Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
proof-pile / formal /lean /mathlib /topology /partition_of_unity.lean
Zhangir Azerbayev
squashed?
4365a98
raw
history blame
22.9 kB
/-
Copyright (c) 2021 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Yury Kudryashov
-/
import algebra.big_operators.finprod
import set_theory.ordinal.basic
import topology.continuous_function.algebra
import topology.paracompact
import topology.shrinking_lemma
import topology.urysohns_lemma
/-!
# Continuous partition of unity
In this file we define `partition_of_unity (ι X : Type*) [topological_space X] (s : set X := univ)`
to be a continuous partition of unity on `s` indexed by `ι`. More precisely, `f : partition_of_unity
ι X s` is a collection of continuous functions `f i : C(X, ℝ)`, `i : ι`, such that
* the supports of `f i` form a locally finite family of sets;
* each `f i` is nonnegative;
* `∑ᶠ i, f i x = 1` for all `x ∈ s`;
* `∑ᶠ i, f i x ≤ 1` for all `x : X`.
In the case `s = univ` the last assumption follows from the previous one but it is convenient to
have this assumption in the case `s ≠ univ`.
We also define a bump function covering,
`bump_covering (ι X : Type*) [topological_space X] (s : set X := univ)`, to be a collection of
functions `f i : C(X, ℝ)`, `i : ι`, such that
* the supports of `f i` form a locally finite family of sets;
* each `f i` is nonnegative;
* for each `x ∈ s` there exists `i : ι` such that `f i y = 1` in a neighborhood of `x`.
The term is motivated by the smooth case.
If `f` is a bump function covering indexed by a linearly ordered type, then
`g i x = f i x * ∏ᶠ j < i, (1 - f j x)` is a partition of unity, see
`bump_covering.to_partition_of_unity`. Note that only finitely many terms `1 - f j x` are not equal
to one, so this product is well-defined.
Note that `g i x = ∏ᶠ j ≤ i, (1 - f j x) - ∏ᶠ j < i, (1 - f j x)`, so most terms in the sum
`∑ᶠ i, g i x` cancel, and we get `∑ᶠ i, g i x = 1 - ∏ᶠ i, (1 - f i x)`, and the latter product
equals zero because one of `f i x` is equal to one.
We say that a partition of unity or a bump function covering `f` is *subordinate* to a family of
sets `U i`, `i : ι`, if the closure of the support of each `f i` is included in `U i`. We use
Urysohn's Lemma to prove that a locally finite open covering of a normal topological space admits a
subordinate bump function covering (hence, a subordinate partition of unity), see
`bump_covering.exists_is_subordinate_of_locally_finite`. If `X` is a paracompact space, then any
open covering admits a locally finite refinement, hence it admits a subordinate bump function
covering and a subordinate partition of unity, see `bump_covering.exists_is_subordinate`.
We also provide two slightly more general versions of these lemmas,
`bump_covering.exists_is_subordinate_of_locally_finite_of_prop` and
`bump_covering.exists_is_subordinate_of_prop`, to be used later in the construction of a smooth
partition of unity.
## Implementation notes
Most (if not all) books only define a partition of unity of the whole space. However, quite a few
proofs only deal with `f i` such that `tsupport (f i)` meets a specific closed subset, and
it is easier to formalize these proofs if we don't have other functions right away.
We use `well_ordering_rel j i` instead of `j < i` in the definition of
`bump_covering.to_partition_of_unity` to avoid a `[linear_order ι]` assumption. While
`well_ordering_rel j i` is a well order, not only a strict linear order, we never use this property.
## Tags
partition of unity, bump function, Urysohn's lemma, normal space, paracompact space
-/
universes u v
open function set filter
open_locale big_operators topological_space classical
noncomputable theory
/-- A continuous partition of unity on a set `s : set X` is a collection of continuous functions
`f i` such that
* the supports of `f i` form a locally finite family of sets, i.e., for every point `x : X` there
exists a neighborhood `U ∋ x` such that all but finitely many functions `f i` are zero on `U`;
* the functions `f i` are nonnegative;
* the sum `∑ᶠ i, f i x` is equal to one for every `x ∈ s` and is less than or equal to one
otherwise.
