source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(self, show_progress=True, optimized=True, skip_configuration=False):
if not skip_configuration:
configuration_command = ['python', 'waf', 'configure',
'--enable-examples', '--disable-gtk', '--disable-python']
if optimized:
configuration_command += ['--build-profile=optimized',
'--out=build/optimized']
subprocess.call(configuration_command, cwd=self.path, stdout=
subprocess.PIPE, stderr=subprocess.PIPE)
build_process = subprocess.Popen(['python', 'waf', 'build'], cwd=self.
path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if show_progress:
line_iterator = self.get_build_output(build_process)
pbar = None
try:
[initial, total] = next(line_iterator)
pbar = tqdm(line_iterator, initial=initial, total=total, unit=
'file', desc='Building ns-3', smoothing=0)
for current, total in pbar:
pbar.n = current
except StopIteration:
if pbar is not None:
pbar.n = pbar.total
else:
build_process.communicate()
| configure_and_build | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, show_progress=True, optimized=True, skip_configuration=False):\n if not skip_configuration:\n configuration_command = ['python', 'waf', 'configure',\n '--enable-examples', '--disable-gtk', '--disable-python']\n if optimized:\n configuration_command += ['--build-profile=optimized',\n '--out=build/optimized']\n subprocess.call(configuration_command, cwd=self.path, stdout=\n subprocess.PIPE, stderr=subprocess.PIPE)\n build_process = subprocess.Popen(['python', 'waf', 'build'], cwd=self.\n path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n if show_progress:\n line_iterator = self.get_build_output(build_process)\n pbar = None\n try:\n [initial, total] = next(line_iterator)\n pbar = tqdm(line_iterator, initial=initial, total=total, unit=\n 'file', desc='Building ns-3', smoothing=0)\n for current, total in pbar:\n pbar.n = current\n except StopIteration:\n if pbar is not None:\n pbar.n = pbar.total\n else:\n build_process.communicate()\n",
"role": "user"
},
{
"content": "configure_and_build",
"role": "assistant"
}
] |
def x(self, process):
while True:
output = process.stdout.readline()
if output == b'' and process.poll() is not None:
if process.returncode > 0:
raise Exception(
'Compilation ended with an error.\nSTDERR\n%s\nSTDOUT\n%s'
% (process.stderr.read(), process.stdout.read()))
return
if output:
matches = re.search('\\[\\s*(\\d+?)/(\\d+)\\].*', output.strip(
).decode('utf-8'))
if matches is not None:
yield [int(matches.group(1)), int(matches.group(2))]
| get_build_output | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, process):\n while True:\n output = process.stdout.readline()\n if output == b'' and process.poll() is not None:\n if process.returncode > 0:\n raise Exception(\n 'Compilation ended with an error.\\nSTDERR\\n%s\\nSTDOUT\\n%s'\n % (process.stderr.read(), process.stdout.read()))\n return\n if output:\n matches = re.search('\\\\[\\\\s*(\\\\d+?)/(\\\\d+)\\\\].*', output.strip(\n ).decode('utf-8'))\n if matches is not None:\n yield [int(matches.group(1)), int(matches.group(2))]\n",
"role": "user"
},
{
"content": "get_build_output",
"role": "assistant"
}
] |
def x(self):
result = subprocess.check_output([self.script_executable, '--PrintHelp'
], env=self.environment, cwd=self.path).decode('utf-8')
options = re.findall(
'.*Program\\s(?:Options|Arguments):(.*)General\\sArguments.*',
result, re.DOTALL)
global_options = subprocess.check_output([self.script_executable,
'--PrintGlobals'], env=self.environment, cwd=self.path).decode('utf-8')
args = []
if len(options):
args += re.findall('.*--(.*?)[?::|=].*', options[0], re.MULTILINE)
if len(global_options):
args += [k for k in re.findall('.*--(.*?)[?::|=].*', global_options,
re.MULTILINE) if k not in ['RngRun', 'RngSeed', 'SchedulerType',
'SimulatorImplementationType', 'ChecksumEnabled']]
return sorted(args)
| get_available_parameters | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n result = subprocess.check_output([self.script_executable, '--PrintHelp'\n ], env=self.environment, cwd=self.path).decode('utf-8')\n options = re.findall(\n '.*Program\\\\s(?:Options|Arguments):(.*)General\\\\sArguments.*',\n result, re.DOTALL)\n global_options = subprocess.check_output([self.script_executable,\n '--PrintGlobals'], env=self.environment, cwd=self.path).decode('utf-8')\n args = []\n if len(options):\n args += re.findall('.*--(.*?)[?::|=].*', options[0], re.MULTILINE)\n if len(global_options):\n args += [k for k in re.findall('.*--(.*?)[?::|=].*', global_options,\n re.MULTILINE) if k not in ['RngRun', 'RngSeed', 'SchedulerType',\n 'SimulatorImplementationType', 'ChecksumEnabled']]\n return sorted(args)\n",
"role": "user"
},
{
"content": "get_available_parameters",
"role": "assistant"
}
] |
def x(self, parameter_list, data_folder):
for idx, parameter in enumerate(parameter_list):
current_result = {'params': {}, 'meta': {}}
current_result['params'].update(parameter)
command = [self.script_executable] + [('--%s=%s' % (param, value)) for
param, value in parameter.items()]
current_result['meta']['id'] = str(uuid.uuid4())
temp_dir = os.path.join(data_folder, current_result['meta']['id'])
os.makedirs(temp_dir)
start = time.time()
stdout_file_path = os.path.join(temp_dir, 'stdout')
stderr_file_path = os.path.join(temp_dir, 'stderr')
with open(stdout_file_path, 'w') as stdout_file, open(stderr_file_path,
'w') as stderr_file:
return_code = subprocess.call(command, cwd=temp_dir, env=self.
environment, stdout=stdout_file, stderr=stderr_file)
end = time.time()
if return_code > 0:
complete_command = [self.script]
complete_command.extend(command[1:])
complete_command = 'python waf --run "%s"' % ' '.join(
complete_command)
with open(stdout_file_path, 'r') as stdout_file, open(
stderr_file_path, 'r') as stderr_file:
raise Exception(
"""Simulation exited with an error.
