y) :=
{ .. locally_constant.non_unital_semiring, .. locally_constant.comm_semigroup }
instance [comm_semiring Y] : comm_semiring (locally_constant X Y) :=
{ .. locally_constant.semiring, .. locally_constant.comm_monoid }
instance [non_unital_non_assoc_ring Y] : non_unital_non_assoc_ring (locally_constant X Y) :=
{ .. locally_constant.add_comm_group, .. locally_constant.has_mul,
.. locally_constant.distrib, .. locally_constant.mul_zero_class }
instance [non_unital_ring Y] : non_unital_ring (locally_constant X Y) :=
{ .. locally_constant.semigroup, .. locally_constant.non_unital_non_assoc_ring }
instance [non_assoc_ring Y] : non_assoc_ring (locally_constant X Y) :=
{ .. locally_constant.mul_one_class, .. locally_constant.non_unital_non_assoc_ring }
instance [ring Y] : ring (locally_constant X Y) :=
{ .. locally_constant.semiring, .. locally_constant.add_comm_group }
instance [non_unital_comm_ring Y] : non_unital_comm_ring (locally_constant X Y) :=
{ .. locally_constant.non_unital_comm_semiring, .. locally_constant.non_unital_ring }
instance [comm_ring Y] : comm_ring (locally_constant X Y) :=
{ .. locally_constant.comm_semiring, .. locally_constant.ring }
variables {R : Type*}
instance [has_smul R Y] : has_smul R (locally_constant X Y) :=
{ smul := λ r f,
{ to_fun := r • f,
is_locally_constant := ((is_locally_constant f).comp ((•) r) : _), } }
@[simp] lemma coe_smul [has_smul R Y] (r : R) (f : locally_constant X Y) : ⇑(r • f) = r • f := rfl
lemma smul_apply [has_smul R Y] (r : R) (f : locally_constant X Y) (x : X) :
(r • f) x = r • (f x) :=
rfl
instance [monoid R] [mul_action R Y] : mul_action R (locally_constant X Y) :=
function.injective.mul_action _ coe_injective (λ _ _, rfl)
instance [monoid R] [add_monoid Y] [distrib_mul_action R Y] :
distrib_mul_action R (locally_constant X Y) :=
function.injective.distrib_mul_action coe_fn_add_monoid_hom coe_injective (λ _ _, rfl)
instance [semiring R] [add_comm_monoid Y] [module R Y] : module R (locally_constant X Y) :=
function.injective.module R coe_fn_add_monoid_hom coe_injective (λ _ _, rfl)
section algebra
variables [comm_semiring R] [semiring Y] [algebra R Y]
instance : algebra R (locally_constant X Y) :=
{ to_ring_hom := const_ring_hom.comp $ algebra_map R Y,
commutes' := by { intros, ext, exact algebra.commutes' _ _, },
smul_def' := by { intros, ext, exact algebra.smul_def' _ _, }, }
@[simp] lemma coe_algebra_map (r : R) :
⇑(algebra_map R (locally_constant X Y) r) = algebra_map R (X → Y) r :=
rfl
end algebra
end locally_constant