If `X` is a normal paracompact space, then `partition_of_unity.exists_is_subordinate` guarantees
that for every open covering `U : set (set X)` of `s` there exists a partition of unity that is
subordinate to `U`.
-/
structure partition_of_unity (ι X : Type*) [topological_space X] (s : set X := univ) :=
(to_fun : ι → C(X, ℝ))
(locally_finite' : locally_finite (λ i, support (to_fun i)))
(nonneg' : 0 ≤ to_fun)
(sum_eq_one' : ∀ x ∈ s, ∑ᶠ i, to_fun i x = 1)
(sum_le_one' : ∀ x, ∑ᶠ i, to_fun i x ≤ 1)
/-- A `bump_covering ι X s` is an indexed family of functions `f i`, `i : ι`, such that
* the supports of `f i` form a locally finite family of sets, i.e., for every point `x : X` there
exists a neighborhood `U ∋ x` such that all but finitely many functions `f i` are zero on `U`;
* for all `i`, `x` we have `0 ≤ f i x ≤ 1`;
* each point `x ∈ s` belongs to the interior of `{x | f i x = 1}` for some `i`.
One of the main use cases for a `bump_covering` is to define a `partition_of_unity`, see
`bump_covering.to_partition_of_unity`, but some proofs can directly use a `bump_covering` instead of
a `partition_of_unity`.
If `X` is a normal paracompact space, then `bump_covering.exists_is_subordinate` guarantees that for
every open covering `U : set (set X)` of `s` there exists a `bump_covering` of `s` that is
subordinate to `U`.
-/
structure bump_covering (ι X : Type*) [topological_space X] (s : set X := univ) :=
(to_fun : ι → C(X, ℝ))
(locally_finite' : locally_finite (λ i, support (to_fun i)))
(nonneg' : 0 ≤ to_fun)
(le_one' : to_fun ≤ 1)
(eventually_eq_one' : ∀ x ∈ s, ∃ i, to_fun i =ᶠ[𝓝 x] 1)
variables {ι : Type u} {X : Type v} [topological_space X]
namespace partition_of_unity
variables {E : Type*} [add_comm_monoid E] [smul_with_zero ℝ E] [topological_space E]
[has_continuous_smul ℝ E] {s : set X} (f : partition_of_unity ι X s)
instance : has_coe_to_fun (partition_of_unity ι X s) (λ _, ι → C(X, ℝ)) := ⟨to_fun⟩
protected lemma locally_finite : locally_finite (λ i, support (f i)) := f.locally_finite'
lemma locally_finite_tsupport : locally_finite (λ i, tsupport (f i)) := f.locally_finite.closure
lemma nonneg (i : ι) (x : X) : 0 ≤ f i x := f.nonneg' i x
lemma sum_eq_one {x : X} (hx : x ∈ s) : ∑ᶠ i, f i x = 1 := f.sum_eq_one' x hx
/-- If `f` is a partition of unity on `s`, then for every `x ∈ s` there exists an index `i` such
that `0 < f i x`. -/
lemma exists_pos {x : X} (hx : x ∈ s) : ∃ i, 0 < f i x :=
begin
have H := f.sum_eq_one hx,
contrapose! H,
simpa only [λ i, (H i).antisymm (f.nonneg i x), finsum_zero] using zero_ne_one
end
lemma sum_le_one (x : X) : ∑ᶠ i, f i x ≤ 1 := f.sum_le_one' x
lemma sum_nonneg (x : X) : 0 ≤ ∑ᶠ i, f i x := finsum_nonneg $ λ i, f.nonneg i x
lemma le_one (i : ι) (x : X) : f i x ≤ 1 :=
(single_le_finsum i (f.locally_finite.point_finite x) (λ j, f.nonneg j x)).trans (f.sum_le_one x)