Params: %s
Stderr: %s
Stdout: %s
Use this command to reproduce:
%s"""
% (parameter, stderr_file.read(), stdout_file.read(),
complete_command))
current_result['meta']['elapsed_time'] = end - start
yield current_result
| run_simulations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_list, data_folder):\n for idx, parameter in enumerate(parameter_list):\n current_result = {'params': {}, 'meta': {}}\n current_result['params'].update(parameter)\n command = [self.script_executable] + [('--%s=%s' % (param, value)) for\n param, value in parameter.items()]\n current_result['meta']['id'] = str(uuid.uuid4())\n temp_dir = os.path.join(data_folder, current_result['meta']['id'])\n os.makedirs(temp_dir)\n start = time.time()\n stdout_file_path = os.path.join(temp_dir, 'stdout')\n stderr_file_path = os.path.join(temp_dir, 'stderr')\n with open(stdout_file_path, 'w') as stdout_file, open(stderr_file_path,\n 'w') as stderr_file:\n return_code = subprocess.call(command, cwd=temp_dir, env=self.\n environment, stdout=stdout_file, stderr=stderr_file)\n end = time.time()\n if return_code > 0:\n complete_command = [self.script]\n complete_command.extend(command[1:])\n complete_command = 'python waf --run \"%s\"' % ' '.join(\n complete_command)\n with open(stdout_file_path, 'r') as stdout_file, open(\n stderr_file_path, 'r') as stderr_file:\n raise Exception(\n \"\"\"Simulation exited with an error.\nParams: %s\n\nStderr: %s\nStdout: %s\nUse this command to reproduce:\n%s\"\"\"\n % (parameter, stderr_file.read(), stdout_file.read(),\n complete_command))\n current_result['meta']['elapsed_time'] = end - start\n yield current_result\n",
"role": "user"
},
{
"content": "run_simulations",
"role": "assistant"
}
] |
def x(param_ranges):
for key in param_ranges:
if not isinstance(param_ranges[key], list):
param_ranges[key] = [param_ranges[key]]
return [dict(zip(param_ranges, v)) for v in product(*param_ranges.values())
]
| list_param_combinations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(param_ranges):\n for key in param_ranges:\n if not isinstance(param_ranges[key], list):\n param_ranges[key] = [param_ranges[key]]\n return [dict(zip(param_ranges, v)) for v in product(*param_ranges.values())\n ]\n",
"role": "user"
},
{
"content": "list_param_combinations",
"role": "assistant"
}
] |
def x(script, result, debug=False):
if not debug:
command = 'python waf --run "' + script + ' ' + ' '.join([(
'--%s=%s' % (param, value)) for param, value in result['params'
].items()]) + '"'
else:
command = ('python waf --run ' + script + ' --command-template="' +
'gdb --args %s ' + ' '.join([('--%s=%s' % (param, value)) for
param, value in result['params'].items()]) + '"')
return command
| get_command_from_result | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(script, result, debug=False):\n if not debug:\n command = 'python waf --run \"' + script + ' ' + ' '.join([(\n '--%s=%s' % (param, value)) for param, value in result['params'\n ].items()]) + '\"'\n else:\n command = ('python waf --run ' + script + ' --command-template=\"' +\n 'gdb --args %s ' + ' '.join([('--%s=%s' % (param, value)) for \n param, value in result['params'].items()]) + '\"')\n return command\n",
"role": "user"
},
{
"content": "get_command_from_result",
"role": "assistant"
}
] |
def x(result, dtypes={}, converters={}):
np.seterr(all='raise')
parsed = {}
for filename, contents in result['output'].items():
if dtypes.get(filename) is None:
dtypes[filename] = None
if converters.get(filename) is None:
converters[filename] = None
with warnings.catch_warnings():
warnings.simplefilter('ignore')
parsed[filename] = np.genfromtxt(io.StringIO(contents), dtype=
dtypes[filename], converters=converters[filename]).tolist()
return parsed
| automatic_parser | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(result, dtypes={}, converters={}):\n np.seterr(all='raise')\n parsed = {}\n for filename, contents in result['output'].items():\n if dtypes.get(filename) is None:\n dtypes[filename] = None\n if converters.get(filename) is None:\n converters[filename] = None\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n parsed[filename] = np.genfromtxt(io.StringIO(contents), dtype=\n dtypes[filename], converters=converters[filename]).tolist()\n return parsed\n",
"role": "user"
},
{
"content": "automatic_parser",
"role": "assistant"
}
] |
def x(cls, ns_path, script, campaign_dir, runner_type='Auto', overwrite=
False, optimized=True, check_repo=True):
ns_path = os.path.abspath(ns_path)
campaign_dir = os.path.abspath(campaign_dir)
if Path(campaign_dir).exists() and not overwrite:
manager = CampaignManager.load(campaign_dir, ns_path, runner_type=
runner_type, optimized=optimized, check_repo=check_repo)
if manager.db.get_script() == script:
return manager
else:
del manager
runner = CampaignManager.create_runner(ns_path, script, runner_type=
runner_type, optimized=optimized)
params = runner.get_available_parameters()
commit = ''
if check_repo:
from git import Repo, exc
commit = Repo(ns_path).head.commit.hexsha
db = DatabaseManager.new(script=script, params=params, commit=commit,
campaign_dir=campaign_dir, overwrite=overwrite)
return cls(db, runner, check_repo)
| new | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, ns_path, script, campaign_dir, runner_type='Auto', overwrite=\n False, optimized=True, check_repo=True):\n ns_path = os.path.abspath(ns_path)\n campaign_dir = os.path.abspath(campaign_dir)\n if Path(campaign_dir).exists() and not overwrite:\n manager = CampaignManager.load(campaign_dir, ns_path, runner_type=\n runner_type, optimized=optimized, check_repo=check_repo)\n if manager.db.get_script() == script:\n return manager\n else:\n del manager\n runner = CampaignManager.create_runner(ns_path, script, runner_type=\n runner_type, optimized=optimized)\n params = runner.get_available_parameters()\n commit = ''\n if check_repo:\n from git import Repo, exc\n commit = Repo(ns_path).head.commit.hexsha\n db = DatabaseManager.new(script=script, params=params, commit=commit,\n campaign_dir=campaign_dir, overwrite=overwrite)\n return cls(db, runner, check_repo)\n",
"role": "user"
},
{
"content": "new",
"role": "assistant"
}
] |
def x(cls, campaign_dir, ns_path=None, runner_type='Auto', optimized=True,
check_repo=True):
if ns_path is not None:
ns_path = os.path.abspath(ns_path)
campaign_dir = os.path.abspath(campaign_dir)
db = DatabaseManager.load(campaign_dir)
script = db.get_script()
runner = None
if ns_path is not None:
runner = CampaignManager.create_runner(ns_path, script, runner_type,
optimized)
return cls(db, runner, check_repo)
| load | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, campaign_dir, ns_path=None, runner_type='Auto', optimized=True,\n check_repo=True):\n if ns_path is not None:\n ns_path = os.path.abspath(ns_path)\n campaign_dir = os.path.abspath(campaign_dir)\n db = DatabaseManager.load(campaign_dir)\n script = db.get_script()\n runner = None\n if ns_path is not None:\n runner = CampaignManager.create_runner(ns_path, script, runner_type,\n optimized)\n return cls(db, runner, check_repo)\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(ns_path, script, runner_type='Auto', optimized=True):
if runner_type == 'Auto' and DRMAA_AVAILABLE:
runner_type = 'GridRunner'
elif runner_type == 'Auto':
runner_type = 'ParallelRunner'
return locals().get(runner_type, globals().get(runner_type))(ns_path,
script, optimized=optimized)
| create_runner | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ns_path, script, runner_type='Auto', optimized=True):\n if runner_type == 'Auto' and DRMAA_AVAILABLE:\n runner_type = 'GridRunner'\n elif runner_type == 'Auto':\n runner_type = 'ParallelRunner'\n return locals().get(runner_type, globals().get(runner_type))(ns_path,\n script, optimized=optimized)\n",
"role": "user"
},
{
"content": "create_runner",
"role": "assistant"
}
] |
def x(self, param_list, show_progress=True):
if self.runner is None:
raise Exception(
'No runner was ever specified for this CampaignManager.')
