repo_name
stringlengths
7
92
path
stringlengths
5
149
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
911
693k
license
stringclasses
15 values
ratnania/pigasus
doc/manual/include/demo/test_neumann_quartcircle.py
1
2730
#! /usr/bin/python # ... try: from matplotlib import pyplot as plt PLOT=True except ImportError: PLOT=False # ... import numpy as np from pigasus.gallery.poisson import * import sys import inspect filename = inspect.getfile(inspect.currentframe()) # script filename (usually with path) # ... sin = np.sin ; cos = np.cos ; pi = np.pi ; exp = np.exp # ... #----------------------------------- try: nx = int(sys.argv[1]) except: nx = 31 try: ny = int(sys.argv[2]) except: ny = 31 try: px = int(sys.argv[3]) except: px = 2 try: py = int(sys.argv[4]) except: py = 2 from igakit.cad_geometry import quart_circle as domain geo = domain(n=[nx,ny],p=[px,py]) #----------------------------------- # ... # exact solution # ... R = 1. r = 0.5 c = 1. # for neumann #c = pi / (R**2-r**2) # for all dirichlet bc u = lambda x,y : [ x * y * sin ( c * (R**2 - x**2 - y**2 )) ] # ... # ... # rhs # ... f = lambda x,y : [4*c**2*x**3*y*sin(c*(R**2 - x**2 - y**2)) \ + 4*c**2*x*y**3*sin(c*(R**2 - x**2 - y**2)) \ + 12*c*x*y*cos(c*(R**2 - x**2 - y**2)) ] # ... # ... # values of gradu.n at the boundary # ... gradu = lambda x,y : [-2*c*x**2*y*cos(c*(R**2 - x**2 - y**2)) + y*sin(c*(R**2 - x**2 - y**2)) \ ,-2*c*x*y**2*cos(c*(R**2 - x**2 - y**2)) + x*sin(c*(R**2 - x**2 - y**2)) ] def func_g (x,y) : du = gradu (x, y) return [ du[0] , du[1] ] # ... # ... # values of u at the boundary # ... bc_neumann={} bc_neumann [0,0] = func_g Dirichlet = [[1,2,3]] #AllDirichlet = True # ... # ... try: bc_dirichlet except NameError: bc_dirichlet = None else: pass try: bc_neumann except NameError: bc_neumann = None else: pass try: AllDirichlet except NameError: AllDirichlet = None else: pass try: Dirichlet except NameError: Dirichlet = None else: pass try: Metric except NameError: Metric = None else: pass # ... # ... PDE = poisson(geometry=geo, bc_dirichlet=bc_dirichlet, bc_neumann=bc_neumann, AllDirichlet=AllDirichlet, Dirichlet=Dirichlet,metric=Metric) # ... # ... PDE.assembly(f=f) PDE.solve() # ... # ... normU = PDE.norm(exact=u) print "norm U = ", normU # ... # ... if PLOT: PDE.plot() ; plt.colorbar(); plt.title('$u_h$') plt.savefig(filename.split('.py')[0]+'.png', format='png') plt.clf() # ... PDE.free()
mit
devanshdalal/scikit-learn
examples/gaussian_process/plot_gpr_noisy_targets.py
64
3706
""" ========================================================= Gaussian Processes regression: basic introductory example ========================================================= A simple one-dimensional regression example computed in two different ways: 1. A noise-free case 2. A noisy case with known noise-level per datapoint In both cases, the kernel's parameters are estimated using the maximum likelihood principle. The figures illustrate the interpolating property of the Gaussian Process model as well as its probabilistic nature in the form of a pointwise 95% confidence interval. Note that the parameter ``alpha`` is applied as a Tikhonov regularization of the assumed covariance between the training points. """ print(__doc__) # Author: Vincent Dubourg <vincent.dubourg@gmail.com> # Jake Vanderplas <vanderplas@astro.washington.edu> # Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>s # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) # ---------------------------------------------------------------------- # First the noiseless case X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T # Observations y = f(X).ravel() # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model kernel = C(1.0, (1e-3, 1e3)) * RBF(10, (1e-2, 1e2)) gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=9) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = plt.figure() plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') plt.plot(X, y, 'r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') # ---------------------------------------------------------------------- # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Instanciate a Gaussian Process model gp = GaussianProcessRegressor(kernel=kernel, alpha=(dy / y) ** 2, n_restarts_optimizer=10) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, sigma = gp.predict(x, return_std=True) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = plt.figure() plt.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') plt.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') plt.plot(x, y_pred, 'b-', label=u'Prediction') plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') plt.xlabel('$x$') plt.ylabel('$f(x)$') plt.ylim(-10, 20) plt.legend(loc='upper left') plt.show()
bsd-3-clause
lordkman/burnman
examples/example_geotherms.py
4
4049
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU # GPL v2 or later. """ example_geotherms ----------------- This example shows each of the geotherms currently possible with BurnMan. These are: 1. Brown and Shankland, 1981 :cite:`Brown1981` 2. Anderson, 1982 :cite:`anderson1982earth` 3. Watson and Baxter, 2007 :cite:`Watson2007` 4. linear extrapolation 5. Read in from file from user 6. Adiabatic from potential temperature and choice of mineral *Uses:* * :func:`burnman.geotherm.brown_shankland` * :func:`burnman.geotherm.anderson` * input geotherm file *input_geotherm/example_geotherm.txt* (optional) * :class:`burnman.composite.Composite` for adiabat *Demonstrates:* * the available geotherms """ from __future__ import absolute_import import os import sys import numpy as np import matplotlib.pyplot as plt # hack to allow scripts to be placed in subdirectories next to burnman: if not os.path.exists('burnman') and os.path.exists('../burnman'): sys.path.insert(1, os.path.abspath('..')) import burnman from burnman import minerals if __name__ == "__main__": # we want to evaluate several geotherms at these values pressures = np.arange(9.0e9, 128e9, 3e9) seismic_model = burnman.seismic.PREM() depths = seismic_model.depth(pressures) # load two builtin geotherms and evaluate the temperatures at all pressures temperature1 = burnman.geotherm.brown_shankland(depths) temperature2 = burnman.geotherm.anderson(depths) # a geotherm is actually just a function that returns a list of temperatures given pressures in Pa # so we can just write our own function my_geotherm_function = lambda p: [1500 + (2500 - 1500) * x / 128e9 for x in p] temperature3 = my_geotherm_function(pressures) # what about a geotherm defined from datapoints given in a file (our # inline)? table = [[1e9, 1600], [30e9, 1700], [130e9, 2700]] # this could also be loaded from a file, just uncomment this # table = burnman.tools.read_table("input_geotherm/example_geotherm.txt") table_pressure = np.array(table)[:, 0] table_temperature = np.array(table)[:, 1] my_geotherm_interpolate = lambda p: [np.interp(x, table_pressure, table_temperature) for x in p] temperature4 = my_geotherm_interpolate(pressures) # finally, we can also calculate a self consistent # geotherm for an assemblage of minerals # based on self compression of the composite rock. # First we need to define an assemblage amount_perovskite = 0.8 fe_pv = 0.05 fe_pc = 0.2 pv = minerals.SLB_2011.mg_fe_perovskite() pc = minerals.SLB_2011.ferropericlase() pv.set_composition([1. - fe_pv, fe_pv, 0.]) pc.set_composition([1. - fe_pc, fe_pc]) example_rock = burnman.Composite( [pv, pc], [amount_perovskite, 1.0 - amount_perovskite]) # next, define an anchor temperature at which we are starting. # Perhaps 1500 K for the upper mantle T0 = 1500. # then generate temperature values using the self consistent function. # This takes more time than the above methods temperature5 = burnman.geotherm.adiabatic(pressures, T0, example_rock) # you can also look at burnman/geotherm.py to see how the geotherms are # implemented plt.plot(pressures / 1e9, temperature1, '-r', label="Brown, Shankland") plt.plot(pressures / 1e9, temperature2, '-c', label="Anderson") plt.plot(pressures / 1e9, temperature3, '-b', label="handwritten linear") plt.plot(pressures / 1e9, temperature4, '-k', label="handwritten from table") plt.plot(pressures / 1e9, temperature5, '-m', label="Adiabat with pv (70%) and fp(30%)") plt.legend(loc='lower right') plt.xlim([8.5, 130]) plt.xlabel('Pressure/GPa') plt.ylabel('Temperature') plt.savefig("output_figures/example_geotherm.png") plt.show()
gpl-2.0
francesco-mannella/dmp-esn
parametric/parametric_dmp/bin/tr_datasets/e_cursive_curves_angles_start_none/results/plot.py
18
1043
#!/usr/bin/env python import glob import numpy as np import matplotlib.pyplot as plt import os import sys pathname = os.path.dirname(sys.argv[0]) if pathname: os.chdir(pathname) n_dim = None trains = [] for fname in glob.glob("tl*"): t = np.loadtxt(fname) trains.append(t) tests = [] for fname in glob.glob("tt*"): t = np.loadtxt(fname) tests.append(t) trial_results= [] for fname in glob.glob("rtl*"): t = np.loadtxt(fname) trial_results.append(t) test_results= [] for fname in glob.glob("rtt*"): t = np.loadtxt(fname) test_results.append(t) fig = plt.figure() ax = fig.add_subplot(111, aspect="equal") for d in trains: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color="blue", lw=3, alpha=0.5) for d in tests: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color="red", lw=3, alpha=0.5) for d in trial_results: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color=[0,0,.5], lw=2) for d in test_results: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color=[.5,0,0], lw=2) plt.show()
gpl-2.0
flowersteam/SESM
SESM/pykinect.py
2
3387
import zmq import numpy import threading from collections import namedtuple Point2D = namedtuple('Point2D', ('x', 'y')) Point3D = namedtuple('Point3D', ('x', 'y', 'z')) Quaternion = namedtuple('Quaternion', ('x', 'y', 'z', 'w')) torso_joints = ('hip_center', 'spine', 'shoulder_center', 'head') left_arm_joints = ('shoulder_left', 'elbow_left', 'wrist_left', 'hand_left') right_arm_joints = ('shoulder_right', 'elbow_right', 'wrist_right', 'hand_right') left_leg_joints = ('hip_left', 'knee_left', 'ankle_left', 'foot_left') right_leg_joints = ('hip_right', 'knee_right', 'ankle_right', 'foot_right') skeleton_joints = torso_joints + left_arm_joints + right_arm_joints + left_leg_joints + right_leg_joints class Skeleton(namedtuple('Skeleton', ('timestamp', 'user_id') + skeleton_joints)): joints = skeleton_joints @property def to_np(self): l = [] for j in self.joints: p = getattr(self, j).position l.append((p.x, p.y, p.z)) return numpy.array(l) Joint = namedtuple('Joint', ('position', 'orientation', 'pixel_coordinate')) class KinectSensor(object): def __init__(self, addr, port): self._lock = threading.Lock() self._skeleton = None context = zmq.Context() self.socket = context.socket(zmq.REQ) self.socket.connect('tcp://{}:{}'.format(addr, port)) t = threading.Thread(target=self.get_skeleton) t.daemon = True t.start() @property def tracked_skeleton(self): with self._lock: return self._skeleton @tracked_skeleton.setter def tracked_skeleton(self, skeleton): with self._lock: self._skeleton = skeleton def get_skeleton(self): while True: self.socket.send('Hello') md = self.socket.recv_json() msg = self.socket.recv() skeleton_array = numpy.frombuffer(buffer(msg), dtype=md['dtype']) skeleton_array = skeleton_array.reshape(md['shape']) joints = [] for i in range(len(skeleton_joints)): x, y, z, w = skeleton_array[i][0:4] position = Point3D(x / w, y / w, z / w) pixel_coord = Point2D(*skeleton_array[i][4:6]) orientation = Quaternion(*skeleton_array[i][6:10]) joints.append(Joint(position, orientation, pixel_coord)) self.tracked_skeleton = Skeleton(md['timestamp'], md['user_index'], *joints) def draw_position(skel, ax): xy, zy = [], [] if not skel: return for j in skeleton_joints: p = getattr(skel, j).position xy.append((p.x, p.y)) zy.append((p.z, p.y)) ax.set_xlim(-2, 5) ax.set_ylim(-1.5, 1.5) ax.scatter(zip(*xy)[0], zip(*xy)[1], 30, 'b') ax.scatter(zip(*zy)[0], zip(*zy)[1], 30, 'r') if __name__ == '__main__': import time import matplotlib.pyplot as plt plt.ion() fig = plt.figure() ax = fig.add_subplot(111) kinect_sensor = KinectSensor('193.50.110.210', 9999) import skelangle kinect_angle = skelangle.AngleFromSkel() try: while True: ax.clear() draw_position(kinect_sensor.tracked_skeleton, ax) plt.draw() time.sleep(0.1) except KeyboardInterrupt: plt.close('all')
gpl-3.0
gwparikh/cvgui
grouping_calibration.py
2
9402
#!/usr/bin/env python import os, sys, subprocess import argparse import subprocess import threading import timeit from multiprocessing import Queue, Lock from configobj import ConfigObj from numpy import loadtxt from numpy.linalg import inv import matplotlib.pyplot as plt import moving from cvguipy import trajstorage, cvgenetic, cvconfig """ Grouping Calibration By Genetic Algorithm. This script uses genetic algorithm to search for the best configuration. It does not monitor RAM usage, therefore, CPU thrashing might be happened when number of parents (selection size) is too large. """ # class for genetic algorithm class GeneticCompare(object): def __init__(self, motalist, motplist, IDlist, cfg_list, lock): self.motalist = motalist self.motplist = motplist self.IDlist = IDlist self.cfg_list = cfg_list self.lock = lock # This is used for calculte fitness of individual in genetic algorithn. # It is modified to create sqlite and cfg file before tuning computeClearMOT. # NOTE errors show up when loading two same ID def computeMOT(self, i): # create sqlite and cfg file with id i cfg_name = config_files +str(i)+'.cfg' sql_name = sqlite_files +str(i)+'.sqlite' open(cfg_name,'w').close() config = ConfigObj(cfg_name) cfg_list.write_config(i ,config) command = ['cp', 'tracking_only.sqlite', sql_name] process = subprocess.Popen(command) process.wait() command = ['trajextract.py', args.inputVideo, '-o', args.homography, '-t', cfg_name, '-d', sql_name, '--gf'] # suppress output of grouping extraction devnull = open(os.devnull, 'wb') process = subprocess.Popen(command, stdout = devnull) process.wait() obj = trajstorage.CVsqlite(sql_name) print "loading", i obj.loadObjects() motp, mota, mt, mme, fpt, gt = moving.computeClearMOT(cdb.annotations, obj.objects, args.matchDistance, firstFrame, lastFrame) if motp is None: motp = 0 self.lock.acquire() self.IDlist.put(i) self.motplist.put(motp) self.motalist.put(mota) obj.close() if args.PrintMOTA: print("ID: mota:{} motp:{}".format(mota, motp)) self.lock.release() return mota if __name__ == '__main__' : parser = argparse.ArgumentParser(description="compare all sqlites that are created by cfg_combination.py to the Annotated version to find the ID of the best configuration") parser.add_argument('inputVideo', help= "input video filename") parser.add_argument('-r', '--configuration-file', dest='range_cfg', help= "the configuration-file contain the range of configuration") parser.add_argument('-t', '--traffintel-config', dest='traffintelConfig', help= "the TrafficIntelligence file to use for running the first extraction.") parser.add_argument('-m', '--mask-File', dest='maskFilename', help="Name of the mask-File for trajextract") parser.add_argument('-d', '--database-file', dest ='databaseFile', help ="Name of the databaseFile.") parser.add_argument('-o', '--homography-file', dest ='homography', help = "Name of the homography file.", required = True) parser.add_argument('-md', '--matching-distance', dest='matchDistance', help = "matchDistance", default = 10, type = float) parser.add_argument('-a', '--accuracy', dest = 'accuracy', help = "accuracy parameter for genetic algorithm", type = int) parser.add_argument('-p', '--population', dest = 'population', help = "population parameter for genetic algorithm", required = True, type = int) parser.add_argument('-np', '--num-of-parents', dest = 'num_of_parents', help = "Number of parents that are selected each generation", type = int) parser.add_argument('-mota', '--print-MOTA', dest='PrintMOTA', action = 'store_true', help = "Print MOTA for each ID.") args = parser.parse_args() os.mkdir('cfg_files') os.mkdir('sql_files') sqlite_files = "sql_files/Sqlite_ID_" config_files = "cfg_files/Cfg_ID_" # ------------------initialize