The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
MPM-Verse-MaterialSim-Large
Dataset Summary
This dataset contains Material-Point-Method (MPM) simulations for various materials, including water, sand, plasticine, and jelly. Each material is represented as point-clouds that evolve over time. The dataset is designed for learning and predicting MPM-based physical simulations. The dataset is rendered using five geometric models - Stanford-bunny, Spot, Dragon, Armadillo, and Blub. Each setting has 10 trajectories per object.
Supported Tasks and Leaderboards
The dataset supports tasks such as:
- Physics-informed learning
- Point-cloud sequence prediction
- Fluid and granular material modeling
- Neural simulation acceleration
Dataset Structure
Materials and Metadata
Due to the longer duration, water and sand are split into multiple files for rollout_full
and train
.
rollout_full
represents the rollout trajectory over the full-order point-cloud,
while rollout
is on a sample size of 2600.
The first 40 trajectories are used in the train set, and the remaining 10 are used in the test set.
Dataset Characteristics
Material | # of Trajectories | Duration | Time Step (dt) | Shapes | Train Sample Size |
---|---|---|---|---|---|
Water3DNCLAW | 50 | 1000 | 5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
Sand3DNCLAW | 50 | 500 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
Plasticine3DNCLAW | 50 | 200 | 2.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
Jelly3DNCLAW | 50 | 334 | 7.5e-3 | Blub, Spot, Bunny, Armadillo, Dragon | 2600 |
Contact3DNCLAW | 50 | 600 | 2.5e-3 | Blub, Spot, Bunny | 2600 |
Dataset Files
Each dataset file is a dictionary with the following keys:
train.obj/test.pt
particle_type
(list): Indicator for material (only relevant for multimaterial simulations). Each element has shape[N]
corresponding to the number of particles in the point-cloud.position
(list): Snippet of past states, each element has shape[N, W, D]
where:N
: Sample sizeW
: Time window (6)D
: Dimension (2D or 3D)
n_particles_per_example
(list): Integer[1,]
indicating the size of the sampleN
output
(list): Ground truth for predicted state[N, D]
rollout.pt/rollout_full.pt
position
(list): Contains a list of all trajectories, where each element corresponds to a complete trajectory with shape[N, T, D]
where:N
: Number of particlesT
: Rollout durationD
: Dimension (2D or 3D)
Metadata Files
Each dataset folder contains a metadata.json
file with the following information:
bounds
(list): Boundary conditions.default_connectivity_radius
(float): Radius used within the graph neural network.vel_mean
(list): Mean velocity of the entire dataset[x, y, (z)]
for noise profiling.vel_std
(list): Standard deviation of velocity[x, y, (z)]
for noise profiling.acc_mean
(list): Mean acceleration[x, y, (z)]
for noise profiling.acc_std
(list): Standard deviation of acceleration[x, y, (z)]
for noise profiling.
Downloading the Dataset
from huggingface_hub import hf_hub_download, snapshot_download
files = ['train.obj', 'test.pt', 'rollout.pt', 'metadata.json', 'rollout_full.pt']
train_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[0]), cache_dir="./dataset_mpmverse")
test_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[1]), cache_dir="./dataset_mpmverse")
rollout_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[2]), cache_dir="./dataset_mpmverse")
metadata_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[3]), cache_dir="./dataset_mpmverse")
rollout_full_dir = hf_hub_download(repo_id=params.dataset_rootdir, repo_type='dataset', filename=os.path.join('Jelly3DNCLAW', files[4]), cache_dir="./dataset_mpmverse")
Processing Train
import torch
import pickle
with open("path/to/train.obj", "rb") as f:
data = pickle.load(f)
positions = data["position"][0]
print(positions.shape) # Example output: (N, W, D)
Processing Rollout
import torch
import pickle
with open("path/to/rollout_full.obj", "rb") as f:
data = pickle.load(f)
positions = data["position"]
print(len(positions)) # Example output: 50
print(positions.shape) # Example output: (N, T, 3)
Example Simulations
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Citation
If you use this dataset, please cite:
@article{viswanath2024reduced,
title={Reduced-Order Neural Operators: Learning Lagrangian Dynamics on Highly Sparse Graphs},
author={Viswanath, Hrishikesh and Chang, Yue and Berner, Julius and Chen, Peter Yichen and Bera, Aniket},
journal={arXiv preprint arXiv:2407.03925},
year={2024}
}
Source
The 3D datasets (e.g., Water3D, Sand3D, Plasticine3D, Jelly3D, RigidCollision3D, Melting3D) were generated using the NCLAW Simulator, developed by Ma et al. (ICML 2023).
- Downloads last month
- 157