if param_list == []:
return
desired_params = self.db.get_params()
for p in param_list:
passed = list(p.keys())
available = ['RngRun'] + desired_params
if set(passed) != set(available):
raise ValueError(
"""Specified parameter combination does not match the supported parameters:
Passed: %s
Supported: %s"""
% (sorted(passed), sorted(available)))
if self.check_repo:
self.check_repo_ok()
self.runner.configure_and_build(skip_configuration=True)
shuffle(param_list)
results = self.runner.run_simulations(param_list, self.db.get_data_dir())
if show_progress:
result_generator = tqdm(results, total=len(param_list), unit=
'simulation', desc='Running simulations')
else:
result_generator = results
for result in result_generator:
self.db.insert_result(result)
| run_simulations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, param_list, show_progress=True):\n if self.runner is None:\n raise Exception(\n 'No runner was ever specified for this CampaignManager.')\n if param_list == []:\n return\n desired_params = self.db.get_params()\n for p in param_list:\n passed = list(p.keys())\n available = ['RngRun'] + desired_params\n if set(passed) != set(available):\n raise ValueError(\n \"\"\"Specified parameter combination does not match the supported parameters:\nPassed: %s\nSupported: %s\"\"\"\n % (sorted(passed), sorted(available)))\n if self.check_repo:\n self.check_repo_ok()\n self.runner.configure_and_build(skip_configuration=True)\n shuffle(param_list)\n results = self.runner.run_simulations(param_list, self.db.get_data_dir())\n if show_progress:\n result_generator = tqdm(results, total=len(param_list), unit=\n 'simulation', desc='Running simulations')\n else:\n result_generator = results\n for result in result_generator:\n self.db.insert_result(result)\n",
"role": "user"
},
{
"content": "run_simulations",
"role": "assistant"
}
] |
def x(self, param_list, runs=None):
params_to_simulate = []
if runs is not None:
next_runs = self.db.get_next_rngruns()
available_params = [r['params'] for r in self.db.get_results()]
for param_comb in param_list:
needed_runs = runs
for i, p in enumerate(available_params):
if param_comb == {k: p[k] for k in p.keys() if k != 'RngRun'}:
needed_runs -= 1
new_param_combs = []
for needed_run in range(needed_runs):
new_param = deepcopy(param_comb)
new_param['RngRun'] = next(next_runs)
new_param_combs += [new_param]
params_to_simulate += new_param_combs
else:
for param_comb in param_list:
if not self.db.get_results(param_comb):
params_to_simulate += [param_comb]
return params_to_simulate
| get_missing_simulations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, param_list, runs=None):\n params_to_simulate = []\n if runs is not None:\n next_runs = self.db.get_next_rngruns()\n available_params = [r['params'] for r in self.db.get_results()]\n for param_comb in param_list:\n needed_runs = runs\n for i, p in enumerate(available_params):\n if param_comb == {k: p[k] for k in p.keys() if k != 'RngRun'}:\n needed_runs -= 1\n new_param_combs = []\n for needed_run in range(needed_runs):\n new_param = deepcopy(param_comb)\n new_param['RngRun'] = next(next_runs)\n new_param_combs += [new_param]\n params_to_simulate += new_param_combs\n else:\n for param_comb in param_list:\n if not self.db.get_results(param_comb):\n params_to_simulate += [param_comb]\n return params_to_simulate\n",
"role": "user"
},
{
"content": "get_missing_simulations",
"role": "assistant"
}
] |
def x(self, param_list, runs=None):
if isinstance(param_list, dict):
param_list = list_param_combinations(param_list)
self.run_simulations(self.get_missing_simulations(param_list, runs))
| run_missing_simulations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, param_list, runs=None):\n if isinstance(param_list, dict):\n param_list = list_param_combinations(param_list)\n self.run_simulations(self.get_missing_simulations(param_list, runs))\n",
"role": "user"
},
{
"content": "run_missing_simulations",
"role": "assistant"
}
] |
def x(self, parameter_space, result_parsing_function, runs):
return np.array(self.get_space(self.db.get_complete_results(), {},
parameter_space, runs, result_parsing_function))
| get_results_as_numpy_array | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, result_parsing_function, runs):\n return np.array(self.get_space(self.db.get_complete_results(), {},\n parameter_space, runs, result_parsing_function))\n",
"role": "user"
},
{
"content": "get_results_as_numpy_array",
"role": "assistant"
}
] |
def x(self, parameter_space, result_parsing_function, filename, runs):
for key in parameter_space:
if not isinstance(parameter_space[key], list):
parameter_space[key] = [parameter_space[key]]
dimension_labels = [{key: str(parameter_space[key])} for key in
parameter_space.keys() if len(parameter_space[key]) > 1] + [{'runs':
range(runs)}]
return savemat(filename, {'results': self.get_results_as_numpy_array(
parameter_space, result_parsing_function, runs=runs),
'dimension_labels': dimension_labels})
| save_to_mat_file | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, result_parsing_function, filename, runs):\n for key in parameter_space:\n if not isinstance(parameter_space[key], list):\n parameter_space[key] = [parameter_space[key]]\n dimension_labels = [{key: str(parameter_space[key])} for key in\n parameter_space.keys() if len(parameter_space[key]) > 1] + [{'runs':\n range(runs)}]\n return savemat(filename, {'results': self.get_results_as_numpy_array(\n parameter_space, result_parsing_function, runs=runs),\n 'dimension_labels': dimension_labels})\n",
"role": "user"
},
{
"content": "save_to_mat_file",
"role": "assistant"
}
] |
def x(self, parameter_space, result_parsing_function, filename, runs):
np.save(filename, self.get_results_as_numpy_array(parameter_space,
result_parsing_function, runs=runs))
| save_to_npy_file | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, result_parsing_function, filename, runs):\n np.save(filename, self.get_results_as_numpy_array(parameter_space,\n result_parsing_function, runs=runs))\n",
"role": "user"
},
{
"content": "save_to_npy_file",
"role": "assistant"
}
] |
def x(self, parameter_space, folder_name, runs):
self.space_to_folders(self.db.get_results(), {}, parameter_space, runs,
folder_name)
| save_to_folders | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, folder_name, runs):\n self.space_to_folders(self.db.get_results(), {}, parameter_space, runs,\n folder_name)\n",
"role": "user"
},
{
"content": "save_to_folders",
"role": "assistant"
}
] |
def x(self, current_result_list, current_query, param_space, runs,
current_directory):
if not param_space:
for run, r in enumerate(current_result_list[:runs]):
files = self.db.get_result_files(r)
new_dir = os.path.join(current_directory, 'run=%s' % run)
os.makedirs(new_dir, exist_ok=True)
for filename, filepath in files.items():
shutil.copyfile(filepath, os.path.join(new_dir, filename))
return
[key, value] = list(param_space.items())[0]
for v in value:
next_query = deepcopy(current_query)
temp_query = deepcopy(current_query)
next_query[key] = v
folder_name = ('%s=%s' % (key, v)).replace('/', '_')
new_dir = os.path.join(current_directory, folder_name)
os.makedirs(new_dir, exist_ok=True)
next_param_space = deepcopy(param_space)
del next_param_space[key]
temp_query[key] = v
temp_result_list = [r for r in current_result_list if self.
