Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
/- | |
Copyright (c) 2017 Johannes Hölzl. All rights reserved. | |
Released under Apache 2.0 license as described in the file LICENSE. | |
Authors: Johannes Hölzl, Mario Carneiro, Floris van Doorn | |
-/ | |
import order.hom.complete_lattice | |
import topology.bases | |
import topology.homeomorph | |
import topology.continuous_function.basic | |
import order.compactly_generated | |
/-! | |
# Open sets | |
## Summary | |
We define the subtype of open sets in a topological space. | |
## Main Definitions | |
- `opens α` is the type of open subsets of a topological space `α`. | |
- `open_nhds_of x` is the type of open subsets of a topological space `α` containing `x : α`. | |
-/ | |
open filter function order set | |
variables {ι α β γ : Type*} [topological_space α] [topological_space β] [topological_space γ] | |
namespace topological_space | |
variable (α) | |
/-- The type of open subsets of a topological space. -/ | |
def opens := {s : set α // is_open s} | |
variable {α} | |
namespace opens | |
instance : has_coe (opens α) (set α) := { coe := subtype.val } | |
lemma val_eq_coe (U : opens α) : U.1 = ↑U := rfl | |
/-- the coercion `opens α → set α` applied to a pair is the same as taking the first component -/ | |
lemma coe_mk {α : Type*} [topological_space α] {U : set α} {hU : is_open U} : | |
↑(⟨U, hU⟩ : opens α) = U := rfl | |
instance : has_subset (opens α) := | |
{ subset := λ U V, (U : set α) ⊆ V } | |
instance : has_mem α (opens α) := | |
{ mem := λ a U, a ∈ (U : set α) } | |
@[simp] lemma subset_coe {U V : opens α} : ((U : set α) ⊆ (V : set α)) = (U ⊆ V) := rfl | |
@[simp] lemma mem_coe {x : α} {U : opens α} : (x ∈ (U : set α)) = (x ∈ U) := rfl | |
@[simp] lemma mem_mk {x : α} {U : set α} {h : is_open U} : | |
@has_mem.mem _ _ opens.has_mem x ⟨U, h⟩ ↔ x ∈ U := iff.rfl | |
@[ext] lemma ext {U V : opens α} (h : (U : set α) = V) : U = V := subtype.ext h | |
@[ext] lemma ext_iff {U V : opens α} : (U : set α) = V ↔ U = V := subtype.ext_iff.symm | |
instance : partial_order (opens α) := subtype.partial_order _ | |
/-- The interior of a set, as an element of `opens`. -/ | |
def interior (s : set α) : opens α := ⟨interior s, is_open_interior⟩ | |
lemma gc : galois_connection (coe : opens α → set α) interior := | |
λ U s, ⟨λ h, interior_maximal h U.property, λ h, le_trans h interior_subset⟩ | |
open order_dual (of_dual to_dual) | |
/-- The galois coinsertion between sets and opens. -/ | |
def gi : galois_coinsertion subtype.val (@interior α _) := | |
{ choice := λ s hs, ⟨s, interior_eq_iff_open.mp $ le_antisymm interior_subset hs⟩, | |
gc := gc, | |
u_l_le := λ _, interior_subset, | |
choice_eq := λ s hs, le_antisymm hs interior_subset } | |
instance : complete_lattice (opens α) := | |