annotated version if not existed ---------- # # inputVideo check if not os.path.exists(args.inputVideo): print("Input video {} does not exist! Exiting...".format(args.inputVideo)) sys.exit(1) # configuration file check if args.range_cfg is None: config = ConfigObj('range.cfg') else: config = ConfigObj(args.range_cfg) # get configuration and put them to a List cfg_list = cvconfig.CVConfigList() thread_cfgtolist = threading.Thread(target = cvconfig.config_to_list, args = (cfg_list, config)) thread_cfgtolist.start(); # check if dbfile name is entered if args.databaseFile is None: print("Database-file is not entered, running trajextract and cvplayer.") if not os.path.exists(args.homography): print("Homography file does not exist! Exiting...") sys.exit(1) else: videofile=args.inputVideo if 'avi' in videofile: if args.maskFilename is not None: command = ['trajextract.py',args.inputVideo,'-m', args.maskFilename,'-o', args.homography] else: command = ['trajextract.py',args.inputVideo,'-o', args.homography] process = subprocess.Popen(command) process.wait() databaseFile = videofile.replace('avi','sqlite') command = ['cvplayer.py',args.inputVideo,'-d',databaseFile,'-o',args.homography] process = subprocess.Popen(command) process.wait() else: print("Input video {} is not 'avi' type. Exiting...".format(args.inputVideo)) sys.exit(1) else: databaseFile = args.databaseFile thread_cfgtolist.join() # ------------------Done initialization for annotation-------------------- # # create first tracking only database template. print("creating the first tracking only database template.") if args.maskFilename is not None: command = map(str, ['trajextract.py',args.inputVideo, '-d', 'tracking_only.sqlite', '-t', args.traffintelConfig, '-o', args.homography, '-m', args.maskFilename, '--tf']) else: command = map(str, ['trajextract.py',args.inputVideo, '-d', sql_name, '-t', args.traffintelConfig, '-o', args.homography, '--tf']) process = subprocess.Popen(command) process.wait() # ----start using genetic algorithm to search for best configuration-------# start = timeit.default_timer() dbfile = databaseFile; homography = loadtxt(args.homography) cdb = trajstorage.CVsqlite(dbfile) cdb.open() cdb.getLatestAnnotation() cdb.createBoundingBoxTable(cdb.latestannotations, inv(homography)) cdb.loadAnnotaion() for a in cdb.annotations: a.computeCentroidTrajectory(homography) print "Latest Annotaions in "+dbfile+": ", cdb.latestannotations cdb.frameNumbers = cdb.getFrameList() firstFrame = cdb.frameNumbers[0] lastFrame = cdb.frameNumbers[-1] foundmota = Queue() foundmotp = Queue() IDs = Queue() lock = Lock() Comp = GeneticCompare(foundmota, foundmotp, IDs, cfg_list, lock) if args.accuracy != None: GeneticCal = cvgenetic.CVGenetic(args.population, cfg_list, Comp.computeMOT, args.accuracy) else: GeneticCal = cvgenetic.CVGenetic(args.population, cfg_list, Comp.computeMOT) if args.num_of_parents != None: GeneticCal.run_thread(args.num_of_parents) else: GeneticCal.run_thread() # tranform queues to lists foundmota = cvgenetic.Queue_to_list(foundmota) foundmotp = cvgenetic.Queue_to_list(foundmotp) IDs = cvgenetic.Queue_to_list(IDs) for i in range(len(foundmotp)): foundmotp[i] /= args.matchDistance Best_mota = max(foundmota) Best_ID = IDs[foundmota.index(Best_mota)] print "Best multiple object tracking accuracy (MOTA)", Best_mota print "ID:", Best_ID stop = timeit.default_timer() print str(stop-start) + "s" total = [] for i in range(len(foundmota)): total.append(foundmota[i]- 0.1 * foundmotp[i]) Best_total = max(total) Best_total_ID = IDs[total.index(Best_total)] # ------------------------------Done searching----------------------------# # use matplot to plot a graph of all calculated IDs along with thier mota plt.figure(1) plt.plot(foundmota ,IDs ,'bo') plt.plot(foundmotp ,IDs ,'yo') plt.plot(Best_mota, Best_ID, 'ro') plt.axis([-1, 1, -1, cfg_list.get_total_combination()]) plt.xlabel('mota') plt.ylabel('ID') plt.title(b'Best MOTA: '+str(Best_mota) +'\nwith ID: '+str(Best_ID)) plotFile = os.path.splitext(dbfile)[0] + '_CalibrationResult_mota.png' plt.savefig(plotFile) plt.figure(2) plt.plot(total, IDs, 'bo') plt.plot(Best_total, Best_total_ID, 'ro') plt.xlabel('mota + motp') plt.ylabel('ID') plt.title(b'Best total: '+str(Best_total) +'\nwith ID: '+str(Best_total_ID)) # save the plot plotFile = os.path.splitext(dbfile)[0] + '_CalibrationResult_motp.png' plt.savefig(plotFile) plt.show() cdb.close()
mit
keflavich/pyspeckit-obsolete
pyspeckit/spectrum/models/ammonia.py
1
28836
""" ======================================== Ammonia inversion transition TKIN fitter ======================================== Ammonia inversion transition TKIN fitter translated from Erik Rosolowsky's http://svn.ok.ubc.ca/svn/signals/nh3fit/ .. moduleauthor:: Adam Ginsburg <adam.g.ginsburg@gmail.com> Module API ^^^^^^^^^^ """ import numpy as np from pyspeckit.mpfit import mpfit from pyspeckit.spectrum.parinfo import ParinfoList,Parinfo import fitter import matplotlib.cbook as mpcb import copy import model line_names = ['oneone','twotwo','threethree','fourfour'] freq_dict = { 'oneone': 23.694506e9, 'twotwo': 23.722633335e9, 'threethree': 23.8701296e9, 'fourfour': 24.1394169e9, } aval_dict = { 'oneone': 1.712e-7, #64*!pi**4/(3*h*c**3)*nu11**3*mu0**2*(1/2.) 'twotwo': 2.291e-7, #64*!pi**4/(3*h*c**3)*nu22**3*mu0**2*(2/3.) 'threethree': 2.625e-7, #64*!pi**4/(3*h*c**3)*nu33**3*mu0**2*(3/4.) 'fourfour': 3.167e-7, #64*!pi**4/(3*h*c**3)*nu44**3*mu0**2*(4/5.) } ortho_dict = { 'oneone': False, 'twotwo': False, 'threethree': True, 'fourfour': False, } n_ortho = np.arange(0,28,3) # 0..3..27 n_para = np.array([x for x in range(28) if x % 3 != 0]) voff_lines_dict = { 'oneone': [19.8513, 19.3159, 7.88669, 7.46967, 7.35132, 0.460409, 0.322042, -0.0751680, -0.213003, 0.311034, 0.192266, -0.132382, -0.250923, -7.23349, -7.37280, -7.81526, -19.4117, -19.5500], 'twotwo':[26.5263, 26.0111, 25.9505, 16.3917, 16.3793, 15.8642, 0.562503, 0.528408, 0.523745, 0.0132820, -0.00379100, -0.0132820, -0.501831, -0.531340, -0.589080, -15.8547, -16.3698, -16.3822, -25.9505, -26.0111, -26.5263], 'threethree':[29.195098, 29.044147, 28.941877, 28.911408, 21.234827, 21.214619, 21.136387, 21.087456, 1.005122, 0.806082, 0.778062, 0.628569, 0.016754, -0.005589, -0.013401, -0.639734, -0.744554, -1.031924, -21.125222, -21.203441, -21.223649, -21.076291, -28.908067, -28.938523, -29.040794, -29.191744], 'fourfour':[ 0. , -30.49783692, 30.49783692, 0., 24.25907811, -24.25907811, 0. ] } tau_wts_dict = { 'oneone': [0.0740740, 0.148148, 0.0925930, 0.166667, 0.0185190, 0.0370370, 0.0185190, 0.0185190, 0.0925930, 0.0333330, 0.300000, 0.466667, 0.0333330, 0.0925930, 0.0185190, 0.166667, 0.0740740, 0.148148], 'twotwo': [0.00418600, 0.0376740, 0.0209300, 0.0372090, 0.0260470, 0.00186000, 0.0209300, 0.0116280, 0.0106310, 0.267442, 0.499668, 0.146512, 0.0116280, 0.0106310, 0.0209300, 0.00186000, 0.0260470, 0.0372090, 0.0209300, 0.0376740, 0.00418600], 'threethree': [0.012263, 0.008409, 0.003434, 0.005494, 0.006652, 0.008852, 0.004967, 0.011589, 0.019228, 0.010387, 0.010820, 0.009482, 0.293302, 0.459109, 0.177372, 0.009482, 0.010820, 0.019228, 0.004967, 0.008852, 0.006652, 0.011589, 0.005494, 0.003434, 0.008409, 0.012263], 'fourfour': [0.2431, 0.0162, 0.0162, 0.3008, 0.0163, 0.0163, 0.3911]} def ammonia(xarr, tkin=20, tex=None, ntot=1e14, width=1, xoff_v=0.0, fortho=0.0, tau=None, fillingfraction=None, return_tau=False, thin=False, verbose=False, return_components=False, debug=False ): """ Generate a model Ammonia spectrum based on input temperatures, column, and gaussian parameters ntot can be specified as a column density (e.g., 10^15) or a log-column-density (e.g., 15) tex can be specified or can be assumed LTE if unspecified, if tex>tkin, or if "thin" is specified "thin" uses a different parametetrization and requires only the optical depth, width, offset, and tkin to be specified. In the 'thin' approximation, tex is not used in computation of the partition function - LTE is implicitly assumed If tau is specified, ntot is NOT fit but is set to a fixed value fillingfraction is an arbitrary scaling factor to apply to the model fortho is the ortho/(ortho+para) fraction. The default is to assume all ortho. xoff_v is the velocity offset in km/s tau refers to the optical depth of the 1-1 line. The optical depths of the other lines are fixed relative to tau_oneone (not implemented) if tau is specified, ntot is ignored """ # Convert X-units to frequency in GHz xarr = xarr.as_unit('GHz') if tex is not None: if tex > tkin: # cannot have Tex > Tkin tex = tkin elif thin: # tex is not used in this case tex = tkin else: tex = tkin if thin: ntot = 1e15 elif 5 < ntot < 25: # allow ntot to be specified as a logarithm. This is # safe because ntot < 1e10 gives a spectrum of all zeros, and the # plausible range of columns is not outside the specified range ntot = 10**ntot elif (25 < ntot < 1e5) or (ntot < 5): # these are totally invalid for log/non-log return 0 # fillingfraction is an arbitrary scaling for the data # The model will be (normal model) * fillingfraction if fillingfraction is None: fillingfraction = 1.0 ckms = 2.99792458e5 ccms = ckms*1e5 g1 = 1 g2 = 1 h = 6.6260693e-27 kb = 1.3806505e-16 mu0 = 1.476e-18 # Dipole Moment in cgs (1.476 Debeye) # Generate Partition Functions nlevs = 51 jv=np.arange(nlevs) ortho = jv % 3 == 0 para = True-ortho Jpara = jv[para] Jortho = jv[ortho] Brot = 298117.06e6 Crot = 186726.36e6 runspec = np.zeros(len(xarr)) tau_dict = {} para_count = 0 ortho_count = 1 # ignore 0-0 if tau is not None and thin: """ Use optical depth in the 1-1 line as a free parameter The optical depths of the other lines are then set by the kinetic temperature Tex is still a free parameter in the final spectrum calculation at the bottom (technically, I think this process assumes LTE; Tex should come into play in these equations, not just the final one) """ dT0 = 41.5 # Energy diff between (2,2) and (1,1) in K trot = tkin/(1+tkin/dT0*np.log(1+0.6*np.exp(-15.7/tkin))) tau_dict['oneone'] = tau tau_dict['twotwo'] = tau*(23.722/23.694)**2*4/3.*5/3.*np.exp(-41.5/trot) tau_dict['threethree'] = tau*(23.8701279/23.694)**2*3/2.*14./3.*np.exp(-101.1/trot) tau_dict['fourfour'] = tau*(24.1394169/23.694)**2*8/5.*9/3.*np.exp(-177.34/trot) else: """ Column density is the free parameter. It is used in conjunction with the full partition function to compute the optical depth in each band Given the complexity of these equations, it would be worth my while to comment each step carefully. """ Zpara = (2*Jpara+1)*np.exp(-h*(Brot*Jpara*(Jpara+1)+ (Crot-Brot)*Jpara**2)/(kb*tkin)) Zortho = 2*(2*Jortho+1)*np.exp(-h*(Brot*Jortho*(Jortho+1)+ (Crot-Brot)*Jortho**2)/(kb*tkin)) for linename in line_names: if ortho_dict[linename]: orthoparafrac = fortho Z = Zortho count = ortho_count ortho_count += 1 else: orthoparafrac = 1.0-fortho Z = Zpara count = para_count # need to treat partition function separately para_count += 1 tau_dict[linename] = (ntot * orthoparafrac * Z[count]/(Z.sum()) / ( 1 + np.exp(-h*freq_dict[linename]/(kb*tkin) )) * ccms**2 / (8*np.pi*freq_dict[linename]**2) * aval_dict[linename]* (1-np.exp(-h*freq_dict[linename]/(kb*tex))) / (width/ckms*freq_dict[linename]*np.sqrt(2*np.pi)) ) # allow tau(11) to be specified instead of ntot # in the thin case, this is not needed: ntot plays no role # this process allows you to specify tau without using the approximate equations specified # above. It should remove ntot from the calculations anyway... if tau is not None and not thin: tau11_temp = tau_dict['oneone'] # re-scale all optical depths so that tau is as specified, but the relative taus # are sest by the kinetic temperature and partition functions for linename,t in tau_dict.iteritems(): tau_dict[linename] = t * tau/tau11_temp components =[] for linename in line_names: voff_lines = np.array(voff_lines_dict[linename]) tau_wts = np.array(tau_wts_dict[linename]) lines = (1-voff_lines/ckms)*freq_dict[linename]/1e9 tau_wts = tau_wts / (tau_wts).sum() nuwidth = np.abs(width/ckms*lines) nuoff = xoff_v/ckms*lines # tau array tauprof = np.zeros(len(xarr)) for kk,no in enumerate(nuoff): tauprof += (tau_dict[linename] * tau_wts[kk] * np.exp(-(xarr+no-lines[kk])**2 / (2.0*nuwidth[kk]**2)) * fillingfraction) components.append( tauprof ) T0 = (h*xarr*1e9/kb) # "temperature" of wavelength if tau is not None and thin: #runspec = tauprof+runspec # is there ever a case where you want to ignore the optical depth function? I think no runspec = (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/2.73)-1))*(1-np.exp(-tauprof))+runspec else: runspec = (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/2.73)-1))*(1-np.exp(-tauprof))+runspec if runspec.min() < 0: raise ValueError("Model dropped below zero. That is not possible normally. Here are the input values: "+ ("tex: %f " % tex) + ("tkin: %f " % tkin) + ("ntot: %f " % ntot) + ("width: %f " % width) + ("xoff_v: %f " % xoff_v) + ("fortho: %f " % fortho) ) if verbose or debug: print "tkin: %g tex: %g ntot: %g width: %g xoff_v: %g fortho: %g fillingfraction: %g" % (tkin,tex,ntot,width,xoff_v,fortho,fillingfraction) if return_components: return (T0/(np.exp(T0/tex)-1)-T0/(np.exp(T0/2.73)-1))*(1-np.exp(-1*np.array(components))) if return_tau: return tau_dict return runspec class ammonia_model(model.SpectralModel): def __init__(self,npeaks=1,npars=6,multisingle='multi',**kwargs): self.npeaks = npeaks self.npars = npars self._default_parnames = ['tkin','tex','ntot','width','xoff_v','fortho'] self.parnames = copy.copy(self._default_parnames) # all fitters must have declared modelfuncs, which should take the fitted pars... self.modelfunc = ammonia self.n_modelfunc = self.n_ammonia # for fitting ammonia simultaneously with a flat background self.onepeakammonia = fitter.vheightmodel(ammonia) #self.onepeakammoniafit = self._fourparfitter(self.onepeakammonia) if multisingle in ('multi','single'): self.multisingle = multisingle else: raise Exception("multisingle must be multi or single") self.default_parinfo = None self.default_parinfo, kwargs = self._make_parinfo(**kwargs) # enforce ammonia-specific parameter limits for par in self.default_parinfo: if 'tex' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],2.73), par.limits[1]) if 'tkin' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],2.73), par.limits[1]) if 'width' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],0), par.limits[1]) if 'fortho' in par.parname.lower(): par.limited = (True,True) if par.limits[1] != 0: par.limits = (max(par.limits[0],0), min(par.limits[1],1)) else: par.limits = (max(par.limits[0],0), 1) if 'ntot' in par.parname.lower(): par.limited = (True,par.limited[1]) par.limits = (max(par.limits[0],0), par.limits[1]) self.parinfo = copy.copy(self.default_parinfo) self.modelfunc_kwargs = kwargs # lower case? self.modelfunc_kwargs.update({'parnames':self.parinfo.parnames}) def __call__(self,*args,**kwargs): #if 'use_lmfit' in kwargs: kwargs.pop('use_lmfit') use_lmfit = kwargs.pop('use_lmfit') if 'use_lmfit' in kwargs else self.use_lmfit if use_lmfit: return self.lmfitter(*args,**kwargs) if self.multisingle == 'single': return self.onepeakammoniafit(*args,**kwargs) elif self.multisingle == 'multi': return self.multinh3fit(*args,**kwargs) def n_ammonia(self, pars=None, parnames=None, **kwargs): """ Returns a function that sums over N ammonia line profiles, where N is the length of tkin,tex,ntot,width,xoff_v,fortho *OR* N = len(pars) / 6 The background "height" is assumed to be zero (you must "baseline" your spectrum before fitting) *pars* [ list ] a list with len(pars) = (6-nfixed)n, assuming tkin,tex,ntot,width,xoff_v,fortho repeated *parnames* [ list ] len(parnames) must = len(pars). parnames determine how the ammonia function parses the arguments """ if hasattr(pars,'values'): # important to treat as Dictionary, since lmfit params & parinfo both have .items parnames,parvals = zip(*pars.items()) parnames = [p.lower() for p in parnames] parvals = [p.value for p in parvals] elif parnames is None: parvals = pars parnames = self.parnames else: parvals = pars if len(pars) != len(parnames): # this should only be needed when