satisfies_query(r, temp_query)]
self.space_to_folders(temp_result_list, next_query,
next_param_space, runs, new_dir)
| space_to_folders | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, current_result_list, current_query, param_space, runs,\n current_directory):\n if not param_space:\n for run, r in enumerate(current_result_list[:runs]):\n files = self.db.get_result_files(r)\n new_dir = os.path.join(current_directory, 'run=%s' % run)\n os.makedirs(new_dir, exist_ok=True)\n for filename, filepath in files.items():\n shutil.copyfile(filepath, os.path.join(new_dir, filename))\n return\n [key, value] = list(param_space.items())[0]\n for v in value:\n next_query = deepcopy(current_query)\n temp_query = deepcopy(current_query)\n next_query[key] = v\n folder_name = ('%s=%s' % (key, v)).replace('/', '_')\n new_dir = os.path.join(current_directory, folder_name)\n os.makedirs(new_dir, exist_ok=True)\n next_param_space = deepcopy(param_space)\n del next_param_space[key]\n temp_query[key] = v\n temp_result_list = [r for r in current_result_list if self.\n satisfies_query(r, temp_query)]\n self.space_to_folders(temp_result_list, next_query,\n next_param_space, runs, new_dir)\n",
"role": "user"
},
{
"content": "space_to_folders",
"role": "assistant"
}
] |
def x(self, parameter_space, result_parsing_function, output_labels, runs):
np_array = np.array(self.get_space(self.db.get_complete_results(), {},
collections.OrderedDict([(k, v) for k, v in parameter_space.items()
]), runs, result_parsing_function))
clean_parameter_space = collections.OrderedDict([(k, v) for k, v in
parameter_space.items()])
clean_parameter_space['runs'] = range(runs)
if isinstance(output_labels, list):
clean_parameter_space['metrics'] = output_labels
xr_array = xr.DataArray(np_array, coords=clean_parameter_space, dims=
list(clean_parameter_space.keys()))
return xr_array
| get_results_as_xarray | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_space, result_parsing_function, output_labels, runs):\n np_array = np.array(self.get_space(self.db.get_complete_results(), {},\n collections.OrderedDict([(k, v) for k, v in parameter_space.items()\n ]), runs, result_parsing_function))\n clean_parameter_space = collections.OrderedDict([(k, v) for k, v in\n parameter_space.items()])\n clean_parameter_space['runs'] = range(runs)\n if isinstance(output_labels, list):\n clean_parameter_space['metrics'] = output_labels\n xr_array = xr.DataArray(np_array, coords=clean_parameter_space, dims=\n list(clean_parameter_space.keys()))\n return xr_array\n",
"role": "user"
},
{
"content": "get_results_as_xarray",
"role": "assistant"
}
] |
def x(self, current_result_list, current_query, param_space, runs,
result_parsing_function):
if result_parsing_function is None:
result_parsing_function = CampaignManager.files_in_dictionary
if not param_space:
results = [r for r in current_result_list if self.satisfies_query(r,
current_query)]
parsed = []
for r in results[:runs]:
parsed.append(result_parsing_function(r))
return parsed
space = []
[key, value] = list(param_space.items())[0]
for v in value:
next_query = deepcopy(current_query)
temp_query = deepcopy(current_query)
next_query[key] = v
next_param_space = deepcopy(param_space)
del next_param_space[key]
temp_query[key] = v
temp_result_list = [r for r in current_result_list if self.
satisfies_query(r, temp_query)]
space.append(self.get_space(temp_result_list, next_query,
next_param_space, runs, result_parsing_function))
return space
| get_space | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, current_result_list, current_query, param_space, runs,\n result_parsing_function):\n if result_parsing_function is None:\n result_parsing_function = CampaignManager.files_in_dictionary\n if not param_space:\n results = [r for r in current_result_list if self.satisfies_query(r,\n current_query)]\n parsed = []\n for r in results[:runs]:\n parsed.append(result_parsing_function(r))\n return parsed\n space = []\n [key, value] = list(param_space.items())[0]\n for v in value:\n next_query = deepcopy(current_query)\n temp_query = deepcopy(current_query)\n next_query[key] = v\n next_param_space = deepcopy(param_space)\n del next_param_space[key]\n temp_query[key] = v\n temp_result_list = [r for r in current_result_list if self.\n satisfies_query(r, temp_query)]\n space.append(self.get_space(temp_result_list, next_query,\n next_param_space, runs, result_parsing_function))\n return space\n",
"role": "user"
},
{
"content": "get_space",
"role": "assistant"
}
] |
def x(self):
from git import Repo, exc
if self.runner is not None:
path = self.runner.path
try:
repo = Repo(path)
except exc.InvalidGitRepositoryError:
raise Exception(
"""No git repository detected.
In order to use SEM and its reproducibility enforcing features, please create a git repository at the root of your ns-3 project."""
)
current_commit = repo.head.commit.hexsha
campaign_commit = self.db.get_commit()
if repo.is_dirty(untracked_files=True):
raise Exception('ns-3 repository is not clean')
if current_commit != campaign_commit:
raise Exception(
'ns-3 repository is on a different commit from the one specified in the campaign'
)
| check_repo_ok | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n from git import Repo, exc\n if self.runner is not None:\n path = self.runner.path\n try:\n repo = Repo(path)\n except exc.InvalidGitRepositoryError:\n raise Exception(\n \"\"\"No git repository detected.\nIn order to use SEM and its reproducibility enforcing features, please create a git repository at the root of your ns-3 project.\"\"\"\n )\n current_commit = repo.head.commit.hexsha\n campaign_commit = self.db.get_commit()\n if repo.is_dirty(untracked_files=True):\n raise Exception('ns-3 repository is not clean')\n if current_commit != campaign_commit:\n raise Exception(\n 'ns-3 repository is on a different commit from the one specified in the campaign'\n )\n",
"role": "user"
},
{
"content": "check_repo_ok",
"role": "assistant"
}
] |
def x(ns_3_path, results_dir, script, no_optimization, parameters,
max_processes):
sem.parallelrunner.MAX_PARALLEL_PROCESSES = max_processes
campaign = sem.CampaignManager.new(ns_3_path, script, results_dir,
overwrite=False, optimized=not no_optimization)
click.echo(campaign)
[params, defaults] = zip(*get_params_and_defaults(campaign.db.
get_params(), campaign.db))
if not parameters:
string_defaults = list()
for idx, d in enumerate(defaults):
if d is not None:
string_defaults.append(str(d))
else:
string_defaults.append(d)
script_params = query_parameters(params, defaults=string_defaults)
else:
script_params = import_parameters_from_file(parameters)
campaign.run_missing_simulations(script_params, runs=click.prompt(
'Total runs', type=int))
| run | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ns_3_path, results_dir, script, no_optimization, parameters,\n max_processes):\n sem.parallelrunner.MAX_PARALLEL_PROCESSES = max_processes\n campaign = sem.CampaignManager.new(ns_3_path, script, results_dir,\n overwrite=False, optimized=not no_optimization)\n click.echo(campaign)\n [params, defaults] = zip(*get_params_and_defaults(campaign.db.\n get_params(), campaign.db))\n if not parameters:\n string_defaults = list()\n for idx, d in enumerate(defaults):\n if d is not None:\n string_defaults.append(str(d))\n else:\n string_defaults.append(d)\n script_params = query_parameters(params, defaults=string_defaults)\n else:\n script_params = import_parameters_from_file(parameters)\n campaign.run_missing_simulations(script_params, runs=click.prompt(\n 'Total runs', type=int))\n",
"role": "user"
},
{
"content": "run",
"role": "assistant"
}
] |
def x(results_dir, result_id, hide_simulation_output, parameters, no_pager):
campaign = sem.CampaignManager.load(results_dir)
if hide_simulation_output:
get_results_function = campaign.db.get_results
else:
get_results_function = campaign.db.get_complete_results
if result_id:
output = '\n\n\n'.join([pprint.pformat(item) for item in
get_results_function(result_id=result_id)])
else:
[params, defaults] = zip(*get_params_and_defaults(campaign.db.