/-- If `f` is a partition of unity on `s : set X` and `g : X → E` is continuous at every point of
the topological support of some `f i`, then `λ x, f i x • g x` is continuous on the whole space. -/
lemma continuous_smul {g : X → E} {i : ι} (hg : ∀ x ∈ tsupport (f i), continuous_at g x) :
continuous (λ x, f i x • g x) :=
continuous_of_tsupport $ λ x hx, ((f i).continuous_at x).smul $
hg x $ tsupport_smul_subset_left _ _ hx
/-- If `f` is a partition of unity on a set `s : set X` and `g : ι → X → E` is a family of functions
such that each `g i` is continuous at every point of the topological support of `f i`, then the sum
`λ x, ∑ᶠ i, f i x • g i x` is continuous on the whole space. -/
lemma continuous_finsum_smul [has_continuous_add E] {g : ι → X → E}
(hg : ∀ i (x ∈ tsupport (f i)), continuous_at (g i) x) :
continuous (λ x, ∑ᶠ i, f i x • g i x) :=
continuous_finsum (λ i, f.continuous_smul (hg i)) $
f.locally_finite.subset $ λ i, support_smul_subset_left _ _
/-- A partition of unity `f i` is subordinate to a family of sets `U i` indexed by the same type if
for each `i` the closure of the support of `f i` is a subset of `U i`. -/
def is_subordinate (U : ι → set X) : Prop :=
∀ i, tsupport (f i) ⊆ U i
variables {f}
lemma exists_finset_nhd_support_subset {U : ι → set X}
(hso : f.is_subordinate U) (ho : ∀ i, is_open (U i)) (x : X) :
∃ (is : finset ι) {n : set X} (hn₁ : n ∈ 𝓝 x) (hn₂ : n ⊆ ⋂ i ∈ is, U i), ∀ (z ∈ n),
support (λ i, f i z) ⊆ is :=
f.locally_finite.exists_finset_nhd_support_subset hso ho x
/-- If `f` is a partition of unity that is subordinate to a family of open sets `U i` and
`g : ι → X → E` is a family of functions such that each `g i` is continuous on `U i`, then the sum
`λ x, ∑ᶠ i, f i x • g i x` is a continuous function. -/
lemma is_subordinate.continuous_finsum_smul [has_continuous_add E] {U : ι → set X}
(ho : ∀ i, is_open (U i)) (hf : f.is_subordinate U) {g : ι → X → E}
(hg : ∀ i, continuous_on (g i) (U i)) :
continuous (λ x, ∑ᶠ i, f i x • g i x) :=
f.continuous_finsum_smul $ λ i x hx, (hg i).continuous_at $ (ho i).mem_nhds $ hf i hx
end partition_of_unity
namespace bump_covering
variables {s : set X} (f : bump_covering ι X s)
instance : has_coe_to_fun (bump_covering ι X s) (λ _, ι → C(X, ℝ)) := ⟨to_fun⟩
protected lemma locally_finite : locally_finite (λ i, support (f i)) := f.locally_finite'
lemma locally_finite_tsupport : locally_finite (λ i, tsupport (f i)) := f.locally_finite.closure
protected lemma point_finite (x : X) : {i | f i x ≠ 0}.finite := f.locally_finite.point_finite x
lemma nonneg (i : ι) (x : X) : 0 ≤ f i x := f.nonneg' i x
lemma le_one (i : ι) (x : X) : f i x ≤ 1 := f.le_one' i x
/-- A `bump_covering` that consists of a single function, uniformly equal to one, defined as an
example for `inhabited` instance. -/
protected def single (i : ι) (s : set X) : bump_covering ι X s :=
