Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2021 Yury Kudryashov. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Yury Kudryashov | |
-/ | |
import algebra.big_operators.finprod | |
import set_theory.ordinal.basic | |
import topology.continuous_function.algebra | |
import topology.paracompact | |
import topology.shrinking_lemma | |
import topology.urysohns_lemma | |
/-! | |
# Continuous partition of unity | |
In this file we define `partition_of_unity (ι X : Type*) [topological_space X] (s : set X := univ)` | |
to be a continuous partition of unity on `s` indexed by `ι`. More precisely, `f : partition_of_unity | |
ι X s` is a collection of continuous functions `f i : C(X, ℝ)`, `i : ι`, such that | |
* the supports of `f i` form a locally finite family of sets; | |
* each `f i` is nonnegative; | |
* `∑ᶠ i, f i x = 1` for all `x ∈ s`; | |
* `∑ᶠ i, f i x ≤ 1` for all `x : X`. | |
In the case `s = univ` the last assumption follows from the previous one but it is convenient to | |
have this assumption in the case `s ≠ univ`. | |
We also define a bump function covering, | |
`bump_covering (ι X : Type*) [topological_space X] (s : set X := univ)`, to be a collection of | |
functions `f i : C(X, ℝ)`, `i : ι`, such that | |
* the supports of `f i` form a locally finite family of sets; | |
* each `f i` is nonnegative; | |
* for each `x ∈ s` there exists `i : ι` such that `f i y = 1` in a neighborhood of `x`. | |
The term is motivated by the smooth case. | |
If `f` is a bump function covering indexed by a linearly ordered type, then | |
`g i x = f i x * ∏ᶠ j < i, (1 - f j x)` is a partition of unity, see | |
`bump_covering.to_partition_of_unity`. Note that only finitely many terms `1 - f j x` are not equal | |
to one, so this product is well-defined. | |
Note that `g i x = ∏ᶠ j ≤ i, (1 - f j x) - ∏ᶠ j < i, (1 - f j x)`, so most terms in the sum | |
`∑ᶠ i, g i x` cancel, and we get `∑ᶠ i, g i x = 1 - ∏ᶠ i, (1 - f i x)`, and the latter product | |
equals zero because one of `f i x` is equal to one. | |
We say that a partition of unity or a bump function covering `f` is *subordinate* to a family of | |
sets `U i`, `i : ι`, if the closure of the support of each `f i` is included in `U i`. We use | |
Urysohn's Lemma to prove that a locally finite open covering of a normal topological space admits a | |
subordinate bump function covering (hence, a subordinate partition of unity), see | |
`bump_covering.exists_is_subordinate_of_locally_finite`. If `X` is a paracompact space, then any | |
open covering admits a locally finite refinement, hence it admits a subordinate bump function | |
covering and a subordinate partition of unity, see `bump_covering.exists_is_subordinate`. | |
We also provide two slightly more general versions of these lemmas, | |
`bump_covering.exists_is_subordinate_of_locally_finite_of_prop` and | |
`bump_covering.exists_is_subordinate_of_prop`, to be used later in the construction of a smooth | |
partition of unity. | |
## Implementation notes | |
Most (if not all) books only define a partition of unity of the whole space. However, quite a few | |
proofs only deal with `f i` such that `tsupport (f i)` meets a specific closed subset, and | |
it is easier to formalize these proofs if we don't have other functions right away. | |