get_params(), campaign.db))
if not parameters:
string_defaults = list()
for idx, d in enumerate(defaults):
string_defaults.append(str(d))
script_params = query_parameters(params, string_defaults)
else:
script_params = import_parameters_from_file(parameters)
output = '\n\n\n'.join([pprint.pformat(item) for item in
get_results_function(script_params)])
if no_pager:
click.echo(output)
else:
click.echo_via_pager(output)
| view | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(results_dir, result_id, hide_simulation_output, parameters, no_pager):\n campaign = sem.CampaignManager.load(results_dir)\n if hide_simulation_output:\n get_results_function = campaign.db.get_results\n else:\n get_results_function = campaign.db.get_complete_results\n if result_id:\n output = '\\n\\n\\n'.join([pprint.pformat(item) for item in\n get_results_function(result_id=result_id)])\n else:\n [params, defaults] = zip(*get_params_and_defaults(campaign.db.\n get_params(), campaign.db))\n if not parameters:\n string_defaults = list()\n for idx, d in enumerate(defaults):\n string_defaults.append(str(d))\n script_params = query_parameters(params, string_defaults)\n else:\n script_params = import_parameters_from_file(parameters)\n output = '\\n\\n\\n'.join([pprint.pformat(item) for item in\n get_results_function(script_params)])\n if no_pager:\n click.echo(output)\n else:\n click.echo_via_pager(output)\n",
"role": "user"
},
{
"content": "view",
"role": "assistant"
}
] |
def x(results_dir, result_id):
campaign = sem.CampaignManager.load(results_dir)
result = campaign.db.get_results(result_id=result_id)[0]
click.echo('Simulation command:')
click.echo(sem.utils.get_command_from_result(campaign.db.get_script(),
result))
click.echo('Debug command:')
click.echo(sem.utils.get_command_from_result(campaign.db.get_script(),
result, debug=True))
| command | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(results_dir, result_id):\n campaign = sem.CampaignManager.load(results_dir)\n result = campaign.db.get_results(result_id=result_id)[0]\n click.echo('Simulation command:')\n click.echo(sem.utils.get_command_from_result(campaign.db.get_script(),\n result))\n click.echo('Debug command:')\n click.echo(sem.utils.get_command_from_result(campaign.db.get_script(),\n result, debug=True))\n",
"role": "user"
},
{
"content": "command",
"role": "assistant"
}
] |
def x(results_dir, filename, do_not_try_parsing, parameters):
_, extension = os.path.splitext(filename)
campaign = sem.CampaignManager.load(results_dir)
[params, defaults] = zip(*get_params_and_defaults(campaign.db.
get_params(), campaign.db))
if do_not_try_parsing:
parsing_function = None
else:
parsing_function = sem.utils.automatic_parser
if not parameters:
string_defaults = list()
for idx, d in enumerate(defaults):
string_defaults.append(str(d))
parameter_query = query_parameters(params, string_defaults)
else:
parameter_query = import_parameters_from_file(parameters)
if extension == '.mat':
campaign.save_to_mat_file(parameter_query, parsing_function,
filename, runs=click.prompt('Runs', type=int))
elif extension == '.npy':
campaign.save_to_npy_file(parameter_query, parsing_function,
filename, runs=click.prompt('Runs', type=int))
elif extension == '':
campaign.save_to_folders(parameter_query, filename, runs=click.
prompt('Runs', type=int))
else:
raise ValueError('Format not recognized')
| export | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(results_dir, filename, do_not_try_parsing, parameters):\n _, extension = os.path.splitext(filename)\n campaign = sem.CampaignManager.load(results_dir)\n [params, defaults] = zip(*get_params_and_defaults(campaign.db.\n get_params(), campaign.db))\n if do_not_try_parsing:\n parsing_function = None\n else:\n parsing_function = sem.utils.automatic_parser\n if not parameters:\n string_defaults = list()\n for idx, d in enumerate(defaults):\n string_defaults.append(str(d))\n parameter_query = query_parameters(params, string_defaults)\n else:\n parameter_query = import_parameters_from_file(parameters)\n if extension == '.mat':\n campaign.save_to_mat_file(parameter_query, parsing_function,\n filename, runs=click.prompt('Runs', type=int))\n elif extension == '.npy':\n campaign.save_to_npy_file(parameter_query, parsing_function,\n filename, runs=click.prompt('Runs', type=int))\n elif extension == '':\n campaign.save_to_folders(parameter_query, filename, runs=click.\n prompt('Runs', type=int))\n else:\n raise ValueError('Format not recognized')\n",
"role": "user"
},
{
"content": "export",
"role": "assistant"
}
] |
def x(move, output_dir, sources):
jsons = []
for s in sources:
filename = '%s.json' % os.path.split(s)[1]
jsons += [os.path.join(s, filename)]
reference_config = TinyDB(jsons[0]).table('config')
for j in jsons[1:]:
for i, j in zip(reference_config.all(), TinyDB(j).table('config').all()
):
assert i == j
filename = '%s.json' % os.path.split(output_dir)[1]
output_json = os.path.join(output_dir, filename)
output_data = os.path.join(output_dir, 'data')
os.makedirs(output_data)
db = TinyDB(output_json)
db.table('config').insert_multiple(reference_config.all())
for s in sources:
filename = '%s.json' % os.path.split(s)[1]
current_db = TinyDB(os.path.join(s, filename))
db.table('results').insert_multiple(current_db.table('results').all())
for s in sources:
for r in glob.glob(os.path.join(s, 'data/*')):
basename = os.path.basename(r)
if move:
shutil.move(r, os.path.join(output_data, basename))
else:
shutil.copytree(r, os.path.join(output_data, basename))
if move:
for s in sources:
shutil.rmtree(os.path.join(s, 'data/*'))
shutil.rmtree(os.path.join(s, '%s.json' % os.path.split(s)[1]))
shutil.rmtree(s)
| merge | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(move, output_dir, sources):\n jsons = []\n for s in sources:\n filename = '%s.json' % os.path.split(s)[1]\n jsons += [os.path.join(s, filename)]\n reference_config = TinyDB(jsons[0]).table('config')\n for j in jsons[1:]:\n for i, j in zip(reference_config.all(), TinyDB(j).table('config').all()\n ):\n assert i == j\n filename = '%s.json' % os.path.split(output_dir)[1]\n output_json = os.path.join(output_dir, filename)\n output_data = os.path.join(output_dir, 'data')\n os.makedirs(output_data)\n db = TinyDB(output_json)\n db.table('config').insert_multiple(reference_config.all())\n for s in sources:\n filename = '%s.json' % os.path.split(s)[1]\n current_db = TinyDB(os.path.join(s, filename))\n db.table('results').insert_multiple(current_db.table('results').all())\n for s in sources:\n for r in glob.glob(os.path.join(s, 'data/*')):\n basename = os.path.basename(r)\n if move:\n shutil.move(r, os.path.join(output_data, basename))\n else:\n shutil.copytree(r, os.path.join(output_data, basename))\n if move:\n for s in sources:\n shutil.rmtree(os.path.join(s, 'data/*'))\n shutil.rmtree(os.path.join(s, '%s.json' % os.path.split(s)[1]))\n shutil.rmtree(s)\n",
"role": "user"
},
{
"content": "merge",
"role": "assistant"
}
] |
def x(param_list, db):