other codes are changing the number of peaks # during a copy, as opposed to letting them be set by a __call__ # (n_modelfuncs = n_ammonia can be called directly) # n_modelfuncs doesn't care how many peaks there are if len(pars) % len(parnames) == 0: parnames = [p for ii in range(len(pars)/len(parnames)) for p in parnames] npars = len(parvals) / self.npeaks else: raise ValueError("Wrong array lengths passed to n_ammonia!") else: npars = len(parvals) / self.npeaks self._components = [] def L(x): v = np.zeros(len(x)) for jj in xrange(self.npeaks): modelkwargs = kwargs.copy() for ii in xrange(npars): name = parnames[ii+jj*npars].strip('0123456789').lower() modelkwargs.update({name:parvals[ii+jj*npars]}) v += ammonia(x,**modelkwargs) return v return L def components(self, xarr, pars, hyperfine=False): """ Ammonia components don't follow the default, since in Galactic astronomy the hyperfine components should be well-separated. If you want to see the individual components overlaid, you'll need to pass hyperfine to the plot_fit call """ comps=[] for ii in xrange(self.npeaks): if hyperfine: modelkwargs = dict(zip(self.parnames[ii*self.npars:(ii+1)*self.npars],pars[ii*self.npars:(ii+1)*self.npars])) comps.append( ammonia(xarr,return_components=True,**modelkwargs) ) else: modelkwargs = dict(zip(self.parnames[ii*self.npars:(ii+1)*self.npars],pars[ii*self.npars:(ii+1)*self.npars])) comps.append( [ammonia(xarr,return_components=False,**modelkwargs)] ) modelcomponents = np.concatenate(comps) return modelcomponents def multinh3fit(self, xax, data, npeaks=1, err=None, params=(20,20,14,1.0,0.0,0.5), parnames=None, fixed=(False,False,False,False,False,False), limitedmin=(True,True,True,True,False,True), limitedmax=(False,False,False,False,False,True), minpars=(2.73,2.73,0,0,0,0), parinfo=None, maxpars=(0,0,0,0,0,1), quiet=True, shh=True, veryverbose=False, **kwargs): """ Fit multiple nh3 profiles (multiple can be 1) Inputs: xax - x axis data - y axis npeaks - How many nh3 profiles to fit? Default 1 (this could supersede onedgaussfit) err - error corresponding to data These parameters need to have length = 6*npeaks. If npeaks > 1 and length = 6, they will be replicated npeaks times, otherwise they will be reset to defaults: params - Fit parameters: [tkin, tex, ntot (or tau), width, offset, ortho fraction] * npeaks If len(params) % 6 == 0, npeaks will be set to len(params) / 6 fixed - Is parameter fixed? limitedmin/minpars - set lower limits on each parameter (default: width>0, Tex and Tkin > Tcmb) limitedmax/maxpars - set upper limits on each parameter parnames - default parameter names, important for setting kwargs in model ['tkin','tex','ntot','width','xoff_v','fortho'] quiet - should MPFIT output each iteration? shh - output final parameters? Returns: Fit parameters Model Fit errors chi2 """ if parinfo is None: self.npars = len(params) / npeaks if len(params) != npeaks and (len(params) / self.npars) > npeaks: npeaks = len(params) / self.npars self.npeaks = npeaks if isinstance(params,np.ndarray): params=params.tolist() # this is actually a hack, even though it's decently elegant # somehow, parnames was being changed WITHOUT being passed as a variable # this doesn't make sense - at all - but it happened. # (it is possible for self.parnames to have npars*npeaks elements where # npeaks > 1 coming into this function even though only 6 pars are specified; # _default_parnames is the workaround) if parnames is None: parnames = copy.copy(self._default_parnames) partype_dict = dict(zip(['params','parnames','fixed','limitedmin','limitedmax','minpars','maxpars'], [params,parnames,fixed,limitedmin,limitedmax,minpars,maxpars])) # make sure all various things are the right length; if they're not, fix them using the defaults for partype,parlist in partype_dict.iteritems(): if len(parlist) != self.npars*self.npeaks: # if you leave the defaults, or enter something that can be multiplied by npars to get to the # right number of gaussians, it will just replicate if len(parlist) == self.npars: partype_dict[partype] *= npeaks elif len(parlist) > self.npars: # DANGER: THIS SHOULD NOT HAPPEN! print "WARNING! Input parameters were longer than allowed for variable ",parlist partype_dict[partype] = partype_dict[partype][:self.npars] elif parlist==params: # this instance shouldn't really be possible partype_dict[partype] = [20,20,1e10,1.0,0.0,0.5] * npeaks elif parlist==fixed: partype_dict[partype] = [False] * len(params) elif parlist==limitedmax: # only fortho, fillingfraction have upper limits partype_dict[partype] = (np.array(parnames) == 'fortho') + (np.array(parnames) == 'fillingfraction') elif parlist==limitedmin: # no physical values can be negative except velocity partype_dict[partype] = (np.array(parnames) != 'xoff_v') elif parlist==minpars: # all have minima of zero except kinetic temperature, which can't be below CMB. Excitation temperature technically can be, but not in this model partype_dict[partype] = ((np.array(parnames) == 'tkin') + (np.array(parnames) == 'tex')) * 2.73 elif parlist==maxpars: # fractions have upper limits of 1.0 partype_dict[partype] = ((np.array(parnames) == 'fortho') + (np.array(parnames) == 'fillingfraction')).astype('float') elif parlist==parnames: # assumes the right number of parnames (essential) partype_dict[partype] = list(parnames) * self.npeaks if len(parnames) != len(partype_dict['params']): raise ValueError("Wrong array lengths AFTER fixing them") # used in components. Is this just a hack? self.parnames = partype_dict['parnames'] parinfo = [ {'n':ii, 'value':partype_dict['params'][ii], 'limits':[partype_dict['minpars'][ii],partype_dict['maxpars'][ii]], 'limited':[partype_dict['limitedmin'][ii],partype_dict['limitedmax'][ii]], 'fixed':partype_dict['fixed'][ii], 'parname':partype_dict['parnames'][ii]+str(ii/self.npars), 'mpmaxstep':float(partype_dict['parnames'][ii] in ('tex','tkin')), # must force small steps in temperature (True = 1.0) 'error': 0} for ii in xrange(len(partype_dict['params'])) ] # hack: remove 'fixed' pars parinfo_with_fixed = parinfo parinfo = [p for p in parinfo_with_fixed if not p['fixed']] fixed_kwargs = dict((p['parname'].strip("0123456789").lower(),p['value']) for p in parinfo_with_fixed if p['fixed']) # don't do this - it breaks the NEXT call because npars != len(parnames) self.parnames = [p['parname'] for p in parinfo] # this is OK - not a permanent change parnames = [p['parname'] for p in parinfo] # not OK self.npars = len(parinfo)/self.npeaks parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) #import pdb; pdb.set_trace() else: self.parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) parinfo_with_fixed = None fixed_kwargs = {} fitfun_kwargs = dict(kwargs.items()+fixed_kwargs.items()) npars = len(parinfo)/self.npeaks # (fortho0 is not fortho) # this doesn't work if parinfo_with_fixed is not None: # this doesn't work for p in parinfo_with_fixed: # this doesn't work # users can change the defaults while holding them fixed # this doesn't work if p['fixed']: # this doesn't work kwargs.update({p['parname']:p['value']}) def mpfitfun(x,y,err): if err is None: def f(p,fjac=None): return [0,(y-self.n_ammonia(pars=p, parnames=parinfo.parnames, **fitfun_kwargs)(x))] else: def f(p,fjac=None): return [0,(y-self.n_ammonia(pars=p, parnames=parinfo.parnames, **fitfun_kwargs)(x))/err] return f if veryverbose: print "GUESSES: " print "\n".join(["%s: %s" % (p['parname'],p['value']) for p in parinfo]) mp = mpfit(mpfitfun(xax,data,err),parinfo=parinfo,quiet=quiet) mpp = mp.params if mp.perror is not None: mpperr = mp.perror else: mpperr = mpp*0 chi2 = mp.fnorm if mp.status == 0: raise Exception(mp.errmsg) for i,p in enumerate(mpp): parinfo[i]['value'] = p parinfo[i]['error'] = mpperr[i] if not shh: print "Fit status: ",mp.status print "Fit message: ",mp.errmsg print "Final fit values: " for i,p in enumerate(mpp): print parinfo[i]['parname'],p," +/- ",mpperr[i] print "Chi2: ",mp.fnorm," Reduced Chi2: ",mp.fnorm/len(data)," DOF:",len(data)-len(mpp) if any(['tex' in s for s in parnames]) and any(['tkin' in s for s in parnames]): texnum = (i for i,s in enumerate(parnames) if 'tex' in s) tkinnum = (i for i,s in enumerate(parnames) if 'tkin' in s) for txn,tkn in zip(texnum,tkinnum): if mpp[txn] > mpp[tkn]: mpp[txn] = mpp[tkn] # force Tex>Tkin to Tex=Tkin (already done in n_ammonia) self.mp = mp if parinfo_with_fixed is not None: # self self.parinfo preserving the 'fixed' parameters # ORDER MATTERS! for p in parinfo: parinfo_with_fixed[p['n']] = p self.parinfo = ParinfoList([Parinfo(p) for p in parinfo_with_fixed], preserve_order=True) else: self.parinfo = parinfo self.parinfo = ParinfoList([Parinfo(p) for p in parinfo], preserve_order=True) # I don't THINK these are necessary? #self.parinfo = parinfo #self.parinfo = ParinfoList([Parinfo(p) for p in self.parinfo]) # need to restore the fixed parameters.... # though the above commented out section indicates that I've done and undone this dozens of times now # (a test has been added to test_nh3.py) # this was NEVER included or tested because it breaks the order #for par in parinfo_with_fixed: # if par.parname not in self.parinfo.keys(): # self.parinfo.append(par) self.mpp = self.parinfo.values self.mpperr = self.parinfo.errors self.mppnames = self.parinfo.names self.model = self.n_ammonia(pars=self.mpp, parnames=self.mppnames, **kwargs)(xax) #if self.model.sum() == 0: # print "DON'T FORGET TO REMOVE THIS ERROR!" # raise ValueError("Model is zeros.") indiv_parinfo = [self.parinfo[jj*self.npars:(jj+1)*self.npars] for jj in xrange(len(self.parinfo)/self.npars)] modelkwargs = [ dict([(p['parname'].strip("0123456789").lower(),p['value']) for p in pi]) for pi in indiv_parinfo] self.tau_list = [ammonia(xax,return_tau=True,**mk) for mk in modelkwargs] return self.mpp,self.model,self.mpperr,chi2 def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # TKIN, TEX, ntot, width, center, ortho fraction return [20,10, 1e15, 1.0, 0.0, 1.0] def annotations(self): from decimal import Decimal # for formatting tex_key = {'tkin':'T_K','tex':'T_{ex}','ntot':'N','fortho':'F_o','width':'\\sigma','xoff_v':'v','fillingfraction':'FF','tau':'\\tau_{1-1}'} # small hack below: don't quantize if error > value. We want to see the values. label_list = [] for pinfo in self.parinfo: parname = tex_key[pinfo['parname'].strip("0123456789").lower()] parnum = int(pinfo['parname'][-1]) if pinfo['fixed']: formatted_value = "%s" % pinfo['value'] pm = "" formatted_error="" else: formatted_value = Decimal("%g" % pinfo['value']).quantize(Decimal("%0.2g" % (min(pinfo['error'],pinfo['value'])))) pm = "$\\pm$" formatted_error = Decimal("%g" % pinfo['error']).quantize(Decimal("%0.2g" % pinfo['error'])) label = "$%s(%i)$=%8s %s %8s" % (parname, parnum, formatted_value, pm, formatted_error) label_list.append(label) labels = tuple(mpcb.flatten(label_list)) return labels class ammonia_model_vtau(ammonia_model): def __init__(self,**kwargs): super(ammonia_model_vtau,self).__init__() self.parnames = ['tkin','tex','tau','width','xoff_v','fortho'] def moments(self, Xax, data, negamp=None, veryverbose=False, **kwargs): """ Returns a very simple and likely incorrect guess """ # TKIN, TEX, ntot, width, center, ortho fraction return [20,10, 1, 1.0, 0.0, 1.0] def __call__(self,*args,**kwargs): if self.multisingle == 'single': return self.onepeakammoniafit(*args,**kwargs) elif self.multisingle == 'multi': return self.multinh3fit(*args,**kwargs)
mit
jakevdp/seaborn
doc/sphinxext/ipython_directive.py
37
37557
# -*- coding: utf-8 -*- """ Sphinx directive to support embedded IPython code. This directive allows pasting of entire interactive IPython sessions, prompts and all, and their code will actually get re-executed at doc build time, with all prompts renumbered sequentially. It also allows you to input code as a pure python input by giving the argument python to the directive. The output looks like an interactive ipython section. To enable this directive, simply list it in your Sphinx ``conf.py`` file (making sure the directory where you placed it is visible to sphinx, as is needed for all Sphinx directives). For example, to enable syntax highlighting and the IPython directive:: extensions = ['IPython.sphinxext.ipython_console_highlighting', 'IPython.sphinxext.ipython_directive'] The IPython directive outputs code-blocks with the language 'ipython'. So if you do not have the syntax highlighting extension enabled as well, then all rendered code-blocks will be uncolored. By default this directive assumes that your prompts are unchanged IPython ones, but this can be customized. The configurable options that can be placed in conf.py are: ipython_savefig_dir: The directory in which to save the figures. This is relative to the Sphinx source directory. The default is `html_static_path`. ipython_rgxin: The compiled regular expression to denote the start of IPython input lines. The default is re.compile('In \[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_rgxout: The compiled regular expression to denote the start of IPython output lines. The default is re.compile('Out\[(\d+)\]:\s?(.*)\s*'). You shouldn't need to change this. ipython_promptin: The string to represent the IPython input prompt in the generated ReST. The default is 'In [%d]:'. This expects that the line numbers are used in the prompt. ipython_promptout: The string to represent the IPython prompt in the generated ReST. The default is 'Out [%d]:'. This expects that the line numbers are used in the prompt. ipython_mplbackend: The string which specifies if the embedded Sphinx shell should import Matplotlib and set the backend. The value specifies a backend that is passed to `matplotlib.use()` before any lines in `ipython_execlines` are executed. If not specified in conf.py, then the default value of 'agg' is used. To use the IPython directive without matplotlib as a dependency, set the value to `None`. It may end up that matplotlib is still imported if the user specifies so in `ipython_execlines` or makes use of the @savefig pseudo decorator. ipython_execlines: A list of strings to be exec'd in the embedded Sphinx shell. Typical usage is to make certain packages always available. Set this to an empty list if you wish to have no imports always available. If specified in conf.py as `None`, then it has the effect of making no imports available. If omitted from conf.py altogether, then the default value of ['import numpy as np', 'import matplotlib.pyplot as plt'] is used. ipython_holdcount When the @suppress pseudo-decorator is used, the execution count can be incremented or not. The default behavior is to hold the execution count, corresponding to a value of `True`. Set this to `False` to increment the execution count after each suppressed command. As an example, to use the IPython directive when `matplotlib` is not available, one sets the backend to `None`:: ipython_mplbackend = None An example usage of the directive is: .. code-block:: rst .. ipython:: In [1]: x = 1 In [2]: y = x**2 In [3]: print(y) See http://matplotlib.org/sampledoc/ipython_directive.html for additional documentation. ToDo ---- - Turn the ad-hoc test() function into a real test suite. - Break up ipython-specific functionality from matplotlib stuff into better separated code. Authors ------- - John D Hunter: orignal author. - Fernando Perez: refactoring, documentation, cleanups, port to 0.11. - VáclavŠmilauer <eudoxos-AT-arcig.cz>: Prompt generalizations. - Skipper Seabold, refactoring, cleanups, pure python addition """ from __future__ import print_function from __future__ import unicode_literals #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import os import re import sys import tempfile import ast from pandas.compat import zip, range, map, lmap, u, cStringIO as StringIO import warnings # To keep compatibility with various python versions try: from hashlib import md5 except ImportError: from md5 import md5 # Third-party import sphinx from docutils.parsers.rst import directives from docutils import nodes from sphinx.util.compat import Directive # Our own from IPython import Config, InteractiveShell from IPython.core.profiledir import ProfileDir from