We use `well_ordering_rel j i` instead of `j < i` in the definition of | |
`bump_covering.to_partition_of_unity` to avoid a `[linear_order ι]` assumption. While | |
`well_ordering_rel j i` is a well order, not only a strict linear order, we never use this property. | |
## Tags | |
partition of unity, bump function, Urysohn's lemma, normal space, paracompact space | |
-/ | |
universes u v | |
open function set filter | |
open_locale big_operators topological_space classical | |
noncomputable theory | |
/-- A continuous partition of unity on a set `s : set X` is a collection of continuous functions | |
`f i` such that | |
* the supports of `f i` form a locally finite family of sets, i.e., for every point `x : X` there | |
exists a neighborhood `U ∋ x` such that all but finitely many functions `f i` are zero on `U`; | |
* the functions `f i` are nonnegative; | |
* the sum `∑ᶠ i, f i x` is equal to one for every `x ∈ s` and is less than or equal to one | |
otherwise. | |
If `X` is a normal paracompact space, then `partition_of_unity.exists_is_subordinate` guarantees | |
that for every open covering `U : set (set X)` of `s` there exists a partition of unity that is | |
subordinate to `U`. | |
-/ | |
structure partition_of_unity (ι X : Type*) [topological_space X] (s : set X := univ) := | |
(to_fun : ι → C(X, ℝ)) | |
(locally_finite' : locally_finite (λ i, support (to_fun i))) | |
(nonneg' : 0 ≤ to_fun) | |
(sum_eq_one' : ∀ x ∈ s, ∑ᶠ i, to_fun i x = 1) | |
(sum_le_one' : ∀ x, ∑ᶠ i, to_fun i x ≤ 1) | |
/-- A `bump_covering ι X s` is an indexed family of functions `f i`, `i : ι`, such that | |
* the supports of `f i` form a locally finite family of sets, i.e., for every point `x : X` there | |
exists a neighborhood `U ∋ x` such that all but finitely many functions `f i` are zero on `U`; | |
* for all `i`, `x` we have `0 ≤ f i x ≤ 1`; | |
* each point `x ∈ s` belongs to the interior of `{x | f i x = 1}` for some `i`. | |
One of the main use cases for a `bump_covering` is to define a `partition_of_unity`, see | |
`bump_covering.to_partition_of_unity`, but some proofs can directly use a `bump_covering` instead of | |
a `partition_of_unity`. | |
If `X` is a normal paracompact space, then `bump_covering.exists_is_subordinate` guarantees that for | |
every open covering `U : set (set X)` of `s` there exists a `bump_covering` of `s` that is | |
subordinate to `U`. | |
-/ | |
structure bump_covering (ι X : Type*) [topological_space X] (s : set X := univ) := | |
(to_fun : ι → C(X, ℝ)) | |
(locally_finite' : locally_finite (λ i, support (to_fun i))) | |
(nonneg' : 0 ≤ to_fun) | |
(le_one' : to_fun ≤ 1) | |
(eventually_eq_one' : ∀ x ∈ s, ∃ i, to_fun i =ᶠ[𝓝 x] 1) | |
variables {ι : Type u} {X : Type v} [topological_space X] | |
namespace partition_of_unity | |
variables {E : Type*} [add_comm_monoid E] [smul_with_zero ℝ E] [topological_space E] | |
[has_continuous_smul ℝ E] {s : set X} (f : partition_of_unity ι X s) | |
instance : has_coe_to_fun (partition_of_unity ι X s) (λ _, ι → C(X, ℝ)) := ⟨to_fun⟩ | |
protected lemma locally_finite : locally_finite (λ i, support (f i)) := f.locally_finite' | |
lemma locally_finite_tsupport : locally_finite (λ i, tsupport (f i)) := f.locally_finite.closure | |