{ to_fun := pi.single i 1,
locally_finite' := λ x,
begin
refine ⟨univ, univ_mem, (finite_singleton i).subset _⟩,
rintro j ⟨x, hx, -⟩,
contrapose! hx,
rw [mem_singleton_iff] at hx,
simp [hx]
end,
nonneg' := le_update_iff.2 ⟨λ x, zero_le_one, λ _ _, le_rfl⟩,
le_one' := update_le_iff.2 ⟨le_rfl, λ _ _ _, zero_le_one⟩,
eventually_eq_one' := λ x _, ⟨i, by simp⟩ }
@[simp] lemma coe_single (i : ι) (s : set X) : ⇑(bump_covering.single i s) = pi.single i 1 := rfl
instance [inhabited ι] : inhabited (bump_covering ι X s) :=
⟨bump_covering.single default s⟩
/-- A collection of bump functions `f i` is subordinate to a family of sets `U i` indexed by the
same type if for each `i` the closure of the support of `f i` is a subset of `U i`. -/
def is_subordinate (f : bump_covering ι X s) (U : ι → set X) : Prop :=
∀ i, tsupport (f i) ⊆ U i
lemma is_subordinate.mono {f : bump_covering ι X s} {U V : ι → set X} (hU : f.is_subordinate U)
(hV : ∀ i, U i ⊆ V i) :
f.is_subordinate V :=
λ i, subset.trans (hU i) (hV i)
/-- If `X` is a normal topological space and `U i`, `i : ι`, is a locally finite open covering of a
closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. If `X` is a
paracompact space, then the assumption `hf : locally_finite U` can be omitted, see
`bump_covering.exists_is_subordinate`. This version assumes that `p : (X → ℝ) → Prop` is a predicate
that satisfies Urysohn's lemma, and provides a `bump_covering` such that each function of the
covering satisfies `p`. -/
lemma exists_is_subordinate_of_locally_finite_of_prop [normal_space X] (p : (X → ℝ) → Prop)
(h01 : ∀ s t, is_closed s → is_closed t → disjoint s t →
∃ f : C(X, ℝ), p f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1)
(hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U)
(hU : s ⊆ ⋃ i, U i) :
∃ f : bump_covering ι X s, (∀ i, p (f i)) ∧ f.is_subordinate U :=
begin
rcases exists_subset_Union_closure_subset hs ho (λ x _, hf.point_finite x) hU
with ⟨V, hsV, hVo, hVU⟩,
have hVU' : ∀ i, V i ⊆ U i, from λ i, subset.trans subset_closure (hVU i),
rcases exists_subset_Union_closure_subset hs hVo
(λ x _, (hf.subset hVU').point_finite x) hsV with ⟨W, hsW, hWo, hWV⟩,
choose f hfp hf0 hf1 hf01
using λ i, h01 _ _ (is_closed_compl_iff.2 $ hVo i)
is_closed_closure (disjoint_right.2 $ λ x hx, not_not.2 (hWV i hx)),
have hsupp : ∀ i, support (f i) ⊆ V i,
from λ i, support_subset_iff'.2 (hf0 i),
refine ⟨⟨f, hf.subset (λ i, subset.trans (hsupp i) (hVU' i)),
λ i x, (hf01 i x).1, λ i x, (hf01 i x).2, λ x hx, _⟩, hfp,
λ i, subset.trans (closure_mono (hsupp i)) (hVU i)⟩,
rcases mem_Union.1 (hsW hx) with ⟨i, hi⟩,
exact ⟨i, ((hf1 i).mono subset_closure).eventually_eq_of_mem ((hWo i).mem_nhds hi)⟩
end
/-- If `X` is a normal topological space and `U i`, `i : ι`, is a locally finite open covering of a
closed set `s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. If `X` is a