IPython.utils import io from IPython.utils.py3compat import PY3 if PY3: from io import StringIO text_type = str else: from StringIO import StringIO text_type = unicode #----------------------------------------------------------------------------- # Globals #----------------------------------------------------------------------------- # for tokenizing blocks COMMENT, INPUT, OUTPUT = range(3) #----------------------------------------------------------------------------- # Functions and class declarations #----------------------------------------------------------------------------- def block_parser(part, rgxin, rgxout, fmtin, fmtout): """ part is a string of ipython text, comprised of at most one input, one ouput, comments, and blank lines. The block parser parses the text into a list of:: blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...] where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and data is, depending on the type of token:: COMMENT : the comment string INPUT: the (DECORATOR, INPUT_LINE, REST) where DECORATOR: the input decorator (or None) INPUT_LINE: the input as string (possibly multi-line) REST : any stdout generated by the input line (not OUTPUT) OUTPUT: the output string, possibly multi-line """ block = [] lines = part.split('\n') N = len(lines) i = 0 decorator = None while 1: if i==N: # nothing left to parse -- the last line break line = lines[i] i += 1 line_stripped = line.strip() if line_stripped.startswith('#'): block.append((COMMENT, line)) continue if line_stripped.startswith('@'): # we're assuming at most one decorator -- may need to # rethink decorator = line_stripped continue # does this look like an input line? matchin = rgxin.match(line) if matchin: lineno, inputline = int(matchin.group(1)), matchin.group(2) # the ....: continuation string continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) Nc = len(continuation) # input lines can continue on for more than one line, if # we have a '\' line continuation char or a function call # echo line 'print'. The input line can only be # terminated by the end of the block or an output line, so # we parse out the rest of the input line if it is # multiline as well as any echo text rest = [] while i<N: # look ahead; if the next line is blank, or a comment, or # an output line, we're done nextline = lines[i] matchout = rgxout.match(nextline) #print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation)) if matchout or nextline.startswith('#'): break elif nextline.startswith(continuation): nextline = nextline[Nc:] if nextline and nextline[0] == ' ': nextline = nextline[1:] inputline += '\n' + nextline else: rest.append(nextline) i+= 1 block.append((INPUT, (decorator, inputline, '\n'.join(rest)))) continue # if it looks like an output line grab all the text to the end # of the block matchout = rgxout.match(line) if matchout: lineno, output = int(matchout.group(1)), matchout.group(2) if i<N-1: output = '\n'.join([output] + lines[i:]) block.append((OUTPUT, output)) break return block class DecodingStringIO(StringIO, object): def __init__(self,buf='',encodings=('utf8',), *args, **kwds): super(DecodingStringIO, self).__init__(buf, *args, **kwds) self.set_encodings(encodings) def set_encodings(self, encodings): self.encodings = encodings def write(self,data): if isinstance(data, text_type): return super(DecodingStringIO, self).write(data) else: for enc in self.encodings: try: data = data.decode(enc) return super(DecodingStringIO, self).write(data) except : pass # default to brute utf8 if no encoding succeded return super(DecodingStringIO, self).write(data.decode('utf8', 'replace')) class EmbeddedSphinxShell(object): """An embedded IPython instance to run inside Sphinx""" def __init__(self, exec_lines=None,state=None): self.cout = DecodingStringIO(u'') if exec_lines is None: exec_lines = [] self.state = state # Create config object for IPython config = Config() config.InteractiveShell.autocall = False config.InteractiveShell.autoindent = False config.InteractiveShell.colors = 'NoColor' # create a profile so instance history isn't saved tmp_profile_dir = tempfile.mkdtemp(prefix='profile_') profname = 'auto_profile_sphinx_build' pdir = os.path.join(tmp_profile_dir,profname) profile = ProfileDir.create_profile_dir(pdir) # Create and initialize global ipython, but don't start its mainloop. # This will persist across different EmbededSphinxShell instances. IP = InteractiveShell.instance(config=config, profile_dir=profile) # io.stdout redirect must be done after instantiating InteractiveShell io.stdout = self.cout io.stderr = self.cout # For debugging, so we can see normal output, use this: #from IPython.utils.io import Tee #io.stdout = Tee(self.cout, channel='stdout') # dbg #io.stderr = Tee(self.cout, channel='stderr') # dbg # Store a few parts of IPython we'll need. self.IP = IP self.user_ns = self.IP.user_ns self.user_global_ns = self.IP.user_global_ns self.input = '' self.output = '' self.is_verbatim = False self.is_doctest = False self.is_suppress = False # Optionally, provide more detailed information to shell. self.directive = None # on the first call to the savefig decorator, we'll import # pyplot as plt so we can make a call to the plt.gcf().savefig self._pyplot_imported = False # Prepopulate the namespace. for line in exec_lines: self.process_input_line(line, store_history=False) def clear_cout(self): self.cout.seek(0) self.cout.truncate(0) def process_input_line(self, line, store_history=True): """process the input, capturing stdout""" stdout = sys.stdout splitter = self.IP.input_splitter try: sys.stdout = self.cout splitter.push(line) more = splitter.push_accepts_more() if not more: try: source_raw = splitter.source_raw_reset()[1] except: # recent ipython #4504 source_raw = splitter.raw_reset() self.IP.run_cell(source_raw, store_history=store_history) finally: sys.stdout = stdout def process_image(self, decorator): """ # build out an image directive like # .. image:: somefile.png # :width 4in # # from an input like # savefig somefile.png width=4in """ savefig_dir = self.savefig_dir source_dir = self.source_dir saveargs = decorator.split(' ') filename = saveargs[1] # insert relative path to image file in source outfile = os.path.relpath(os.path.join(savefig_dir,filename), source_dir) imagerows = ['.. image:: %s'%outfile] for kwarg in saveargs[2:]: arg, val = kwarg.split('=') arg = arg.strip() val = val.strip() imagerows.append(' :%s: %s'%(arg, val)) image_file = os.path.basename(outfile) # only return file name image_directive = '\n'.join(imagerows) return image_file, image_directive # Callbacks for each type of token def process_input(self, data, input_prompt, lineno): """ Process data block for INPUT token. """ decorator, input, rest = data image_file = None image_directive = None is_verbatim = decorator=='@verbatim' or self.is_verbatim is_doctest = (decorator is not None and \ decorator.startswith('@doctest')) or self.is_doctest is_suppress = decorator=='@suppress' or self.is_suppress is_okexcept = decorator=='@okexcept' or self.is_okexcept is_okwarning = decorator=='@okwarning' or self.is_okwarning is_savefig = decorator is not None and \ decorator.startswith('@savefig') # set the encodings to be used by DecodingStringIO # to convert the execution output into unicode if # needed. this attrib is set by IpythonDirective.run() # based on the specified block options, defaulting to ['ut self.cout.set_encodings(self.output_encoding) input_lines = input.split('\n') if len(input_lines) > 1: if input_lines[-1] != "": input_lines.append('') # make sure there's a blank line # so splitter buffer gets reset continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2)) if is_savefig: image_file, image_directive = self.process_image(decorator) ret = [] is_semicolon = False # Hold the execution count, if requested to do so. if is_suppress and self.hold_count: store_history = False else: store_history = True # Note: catch_warnings is not thread safe with warnings.catch_warnings(record=True) as ws: for i, line in enumerate(input_lines): if line.endswith(';'): is_semicolon = True if i == 0: # process the first input line if is_verbatim: self.process_input_line('') self.IP.execution_count += 1 # increment it anyway else: # only submit the line in non-verbatim mode self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(input_prompt, line) else: # process a continuation line if not is_verbatim: self.process_input_line(line, store_history=store_history) formatted_line = '%s %s'%(continuation, line) if not is_suppress: ret.append(formatted_line) if not is_suppress and len(rest.strip()) and is_verbatim: # the "rest" is the standard output of the # input, which needs to be added in # verbatim mode ret.append(rest) self.cout.seek(0) output = self.cout.read() if not is_suppress and not is_semicolon: ret.append(output) elif is_semicolon: # get spacing right ret.append('') # context information filename = self.state.document.current_source lineno = self.state.document.current_line # output any exceptions raised during execution to stdout # unless :okexcept: has been specified. if not is_okexcept and "Traceback" in output: s = "\nException in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okexcept: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write(output) sys.stdout.write('<<<' + ('-' * 73) + '\n\n') # output any warning raised during execution to stdout # unless :okwarning: has been specified. if not is_okwarning: for w in ws: s = "\nWarning in %s at block ending on line %s\n" % (filename, lineno) s += "Specify :okwarning: as an option in the ipython:: block to suppress this message\n" sys.stdout.write('\n\n>>>' + ('-' * 73)) sys.stdout.write(s) sys.stdout.write('-' * 76 + '\n') s=warnings.formatwarning(w.message, w.category, w.filename, w.lineno, w.line) sys.stdout.write(s) sys.stdout.write('<<<' + ('-' * 73) + '\n') self.cout.truncate(0) return (ret, input_lines, output, is_doctest, decorator, image_file, image_directive) def process_output(self, data, output_prompt, input_lines, output, is_doctest, decorator, image_file): """ Process data block for OUTPUT token. """ TAB = ' ' * 4 if is_doctest and output is not None: found = output found = found.strip() submitted = data.strip() if self.directive is None: source = 'Unavailable' content = 'Unavailable' else: source = self.directive.state.document.current_source content = self.directive.content # Add tabs and join into a single string. content = '\n'.join([TAB + line for line in content]) # Make sure the output contains the output prompt. ind = found.find(output_prompt) if ind < 0: e = ('output does not contain output prompt\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'Input line(s):\n{TAB}{2}\n\n' 'Output line(s):\n{TAB}{3}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), TAB=TAB) raise RuntimeError(e) found = found[len(output_prompt):].strip() # Handle the actual doctest comparison. if decorator.strip() == '@doctest': # Standard doctest if found != submitted: e = ('doctest failure\n\n' 'Document source: {0}\n\n' 'Raw content: \n{1}\n\n' 'On input line(s):\n{TAB}{2}\n\n' 'we found output:\n{TAB}{3}\n\n' 'instead of the expected:\n{TAB}{4}\n\n') e = e.format(source, content, '\n'.join(input_lines), repr(found), repr(submitted), TAB=TAB) raise RuntimeError(e) else: self.custom_doctest(decorator, input_lines, found, submitted) def process_comment(self, data): """Process data fPblock for COMMENT token.""" if not self.is_suppress: return [data] def save_image(self, image_file): """ Saves the image file to disk. """ self.ensure_pyplot() command = ('plt.gcf().savefig("%s", bbox_inches="tight", ' 'dpi=100)' % image_file) #print 'SAVEFIG', command # dbg self.process_input_line('bookmark ipy_thisdir', store_history=False) self.process_input_line('cd -b ipy_savedir', store_history=False) self.process_input_line(command, store_history=False) self.process_input_line('cd -b ipy_thisdir', store_history=False) self.process_input_line('bookmark -d ipy_thisdir', store_history=False) self.clear_cout() def process_block(self, block): """ process block from the block_parser and return a list of processed lines """ ret = [] output = None input_lines = None lineno = self.IP.execution_count input_prompt = self.promptin % lineno output_prompt = self.promptout % lineno image_file = None image_directive = None for token, data in block: if token == COMMENT: out_data = self.process_comment(data) elif token == INPUT: (out_data, input_lines, output, is_doctest, decorator, image_file, image_directive) = \ self.process_input(data, input_prompt, lineno) elif token == OUTPUT: out_data = \ self.process_output(data, output_prompt, input_lines, output, is_doctest, decorator, image_file) if out_data: ret.extend(out_data) # save the image files if image_file is not None: self.save_image(image_file) return ret, image_directive def ensure_pyplot(self): """ Ensures that pyplot has been imported into the embedded IPython shell. Also, makes sure to set the backend appropriately if not set already. """ # We are here if the @figure pseudo decorator was used. Thus, it's # possible that we could be here even if python_mplbackend were set to # `None`. That's also strange and perhaps worthy of raising an # exception, but for now, we just set the backend to 'agg'. if not self._pyplot_imported: if 'matplotlib.backends' not in sys.modules: # Then ipython_matplotlib was set to None but there was a # call to the @figure decorator (and ipython_execlines did # not set a backend). #raise Exception("No backend was set, but @figure was used!") import matplotlib matplotlib.use('agg') # Always import pyplot into embedded shell. self.process_input_line('import matplotlib.pyplot as plt', store_history=False) self._pyplot_imported = True def process_pure_python(self, content): """ content is a list of strings. it is unedited directive content This runs it line by line in the InteractiveShell, prepends prompts as needed capturing stderr and stdout, then returns the content as a list as if it were ipython code """ output = [] savefig = False # keep up with this to clear figure multiline = False # to handle line continuation multiline_start = None fmtin = self.promptin ct = 0 for lineno, line in enumerate(content): line_stripped = line.strip() if not len(line): output.append(line) continue # handle decorators if line_stripped.startswith('@'): output.extend([line]) if 'savefig' in line: savefig = True # and need to clear figure continue # handle comments if line_stripped.startswith('#'): output.extend([line]) continue # deal with lines checking for multiline continuation = u' %s:'% ''.join(['.']