lemma nonneg (i : ι) (x : X) : 0 ≤ f i x := f.nonneg' i x | |
lemma sum_eq_one {x : X} (hx : x ∈ s) : ∑ᶠ i, f i x = 1 := f.sum_eq_one' x hx | |
/-- If `f` is a partition of unity on `s`, then for every `x ∈ s` there exists an index `i` such | |
that `0 < f i x`. -/ | |
lemma exists_pos {x : X} (hx : x ∈ s) : ∃ i, 0 < f i x := | |
begin | |
have H := f.sum_eq_one hx, | |
contrapose! H, | |
simpa only [λ i, (H i).antisymm (f.nonneg i x), finsum_zero] using zero_ne_one | |
end | |
lemma sum_le_one (x : X) : ∑ᶠ i, f i x ≤ 1 := f.sum_le_one' x | |
lemma sum_nonneg (x : X) : 0 ≤ ∑ᶠ i, f i x := finsum_nonneg $ λ i, f.nonneg i x | |
lemma le_one (i : ι) (x : X) : f i x ≤ 1 := | |
(single_le_finsum i (f.locally_finite.point_finite x) (λ j, f.nonneg j x)).trans (f.sum_le_one x) | |
/-- If `f` is a partition of unity on `s : set X` and `g : X → E` is continuous at every point of | |
the topological support of some `f i`, then `λ x, f i x • g x` is continuous on the whole space. -/ | |
lemma continuous_smul {g : X → E} {i : ι} (hg : ∀ x ∈ tsupport (f i), continuous_at g x) : | |
continuous (λ x, f i x • g x) := | |
continuous_of_tsupport $ λ x hx, ((f i).continuous_at x).smul $ | |
hg x $ tsupport_smul_subset_left _ _ hx | |
/-- If `f` is a partition of unity on a set `s : set X` and `g : ι → X → E` is a family of functions | |
such that each `g i` is continuous at every point of the topological support of `f i`, then the sum | |
`λ x, ∑ᶠ i, f i x • g i x` is continuous on the whole space. -/ | |
lemma continuous_finsum_smul [has_continuous_add E] {g : ι → X → E} | |
(hg : ∀ i (x ∈ tsupport (f i)), continuous_at (g i) x) : | |
continuous (λ x, ∑ᶠ i, f i x • g i x) := | |
continuous_finsum (λ i, f.continuous_smul (hg i)) $ | |
f.locally_finite.subset $ λ i, support_smul_subset_left _ _ | |
/-- A partition of unity `f i` is subordinate to a family of sets `U i` indexed by the same type if | |
for each `i` the closure of the support of `f i` is a subset of `U i`. -/ | |
def is_subordinate (U : ι → set X) : Prop := | |
∀ i, tsupport (f i) ⊆ U i | |
variables {f} | |
lemma exists_finset_nhd_support_subset {U : ι → set X} | |
(hso : f.is_subordinate U) (ho : ∀ i, is_open (U i)) (x : X) : | |
∃ (is : finset ι) {n : set X} (hn₁ : n ∈ 𝓝 x) (hn₂ : n ⊆ ⋂ i ∈ is, U i), ∀ (z ∈ n), | |
support (λ i, f i z) ⊆ is := | |
f.locally_finite.exists_finset_nhd_support_subset hso ho x | |
/-- If `f` is a partition of unity that is subordinate to a family of open sets `U i` and | |
`g : ι → X → E` is a family of functions such that each `g i` is continuous on `U i`, then the sum | |
`λ x, ∑ᶠ i, f i x • g i x` is a continuous function. -/ | |
lemma is_subordinate.continuous_finsum_smul [has_continuous_add E] {U : ι → set X} | |
(ho : ∀ i, is_open (U i)) (hf : f.is_subordinate U) {g : ι → X → E} | |
(hg : ∀ i, continuous_on (g i) (U i)) : | |
continuous (λ x, ∑ᶠ i, f i x • g i x) := | |
f.continuous_finsum_smul $ λ i x hx, (hg i).continuous_at $ (ho i).mem_nhds $ hf i hx | |
end partition_of_unity | |
namespace bump_covering | |
variables {s : set X} (f : bump_covering ι X s) | |
instance : has_coe_to_fun (bump_covering ι X s) (λ _, ι → C(X, ℝ)) := ⟨to_fun⟩ | |
protected lemma locally_finite : locally_finite (λ i, support (f i)) := f.locally_finite' | |