paracompact space, then the assumption `hf : locally_finite U` can be omitted, see
`bump_covering.exists_is_subordinate`. -/
lemma exists_is_subordinate_of_locally_finite [normal_space X] (hs : is_closed s)
(U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U)
(hU : s ⊆ ⋃ i, U i) :
∃ f : bump_covering ι X s, f.is_subordinate U :=
let ⟨f, _, hfU⟩ :=
exists_is_subordinate_of_locally_finite_of_prop (λ _, true)
(λ s t hs ht hd, (exists_continuous_zero_one_of_closed hs ht hd).imp $ λ f hf, ⟨trivial, hf⟩)
hs U ho hf hU
in ⟨f, hfU⟩
/-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set
`s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. This version assumes that
`p : (X → ℝ) → Prop` is a predicate that satisfies Urysohn's lemma, and provides a
`bump_covering` such that each function of the covering satisfies `p`. -/
lemma exists_is_subordinate_of_prop [normal_space X] [paracompact_space X] (p : (X → ℝ) → Prop)
(h01 : ∀ s t, is_closed s → is_closed t → disjoint s t →
∃ f : C(X, ℝ), p f ∧ eq_on f 0 s ∧ eq_on f 1 t ∧ ∀ x, f x ∈ Icc (0 : ℝ) 1)
(hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) :
∃ f : bump_covering ι X s, (∀ i, p (f i)) ∧ f.is_subordinate U :=
begin
rcases precise_refinement_set hs _ ho hU with ⟨V, hVo, hsV, hVf, hVU⟩,
rcases exists_is_subordinate_of_locally_finite_of_prop p h01 hs V hVo hVf hsV with ⟨f, hfp, hf⟩,
exact ⟨f, hfp, hf.mono hVU⟩
end
/-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set
`s`, then there exists a `bump_covering ι X s` that is subordinate to `U`. -/
lemma exists_is_subordinate [normal_space X] [paracompact_space X]
(hs : is_closed s) (U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) :
∃ f : bump_covering ι X s, f.is_subordinate U :=
begin
rcases precise_refinement_set hs _ ho hU with ⟨V, hVo, hsV, hVf, hVU⟩,
rcases exists_is_subordinate_of_locally_finite hs V hVo hVf hsV with ⟨f, hf⟩,
exact ⟨f, hf.mono hVU⟩
end
/-- Index of a bump function such that `fs i =ᶠ[𝓝 x] 1`. -/
def ind (x : X) (hx : x ∈ s) : ι := (f.eventually_eq_one' x hx).some
lemma eventually_eq_one (x : X) (hx : x ∈ s) : f (f.ind x hx) =ᶠ[𝓝 x] 1 :=
(f.eventually_eq_one' x hx).some_spec
lemma ind_apply (x : X) (hx : x ∈ s) : f (f.ind x hx) x = 1 :=
(f.eventually_eq_one x hx).eq_of_nhds
/-- Partition of unity defined by a `bump_covering`. We use this auxiliary definition to prove some
properties of the new family of functions before bundling it into a `partition_of_unity`. Do not use
this definition, use `bump_function.to_partition_of_unity` instead.
The partition of unity is given by the formula `g i x = f i x * ∏ᶠ j < i, (1 - f j x)`. In other
words, `g i x = ∏ᶠ j < i, (1 - f j x) - ∏ᶠ j ≤ i, (1 - f j x)`, so
`∑ᶠ i, g i x = 1 - ∏ᶠ j, (1 - f j x)`. If `x ∈ s`, then one of `f j x` equals one, hence the product
of `1 - f j x` vanishes, and `∑ᶠ i, g i x = 1`.