*(len(str(ct))+2)) if not multiline: modified = u"%s %s" % (fmtin % ct, line_stripped) output.append(modified) ct += 1 try: ast.parse(line_stripped) output.append(u'') except Exception: # on a multiline multiline = True multiline_start = lineno else: # still on a multiline modified = u'%s %s' % (continuation, line) output.append(modified) # if the next line is indented, it should be part of multiline if len(content) > lineno + 1: nextline = content[lineno + 1] if len(nextline) - len(nextline.lstrip()) > 3: continue try: mod = ast.parse( '\n'.join(content[multiline_start:lineno+1])) if isinstance(mod.body[0], ast.FunctionDef): # check to see if we have the whole function for element in mod.body[0].body: if isinstance(element, ast.Return): multiline = False else: output.append(u'') multiline = False except Exception: pass if savefig: # clear figure if plotted self.ensure_pyplot() self.process_input_line('plt.clf()', store_history=False) self.clear_cout() savefig = False return output def custom_doctest(self, decorator, input_lines, found, submitted): """ Perform a specialized doctest. """ from .custom_doctests import doctests args = decorator.split() doctest_type = args[1] if doctest_type in doctests: doctests[doctest_type](self, args, input_lines, found, submitted) else: e = "Invalid option to @doctest: {0}".format(doctest_type) raise Exception(e) class IPythonDirective(Directive): has_content = True required_arguments = 0 optional_arguments = 4 # python, suppress, verbatim, doctest final_argumuent_whitespace = True option_spec = { 'python': directives.unchanged, 'suppress' : directives.flag, 'verbatim' : directives.flag, 'doctest' : directives.flag, 'okexcept': directives.flag, 'okwarning': directives.flag, 'output_encoding': directives.unchanged_required } shell = None seen_docs = set() def get_config_options(self): # contains sphinx configuration variables config = self.state.document.settings.env.config # get config variables to set figure output directory confdir = self.state.document.settings.env.app.confdir savefig_dir = config.ipython_savefig_dir source_dir = os.path.dirname(self.state.document.current_source) if savefig_dir is None: savefig_dir = config.html_static_path if isinstance(savefig_dir, list): savefig_dir = savefig_dir[0] # safe to assume only one path? savefig_dir = os.path.join(confdir, savefig_dir) # get regex and prompt stuff rgxin = config.ipython_rgxin rgxout = config.ipython_rgxout promptin = config.ipython_promptin promptout = config.ipython_promptout mplbackend = config.ipython_mplbackend exec_lines = config.ipython_execlines hold_count = config.ipython_holdcount return (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) def setup(self): # Get configuration values. (savefig_dir, source_dir, rgxin, rgxout, promptin, promptout, mplbackend, exec_lines, hold_count) = self.get_config_options() if self.shell is None: # We will be here many times. However, when the # EmbeddedSphinxShell is created, its interactive shell member # is the same for each instance. if mplbackend: import matplotlib # Repeated calls to use() will not hurt us since `mplbackend` # is the same each time. matplotlib.use(mplbackend) # Must be called after (potentially) importing matplotlib and # setting its backend since exec_lines might import pylab. self.shell = EmbeddedSphinxShell(exec_lines, self.state) # Store IPython directive to enable better error messages self.shell.directive = self # reset the execution count if we haven't processed this doc #NOTE: this may be borked if there are multiple seen_doc tmp files #check time stamp? if not self.state.document.current_source in self.seen_docs: self.shell.IP.history_manager.reset() self.shell.IP.execution_count = 1 self.shell.IP.prompt_manager.width = 0 self.seen_docs.add(self.state.document.current_source) # and attach to shell so we don't have to pass them around self.shell.rgxin = rgxin self.shell.rgxout = rgxout self.shell.promptin = promptin self.shell.promptout = promptout self.shell.savefig_dir = savefig_dir self.shell.source_dir = source_dir self.shell.hold_count = hold_count # setup bookmark for saving figures directory self.shell.process_input_line('bookmark ipy_savedir %s'%savefig_dir, store_history=False) self.shell.clear_cout() return rgxin, rgxout, promptin, promptout def teardown(self): # delete last bookmark self.shell.process_input_line('bookmark -d ipy_savedir', store_history=False) self.shell.clear_cout() def run(self): debug = False #TODO, any reason block_parser can't be a method of embeddable shell # then we wouldn't have to carry these around rgxin, rgxout, promptin, promptout = self.setup() options = self.options self.shell.is_suppress = 'suppress' in options self.shell.is_doctest = 'doctest' in options self.shell.is_verbatim = 'verbatim' in options self.shell.is_okexcept = 'okexcept' in options self.shell.is_okwarning = 'okwarning' in options self.shell.output_encoding = [options.get('output_encoding', 'utf8')] # handle pure python code if 'python' in self.arguments: content = self.content self.content = self.shell.process_pure_python(content) parts = '\n'.join(self.content).split('\n\n') lines = ['.. code-block:: ipython', ''] figures = [] for part in parts: block = block_parser(part, rgxin, rgxout, promptin, promptout) if len(block): rows, figure = self.shell.process_block(block) for row in rows: lines.extend([' %s'%line for line in row.split('\n')]) if figure is not None: figures.append(figure) for figure in figures: lines.append('') lines.extend(figure.split('\n')) lines.append('') if len(lines)>2: if debug: print('\n'.join(lines)) else: # This has to do with input, not output. But if we comment # these lines out, then no IPython code will appear in the # final output. self.state_machine.insert_input( lines, self.state_machine.input_lines.source(0)) # cleanup self.teardown() return [] # Enable as a proper Sphinx directive def setup(app): setup.app = app app.add_directive('ipython', IPythonDirective) app.add_config_value('ipython_savefig_dir', None, 'env') app.add_config_value('ipython_rgxin', re.compile('In \[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_rgxout', re.compile('Out\[(\d+)\]:\s?(.*)\s*'), 'env') app.add_config_value('ipython_promptin', 'In [%d]:', 'env') app.add_config_value('ipython_promptout', 'Out[%d]:', 'env') # We could just let matplotlib pick whatever is specified as the default # backend in the matplotlibrc file, but this would cause issues if the # backend didn't work in headless environments. For this reason, 'agg' # is a good default backend choice. app.add_config_value('ipython_mplbackend', 'agg', 'env') # If the user sets this config value to `None`, then EmbeddedSphinxShell's # __init__ method will treat it as []. execlines = ['import numpy as np', 'import matplotlib.pyplot as plt'] app.add_config_value('ipython_execlines', execlines, 'env') app.add_config_value('ipython_holdcount', True, 'env') # Simple smoke test, needs to be converted to a proper automatic test. def test(): examples = [ r""" In [9]: pwd Out[9]: '/home/jdhunter/py4science/book' In [10]: cd bookdata/ /home/jdhunter/py4science/book/bookdata In [2]: from pylab import * In [2]: ion() In [3]: im = imread('stinkbug.png') @savefig mystinkbug.png width=4in In [4]: imshow(im) Out[4]: <matplotlib.image.AxesImage object at 0x39ea850> """, r""" In [1]: x = 'hello world' # string methods can be # used to alter the string @doctest In [2]: x.upper() Out[2]: 'HELLO WORLD' @verbatim In [3]: x.st<TAB> x.startswith x.strip """, r""" In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\ .....: &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv' In [131]: print url.split('&') ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22', 'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv'] In [60]: import urllib """, r"""\ In [133]: import numpy.random @suppress In [134]: numpy.random.seed(2358) @doctest In [135]: numpy.random.rand(10,2) Out[135]: array([[ 0.64524308, 0.59943846], [ 0.47102322, 0.8715456 ], [ 0.29370834, 0.74776844], [ 0.99539577, 0.1313423 ], [ 0.16250302, 0.21103583], [ 0.81626524, 0.1312433 ], [ 0.67338089, 0.72302393], [ 0.7566368 , 0.07033696], [ 0.22591016, 0.77731835], [ 0.0072729 , 0.34273127]]) """, r""" In [106]: print x jdh In [109]: for i in range(10): .....: print i .....: .....: 0 1 2 3 4 5 6 7 8 9 """, r""" In [144]: from pylab import * In [145]: ion() # use a semicolon to suppress the output @savefig test_hist.png width=4in In [151]: hist(np.random.randn(10000), 100); @savefig test_plot.png width=4in In [151]: plot(np.random.randn(10000), 'o'); """, r""" # use a semicolon to suppress the output In [151]: plt.clf() @savefig plot_simple.png width=4in In [151]: plot([1,2,3]) @savefig hist_simple.png width=4in In [151]: hist(np.random.randn(10000), 100); """, r""" # update the current fig In [151]: ylabel('number') In [152]: title('normal distribution') @savefig hist_with_text.png In [153]: grid(True) @doctest float In [154]: 0.1 + 0.2 Out[154]: 0.3 @doctest float In [155]: np.arange(16).reshape(4,4) Out[155]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) In [1]: x = np.arange(16, dtype=float).reshape(4,4) In [2]: x[0,0] = np.inf In [3]: x[0,1] = np.nan @doctest float In [4]: x Out[4]: array([[ inf, nan, 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) """, ] # skip local-file depending first example: examples = examples[1:] #ipython_directive.DEBUG = True # dbg #options = dict(suppress=True) # dbg options = dict() for example in examples: content = example.split('\n') IPythonDirective('debug', arguments=None, options=options, content=content, lineno=0, content_offset=None, block_text=None, state=None, state_machine=None, ) # Run test suite as a script if __name__=='__main__': if not os.path.isdir('_static'): os.mkdir('_static') test() print('All OK? Check figures in _static/')
bsd-3-clause
INCF/BIDS2ISATab
setup.py
1
2176
from setuptools import setup import os here = os.path.abspath(os.path.dirname(__file__)) setup( name="BIDS2ISATab", # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # http://packaging.python.org/en/latest/tutorial.html#version version='0.1.0', description="Command line tool generating ISA-Tab compatible description from a Brain Imaging Data Structure " "compatible dataset.", long_description="Command line tool generating ISA-Tab compatible description from a Brain Imaging Data Structure " "compatible dataset.", # The project URL. url='https://github.com/INCF/BIDS2ISATab', # Choose your license license='BSD', classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 4 - Beta', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: BSD License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.5', ], # What does your project relate to? keywords='bids isatab', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages. packages=["bids2isatab"], # List run-time dependencies here. These will be installed by pip when your # project is installed. install_requires = ["future", "pandas", 'nibabel'], include_package_data=True, # To provide executable scripts, use entry points in preference to the # "scripts" keyword. Entry points provide cross-platform support and allow # pip to create the appropriate form of executable for the target platform. entry_points={ 'console_scripts': [ 'bids2isatab=bids2isatab.main:main', ], }, )
apache-2.0
zooniverse/aggregation
experimental/clusteringAlg/adaptiveDBSCAN.py
2
4734
#!/usr/bin/env python __author__ = 'greg' from sklearn.cluster import DBSCAN import numpy as np import math def dist(c1,c2): return math.sqrt((c1[0]-c2[0])**2 + (c1[1]-c2[1])**2) class CannotSplit(Exception): def __init__(self,value): self.value = value def __str__(self): return "" samples_needed = 3 def adaptiveDBSCAN(XYpts,user_ids): if XYpts == []: return [] pts_in_each_cluster = [] users_in_each_cluster = [] cluster_centers = [] #increase the epsilon until we don't have any nearby clusters corresponding to non-overlapping #sets of users X = np.array(XYpts) #for epsilon in [5,10,15,20,25,30]: for first_epsilon in [100,200,300,400]: db = DBSCAN(eps=first_epsilon, min_samples=samples_needed).fit(X) labels = db.labels_ pts_in_each_cluster = [] users_in_each_cluster = [] cluster_centers = [] for k in sorted(set(labels)): if k == -1: continue class_member_mask = (labels == k) pts_in_cluster = list(X[class_member_mask]) xSet,ySet = zip(*pts_in_cluster) cluster_centers.append((np.mean(xSet),np.mean(ySet))) pts_in_each_cluster.append(pts_in_cluster[:]) users_in_each_cluster.append([u for u,l in zip(user_ids,labels) if l == k]) #do we have any adjacent clusters with non-overlapping sets of users #if so, we should merge them by increasing the epsilon value cluster_compare = [] for cluster_index, (c1,users) in enumerate(zip(cluster_centers,users_in_each_cluster)): for cluster_index, (c2,users2) in enumerate(zip(cluster_centers[cluster_index+1:],users_in_each_cluster[cluster_index+1:])): overlappingUsers = [u for u in users if u in users2] cluster_compare.append((dist(c1,c2),overlappingUsers)) cluster_compare.sort(key = lambda x:x[0]) needToMerge = [] in [c[1] for c in cluster_compare[:10]] if not(needToMerge): break #print epsilon #print [c[1] for c in cluster_compare[:10]] centers_to_return = [] assert not(needToMerge) #do we need to split any clusters? for cluster_index in range(len(cluster_centers)): #print "splitting" needToSplit = (sorted(users_in_each_cluster[cluster_index]) != sorted(list(set(users_in_each_cluster[cluster_index])))) if needToSplit: subcluster_centers = [] stillToSplit = [] X = np.array(pts_in_each_cluster[cluster_index]) #for epsilon in [30,25,20,15,10,5,1,0.1,0.01]: for second_epsilon in range(200,1,-2):#[400,300,200,100,80,75,65,60,50,25,24,23,22,21,20,19,18,17,16,15,14,13,10,5,1]: db = DBSCAN(eps=second_epsilon, min_samples=samples_needed).fit(X) labels = db.labels_ subcluster_centers = [] needToSplit = False for k in sorted(set(labels)): if k == -1: continue class_member_mask = (labels == k) users_in_subcluster = [u for u,l in zip(users_in_each_cluster[cluster_index],labels) if l == k] needToSplit = (sorted(users_in_subcluster) != sorted(list(set(users_in_subcluster)))) if needToSplit: stillToSplit = list(X[class_member_mask]) break pts_in_cluster = list(X[class_member_mask]) xSet,ySet = zip(*pts_in_cluster) subcluster_centers.append((np.mean(xSet),np.mean(ySet))) if not(needToSplit): break if needToSplit: print "second is " + str(second_epsilon) print stillToSplit for i in range(len(stillToSplit)): p1 = stillToSplit[i] for j in range(len(stillToSplit[i+1:])): p2 = stillToSplit[j+i+1] print math.sqrt((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2), #print (i,j+i+1), print print X print users_in_each_cluster[cluster_index] raise CannotSplit(pts_in_each_cluster[cluster_index]) centers_to_return.extend(subcluster_centers) #if needToSplit: # print pts_in_each_cluster[cluster_index] # print users_in_each_cluster[cluster_index] #else: else: centers_to_return.append(cluster_centers[cluster_index]) return centers_to_return
apache-2.0
jrleja/bsfh
misc/timings_pyfsps.py
3
4274
#compare a lookup table of spectra at ages and metallicities to #calls to fsps.sps.get_spectrum() for different metallicities import time, os, subprocess, re, sys import numpy as np #import matplotlib.pyplot as pl import fsps from prospect import sources as sps_basis from prospect.models import sedmodel def run_command(cmd): """ Open a child process, and return its exit status and stdout. """ child = subprocess.Popen(cmd, shell=True, stderr=subprocess.PIPE, stdin=subprocess.PIPE, stdout=subprocess.PIPE) out = [s for s in child.stdout] w = child.wait() return os.WEXITSTATUS(w), out # Check to make sure that the required environment variable is present. try: ev = os.environ["SPS_HOME"] except KeyError: raise ImportError("You need to have the SPS_HOME environment variable") # Check the SVN revision number. cmd = ["svnversion", ev] stat, out = run_command(" ".join(cmd)) fsps_vers = int(re.match("^([0-9])+", out[0]).group(0)) sps = fsps.StellarPopulation(zcontinuous=True) print('FSPS version = {}'.format(fsps_vers)) print('Zs={0}, N_lambda={1}'.format(sps.zlegend, len(sps.wavelengths))) print('single age') def spec_from_fsps(z, t, s): t0 = time.time() sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t wave, spec = sps.get_spectrum(peraa=True, tage = sps.params['tage']) #print(spec.shape) return time.time()-t0 def mags_from_fsps(z, t, s): t0 = time.time() sps.params['zred']=t sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t mags = sps.get_mags(tage = sps.params['tage'], redshift=0.0) #print(spec.shape) return time.time()-t0 def spec_from_ztinterp(z, t, s): t0 = time.time() sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t sps.params['imf3'] = s spec, m, l = sps.ztinterp(sps.params['logzsol'], sps.params['tage'], peraa=True) #print(spec.shape) return time.time()-t0 if sys.argv[1] == 'mags': from_fsps = mags_from_fsps print('timing get_mags') print('nbands = {}'.format(len(sps.get_mags(tage=1.0)))) elif sys.argv[1] == 'spec': from_fsps = spec_from_fsps print('timing get_spectrum') elif sys.argv[1] == 'ztinterp': from_fsps = spec_from_ztinterp print('timing get_spectrum') elif sys.argv[1] == 'sedpy': from sedpy import observate nbands = len(sps.get_mags(tage=1.0)) fnames = nbands * ['sdss_r0'] filters = observate.load_filters(fnames) def mags_from_sedpy(z, t, s): t0 = time.time() sps.params['logzsol'] = z sps.params['sigma_smooth'] = s sps.params['tage'] = t wave, spec = sps.get_spectrum(peraa=True, tage = sps.params['tage']) mags = observate.getSED(wave, spec, filters) return time.time()-t0 from_fsps = mags_from_sedpy sps.params['add_neb_emission'] = False sps.params['smooth_velocity'] = True sps.params['sfh'] = 0 ntry = 30 zz = np.random.uniform(-1,0,ntry) tt = np.random.uniform(0.1,4,ntry) ss = np.random.uniform(1,2.5,ntry) #make sure all z's already compiled _ =[from_fsps(z, 1.0, 0.0) for z in [-1, -0.8, -0.6, -0.4, -0.2, 0.0]] all_dur = [] print('no neb emission:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], ss[i]) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many] print('no neb emission, no smooth:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], 0.0) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many] sps.params['add_neb_emission'] = True print('neb emission:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], ss[i]) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many] print('neb emission, no smooth:') dur_many = np.zeros(ntry) for i in xrange(ntry): dur_many[i] = from_fsps(zz[i], tt[i], 0.0) print('<t/call>={0}s, sigma_t={1}s'.format(dur_many.mean(), dur_many.std())) all_dur += [dur_many]