complete_lattice.copy (galois_coinsertion.lift_complete_lattice gi) | |
/- le -/ (λ U V, U ⊆ V) rfl | |
/- top -/ ⟨univ, is_open_univ⟩ (ext interior_univ.symm) | |
/- bot -/ ⟨∅, is_open_empty⟩ rfl | |
/- sup -/ (λ U V, ⟨↑U ∪ ↑V, U.2.union V.2⟩) rfl | |
/- inf -/ (λ U V, ⟨↑U ∩ ↑V, U.2.inter V.2⟩) | |
(funext $ λ U, funext $ λ V, ext (U.2.inter V.2).interior_eq.symm) | |
/- Sup -/ (λ S, ⟨⋃ s ∈ S, ↑s, is_open_bUnion $ λ s _, s.2⟩) (funext $ λ S, ext Sup_image.symm) | |
/- Inf -/ _ rfl | |
lemma le_def {U V : opens α} : U ≤ V ↔ (U : set α) ≤ (V : set α) := iff.rfl | |
@[simp] lemma mk_inf_mk {U V : set α} {hU : is_open U} {hV : is_open V} : | |
(⟨U, hU⟩ ⊓ ⟨V, hV⟩ : opens α) = ⟨U ⊓ V, is_open.inter hU hV⟩ := rfl | |
@[simp, norm_cast] lemma coe_inf (s t : opens α) : (↑(s ⊓ t) : set α) = s ∩ t := rfl | |
@[simp, norm_cast] lemma coe_sup (s t : opens α) : (↑(s ⊔ t) : set α) = s ∪ t := rfl | |
@[simp, norm_cast] lemma coe_bot : ((⊥ : opens α) : set α) = ∅ := rfl | |
@[simp, norm_cast] lemma coe_top : ((⊤ : opens α) : set α) = set.univ := rfl | |
@[simp, norm_cast] lemma coe_Sup {S : set (opens α)} : (↑(Sup S) : set α) = ⋃ i ∈ S, ↑i := rfl | |
@[simp, norm_cast] lemma coe_finset_sup (f : ι → opens α) (s : finset ι) : | |
(↑(s.sup f) : set α) = s.sup (coe ∘ f) := | |
map_finset_sup (⟨⟨coe, coe_sup⟩, coe_bot⟩ : sup_bot_hom (opens α) (set α)) _ _ | |
@[simp, norm_cast] lemma coe_finset_inf (f : ι → opens α) (s : finset ι) : | |
(↑(s.inf f) : set α) = s.inf (coe ∘ f) := | |
map_finset_inf (⟨⟨coe, coe_inf⟩, coe_top⟩ : inf_top_hom (opens α) (set α)) _ _ | |
instance : has_inter (opens α) := ⟨λ U V, U ⊓ V⟩ | |
instance : has_union (opens α) := ⟨λ U V, U ⊔ V⟩ | |
instance : has_emptyc (opens α) := ⟨⊥⟩ | |
instance : inhabited (opens α) := ⟨∅⟩ | |
@[simp] lemma inter_eq (U V : opens α) : U ∩ V = U ⊓ V := rfl | |
@[simp] lemma union_eq (U V : opens α) : U ∪ V = U ⊔ V := rfl | |
@[simp] lemma empty_eq : (∅ : opens α) = ⊥ := rfl | |
lemma supr_def {ι} (s : ι → opens α) : (⨆ i, s i) = ⟨⋃ i, s i, is_open_Union $ λ i, (s i).2⟩ := | |
by { ext, simp only [supr, coe_Sup, bUnion_range], refl } | |
@[simp] lemma supr_mk {ι} (s : ι → set α) (h : Π i, is_open (s i)) : | |
(⨆ i, ⟨s i, h i⟩ : opens α) = ⟨⋃ i, s i, is_open_Union h⟩ := | |
by { rw supr_def, simp } | |
@[simp, norm_cast] lemma coe_supr {ι} (s : ι → opens α) : | |
((⨆ i, s i : opens α) : set α) = ⋃ i, s i := | |
by simp [supr_def] | |
@[simp] theorem mem_supr {ι} {x : α} {s : ι → opens α} : x ∈ supr s ↔ ∃ i, x ∈ s i := | |
by { rw [←mem_coe], simp, } | |
@[simp] lemma mem_Sup {Us : set (opens α)} {x : α} : x ∈ Sup Us ↔ ∃ u ∈ Us, x ∈ u := | |
by simp_rw [Sup_eq_supr, mem_supr] | |
instance : frame (opens α) := | |
{ Sup := Sup, | |
inf_Sup_le_supr_inf := λ a s, | |
(ext $ by simp only [coe_inf, coe_supr, coe_Sup, set.inter_Union₂]).le, | |
..opens.complete_lattice } | |