In order to avoid an assumption `linear_order ι`, we use `well_ordering_rel` instead of `(<)`. -/
def to_pou_fun (i : ι) (x : X) : ℝ :=
f i x * ∏ᶠ j (hj : well_ordering_rel j i), (1 - f j x)
lemma to_pou_fun_zero_of_zero {i : ι} {x : X} (h : f i x = 0) :
f.to_pou_fun i x = 0 :=
by rw [to_pou_fun, h, zero_mul]
lemma support_to_pou_fun_subset (i : ι) :
support (f.to_pou_fun i) ⊆ support (f i) :=
λ x, mt $ f.to_pou_fun_zero_of_zero
lemma to_pou_fun_eq_mul_prod (i : ι) (x : X) (t : finset ι)
(ht : ∀ j, well_ordering_rel j i → f j x ≠ 0 → j ∈ t) :
f.to_pou_fun i x = f i x * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j x) :=
begin
refine congr_arg _ (finprod_cond_eq_prod_of_cond_iff _ (λ j hj, _)),
rw [ne.def, sub_eq_self] at hj,
rw [finset.mem_filter, iff.comm, and_iff_right_iff_imp],
exact flip (ht j) hj
end
lemma sum_to_pou_fun_eq (x : X) :
∑ᶠ i, f.to_pou_fun i x = 1 - ∏ᶠ i, (1 - f i x) :=
begin
set s := (f.point_finite x).to_finset,
have hs : (s : set ι) = {i | f i x ≠ 0} := finite.coe_to_finset _,
have A : support (λ i, to_pou_fun f i x) ⊆ s,
{ rw hs,
exact λ i hi, f.support_to_pou_fun_subset i hi },
have B : mul_support (λ i, 1 - f i x) ⊆ s,
{ rw [hs, mul_support_one_sub], exact λ i, id },
letI : linear_order ι := linear_order_of_STO' well_ordering_rel,
rw [finsum_eq_sum_of_support_subset _ A, finprod_eq_prod_of_mul_support_subset _ B,
finset.prod_one_sub_ordered, sub_sub_cancel],
refine finset.sum_congr rfl (λ i hi, _),
convert f.to_pou_fun_eq_mul_prod _ _ _ (λ j hji hj, _),
rwa finite.mem_to_finset
end
lemma exists_finset_to_pou_fun_eventually_eq (i : ι) (x : X) :
∃ t : finset ι, f.to_pou_fun i =ᶠ[𝓝 x]
f i * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j) :=
begin
rcases f.locally_finite x with ⟨U, hU, hf⟩,
use hf.to_finset,
filter_upwards [hU] with y hyU,
simp only [pi.mul_apply, finset.prod_apply],
apply to_pou_fun_eq_mul_prod,
intros j hji hj,
exact hf.mem_to_finset.2 ⟨y, ⟨hj, hyU⟩⟩
end
lemma continuous_to_pou_fun (i : ι) : continuous (f.to_pou_fun i) :=
begin
refine ((f i).continuous.mul $
continuous_finprod_cond (λ j _, continuous_const.sub (f j).continuous) _),
simp only [mul_support_one_sub],
exact f.locally_finite
end
/-- The partition of unity defined by a `bump_covering`.
The partition of unity is given by the formula `g i x = f i x * ∏ᶠ j < i, (1 - f j x)`. In other
words, `g i x = ∏ᶠ j < i, (1 - f j x) - ∏ᶠ j ≤ i, (1 - f j x)`, so
`∑ᶠ i, g i x = 1 - ∏ᶠ j, (1 - f j x)`. If `x ∈ s`, then one of `f j x` equals one, hence the product
of `1 - f j x` vanishes, and `∑ᶠ i, g i x = 1`.