mit
ClinicalGraphics/scikit-image
doc/examples/xx_applications/plot_morphology.py
6
8329
""" ======================= Morphological Filtering ======================= Morphological image processing is a collection of non-linear operations related to the shape or morphology of features in an image, such as boundaries, skeletons, etc. In any given technique, we probe an image with a small shape or template called a structuring element, which defines the region of interest or neighborhood around a pixel. In this document we outline the following basic morphological operations: 1. Erosion 2. Dilation 3. Opening 4. Closing 5. White Tophat 6. Black Tophat 7. Skeletonize 8. Convex Hull To get started, let's load an image using ``io.imread``. Note that morphology functions only work on gray-scale or binary images, so we set ``as_grey=True``. """ import matplotlib.pyplot as plt from skimage.data import data_dir from skimage.util import img_as_ubyte from skimage import io phantom = img_as_ubyte(io.imread(data_dir+'/phantom.png', as_grey=True)) fig, ax = plt.subplots() ax.imshow(phantom, cmap=plt.cm.gray) """ .. image:: PLOT2RST.current_figure Let's also define a convenience function for plotting comparisons: """ def plot_comparison(original, filtered, filter_name): fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(8, 4), sharex=True, sharey=True) ax1.imshow(original, cmap=plt.cm.gray) ax1.set_title('original') ax1.axis('off') ax1.set_adjustable('box-forced') ax2.imshow(filtered, cmap=plt.cm.gray) ax2.set_title(filter_name) ax2.axis('off') ax2.set_adjustable('box-forced') """ Erosion ======= Morphological ``erosion`` sets a pixel at (i, j) to the *minimum over all pixels in the neighborhood centered at (i, j)*. The structuring element, ``selem``, passed to ``erosion`` is a boolean array that describes this neighborhood. Below, we use ``disk`` to create a circular structuring element, which we use for most of the following examples. """ from skimage.morphology import erosion, dilation, opening, closing, white_tophat from skimage.morphology import black_tophat, skeletonize, convex_hull_image from skimage.morphology import disk selem = disk(6) eroded = erosion(phantom, selem) plot_comparison(phantom, eroded, 'erosion') """ .. image:: PLOT2RST.current_figure Notice how the white boundary of the image disappears or gets eroded as we increase the size of the disk. Also notice the increase in size of the two black ellipses in the center and the disappearance of the 3 light grey patches in the lower part of the image. Dilation ======== Morphological ``dilation`` sets a pixel at (i, j) to the *maximum over all pixels in the neighborhood centered at (i, j)*. Dilation enlarges bright regions and shrinks dark regions. """ dilated = dilation(phantom, selem) plot_comparison(phantom, dilated, 'dilation') """ .. image:: PLOT2RST.current_figure Notice how the white boundary of the image thickens, or gets dilated, as we increase the size of the disk. Also notice the decrease in size of the two black ellipses in the centre, and the thickening of the light grey circle in the center and the 3 patches in the lower part of the image. Opening ======= Morphological ``opening`` on an image is defined as an *erosion followed by a dilation*. Opening can remove small bright spots (i.e. "salt") and connect small dark cracks. """ opened = opening(phantom, selem) plot_comparison(phantom, opened, 'opening') """ .. image:: PLOT2RST.current_figure Since ``opening`` an image starts with an erosion operation, light regions that are *smaller* than the structuring element are removed. The dilation operation that follows ensures that light regions that are *larger* than the structuring element retain their original size. Notice how the light and dark shapes in the center their original thickness but the 3 lighter patches in the bottom get completely eroded. The size dependence is highlighted by the outer white ring: The parts of the ring thinner than the structuring element were completely erased, while the thicker region at the top retains its original thickness. Closing ======= Morphological ``closing`` on an image is defined as a *dilation followed by an erosion*. Closing can remove small dark spots (i.e. "pepper") and connect small bright cracks. To illustrate this more clearly, let's add a small crack to the white border: """ phantom = img_as_ubyte(io.imread(data_dir+'/phantom.png', as_grey=True)) phantom[10:30, 200:210] = 0 closed = closing(phantom, selem) plot_comparison(phantom, closed, 'closing') """ .. image:: PLOT2RST.current_figure Since ``closing`` an image starts with an dilation operation, dark regions that are *smaller* than the structuring element are removed. The dilation operation that follows ensures that dark regions that are *larger* than the structuring element retain their original size. Notice how the white ellipses at the bottom get connected because of dilation, but other dark region retain their original sizes. Also notice how the crack we added is mostly removed. White tophat ============ The ``white_tophat`` of an image is defined as the *image minus its morphological opening*. This operation returns the bright spots of the image that are smaller than the structuring element. To make things interesting, we'll add bright and dark spots to the image: """ phantom = img_as_ubyte(io.imread(data_dir+'/phantom.png', as_grey=True)) phantom[340:350, 200:210] = 255 phantom[100:110, 200:210] = 0 w_tophat = white_tophat(phantom, selem) plot_comparison(phantom, w_tophat, 'white tophat') """ .. image:: PLOT2RST.current_figure As you can see, the 10-pixel wide white square is highlighted since it is smaller than the structuring element. Also, the thin, white edges around most of the ellipse are retained because they're smaller than the structuring element, but the thicker region at the top disappears. Black tophat ============ The ``black_tophat`` of an image is defined as its morphological **closing minus the original image**. This operation returns the *dark spots of the image that are smaller than the structuring element*. """ b_tophat = black_tophat(phantom, selem) plot_comparison(phantom, b_tophat, 'black tophat') """ .. image:: PLOT2RST.current_figure As you can see, the 10-pixel wide black square is highlighted since it is smaller than the structuring element. Duality ------- As you should have noticed, many of these operations are simply the reverse of another operation. This duality can be summarized as follows: 1. Erosion <-> Dilation 2. Opening <-> Closing 3. White tophat <-> Black tophat Skeletonize =========== Thinning is used to reduce each connected component in a binary image to a *single-pixel wide skeleton*. It is important to note that this is performed on binary images only. """ from skimage import img_as_bool horse = ~img_as_bool(io.imread(data_dir+'/horse.png', as_grey=True)) sk = skeletonize(horse) plot_comparison(horse, sk, 'skeletonize') """ .. image:: PLOT2RST.current_figure As the name suggests, this technique is used to thin the image to 1-pixel wide skeleton by applying thinning successively. Convex hull =========== The ``convex_hull_image`` is the *set of pixels included in the smallest convex polygon that surround all white pixels in the input image*. Again note that this is also performed on binary images. """ hull1 = convex_hull_image(horse) plot_comparison(horse, hull1, 'convex hull') """ .. image:: PLOT2RST.current_figure As the figure illustrates, ``convex_hull_image`` gives the smallest polygon which covers the white or True completely in the image. If we add a small grain to the image, we can see how the convex hull adapts to enclose that grain: """ import numpy as np horse2 = np.copy(horse) horse2[45:50, 75:80] = 1 hull2 = convex_hull_image(horse2) plot_comparison(horse2, hull2, 'convex hull') """ .. image:: PLOT2RST.current_figure Additional Resources ==================== 1. `MathWorks tutorial on morphological processing <http://www.mathworks.com/help/images/morphology-fundamentals-dilation-and-erosion.html>`_ 2. `Auckland university's tutorial on Morphological Image Processing <http://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm>`_ 3. http://en.wikipedia.org/wiki/Mathematical_morphology """ plt.show()
bsd-3-clause
codenote/chromium-test
ppapi/native_client/tests/breakpad_crash_test/crash_dump_tester.py
6
8213
#!/usr/bin/python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import subprocess import sys import tempfile import time script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '../../tools/browser_tester')) import browser_tester import browsertester.browserlauncher # This script extends browser_tester to check for the presence of # Breakpad crash dumps. # This reads a file of lines containing 'key:value' pairs. # The file contains entries like the following: # plat:Win32 # prod:Chromium # ptype:nacl-loader # rept:crash svc def ReadDumpTxtFile(filename): dump_info = {} fh = open(filename, 'r') for line in fh: if ':' in line: key, value = line.rstrip().split(':', 1) dump_info[key] = value fh.close() return dump_info def StartCrashService(browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, crash_service_exe): # Find crash_service.exe relative to chrome.exe. This is a bit icky. browser_dir = os.path.dirname(browser_path) proc = subprocess.Popen([os.path.join(browser_dir, crash_service_exe), '--v=1', # Verbose output for debugging failures '--dumps-dir=%s' % dumps_dir, '--pipe-name=%s' % windows_pipe_name]) def Cleanup(): # Note that if the process has already exited, this will raise # an 'Access is denied' WindowsError exception, but # crash_service.exe is not supposed to do this and such # behaviour should make the test fail. proc.terminate() status = proc.wait() sys.stdout.write('crash_dump_tester: %s exited with status %s\n' % (crash_service_exe, status)) cleanup_funcs.append(Cleanup) def ListPathsInDir(dir_path): if os.path.exists(dir_path): return [os.path.join(dir_path, name) for name in os.listdir(dir_path)] else: return [] def GetDumpFiles(dumps_dirs): all_files = [filename for dumps_dir in dumps_dirs for filename in ListPathsInDir(dumps_dir)] sys.stdout.write('crash_dump_tester: Found %i files\n' % len(all_files)) for dump_file in all_files: sys.stdout.write(' %s (size %i)\n' % (dump_file, os.stat(dump_file).st_size)) return [dump_file for dump_file in all_files if dump_file.endswith('.dmp')] def Main(cleanup_funcs): parser = browser_tester.BuildArgParser() parser.add_option('--expected_crash_dumps', dest='expected_crash_dumps', type=int, default=0, help='The number of crash dumps that we should expect') parser.add_option('--expected_process_type_for_crash', dest='expected_process_type_for_crash', type=str, default='nacl-loader', help='The type of Chromium process that we expect the ' 'crash dump to be for') # Ideally we would just query the OS here to find out whether we are # running x86-32 or x86-64 Windows, but Python's win32api module # does not contain a wrapper for GetNativeSystemInfo(), which is # what NaCl uses to check this, or for IsWow64Process(), which is # what Chromium uses. Instead, we just rely on the build system to # tell us. parser.add_option('--win64', dest='win64', action='store_true', help='Pass this if we are running tests for x86-64 Windows') options, args = parser.parse_args() temp_dir = tempfile.mkdtemp(prefix='nacl_crash_dump_tester_') def CleanUpTempDir(): browsertester.browserlauncher.RemoveDirectory(temp_dir) cleanup_funcs.append(CleanUpTempDir) # To get a guaranteed unique pipe name, use the base name of the # directory we just created. windows_pipe_name = r'\\.\pipe\%s_crash_service' % os.path.basename(temp_dir) # This environment variable enables Breakpad crash dumping in # non-official builds of Chromium. os.environ['CHROME_HEADLESS'] = '1' if sys.platform == 'win32': dumps_dir = temp_dir # Override the default (global) Windows pipe name that Chromium will # use for out-of-process crash reporting. os.environ['CHROME_BREAKPAD_PIPE_NAME'] = windows_pipe_name # Launch the x86-32 crash service so that we can handle crashes in # the browser process. StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service.exe') if options.win64: # Launch the x86-64 crash service so that we can handle crashes # in the NaCl loader process (nacl64.exe). StartCrashService(options.browser_path, dumps_dir, windows_pipe_name, cleanup_funcs, 'crash_service64.exe') # We add a delay because there is probably a race condition: # crash_service.exe might not have finished doing # CreateNamedPipe() before NaCl does a crash dump and tries to # connect to that pipe. # TODO(mseaborn): We could change crash_service.exe to report when # it has successfully created the named pipe. time.sleep(1) elif sys.platform == 'darwin': dumps_dir = temp_dir os.environ['BREAKPAD_DUMP_LOCATION'] = dumps_dir elif sys.platform.startswith('linux'): # The "--user-data-dir" option is not effective for the Breakpad # setup in Linux Chromium, because Breakpad is initialized before # "--user-data-dir" is read. So we set HOME to redirect the crash # dumps to a temporary directory. home_dir = temp_dir os.environ['HOME'] = home_dir options.enable_crash_reporter = True result = browser_tester.Run(options.url, options) # Find crash dump results. if sys.platform.startswith('linux'): # Look in "~/.config/*/Crash Reports". This will find crash # reports under ~/.config/chromium or ~/.config/google-chrome, or # under other subdirectories in case the branding is changed. dumps_dirs = [os.path.join(path, 'Crash Reports') for path in ListPathsInDir(os.path.join(home_dir, '.config'))] else: dumps_dirs = [dumps_dir] dmp_files = GetDumpFiles(dumps_dirs) failed = False msg = ('crash_dump_tester: ERROR: Got %i crash dumps but expected %i\n' % (len(dmp_files), options.expected_crash_dumps)) if len(dmp_files) != options.expected_crash_dumps: sys.stdout.write(msg) failed = True for dump_file in dmp_files: # Sanity check: Make sure dumping did not fail after opening the file. msg = 'crash_dump_tester: ERROR: Dump file is empty\n' if os.stat(dump_file).st_size == 0: sys.stdout.write(msg) failed = True # On Windows, the crash dumps should come in pairs of a .dmp and # .txt file. if sys.platform == 'win32': second_file = dump_file[:-4] + '.txt' msg = ('crash_dump_tester: ERROR: File %r is missing a corresponding ' '%r file\n' % (dump_file, second_file)) if not os.path.exists(second_file): sys.stdout.write(msg) failed = True continue # Check that the crash dump comes from the NaCl process. dump_info = ReadDumpTxtFile(second_file) if 'ptype' in dump_info: msg = ('crash_dump_tester: ERROR: Unexpected ptype value: %r != %r\n' % (dump_info['ptype'], options.expected_process_type_for_crash)) if dump_info['ptype'] != options.expected_process_type_for_crash: sys.stdout.write(msg) failed = True else: sys.stdout.write('crash_dump_tester: ERROR: Missing ptype field\n') failed = True # TODO(mseaborn): Ideally we would also check that a backtrace # containing an expected function name can be extracted from the # crash dump. if failed: sys.stdout.write('crash_dump_tester: FAILED\n') result = 1 else: sys.stdout.write('crash_dump_tester: PASSED\n') return result def MainWrapper(): cleanup_funcs = [] try: return Main(cleanup_funcs) finally: for func in cleanup_funcs: func() if __name__ == '__main__': sys.exit(MainWrapper())