lemma locally_finite_tsupport : locally_finite (λ i, tsupport (f i)) := f.locally_finite.closure | |
protected lemma point_finite (x : X) : {i | f i x ≠ 0}.finite := f.locally_finite.point_finite x | |
lemma nonneg (i : ι) (x : X) : 0 ≤ f i x := f.nonneg' i x | |
lemma le_one (i : ι) (x : X) : f i x ≤ 1 := f.le_one' i x | |
/-- A `bump_covering` that consists of a single function, uniformly equal to one, defined as an | |
example for `inhabited` instance. -/ | |
protected def single (i : ι) (s : set X) : bump_covering ι X s := | |
{ to_fun := pi.single i 1, | |
locally_finite' := λ x, | |
begin | |
refine ⟨univ, univ_mem, (finite_singleton i).subset _⟩, | |
rintro j ⟨x, hx, -⟩, | |
contrapose! hx, | |
rw [mem_singleton_iff] at hx, | |
simp [hx] | |
end, | |
nonneg' := le_update_iff.2 ⟨λ x, zero_le_one, λ _ _, le_rfl⟩, | |
le_one' := update_le_iff.2 ⟨le_rfl, λ _ _ _, zero_le_one⟩, | |
eventually_eq_one' := λ x _, ⟨i, by simp⟩ } | |
@[simp] lemma coe_single (i : ι) (s : set X) : ⇑(bump_covering.single i s) = pi.single i 1 := rfl | |
instance [inhabited ι] : inhabited (bump_covering ι X s) := | |
⟨bump_covering.single default s⟩ | |
/-- A collection of bump functions `f i` is subordinate to a family of sets `U i` indexed by the | |
same type if for each `i` the closure of the support of `f i` is a subset of `U i`. -/ | |
def is_subordinate (f : bump_covering ι X s) (U : ι → set X) : Prop := | |
∀ i, tsupport (f i) ⊆ U i | |
lemma is_subordinate.mono {f : bump_covering ι X s} {U V : ι → set X} (hU : f.is_subordinate U) | |
(hV : ∀ i, U i ⊆ V i) : | |
f.is_subordinate V := | |
λ i, subset.trans (hU i) (hV i) | |
/-- If `X` is a normal topological space and `U i`, `i : ι`, is a locally finite open covering of a | |
closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. If `X` is a | |
paracompact space, then the assumption `hf : locally_finite U` can be omitted, see | |
`bump_covering.exists_is_subordinate`. This version assumes that `p : (X → ℝ) → Prop` is a predicate | |
that satisfies Urysohn's lemma, and provides a `bump_covering` such that each function of the | |
covering satisfies `p`. -/ | |
lemma exists_is_subordinate_of_locally_finite_of_prop [normal_space X] (p : (X → ℝ) → Prop) | |
(h01 : ∀ s t, is_closed s → is_closed t → disjoint s t → | |
∃ f : C(X, ℝ), p f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1) | |
(hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U) | |
(hU : s ⊆ ⋃ i, U i) : | |
∃ f : bump_covering ι X s, (∀ i, p (f i)) ∧ f.is_subordinate U := | |
begin | |
rcases exists_subset_Union_closure_subset hs ho (λ x _, hf.point_finite x) hU | |
with ⟨V, hsV, hVo, hVU⟩, | |
have hVU' : ∀ i, V i ⊆ U i, from λ i, subset.trans subset_closure (hVU i), | |
rcases exists_subset_Union_closure_subset hs hVo | |
(λ x _, (hf.subset hVU').point_finite x) hsV with ⟨W, hsW, hWo, hWV⟩, | |
choose f hfp hf0 hf1 hf01 | |
using λ i, h01 _ _ (is_closed_compl_iff.2 $ hVo i) | |
is_closed_closure (disjoint_right.2 $ λ x hx, not_not.2 (hWV i hx)), | |
have hsupp : ∀ i, support (f i) ⊆ V i, | |
from λ i, support_subset_iff'.2 (hf0 i), | |
refine ⟨⟨f, hf.subset (λ i, subset.trans (hsupp i) (hVU' i)), | |
λ i x, (hf01 i x).1, λ i x, (hf01 i x).2, λ x hx, _⟩, hfp, | |