In order to avoid an assumption `linear_order ι`, we use `well_ordering_rel` instead of `(<)`. -/
def to_partition_of_unity : partition_of_unity ι X s :=
{ to_fun := λ i, ⟨f.to_pou_fun i, f.continuous_to_pou_fun i⟩,
locally_finite' := f.locally_finite.subset f.support_to_pou_fun_subset,
nonneg' := λ i x, mul_nonneg (f.nonneg i x)
(finprod_cond_nonneg $ λ j hj, sub_nonneg.2 $ f.le_one j x),
sum_eq_one' := λ x hx,
begin
simp only [continuous_map.coe_mk, sum_to_pou_fun_eq, sub_eq_self],
apply finprod_eq_zero (λ i, 1 - f i x) (f.ind x hx),
{ simp only [f.ind_apply x hx, sub_self] },
{ rw mul_support_one_sub, exact f.point_finite x }
end,
sum_le_one' := λ x,
begin
simp only [continuous_map.coe_mk, sum_to_pou_fun_eq, sub_le_self_iff],
exact finprod_nonneg (λ i, sub_nonneg.2 $ f.le_one i x)
end }
lemma to_partition_of_unity_apply (i : ι) (x : X) :
f.to_partition_of_unity i x = f i x * ∏ᶠ j (hj : well_ordering_rel j i), (1 - f j x) :=
rfl
lemma to_partition_of_unity_eq_mul_prod (i : ι) (x : X) (t : finset ι)
(ht : ∀ j, well_ordering_rel j i → f j x ≠ 0 → j ∈ t) :
f.to_partition_of_unity i x = f i x * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j x) :=
f.to_pou_fun_eq_mul_prod i x t ht
lemma exists_finset_to_partition_of_unity_eventually_eq (i : ι) (x : X) :
∃ t : finset ι, f.to_partition_of_unity i =ᶠ[𝓝 x]
f i * ∏ j in t.filter (λ j, well_ordering_rel j i), (1 - f j) :=
f.exists_finset_to_pou_fun_eventually_eq i x
lemma to_partition_of_unity_zero_of_zero {i : ι} {x : X} (h : f i x = 0) :
f.to_partition_of_unity i x = 0 :=
f.to_pou_fun_zero_of_zero h
lemma support_to_partition_of_unity_subset (i : ι) :
support (f.to_partition_of_unity i) ⊆ support (f i) :=
f.support_to_pou_fun_subset i
lemma sum_to_partition_of_unity_eq (x : X) :
∑ᶠ i, f.to_partition_of_unity i x = 1 - ∏ᶠ i, (1 - f i x) :=
f.sum_to_pou_fun_eq x
lemma is_subordinate.to_partition_of_unity {f : bump_covering ι X s} {U : ι → set X}
(h : f.is_subordinate U) :
f.to_partition_of_unity.is_subordinate U :=
λ i, subset.trans (closure_mono $ f.support_to_partition_of_unity_subset i) (h i)
end bump_covering
namespace partition_of_unity
variables {s : set X}
instance [inhabited ι] : inhabited (partition_of_unity ι X s) :=
⟨bump_covering.to_partition_of_unity default⟩
/-- If `X` is a normal topological space and `U` is a locally finite open covering of a closed set
`s`, then there exists a `partition_of_unity ι X s` that is subordinate to `U`. If `X` is a
paracompact space, then the assumption `hf : locally_finite U` can be omitted, see
`bump_covering.exists_is_subordinate`. -/
lemma exists_is_subordinate_of_locally_finite [normal_space X] (hs : is_closed s)
(U : ι → set X) (ho : ∀ i, is_open (U i)) (hf : locally_finite U)
(hU : s ⊆ ⋃ i, U i) :
∃ f : partition_of_unity ι X s, f.is_subordinate U :=
let ⟨f, hf⟩ := bump_covering.exists_is_subordinate_of_locally_finite hs U ho hf hU
in ⟨f.to_partition_of_unity, hf.to_partition_of_unity⟩
/-- If `X` is a paracompact normal topological space and `U` is an open covering of a closed set
`s`, then there exists a `partition_of_unity ι X s` that is subordinate to `U`. -/
lemma exists_is_subordinate [normal_space X] [paracompact_space X] (hs : is_closed s)
(U : ι → set X) (ho : ∀ i, is_open (U i)) (hU : s ⊆ ⋃ i, U i) :
∃ f : partition_of_unity ι X s, f.is_subordinate U :=
let ⟨f, hf⟩ := bump_covering.exists_is_subordinate hs U ho hU
in ⟨f.to_partition_of_unity, hf.to_partition_of_unity⟩
end partition_of_unity