bsd-3-clause
hainm/dask
dask/dataframe/shuffle.py
4
2967
from itertools import count from collections import Iterator from math import ceil from toolz import merge, accumulate, merge_sorted import toolz from operator import getitem, setitem import pandas as pd import numpy as np from pframe import pframe from .. import threaded from .core import DataFrame, Series, get, names from ..compatibility import unicode from ..utils import ignoring tokens = ('-%d' % i for i in count(1)) def set_index(f, index, npartitions=None, **kwargs): """ Set DataFrame index to new column Sorts index and realigns Dataframe to new sorted order. This shuffles and repartitions your data. """ npartitions = npartitions or f.npartitions if not isinstance(index, Series): index2 = f[index] else: index2 = index divisions = (index2 .quantiles(np.linspace(0, 100, npartitions+1)[1:-1]) .compute()) return f.set_partition(index, divisions, **kwargs) partition_names = ('set_partition-%d' % i for i in count(1)) def set_partition(f, index, divisions, get=threaded.get, **kwargs): """ Set new partitioning along index given divisions """ divisions = unique(divisions) name = next(names) if isinstance(index, Series): assert index.divisions == f.divisions dsk = dict(((name, i), (f._partition_type.set_index, block, ind)) for i, (block, ind) in enumerate(zip(f._keys(), index._keys()))) f2 = type(f)(merge(f.dask, index.dask, dsk), name, f.column_info, f.divisions) else: dsk = dict(((name, i), (f._partition_type.set_index, block, index)) for i, block in enumerate(f._keys())) f2 = type(f)(merge(f.dask, dsk), name, f.column_info, f.divisions) head = f2.head() pf = pframe(like=head, divisions=divisions, **kwargs) def append(block): pf.append(block) return 0 f2.map_blocks(append).compute(get=get) pf.flush() return from_pframe(pf) def from_pframe(pf): """ Load dask.array from pframe """ name = next(names) dsk = dict(((name, i), (pframe.get_partition, pf, i)) for i in range(pf.npartitions)) return DataFrame(dsk, name, pf.columns, pf.divisions) def unique(divisions): """ Polymorphic unique function >>> list(unique([1, 2, 3, 1, 2, 3])) [1, 2, 3] >>> unique(np.array([1, 2, 3, 1, 2, 3])) array([1, 2, 3]) >>> unique(pd.Categorical(['Alice', 'Bob', 'Alice'], ordered=False)) [Alice, Bob] Categories (2, object): [Alice, Bob] """ if isinstance(divisions, np.ndarray): return np.unique(divisions) if isinstance(divisions, pd.Categorical): return pd.Categorical.from_codes(np.unique(divisions.codes), divisions.categories, divisions.ordered) if isinstance(divisions, (tuple, list, Iterator)): return tuple(toolz.unique(divisions)) raise NotImplementedError()
bsd-3-clause
allanino/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_tkagg.py
69
24593
# Todd Miller jmiller@stsci.edu from __future__ import division import os, sys, math import Tkinter as Tk, FileDialog import tkagg # Paint image to Tk photo blitter extension from backend_agg import FigureCanvasAgg import os.path import matplotlib from matplotlib.cbook import is_string_like from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf import matplotlib.windowing as windowing from matplotlib.widgets import SubplotTool import matplotlib.cbook as cbook rcParams = matplotlib.rcParams verbose = matplotlib.verbose backend_version = Tk.TkVersion # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 cursord = { cursors.MOVE: "fleur", cursors.HAND: "hand2", cursors.POINTER: "arrow", cursors.SELECT_REGION: "tcross", } def round(x): return int(math.floor(x+0.5)) def raise_msg_to_str(msg): """msg is a return arg from a raise. Join with new lines""" if not is_string_like(msg): msg = '\n'.join(map(str, msg)) return msg def error_msg_tkpaint(msg, parent=None): import tkMessageBox tkMessageBox.showerror("matplotlib", msg) def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.show() def show(): """ Show all the figures and enter the gtk mainloop This should be the last line of your script. This function sets interactive mode to True, as detailed on http://matplotlib.sf.net/interactive.html """ for manager in Gcf.get_all_fig_managers(): manager.show() import matplotlib matplotlib.interactive(True) if rcParams['tk.pythoninspect']: os.environ['PYTHONINSPECT'] = '1' if show._needmain: Tk.mainloop() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ _focus = windowing.FocusManager() FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) window = Tk.Tk() canvas = FigureCanvasTkAgg(figure, master=window) figManager = FigureManagerTkAgg(canvas, num, window) if matplotlib.is_interactive(): figManager.show() return figManager class FigureCanvasTkAgg(FigureCanvasAgg): keyvald = {65507 : 'control', 65505 : 'shift', 65513 : 'alt', 65508 : 'control', 65506 : 'shift', 65514 : 'alt', 65361 : 'left', 65362 : 'up', 65363 : 'right', 65364 : 'down', 65307 : 'escape', 65470 : 'f1', 65471 : 'f2', 65472 : 'f3', 65473 : 'f4', 65474 : 'f5', 65475 : 'f6', 65476 : 'f7', 65477 : 'f8', 65478 : 'f9', 65479 : 'f10', 65480 : 'f11', 65481 : 'f12', 65300 : 'scroll_lock', 65299 : 'break', 65288 : 'backspace', 65293 : 'enter', 65379 : 'insert', 65535 : 'delete', 65360 : 'home', 65367 : 'end', 65365 : 'pageup', 65366 : 'pagedown', 65438 : '0', 65436 : '1', 65433 : '2', 65435 : '3', 65430 : '4', 65437 : '5', 65432 : '6', 65429 : '7', 65431 : '8', 65434 : '9', 65451 : '+', 65453 : '-', 65450 : '*', 65455 : '/', 65439 : 'dec', 65421 : 'enter', } def __init__(self, figure, master=None, resize_callback=None): FigureCanvasAgg.__init__(self, figure) self._idle = True t1,t2,w,h = self.figure.bbox.bounds w, h = int(w), int(h) self._tkcanvas = Tk.Canvas( master=master, width=w, height=h, borderwidth=4) self._tkphoto = Tk.PhotoImage( master=self._tkcanvas, width=w, height=h) self._tkcanvas.create_image(w/2, h/2, image=self._tkphoto) self._resize_callback = resize_callback self._tkcanvas.bind("<Configure>", self.resize) self._tkcanvas.bind("<Key>", self.key_press) self._tkcanvas.bind("<Motion>", self.motion_notify_event) self._tkcanvas.bind("<KeyRelease>", self.key_release) for name in "<Button-1>", "<Button-2>", "<Button-3>": self._tkcanvas.bind(name, self.button_press_event) for name in "<ButtonRelease-1>", "<ButtonRelease-2>", "<ButtonRelease-3>": self._tkcanvas.bind(name, self.button_release_event) # Mouse wheel on Linux generates button 4/5 events for name in "<Button-4>", "<Button-5>": self._tkcanvas.bind(name, self.scroll_event) # Mouse wheel for windows goes to the window with the focus. # Since the canvas won't usually have the focus, bind the # event to the window containing the canvas instead. # See http://wiki.tcl.tk/3893 (mousewheel) for details root = self._tkcanvas.winfo_toplevel() root.bind("<MouseWheel>", self.scroll_event_windows) self._master = master self._tkcanvas.focus_set() # a dict from func-> cbook.Scheduler threads self.sourced = dict() # call the idle handler def on_idle(*ignore): self.idle_event() return True # disable until you figure out how to handle threads and interrupts #t = cbook.Idle(on_idle) #self._tkcanvas.after_idle(lambda *ignore: t.start()) def resize(self, event): width, height = event.width, event.height if self._resize_callback is not None: self._resize_callback(event) # compute desired figure size in inches dpival = self.figure.dpi winch = width/dpival hinch = height/dpival self.figure.set_size_inches(winch, hinch) self._tkcanvas.delete(self._tkphoto) self._tkphoto = Tk.PhotoImage( master=self._tkcanvas, width=width, height=height) self._tkcanvas.create_image(width/2,height/2,image=self._tkphoto) self.resize_event() self.show() def draw(self): FigureCanvasAgg.draw(self) tkagg.blit(self._tkphoto, self.renderer._renderer, colormode=2) self._master.update_idletasks() def blit(self, bbox=None): tkagg.blit(self._tkphoto, self.renderer._renderer, bbox=bbox, colormode=2) self._master.update_idletasks() show = draw def draw_idle(self): 'update drawing area only if idle' d = self._idle self._idle = False def idle_draw(*args): self.draw() self._idle = True if d: self._tkcanvas.after_idle(idle_draw) def get_tk_widget(self): """returns the Tk widget used to implement FigureCanvasTkAgg. Although the initial implementation uses a Tk canvas, this routine is intended to hide that fact. """ return self._tkcanvas def motion_notify_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) def button_press_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if sys.platform=='darwin': # 2 and 3 were reversed on the OSX platform I # tested under tkagg if num==2: num=3 elif num==3: num=2 FigureCanvasBase.button_press_event(self, x, y, num, guiEvent=event) def button_release_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if sys.platform=='darwin': # 2 and 3 were reversed on the OSX platform I # tested under tkagg if num==2: num=3 elif num==3: num=2 FigureCanvasBase.button_release_event(self, x, y, num, guiEvent=event) def scroll_event(self, event): x = event.x y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if num==4: step = -1 elif num==5: step = +1 else: step = 0 FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) def scroll_event_windows(self, event): """MouseWheel event processor""" # need to find the window that contains the mouse w = event.widget.winfo_containing(event.x_root, event.y_root) if w == self._tkcanvas: x = event.x_root - w.winfo_rootx() y = event.y_root - w.winfo_rooty() y = self.figure.bbox.height - y step = event.delta/120. FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) def _get_key(self, event): val = event.keysym_num if val in self.keyvald: key = self.keyvald[val] elif val<256: key = chr(val) else: key = None return key def key_press(self, event): key = self._get_key(event) FigureCanvasBase.key_press_event(self, key, guiEvent=event) def key_release(self, event): key = self._get_key(event) FigureCanvasBase.key_release_event(self, key, guiEvent=event) def flush_events(self): self._master.update() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerTkAgg(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The tk.Toolbar window : The tk.Window """ def __init__(self, canvas, num, window): FigureManagerBase.__init__(self, canvas, num) self.window = window self.window.withdraw() self.window.wm_title("Figure %d" % num) self.canvas = canvas self._num = num t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self.window.minsize(int(w*3/4),int(h*3/4)) if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbar( canvas, self.window ) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2TkAgg( canvas, self.window ) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() self.canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) self._shown = False def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.show() def resize(self, event): width, height = event.width, event.height self.toolbar.configure(width=width) # , height=height) def show(self): """ this function doesn't segfault but causes the PyEval_RestoreThread: NULL state bug on win32 """ def destroy(*args): self.window = None Gcf.destroy(self._num) if not self._shown: self.canvas._tkcanvas.bind("<Destroy>", destroy) _focus = windowing.FocusManager() if not self._shown: self.window.deiconify() # anim.py requires this if sys.platform=='win32' : self.window.update() else: self.canvas.draw() self._shown = True def destroy(self, *args): if Gcf.get_num_fig_managers()==0 and not matplotlib.is_interactive(): if self.window is not None: self.window.quit() if self.window is not None: #self.toolbar.destroy() self.window.destroy() pass self.window = None def set_window_title(self, title): self.window.wm_title(title) class AxisMenu: def __init__(self, master, naxes): self._master = master self._naxes = naxes self._mbar = Tk.Frame(master=master, relief=Tk.RAISED, borderwidth=2) self._mbar.pack(side=Tk.LEFT) self._mbutton = Tk.Menubutton( master=self._mbar, text="Axes", underline=0) self._mbutton.pack(side=Tk.LEFT, padx="2m") self._mbutton.menu = Tk.Menu(self._mbutton) self._mbutton.menu.add_command( label="Select All", command=self.select_all) self._mbutton.menu.add_command( label="Invert All", command=self.invert_all) self._axis_var = [] self._checkbutton = [] for i in range(naxes): self._axis_var.append(Tk.IntVar()) self._axis_var[i].set(1) self._checkbutton.append(self._mbutton.menu.add_checkbutton( label = "Axis %d" % (i+1), variable=self._axis_var[i], command=self.set_active)) self._mbutton.menu.invoke(self._mbutton.menu.index("Select All")) self._mbutton['menu'] = self._mbutton.menu self._mbar.tk_menuBar(self._mbutton) self.set_active() def adjust(self, naxes): if self._naxes < naxes: for i in range(self._naxes, naxes): self._axis_var.append(Tk.IntVar()) self._axis_var[i].set(1) self._checkbutton.append( self._mbutton.menu.add_checkbutton( label = "Axis %d" % (i+1), variable=self._axis_var[i], command=self.set_active)) elif self._naxes > naxes: for i in range(self._naxes-1, naxes-1, -1): del self._axis_var[i] self._mbutton.menu.forget(self._checkbutton[i]) del self._checkbutton[i] self._naxes = naxes self.set_active() def get_indices(self): a = [i for i in range(len(self._axis_var)) if self._axis_var[i].get()] return a def set_active(self): self._master.set_active(self.get_indices()) def invert_all(self): for a in self._axis_var: a.set(not a.get()) self.set_active() def select_all(self): for a in self._axis_var: a.set(1) self.set_active() class NavigationToolbar(Tk.Frame): """ Public attriubutes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ def _Button(self, text, file, command): file = os.path.join(rcParams['datapath'], 'images', file) im = Tk.PhotoImage(master=self, file=file) b = Tk.Button( master=self, text=text, padx=2, pady=2, image=im, command=command) b._ntimage = im b.pack(side=Tk.LEFT) return b def __init__(self, canvas, window): self.canvas = canvas self.window = window xmin, xmax = canvas.figure.bbox.intervalx height, width = 50, xmax-xmin Tk.Frame.__init__(self, master=self.window, width=width, height=height, borderwidth=2) self.update() # Make axes menu self.bLeft = self._Button( text="Left", file="stock_left.ppm", command=lambda x=-1: self.panx(x)) self.bRight = self._Button( text="Right", file="stock_right.ppm", command=lambda x=1: self.panx(x)) self.bZoomInX = self._Button( text="ZoomInX",file="stock_zoom-in.ppm", command=lambda x=1: self.zoomx(x)) self.bZoomOutX = self._Button( text="ZoomOutX", file="stock_zoom-out.ppm", command=lambda x=-1: self.zoomx(x)) self.bUp = self._Button( text="Up", file="stock_up.ppm", command=lambda y=1: self.pany(y)) self.bDown = self._Button( text="Down", file="stock_down.ppm", command=lambda y=-1: self.pany(y)) self.bZoomInY = self._Button( text="ZoomInY", file="stock_zoom-in.ppm", command=lambda y=1: self.zoomy(y)) self.bZoomOutY = self._Button( text="ZoomOutY",file="stock_zoom-out.ppm", command=lambda y=-1: self.zoomy(y)) self.bSave = self._Button( text="Save", file="stock_save_as.ppm", command=self.save_figure) self.pack(side=Tk.BOTTOM, fill=Tk.X) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def panx(self, direction): for a in self._active: a.xaxis.pan(direction) self.canvas.draw() def pany(self, direction): for a in self._active: a.yaxis.pan(direction) self.canvas.draw() def zoomx(self, direction): for a in self._active: a.xaxis.zoom(direction) self.canvas.draw() def zoomy(self, direction): for a in self._active: a.yaxis.zoom(direction) self.canvas.draw() def save_figure(self): fs = FileDialog.SaveFileDialog(master=self.window, title='Save the figure') try: self.lastDir except AttributeError: self.lastDir = os.curdir fname = fs.go(dir_or_file=self.lastDir) # , pattern="*.png") if fname is None: # Cancel return self.lastDir = os.path.dirname(fname) try: self.canvas.print_figure(fname) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) error_msg_tkpaint(msg) def update(self): _focus = windowing.FocusManager() self._axes = self.canvas.figure.axes naxes = len(self._axes) if not hasattr(self, "omenu"): self.set_active(range(naxes)) self.omenu = AxisMenu(master=self, naxes=naxes) else: self.omenu.adjust(naxes) class NavigationToolbar2TkAgg(NavigationToolbar2, Tk.Frame): """ Public attriubutes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ def __init__(self, canvas, window): self.canvas = canvas self.window = window self._idle = True #Tk.Frame.