λ i, subset.trans (closure_mono (hsupp i)) (hVU i)⟩, | |
rcases mem_Union.1 (hsW hx) with ⟨i, hi⟩, | |
exact ⟨i, ((hf1 i).mono subset_closure).eventually_eq_of_mem ((hWo i).mem_nhds hi)⟩ | |
end | |
/-- If `X` is a normal topological space and `U i`, `i : ι`, is a locally finite open covering of a | |
closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. If `X` is a | |
paracompact space, then the assumption `hf : locally_finite U` can be omitted, see | |
`bump_covering.exists_is_subordinate`. -/ | |
lemma exists_is_subordinate_of_locally_finite [normal_space X] (hs : is_closed s) | |
(U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U) | |
(hU : s ⊆ ⋃ i, U i) : | |
∃ f : bump_covering ι X s, f.is_subordinate U := | |
let ⟨f, _, hfU⟩ := | |
exists_is_subordinate_of_locally_finite_of_prop (λ _, true) | |
(λ s t hs ht hd, (exists_continuous_zero_one_of_closed hs ht hd).imp $ λ f hf, ⟨trivial, hf⟩) | |
hs U ho hf hU | |
in ⟨f, hfU⟩ | |
/-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set | |
`s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. This version assumes that | |
`p : (X → ℝ) → Prop` is a predicate that satisfies Urysohn's lemma, and provides a | |
`bump_covering` such that each function of the covering satisfies `p`. -/ | |
lemma exists_is_subordinate_of_prop [normal_space X] [paracompact_space X] (p : (X → ℝ) → Prop) | |
(h01 : ∀ s t, is_closed s → is_closed t → disjoint s t → | |
∃ f : C(X, ℝ), p f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1) | |
(hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) : | |
∃ f : bump_covering ι X s, (∀ i, p (f i)) ∧ f.is_subordinate U := | |
begin | |
rcases precise_refinement_set hs _ ho hU with ⟨V, hVo, hsV, hVf, hVU⟩, | |
rcases exists_is_subordinate_of_locally_finite_of_prop p h01 hs V hVo hVf hsV with ⟨f, hfp, hf⟩, | |
exact ⟨f, hfp, hf.mono hVU⟩ | |
end | |
/-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set | |
`s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. -/ | |
lemma exists_is_subordinate [normal_space X] [paracompact_space X] | |
(hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) : | |
∃ f : bump_covering ι X s, f.is_subordinate U := | |
begin | |
rcases precise_refinement_set hs _ ho hU with ⟨V, hVo, hsV, hVf, hVU⟩, | |
rcases exists_is_subordinate_of_locally_finite hs V hVo hVf hsV with ⟨f, hf⟩, | |
exact ⟨f, hf.mono hVU⟩ | |
end | |
/-- Index of a bump function such that `fs i =ᶠ[𝓝 x] 1`. -/ | |
def ind (x : X) (hx : x ∈ s) : ι := (f.eventually_eq_one' x hx).some | |
lemma eventually_eq_one (x : X) (hx : x ∈ s) : f (f.ind x hx) =ᶠ[𝓝 x] 1 := | |
(f.eventually_eq_one' x hx).some_spec | |
lemma ind_apply (x : X) (hx : x ∈ s) : f (f.ind x hx) x = 1 := | |
(f.eventually_eq_one x hx).eq_of_nhds | |
/-- Partition of unity defined by a `bump_covering`. We use this auxiliary definition to prove some | |
properties of the new family of functions before bundling it into a `partition_of_unity`. Do not use | |
this definition, use `bump_function.to_partition_of_unity` instead. | |
The partition of unity is given by the formula `g i x = f i x * ∏ᶠ j < i, (1 - f j x)`. In other | |
words, `g i x = ∏ᶠ j < i, (1 - f j x) - ∏ᶠ j ≤ i, (1 - f j x)`, so | |
`∑ᶠ i, g i x = 1 - ∏ᶠ j, (1 - f j x)`. If `x ∈ s`, then one of `f j x` equals one, hence the product | |