return [[p, d] for p, d in db.get_all_values_of_all_params().items()]
| get_params_and_defaults | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(param_list, db):\n return [[p, d] for p, d in db.get_all_values_of_all_params().items()]\n",
"role": "user"
},
{
"content": "get_params_and_defaults",
"role": "assistant"
}
] |
def x(param_list, defaults=None):
script_params = collections.OrderedDict([k, []] for k in param_list)
for param, default in zip(list(script_params.keys()), defaults):
user_input = click.prompt('%s' % param, default=default)
script_params[param] = ast.literal_eval(user_input)
return script_params
| query_parameters | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(param_list, defaults=None):\n script_params = collections.OrderedDict([k, []] for k in param_list)\n for param, default in zip(list(script_params.keys()), defaults):\n user_input = click.prompt('%s' % param, default=default)\n script_params[param] = ast.literal_eval(user_input)\n return script_params\n",
"role": "user"
},
{
"content": "query_parameters",
"role": "assistant"
}
] |
def x(parameters_file):
params = {}
with open(parameters_file, 'r') as f:
matches = re.findall('(.*): (.*)', f.read())
for m in matches:
params[m[0]] = ast.literal_eval(m[1])
return params
| import_parameters_from_file | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(parameters_file):\n params = {}\n with open(parameters_file, 'r') as f:\n matches = re.findall('(.*): (.*)', f.read())\n for m in matches:\n params[m[0]] = ast.literal_eval(m[1])\n return params\n",
"role": "user"
},
{
"content": "import_parameters_from_file",
"role": "assistant"
}
] |
def x(self, parameter_list, data_folder):
self.data_folder = data_folder
with Pool(processes=MAX_PARALLEL_PROCESSES) as pool:
for result in pool.imap_unordered(self.launch_simulation,
parameter_list):
yield result
| run_simulations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_list, data_folder):\n self.data_folder = data_folder\n with Pool(processes=MAX_PARALLEL_PROCESSES) as pool:\n for result in pool.imap_unordered(self.launch_simulation,\n parameter_list):\n yield result\n",
"role": "user"
},
{
"content": "run_simulations",
"role": "assistant"
}
] |
def x(self, parameter):
return next(SimulationRunner.run_simulations(self, [parameter], self.
data_folder))
| launch_simulation | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter):\n return next(SimulationRunner.run_simulations(self, [parameter], self.\n data_folder))\n",
"role": "user"
},
{
"content": "launch_simulation",
"role": "assistant"
}
] |
def x(self, obj, beautify=False, raise_exception=False):
return self.helper.string.serialization.json.stringify(obj=obj,
beautify=beautify, raise_exception=raise_exception)
| stringify | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, beautify=False, raise_exception=False):\n return self.helper.string.serialization.json.stringify(obj=obj,\n beautify=beautify, raise_exception=raise_exception)\n",
"role": "user"
},
{
"content": "stringify",
"role": "assistant"
}
] |
def x(self, text, encoding='utf8', raise_exception=False):
return self.helper.string.serialization.json.parse(text=text, encoding=
encoding, raise_exception=raise_exception)
| parse | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, encoding='utf8', raise_exception=False):\n return self.helper.string.serialization.json.parse(text=text, encoding=\n encoding, raise_exception=raise_exception)\n",
"role": "user"
},
{
"content": "parse",
"role": "assistant"
}
] |
def x(cls, script, commit, params, campaign_dir, overwrite=False):
if not Path(campaign_dir).is_absolute():
raise ValueError('Path is not absolute')
if Path(campaign_dir).exists() and not overwrite:
raise FileExistsError('The specified directory already exists')
elif Path(campaign_dir).exists() and overwrite:
campaign_dir_name = os.path.basename(campaign_dir)
folder_contents = set(os.listdir(campaign_dir))
allowed_files = set(['data', '%s.json' % campaign_dir_name] + [os.
path.basename(os.path.normpath(f)) for f in glob.glob(os.path.
join(campaign_dir, '.*'))])
if not folder_contents.issubset(allowed_files):
raise ValueError(
'The specified directory cannot be overwritten because it contains user files.'
)
shutil.rmtree(campaign_dir)
os.makedirs(campaign_dir)
tinydb = TinyDB(os.path.join(campaign_dir, '%s.json' % os.path.basename
(campaign_dir)))
config = {'script': script, 'commit': commit, 'params': sorted(params)}
tinydb.table('config').insert(config)
return cls(tinydb, campaign_dir)
| new | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, script, commit, params, campaign_dir, overwrite=False):\n if not Path(campaign_dir).is_absolute():\n raise ValueError('Path is not absolute')\n if Path(campaign_dir).exists() and not overwrite:\n raise FileExistsError('The specified directory already exists')\n elif Path(campaign_dir).exists() and overwrite:\n campaign_dir_name = os.path.basename(campaign_dir)\n folder_contents = set(os.listdir(campaign_dir))\n allowed_files = set(['data', '%s.json' % campaign_dir_name] + [os.\n path.basename(os.path.normpath(f)) for f in glob.glob(os.path.\n join(campaign_dir, '.*'))])\n if not folder_contents.issubset(allowed_files):\n raise ValueError(\n 'The specified directory cannot be overwritten because it contains user files.'\n )\n shutil.rmtree(campaign_dir)\n os.makedirs(campaign_dir)\n tinydb = TinyDB(os.path.join(campaign_dir, '%s.json' % os.path.basename\n (campaign_dir)))\n config = {'script': script, 'commit': commit, 'params': sorted(params)}\n tinydb.table('config').insert(config)\n return cls(tinydb, campaign_dir)\n",
"role": "user"
},
{
"content": "new",
"role": "assistant"
}
] |
def x(cls, campaign_dir):
if not Path(campaign_dir).is_absolute():
raise ValueError('Path is not absolute')
if not Path(campaign_dir).exists():
raise ValueError('Directory does not exist')
filename = '%s.json' % os.path.split(campaign_dir)[1]
filepath = os.path.join(campaign_dir, filename)
try:
tinydb = TinyDB(filepath)
assert set(tinydb.table('config').all()[0].keys()) == set(['script',
'params', 'commit'])
except:
os.remove(filepath)
raise ValueError('Specified campaign directory seems corrupt')
return cls(tinydb, campaign_dir)
| load | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cls, campaign_dir):\n if not Path(campaign_dir).is_absolute():\n raise ValueError('Path is not absolute')\n if not Path(campaign_dir).exists():\n raise ValueError('Directory does not exist')\n filename = '%s.json' % os.path.split(campaign_dir)[1]\n filepath = os.path.join(campaign_dir, filename)\n try:\n tinydb = TinyDB(filepath)\n assert set(tinydb.table('config').all()[0].keys()) == set(['script',\n 'params', 'commit'])\n except:\n os.remove(filepath)\n raise ValueError('Specified campaign directory seems corrupt')\n return cls(tinydb, campaign_dir)\n",
"role": "user"
},
{
"content": "load",
"role": "assistant"
}
] |
def x(self):
available_runs = [result['params']['RngRun'] for result in self.