lemma open_embedding_of_le {U V : opens α} (i : U ≤ V) : | |
open_embedding (set.inclusion i) := | |
{ inj := set.inclusion_injective i, | |
induced := (@induced_compose _ _ _ _ (set.inclusion i) coe).symm, | |
open_range := | |
begin | |
rw set.range_inclusion i, | |
exact U.property.preimage continuous_subtype_val | |
end, } | |
lemma not_nonempty_iff_eq_bot (U : opens α) : ¬ set.nonempty (U : set α) ↔ U = ⊥ := | |
by rw [← subtype.coe_injective.eq_iff, opens.coe_bot, ← set.not_nonempty_iff_eq_empty] | |
lemma ne_bot_iff_nonempty (U : opens α) : U ≠ ⊥ ↔ set.nonempty (U : set α) := | |
by rw [ne.def, ← opens.not_nonempty_iff_eq_bot, not_not] | |
/-- A set of `opens α` is a basis if the set of corresponding sets is a topological basis. -/ | |
def is_basis (B : set (opens α)) : Prop := is_topological_basis ((coe : _ → set α) '' B) | |
lemma is_basis_iff_nbhd {B : set (opens α)} : | |
is_basis B ↔ ∀ {U : opens α} {x}, x ∈ U → ∃ U' ∈ B, x ∈ U' ∧ U' ⊆ U := | |
begin | |
split; intro h, | |
{ rintros ⟨sU, hU⟩ x hx, | |
rcases h.mem_nhds_iff.mp (is_open.mem_nhds hU hx) | |
with ⟨sV, ⟨⟨V, H₁, H₂⟩, hsV⟩⟩, | |
refine ⟨V, H₁, _⟩, | |
cases V, dsimp at H₂, subst H₂, exact hsV }, | |
{ refine is_topological_basis_of_open_of_nhds _ _, | |
{ rintros sU ⟨U, ⟨H₁, rfl⟩⟩, exact U.property }, | |
{ intros x sU hx hsU, | |
rcases @h (⟨sU, hsU⟩ : opens α) x hx with ⟨V, hV, H⟩, | |
exact ⟨V, ⟨V, hV, rfl⟩, H⟩ } } | |
end | |
lemma is_basis_iff_cover {B : set (opens α)} : | |
is_basis B ↔ ∀ U : opens α, ∃ Us ⊆ B, U = Sup Us := | |
begin | |
split, | |
{ intros hB U, | |
refine ⟨{V : opens α | V ∈ B ∧ V ⊆ U}, λ U hU, hU.left, _⟩, | |
apply ext, | |
rw [coe_Sup, hB.open_eq_sUnion' U.prop], | |
simp_rw [sUnion_eq_bUnion, Union, supr_and, supr_image], | |
refl }, | |
{ intro h, | |
rw is_basis_iff_nbhd, | |
intros U x hx, | |
rcases h U with ⟨Us, hUs, rfl⟩, | |
rcases mem_Sup.1 hx with ⟨U, Us, xU⟩, | |
exact ⟨U, hUs Us, xU, le_Sup Us⟩ } | |
end | |
/-- If `α` has a basis consisting of compact opens, then an open set in `α` is compact open iff | |
it is a finite union of some elements in the basis -/ | |
lemma is_compact_open_iff_eq_finite_Union_of_is_basis | |
{ι : Type*} (b : ι → opens α) (hb : opens.is_basis (set.range b)) | |
(hb' : ∀ i, is_compact (b i : set α)) (U : set α) : | |
is_compact U ∧ is_open U ↔ ∃ (s : set ι), s.finite ∧ U = ⋃ i ∈ s, b i := | |
begin | |
apply is_compact_open_iff_eq_finite_Union_of_is_topological_basis | |
(λ i : ι, (b i).1), | |
{ convert hb, ext, simp }, | |
{ exact hb' } | |
end | |
@[simp] lemma is_compact_element_iff (s : opens α) : | |
complete_lattice.is_compact_element s ↔ is_compact (s : set α) := | |
begin | |
rw [is_compact_iff_finite_subcover, complete_lattice.is_compact_element_iff], | |
refine ⟨_, λ H ι U hU, _⟩, | |
{ introv H hU hU', | |