of `1 - f j x` vanishes, and `∑ᶠ i, g i x = 1`. | |
In order to avoid an assumption `linear_order ι`, we use `well_ordering_rel` instead of `(<)`. -/ | |
def to_pou_fun (i : ι) (x : X) : ℝ := | |
f i x * ∏ᶠ j (hj : well_ordering_rel j i), (1 - f j x) | |
lemma to_pou_fun_zero_of_zero {i : ι} {x : X} (h : f i x = 0) : | |
f.to_pou_fun i x = 0 := | |
by rw [to_pou_fun, h, zero_mul] | |
lemma support_to_pou_fun_subset (i : ι) : | |
support (f.to_pou_fun i) ⊆ support (f i) := | |
λ x, mt $ f.to_pou_fun_zero_of_zero | |
lemma to_pou_fun_eq_mul_prod (i : ι) (x : X) (t : finset ι) | |
(ht : ∀ j, well_ordering_rel j i → f j x ≠ 0 → j ∈ t) : | |
f.to_pou_fun i x = f i x * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j x) := | |
begin | |
refine congr_arg _ (finprod_cond_eq_prod_of_cond_iff _ (λ j hj, _)), | |
rw [ne.def, sub_eq_self] at hj, | |
rw [finset.mem_filter, iff.comm, and_iff_right_iff_imp], | |
exact flip (ht j) hj | |
end | |
lemma sum_to_pou_fun_eq (x : X) : | |
∑ᶠ i, f.to_pou_fun i x = 1 - ∏ᶠ i, (1 - f i x) := | |
begin | |
set s := (f.point_finite x).to_finset, | |
have hs : (s : set ι) = {i | f i x ≠ 0} := finite.coe_to_finset _, | |
have A : support (λ i, to_pou_fun f i x) ⊆ s, | |
{ rw hs, | |
exact λ i hi, f.support_to_pou_fun_subset i hi }, | |
have B : mul_support (λ i, 1 - f i x) ⊆ s, | |
{ rw [hs, mul_support_one_sub], exact λ i, id }, | |
letI : linear_order ι := linear_order_of_STO' well_ordering_rel, | |
rw [finsum_eq_sum_of_support_subset _ A, finprod_eq_prod_of_mul_support_subset _ B, | |
finset.prod_one_sub_ordered, sub_sub_cancel], | |
refine finset.sum_congr rfl (λ i hi, _), | |
convert f.to_pou_fun_eq_mul_prod _ _ _ (λ j hji hj, _), | |
rwa finite.mem_to_finset | |
end | |
lemma exists_finset_to_pou_fun_eventually_eq (i : ι) (x : X) : | |
∃ t : finset ι, f.to_pou_fun i =ᶠ[𝓝 x] | |
f i * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j) := | |
begin | |
rcases f.locally_finite x with ⟨U, hU, hf⟩, | |
use hf.to_finset, | |
filter_upwards [hU] with y hyU, | |
simp only [pi.mul_apply, finset.prod_apply], | |
apply to_pou_fun_eq_mul_prod, | |
intros j hji hj, | |
exact hf.mem_to_finset.2 ⟨y, ⟨hj, hyU⟩⟩ | |
end | |
lemma continuous_to_pou_fun (i : ι) : continuous (f.to_pou_fun i) := | |
begin | |
refine ((f i).continuous.mul $ | |
continuous_finprod_cond (λ j _, continuous_const.sub (f j).continuous) _), | |
simp only [mul_support_one_sub], | |
exact f.locally_finite | |
end | |
/-- The partition of unity defined by a `bump_covering`. | |
The partition of unity is given by the formula `g i x = f i x * ∏ᶠ j < i, (1 - f j x)`. In other | |
words, `g i x = ∏ᶠ j < i, (1 - f j x) - ∏ᶠ j ≤ i, (1 - f j x)`, so | |
`∑ᶠ i, g i x = 1 - ∏ᶠ j, (1 - f j x)`. If `x ∈ s`, then one of `f j x` equals one, hence the product | |
of `1 - f j x` vanishes, and `∑ᶠ i, g i x = 1`. | |
In order to avoid an assumption `linear_order ι`, we use `well_ordering_rel` instead of `(<)`. -/ | |
def to_partition_of_unity : partition_of_unity ι X s := | |
{ to_fun := λ i, ⟨f.to_pou_fun i, f.continuous_to_pou_fun i⟩, | |
locally_finite' := f.locally_finite.subset f.support_to_pou_fun_subset, | |
nonneg' := λ i x, mul_nonneg (f.nonneg i x) | |
(finprod_cond_nonneg $ λ j hj, sub_nonneg.2 $ f.le_one j x), | |