__init__(self, master=self.canvas._tkcanvas) NavigationToolbar2.__init__(self, canvas) def destroy(self, *args): del self.message Tk.Frame.destroy(self, *args) def set_message(self, s): self.message.set(s) def draw_rubberband(self, event, x0, y0, x1, y1): height = self.canvas.figure.bbox.height y0 = height-y0 y1 = height-y1 try: self.lastrect except AttributeError: pass else: self.canvas._tkcanvas.delete(self.lastrect) self.lastrect = self.canvas._tkcanvas.create_rectangle(x0, y0, x1, y1) #self.canvas.draw() def release(self, event): try: self.lastrect except AttributeError: pass else: self.canvas._tkcanvas.delete(self.lastrect) del self.lastrect def set_cursor(self, cursor): self.window.configure(cursor=cursord[cursor]) def _Button(self, text, file, command): file = os.path.join(rcParams['datapath'], 'images', file) im = Tk.PhotoImage(master=self, file=file) b = Tk.Button( master=self, text=text, padx=2, pady=2, image=im, command=command) b._ntimage = im b.pack(side=Tk.LEFT) return b def _init_toolbar(self): xmin, xmax = self.canvas.figure.bbox.intervalx height, width = 50, xmax-xmin Tk.Frame.__init__(self, master=self.window, width=width, height=height, borderwidth=2) self.update() # Make axes menu self.bHome = self._Button( text="Home", file="home.ppm", command=self.home) self.bBack = self._Button( text="Back", file="back.ppm", command = self.back) self.bForward = self._Button(text="Forward", file="forward.ppm", command = self.forward) self.bPan = self._Button( text="Pan", file="move.ppm", command = self.pan) self.bZoom = self._Button( text="Zoom", file="zoom_to_rect.ppm", command = self.zoom) self.bsubplot = self._Button( text="Configure Subplots", file="subplots.ppm", command = self.configure_subplots) self.bsave = self._Button( text="Save", file="filesave.ppm", command = self.save_figure) self.message = Tk.StringVar(master=self) self._message_label = Tk.Label(master=self, textvariable=self.message) self._message_label.pack(side=Tk.RIGHT) self.pack(side=Tk.BOTTOM, fill=Tk.X) def configure_subplots(self): toolfig = Figure(figsize=(6,3)) window = Tk.Tk() canvas = FigureCanvasTkAgg(toolfig, master=window) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) def save_figure(self): from tkFileDialog import asksaveasfilename from tkMessageBox import showerror filetypes = self.canvas.get_supported_filetypes().copy() default_filetype = self.canvas.get_default_filetype() # Tk doesn't provide a way to choose a default filetype, # so we just have to put it first default_filetype_name = filetypes[default_filetype] del filetypes[default_filetype] sorted_filetypes = filetypes.items() sorted_filetypes.sort() sorted_filetypes.insert(0, (default_filetype, default_filetype_name)) tk_filetypes = [ (name, '*.%s' % ext) for (ext, name) in sorted_filetypes] fname = asksaveasfilename( master=self.window, title='Save the figure', filetypes = tk_filetypes, defaultextension = self.canvas.get_default_filetype() ) if fname == "" or fname == (): return else: try: # This method will handle the delegation to the correct type self.canvas.print_figure(fname) except Exception, e: showerror("Error saving file", str(e)) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): _focus = windowing.FocusManager() self._axes = self.canvas.figure.axes naxes = len(self._axes) #if not hasattr(self, "omenu"): # self.set_active(range(naxes)) # self.omenu = AxisMenu(master=self, naxes=naxes) #else: # self.omenu.adjust(naxes) NavigationToolbar2.update(self) def dynamic_update(self): 'update drawing area only if idle' # legacy method; new method is canvas.draw_idle self.canvas.draw_idle() FigureManager = FigureManagerTkAgg
agpl-3.0
mhoffman/kmos
kmos/cli.py
1
16514
#!/usr/bin/env python """Entry point module for the command-line interface. The kmos executable should be on the program path, import this modules main function and run it. To call kmos command as you would from the shell, use :: kmos.cli.main('...') Every command can be shortened as long as it is non-ambiguous, e.g. :: kmos ex <xml-file> instead of :: kmos export <xml-file> etc. """ # Copyright 2009-2013 Max J. Hoffmann (mjhoffmann@gmail.com) # This file is part of kmos. # # kmos is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # kmos is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with kmos. If not, see <http://www.gnu.org/licenses/>. from __future__ import with_statement import os import shutil usage = {} usage['all'] = """kmos help all Display documentation for all commands. """ usage['benchmark'] = """kmos benchmark Run 1 mio. kMC steps on model in current directory and report runtime. """ usage['build'] = """kmos build Build kmc_model.%s from *f90 files in the current directory. Additional Parameters :: -d/--debug Turn on assertion statements in F90 code -n/--no-compiler-optimization Do not send optimizing flags to compiler. """ % ('pyd' if os.name == 'nt' else 'so') usage['help'] = """kmos help <command> Print usage information for the given command. """ usage['export'] = """kmos export <xml-file> [<export-path>] Take a kmos xml-file and export all generated source code to the export-path. There try to build the kmc_model.%s. Additional Parameters :: -s/--source-only Export source only and don't build binary -b/--backend (local_smart|lat_int) Choose backend. Default is "local_smart". lat_int is EXPERIMENTAL and not made for production, yet. -d/--debug Turn on assertion statements in F90 code. (Only active in compile step) --acf Build the modules base_acf.f90 and proclist_acf.f90. Default is false. This both modules contain functions to calculate ACF (autocorrelation function) and MSD (mean squared displacement). -n/--no-compiler-optimization Do not send optimizing flags to compiler. """ % ('pyd' if os.name == 'nt' else 'so') usage['settings-export'] = """kmos settings-export <xml-file> [<export-path>] Take a kmos xml-file and export kmc_settings.py to the export-path. """ usage['edit'] = """kmos edit <xml-file> Open the kmos xml-file in a GUI to edit the model. """ usage['import'] = """kmos import <xml-file> Take a kmos xml-file and open an ipython shell with the project_tree imported as pt. """ usage['rebuild'] = """kmos rebuild Export code and rebuild binary module from XML information included in kmc_settings.py in current directory. Additional Parameters :: -d/--debug Turn on assertion statements in F90 code """ usage['shell'] = """kmos shell Open an interactive shell and create a KMC_Model in it run == shell """ usage['run'] = """kmos run Open an interactive shell and create a KMC_Model in it run == shell """ usage['version'] = """kmos version Print version number and exit. """ usage['view'] = """kmos view Take a kmc_model.%s and kmc_settings.py in the same directory and start to simulate the model visually. Additional Parameters :: -v/--steps-per-frame <number> Number of steps per frame """ % ('pyd' if os.name == 'nt' else 'so') usage['xml'] = """kmos xml Print xml representation of model to stdout """ def get_options(args=None, get_parser=False): import optparse import os from glob import glob import kmos parser = optparse.OptionParser( 'Usage: %prog [help] (' + '|'.join(sorted(usage.keys())) + ') [options]', version=kmos.__version__) parser.add_option('-s', '--source-only', dest='source_only', action='store_true', default=False) parser.add_option('-p', '--path-to-f2py', dest='path_to_f2py', default='f2py') parser.add_option('-b', '--backend', dest='backend', default='local_smart') parser.add_option('-a', '--avoid-default-state', dest='avoid_default_state', action='store_true', default=False, ) parser.add_option('-v', '--steps-per-frame', dest='steps_per_frame', type='int', default='50000') parser.add_option('-d', '--debug', default=False, dest='debug', action='store_true') parser.add_option('-n', '--no-compiler-optimization', default=False, dest='no_optimize', action='store_true') parser.add_option('-o', '--overwrite', default=False, action='store_true') parser.add_option('-l', '--variable-length', dest='variable_length', default=95, type='int') parser.add_option('-c', '--catmap', default=False, action='store_true') parser.add_option('--acf', dest='acf', action='store_true', default=False, ) try: from numpy.distutils.fcompiler import get_default_fcompiler from numpy.distutils import log log.set_verbosity(-1, True) fcompiler = get_default_fcompiler() except: fcompiler = 'gfortran' parser.add_option('-f', '--fcompiler', dest='fcompiler', default=os.environ.get('F2PY_FCOMPILER', fcompiler)) if args is not None: options, args = parser.parse_args(args.split()) else: options, args = parser.parse_args() if len(args) < 1: parser.error('Command expected') if get_parser: return options, args, parser else: return options, args def match_keys(arg, usage, parser): """Try to match part of a command against the set of commands from usage. Throws an error if not successful. """ possible_args = [key for key in usage if key.startswith(arg)] if len(possible_args) == 0: parser.error('Command "%s" not understood.' % arg) elif len(possible_args) > 1: parser.error(('Command "%s" ambiguous.\n' 'Could be one of %s\n\n') % (arg, possible_args)) else: return possible_args[0] def main(args=None): """The CLI main entry point function. The optional argument args, can be used to directly supply command line argument like $ kmos <args> otherwise args will be taken from STDIN. """ from glob import glob options, args, parser = get_options(args, get_parser=True) global model, pt, np, cm_model if not args[0] in usage.keys(): args[0] = match_keys(args[0], usage, parser) if args[0] == 'benchmark': from sys import path path.append(os.path.abspath(os.curdir)) nsteps = 1000000 from time import time from kmos.run import KMC_Model model = KMC_Model(print_rates=False, banner=False) time0 = time() try: model.proclist.do_kmc_steps(nsteps) except: # kmos < 0.3 had no model.proclist.do_kmc_steps model.do_steps(nsteps) needed_time = time() - time0 print('Using the [%s] backend.' % model.get_backend()) print('%s steps took %.2f seconds' % (nsteps, needed_time)) print('Or %.2e steps/s' % (1e6 / needed_time)) model.deallocate() elif args[0] == 'build': from kmos.utils import build build(options) elif args[0] == 'edit': from kmos import gui gui.main() elif args[0] == 'settings-export': import kmos.types import kmos.io from kmos.io import ProcListWriter if len(args) < 2: parser.error('XML file and export path expected.') if len(args) < 3: out_dir = '%s_%s' % (os.path.splitext(args[1])[0], options.backend) print('No export path provided. Exporting to %s' % out_dir) args.append(out_dir) xml_file = args[1] export_dir = args[2] project = kmos.types.Project() project.import_file(xml_file) writer = ProcListWriter(project, export_dir) writer.write_settings() elif args[0] == 'export': import kmos.types import kmos.io from kmos.utils import build if len(args) < 2: parser.error('XML file and export path expected.') if len(args) < 3: out_dir = '%s_%s' % (os.path.splitext(args[1])[0], options.backend) print('No export path provided. Exporting to %s' % out_dir) args.append(out_dir) xml_file = args[1] export_dir = os.path.join(args[2], 'src') project = kmos.types.Project() project.import_file(xml_file) project.shorten_names(max_length=options.variable_length) kmos.io.export_source(project, export_dir, options=options) if ((os.name == 'posix' and os.uname()[0] in ['Linux', 'Darwin']) or os.name == 'nt') \ and not options.source_only: os.chdir(export_dir) build(options) for out in glob('kmc_*'): if os.path.exists('../%s' % out) : if options.overwrite : overwrite = 'y' else: overwrite = raw_input(('Should I overwrite existing %s ?' '[y/N] ') % out).lower() if overwrite.startswith('y') : print('Overwriting {out}'.format(**locals())) os.remove('../%s' % out) shutil.move(out, '..') else : print('Skipping {out}'.format(**locals())) else: shutil.move(out, '..') elif args[0] == 'settings-export': import kmos.io pt = kmos.io.import_file(args[1]) if len(args) < 3: out_dir = os.path.splitext(args[1])[0] print('No export path provided. Exporting kmc_settings.py to %s' % out_dir) args.append(out_dir) if not os.path.exists(args[2]): os.mkdir(args[2]) elif not os.path.isdir(args[2]): raise UserWarning("Cannot overwrite %s; Exiting;" % args[2]) writer = kmos.io.ProcListWriter(pt, args[2]) writer.write_settings() elif args[0] == 'help': if len(args) < 2: parser.error('Which help do you want?') if args[1] == 'all': for command in sorted(usage): print(usage[command]) elif args[1] in usage: print('Usage: %s\n' % usage[args[1]]) else: arg = match_keys(args[1], usage, parser) print('Usage: %s\n' % usage[arg]) elif args[0] == 'import': import kmos.io if not len(args) >= 2: raise UserWarning('XML file name expected.') pt = kmos.io.import_xml_file(args[1]) if len(args) == 2: sh(banner='Note: pt = kmos.io.import_xml(\'%s\')' % args[1]) elif len(args) == 3: # if optional 3rd argument is given, store model there and exit pt.save(args[2]) elif args[0] == 'rebuild': from time import sleep print('Will rebuild model from kmc_settings.py in current directory') print('Please do not interrupt,' ' build process, as you will most likely') print('loose the current model files.') sleep(2.) from sys import path path.append(os.path.abspath(os.curdir)) from tempfile import mktemp if not os.path.exists('kmc_model.so') \ and not os.path.exists('kmc_model.pyd'): raise Exception('No kmc_model.so found.') if not os.path.exists('kmc_settings.py'): raise Exception('No kmc_settings.py found.') from kmos.run import KMC_Model model = KMC_Model(print_rates=False, banner=False) tempfile = mktemp() f = file(tempfile, 'w') f.write(model.xml()) f.close() for kmc_model in glob('kmc_model.*'): os.remove(kmc_model) os.remove('kmc_settings.py') main('export %s -b %s .' % (tempfile, options.backend)) os.remove(tempfile) model.deallocate() elif args[0] in ['run', 'shell']: from sys import path path.append(os.path.abspath(os.curdir)) from kmos.run import KMC_Model # useful to have in interactive mode import numpy as np try: from matplotlib import pyplot as plt except: plt = None if options.catmap: import catmap import catmap.cli.kmc_runner seed = catmap.cli.kmc_runner.get_seed_from_path('.') cm_model = catmap.ReactionModel(setup_file='{seed}.mkm'.format(**locals())) catmap_message = '\nSide-loaded catmap_model {seed}.mkm into cm_model = ReactionModel(setup_file="{seed}.mkm")'.format(**locals()) else: catmap_message = '' try: model = KMC_Model(print_rates=False) except: print("Warning: could not import kmc_model!" " Please make sure you are in the right directory") sh(banner='Note: model = KMC_Model(print_rates=False){catmap_message}'.format(**locals())) try: model.deallocate() except: print("Warning: could not deallocate model. Was is allocated?") elif args[0] == 'version': from kmos import VERSION print(VERSION) elif args[0] == 'view': from sys import path path.append(os.path.abspath(os.curdir)) from kmos import view view.main(steps_per_frame=options.steps_per_frame) elif args[0] == 'xml': from sys import path path.append(os.path.abspath(os.curdir)) from kmos.run import KMC_Model model = KMC_Model(banner=False, print_rates=False) print(model.xml()) else: parser.error('Command "%s" not understood.' % args[0]) def sh(banner): """Wrapper around interactive ipython shell that factors out ipython version depencies. """ from distutils.version import LooseVersion import IPython if hasattr(IPython, 'release'): try: from IPython.terminal.embed import InteractiveShellEmbed InteractiveShellEmbed(banner1=banner)() except ImportError: try: from IPython.frontend.terminal.embed \ import InteractiveShellEmbed InteractiveShellEmbed(banner1=banner)() except ImportError: from IPython.Shell import IPShellEmbed IPShellEmbed(banner=banner)() else: from IPython.Shell import IPShellEmbed IPShellEmbed(banner=banner)()
gpl-3.0

No dataset card yet

Downloads last month
838

Models trained or fine-tuned on huggingface-course/codeparrot-ds-valid