obtain ⟨t, ht⟩ := H ι (λ i, ⟨U i, hU i⟩) (by simpa), | |
refine ⟨t, set.subset.trans ht _⟩, | |
rw [coe_finset_sup, finset.sup_eq_supr], | |
refl }, | |
{ obtain ⟨t, ht⟩ := H (λ i, U i) (λ i, (U i).prop) | |
(by simpa using (show (s : set α) ⊆ ↑(supr U), from hU)), | |
refine ⟨t, set.subset.trans ht _⟩, | |
simp only [set.Union_subset_iff], | |
show ∀ i ∈ t, U i ≤ t.sup U, from λ i, finset.le_sup } | |
end | |
/-- The preimage of an open set, as an open set. -/ | |
def comap (f : C(α, β)) : frame_hom (opens β) (opens α) := | |
{ to_fun := λ s, ⟨f ⁻¹' s, s.2.preimage f.continuous⟩, | |
map_Sup' := λ s, ext $ by simp only [coe_Sup, preimage_Union, coe_mk, mem_image, Union_exists, | |
bUnion_and', Union_Union_eq_right], | |
map_inf' := λ a b, rfl, | |
map_top' := rfl } | |
@[simp] lemma comap_id : comap (continuous_map.id α) = frame_hom.id _ := | |
frame_hom.ext $ λ a, ext rfl | |
lemma comap_mono (f : C(α, β)) {s t : opens β} (h : s ≤ t) : comap f s ≤ comap f t := | |
order_hom_class.mono (comap f) h | |
@[simp] lemma coe_comap (f : C(α, β)) (U : opens β) : ↑(comap f U) = f ⁻¹' U := rfl | |
@[simp] lemma comap_val (f : C(α, β)) (U : opens β) : (comap f U).1 = f ⁻¹' U := rfl | |
protected lemma comap_comp (g : C(β, γ)) (f : C(α, β)) : | |
comap (g.comp f) = (comap f).comp (comap g) := rfl | |
protected lemma comap_comap (g : C(β, γ)) (f : C(α, β)) (U : opens γ) : | |
comap f (comap g U) = comap (g.comp f) U := rfl | |
lemma comap_injective [t0_space β] : injective (comap : C(α, β) → frame_hom (opens β) (opens α)) := | |
λ f g h, continuous_map.ext $ λ a, inseparable.eq $ inseparable_iff_forall_open.2 $ λ s hs, | |
have comap f ⟨s, hs⟩ = comap g ⟨s, hs⟩, from fun_like.congr_fun h ⟨_, hs⟩, | |
show a ∈ f ⁻¹' s ↔ a ∈ g ⁻¹' s, from set.ext_iff.1 (ext_iff.2 this) a | |
/-- A homeomorphism induces an equivalence on open sets, by taking comaps. -/ | |
@[simp] protected def equiv (f : α ≃ₜ β) : opens α ≃ opens β := | |
{ to_fun := opens.comap f.symm.to_continuous_map, | |
inv_fun := opens.comap f.to_continuous_map, | |
left_inv := by { intro U, ext1, exact f.to_equiv.preimage_symm_preimage _ }, | |
right_inv := by { intro U, ext1, exact f.to_equiv.symm_preimage_preimage _ } } | |
/-- A homeomorphism induces an order isomorphism on open sets, by taking comaps. -/ | |
@[simp] protected def order_iso (f : α ≃ₜ β) : opens α ≃o opens β := | |
{ to_equiv := opens.equiv f, | |
map_rel_iff' := λ U V, f.symm.surjective.preimage_subset_preimage_iff } | |
end opens | |
/-- The open neighborhoods of a point. See also `opens` or `nhds`. -/ | |
def open_nhds_of (x : α) : Type* := { s : set α // is_open s ∧ x ∈ s } | |
instance open_nhds_of.inhabited {α : Type*} [topological_space α] (x : α) : | |
inhabited (open_nhds_of x) := ⟨⟨set.univ, is_open_univ, set.mem_univ _⟩⟩ | |
end topological_space | |