get_results()]
yield from DatabaseManager.get_next_values(available_runs)
| get_next_rngruns | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n available_runs = [result['params']['RngRun'] for result in self.\n get_results()]\n yield from DatabaseManager.get_next_values(available_runs)\n",
"role": "user"
},
{
"content": "get_next_rngruns",
"role": "assistant"
}
] |
def x(self, result):
example_result = {'params': {k: ['...'] for k in self.get_params() + [
'RngRun']}, 'meta': {k: ['...'] for k in ['elapsed_time', 'id']}}
if not DatabaseManager.have_same_structure(result, example_result):
raise ValueError('%s:\nExpected: %s\nGot: %s' % (
'Result dictionary does not correspond to database format',
pformat(example_result, depth=1), pformat(result, depth=1)))
self.db.table('results').insert(result)
| insert_result | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, result):\n example_result = {'params': {k: ['...'] for k in self.get_params() + [\n 'RngRun']}, 'meta': {k: ['...'] for k in ['elapsed_time', 'id']}}\n if not DatabaseManager.have_same_structure(result, example_result):\n raise ValueError('%s:\\nExpected: %s\\nGot: %s' % (\n 'Result dictionary does not correspond to database format',\n pformat(example_result, depth=1), pformat(result, depth=1)))\n self.db.table('results').insert(result)\n",
"role": "user"
},
{
"content": "insert_result",
"role": "assistant"
}
] |
def x(self, params=None, result_id=None):
if result_id is not None:
return [dict(i) for i in self.db.table('results').all() if i['meta'
]['id'] == result_id]
if params is None:
return [dict(i) for i in self.db.table('results').all()]
all_params = set(['RngRun'] + self.get_params())
param_subset = set(params.keys())
if not all_params.issuperset(param_subset):
raise ValueError('%s:\nParameters: %s\nQuery: %s' % (
'Specified parameter keys do not match database format',
all_params, param_subset))
query_params = {}
for key in params:
if not isinstance(params[key], list):
query_params[key] = [params[key]]
else:
query_params[key] = params[key]
if not query_params.keys():
return [dict(i) for i in self.db.table('results').all()]
query = reduce(and_, [reduce(or_, [(where('params')[key] == v) for v in
value]) for key, value in query_params.items()])
return [dict(i) for i in self.db.table('results').search(query)]
| get_results | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None, result_id=None):\n if result_id is not None:\n return [dict(i) for i in self.db.table('results').all() if i['meta'\n ]['id'] == result_id]\n if params is None:\n return [dict(i) for i in self.db.table('results').all()]\n all_params = set(['RngRun'] + self.get_params())\n param_subset = set(params.keys())\n if not all_params.issuperset(param_subset):\n raise ValueError('%s:\\nParameters: %s\\nQuery: %s' % (\n 'Specified parameter keys do not match database format',\n all_params, param_subset))\n query_params = {}\n for key in params:\n if not isinstance(params[key], list):\n query_params[key] = [params[key]]\n else:\n query_params[key] = params[key]\n if not query_params.keys():\n return [dict(i) for i in self.db.table('results').all()]\n query = reduce(and_, [reduce(or_, [(where('params')[key] == v) for v in\n value]) for key, value in query_params.items()])\n return [dict(i) for i in self.db.table('results').search(query)]\n",
"role": "user"
},
{
"content": "get_results",
"role": "assistant"
}
] |
def x(self, result):
if isinstance(result, dict):
result_id = result['meta']['id']
else:
result_id = result
result_data_dir = os.path.join(self.get_data_dir(), result_id)
filenames = next(os.walk(result_data_dir))[2]
filename_path_pairs = [(f, os.path.join(self.get_data_dir(), result_id,
f)) for f in filenames]
return {k: v for k, v in filename_path_pairs}
| get_result_files | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, result):\n if isinstance(result, dict):\n result_id = result['meta']['id']\n else:\n result_id = result\n result_data_dir = os.path.join(self.get_data_dir(), result_id)\n filenames = next(os.walk(result_data_dir))[2]\n filename_path_pairs = [(f, os.path.join(self.get_data_dir(), result_id,\n f)) for f in filenames]\n return {k: v for k, v in filename_path_pairs}\n",
"role": "user"
},
{
"content": "get_result_files",
"role": "assistant"
}
] |
def x(self, params=None, result_id=None):
if result_id is not None:
results = deepcopy(self.get_results(result_id=result_id))
else:
results = deepcopy(self.get_results(params))
for r in results:
r['output'] = {}
available_files = self.get_result_files(r['meta']['id'])
for name, filepath in available_files.items():
with open(filepath, 'r') as file_contents:
r['output'][name] = file_contents.read()
return results
| get_complete_results | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, params=None, result_id=None):\n if result_id is not None:\n results = deepcopy(self.get_results(result_id=result_id))\n else:\n results = deepcopy(self.get_results(params))\n for r in results:\n r['output'] = {}\n available_files = self.get_result_files(r['meta']['id'])\n for name, filepath in available_files.items():\n with open(filepath, 'r') as file_contents:\n r['output'][name] = file_contents.read()\n return results\n",
"role": "user"
},
{
"content": "get_complete_results",
"role": "assistant"
}
] |
def x(self):
self.db.purge_table('results')
map(shutil.rmtree, glob.glob(os.path.join(self.get_data_dir(), '*.*')))
| wipe_results | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n self.db.purge_table('results')\n map(shutil.rmtree, glob.glob(os.path.join(self.get_data_dir(), '*.*')))\n",
"role": "user"
},
{
"content": "wipe_results",
"role": "assistant"
}
] |
def x(d1, d2):
if set(d1.keys()) != set(d2.keys()):
return False
for k1, k2 in zip(sorted(d1.keys()), sorted(d2.keys())):
if isinstance(d1[k1], dict) != isinstance(d2[k2], dict):
return False
elif isinstance(d1[k1], dict) and isinstance(d2[k2], dict):
if not DatabaseManager.have_same_structure(d1[k1], d2[k2]):
return False
return True
| have_same_structure | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(d1, d2):\n if set(d1.keys()) != set(d2.keys()):\n return False\n for k1, k2 in zip(sorted(d1.keys()), sorted(d2.keys())):\n if isinstance(d1[k1], dict) != isinstance(d2[k2], dict):\n return False\n elif isinstance(d1[k1], dict) and isinstance(d2[k2], dict):\n if not DatabaseManager.have_same_structure(d1[k1], d2[k2]):\n return False\n return True\n",
"role": "user"
},
{
"content": "have_same_structure",
"role": "assistant"
}
] |
def x(self):
values = collections.OrderedDict([[p, []] for p in sorted(self.