sum_eq_one' := λ x hx, | |
begin | |
simp only [continuous_map.coe_mk, sum_to_pou_fun_eq, sub_eq_self], | |
apply finprod_eq_zero (λ i, 1 - f i x) (f.ind x hx), | |
{ simp only [f.ind_apply x hx, sub_self] }, | |
{ rw mul_support_one_sub, exact f.point_finite x } | |
end, | |
sum_le_one' := λ x, | |
begin | |
simp only [continuous_map.coe_mk, sum_to_pou_fun_eq, sub_le_self_iff], | |
exact finprod_nonneg (λ i, sub_nonneg.2 $ f.le_one i x) | |
end } | |
lemma to_partition_of_unity_apply (i : ι) (x : X) : | |
f.to_partition_of_unity i x = f i x * ∏ᶠ j (hj : well_ordering_rel j i), (1 - f j x) := | |
rfl | |
lemma to_partition_of_unity_eq_mul_prod (i : ι) (x : X) (t : finset ι) | |
(ht : ∀ j, well_ordering_rel j i → f j x ≠ 0 → j ∈ t) : | |
f.to_partition_of_unity i x = f i x * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j x) := | |
f.to_pou_fun_eq_mul_prod i x t ht | |
lemma exists_finset_to_partition_of_unity_eventually_eq (i : ι) (x : X) : | |
∃ t : finset ι, f.to_partition_of_unity i =ᶠ[𝓝 x] | |
f i * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j) := | |
f.exists_finset_to_pou_fun_eventually_eq i x | |
lemma to_partition_of_unity_zero_of_zero {i : ι} {x : X} (h : f i x = 0) : | |
f.to_partition_of_unity i x = 0 := | |
f.to_pou_fun_zero_of_zero h | |
lemma support_to_partition_of_unity_subset (i : ι) : | |
support (f.to_partition_of_unity i) ⊆ support (f i) := | |
f.support_to_pou_fun_subset i | |
lemma sum_to_partition_of_unity_eq (x : X) : | |
∑ᶠ i, f.to_partition_of_unity i x = 1 - ∏ᶠ i, (1 - f i x) := | |
f.sum_to_pou_fun_eq x | |
lemma is_subordinate.to_partition_of_unity {f : bump_covering ι X s} {U : ι → set X} | |
(h : f.is_subordinate U) : | |
f.to_partition_of_unity.is_subordinate U := | |
λ i, subset.trans (closure_mono $ f.support_to_partition_of_unity_subset i) (h i) | |
end bump_covering | |
namespace partition_of_unity | |
variables {s : set X} | |
instance [inhabited ι] : inhabited (partition_of_unity ι X s) := | |
⟨bump_covering.to_partition_of_unity default⟩ | |
/-- If `X` is a normal topological space and `U` is a locally finite open covering of a closed set | |
`s`, then there exists a `partition_of_unity ι X s` that is subordinate to `U`. If `X` is a | |
paracompact space, then the assumption `hf : locally_finite U` can be omitted, see | |
`bump_covering.exists_is_subordinate`. -/ | |
lemma exists_is_subordinate_of_locally_finite [normal_space X] (hs : is_closed s) | |
(U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U) | |
(hU : s ⊆ ⋃ i, U i) : | |
∃ f : partition_of_unity ι X s, f.is_subordinate U := | |
let ⟨f, hf⟩ := bump_covering.exists_is_subordinate_of_locally_finite hs U ho hf hU | |
in ⟨f.to_partition_of_unity, hf.to_partition_of_unity⟩ | |
/-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set | |
`s`, then there exists a `partition_of_unity ι X s` that is subordinate to `U`. -/ | |
lemma exists_is_subordinate [normal_space X] [paracompact_space X] (hs : is_closed s) | |
(U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) : | |
∃ f : partition_of_unity ι X s, f.is_subordinate U := | |
let ⟨f, hf⟩ := bump_covering.exists_is_subordinate hs U ho hU | |
in ⟨f.to_partition_of_unity, hf.to_partition_of_unity⟩ | |
end partition_of_unity | |