get_params())])
for result in self.get_results():
for param in self.get_params():
values[param] += [result['params'][param]]
sorted_values = collections.OrderedDict([[k, sorted(list(set(values[k])
))] for k in values.keys()])
for k in sorted_values.keys():
if sorted_values[k] == []:
sorted_values[k] = None
return sorted_values
| get_all_values_of_all_params | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n values = collections.OrderedDict([[p, []] for p in sorted(self.\n get_params())])\n for result in self.get_results():\n for param in self.get_params():\n values[param] += [result['params'][param]]\n sorted_values = collections.OrderedDict([[k, sorted(list(set(values[k])\n ))] for k in values.keys()])\n for k in sorted_values.keys():\n if sorted_values[k] == []:\n sorted_values[k] = None\n return sorted_values\n",
"role": "user"
},
{
"content": "get_all_values_of_all_params",
"role": "assistant"
}
] |
def x(self, obj, method='json', beautify=False, raise_exception=False):
return self.helper.string.serialization.serialize(obj=obj, method=
method, beautify=beautify, raise_exception=raise_exception)
| serialize | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, obj, method='json', beautify=False, raise_exception=False):\n return self.helper.string.serialization.serialize(obj=obj, method=\n method, beautify=beautify, raise_exception=raise_exception)\n",
"role": "user"
},
{
"content": "serialize",
"role": "assistant"
}
] |
def x(self, text, method='json', encoding='utf8', raise_exception=False):
return self.helper.string.serialization.deserialize(text, method=method,
encoding=encoding, raise_exception=raise_exception)
| deserialize | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, text, method='json', encoding='utf8', raise_exception=False):\n return self.helper.string.serialization.deserialize(text, method=method,\n encoding=encoding, raise_exception=raise_exception)\n",
"role": "user"
},
{
"content": "deserialize",
"role": "assistant"
}
] |
def x(self, parameter_list, data_folder):
s = drmaa.Session()
s.initialize()
jobs = {}
for parameter in parameter_list:
current_result = {'params': {}, 'meta': {}}
current_result['params'].update(parameter)
command = ' '.join([self.script_executable] + [('--%s=%s' % (param,
value)) for param, value in parameter.items()])
current_result['meta']['id'] = str(uuid.uuid4())
temp_dir = os.path.join(data_folder, current_result['meta']['id'])
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
jt = s.createJobTemplate()
jt.remoteCommand = os.path.dirname(os.path.abspath(__file__)
) + '/run_program.sh'
jt.args = [command]
jt.jobEnvironment = self.environment
jt.workingDirectory = temp_dir
jt.nativeSpecification = SIMULATION_GRID_PARAMS
output_filename = os.path.join(temp_dir, 'stdout')
error_filename = os.path.join(temp_dir, 'stderr')
jt.outputPath = ':' + output_filename
jt.errorPath = ':' + error_filename
jobid = s.runJob(jt)
jobs[jobid] = {'template': jt, 'result': current_result, 'output':
output_filename, 'error': error_filename}
try:
while len(jobs):
found_done = False
for curjob in jobs.keys():
try:
status = s.jobStatus(curjob)
except drmaa.errors.DrmCommunicationException:
pass
if status is drmaa.JobState.DONE:
current_result = jobs[curjob]['result']
current_result['meta']['elapsed_time'] = 0
try:
s.deleteJobTemplate(jobs[curjob]['template'])
except drmaa.errors.DrmCommunicationException:
pass
del jobs[curjob]
found_done = True
yield current_result
break
if not found_done:
time.sleep(6)
finally:
try:
for v in jobs.values():
s.deleteJobTemplate(v['template'])
s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.
TERMINATE)
s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True)
s.exit()
except drmaa.errors.NoActiveSessionException:
pass
| run_simulations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, parameter_list, data_folder):\n s = drmaa.Session()\n s.initialize()\n jobs = {}\n for parameter in parameter_list:\n current_result = {'params': {}, 'meta': {}}\n current_result['params'].update(parameter)\n command = ' '.join([self.script_executable] + [('--%s=%s' % (param,\n value)) for param, value in parameter.items()])\n current_result['meta']['id'] = str(uuid.uuid4())\n temp_dir = os.path.join(data_folder, current_result['meta']['id'])\n if not os.path.exists(temp_dir):\n os.makedirs(temp_dir)\n jt = s.createJobTemplate()\n jt.remoteCommand = os.path.dirname(os.path.abspath(__file__)\n ) + '/run_program.sh'\n jt.args = [command]\n jt.jobEnvironment = self.environment\n jt.workingDirectory = temp_dir\n jt.nativeSpecification = SIMULATION_GRID_PARAMS\n output_filename = os.path.join(temp_dir, 'stdout')\n error_filename = os.path.join(temp_dir, 'stderr')\n jt.outputPath = ':' + output_filename\n jt.errorPath = ':' + error_filename\n jobid = s.runJob(jt)\n jobs[jobid] = {'template': jt, 'result': current_result, 'output':\n output_filename, 'error': error_filename}\n try:\n while len(jobs):\n found_done = False\n for curjob in jobs.keys():\n try:\n status = s.jobStatus(curjob)\n except drmaa.errors.DrmCommunicationException:\n pass\n if status is drmaa.JobState.DONE:\n current_result = jobs[curjob]['result']\n current_result['meta']['elapsed_time'] = 0\n try:\n s.deleteJobTemplate(jobs[curjob]['template'])\n except drmaa.errors.DrmCommunicationException:\n pass\n del jobs[curjob]\n found_done = True\n yield current_result\n break\n if not found_done:\n time.sleep(6)\n finally:\n try:\n for v in jobs.values():\n s.deleteJobTemplate(v['template'])\n s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.\n TERMINATE)\n s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True)\n s.exit()\n except drmaa.errors.NoActiveSessionException:\n pass\n",
"role": "user"
},
{
"content": "run_simulations",
"role": "assistant"
}
] |
def x(self):
stdout = self.run_program('%s %s' % (self.script_executable,
'--PrintHelp'), environment=self.environment, native_spec=
BUILD_GRID_PARAMS)
options = re.findall(
'.*Program\\s(?:Arguments|Options):(.*)General\\sArguments.*',
stdout, re.DOTALL)
if len(options):
args = re.findall('.*--(.*?):.*', options[0], re.MULTILINE)
return args
else:
return []
| get_available_parameters | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n stdout = self.run_program('%s %s' % (self.script_executable,\n '--PrintHelp'), environment=self.environment, native_spec=\n BUILD_GRID_PARAMS)\n options = re.findall(\n '.*Program\\\\s(?:Arguments|Options):(.*)General\\\\sArguments.*',\n stdout, re.DOTALL)\n if len(options):\n args = re.findall('.*--(.*?):.*', options[0], re.MULTILINE)\n return args\n else:\n return []\n",
"role": "user"
},
{
"content": "get_available_parameters",
"role": "assistant"
}
] |
def x(self, command, working_directory=os.getcwd(), environment=None,
cleanup_files=True, native_spec='-l cputype=intel'):
try:
s = drmaa.Session()
s.initialize()
jt = s.createJobTemplate()
jt.remoteCommand = os.path.dirname(os.path.abspath(__file__)
) + '/run_program.sh'
jt.args = [command]
if environment is not None:
jt.jobEnvironment = environment
jt.workingDirectory = working_directory
jt.nativeSpecification = native_spec
output_filename = os.path.join(working_directory, 'output.txt')
jt.outputPath = ':' + output_filename
jt.joinFiles = True
jobid = s.runJob(jt)
s.wait(jobid, drmaa.Session.TIMEOUT_WAIT_FOREVER)
with open(output_filename, 'r') as output:
stdout = output.read()
if cleanup_files:
os.remove(output_filename)
finally:
try:
s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.
TERMINATE)
s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True)
s.exit()
except drmaa.errors.NoActiveSessionException:
pass
return stdout
| run_program | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, command, working_directory=os.getcwd(), environment=None,\n cleanup_files=True, native_spec='-l cputype=intel'):\n try:\n s = drmaa.Session()\n s.initialize()\n jt = s.createJobTemplate()\n jt.remoteCommand = os.path.dirname(os.path.abspath(__file__)\n ) + '/run_program.sh'\n jt.args = [command]\n if environment is not None:\n jt.jobEnvironment = environment\n jt.workingDirectory = working_directory\n jt.nativeSpecification = native_spec\n output_filename = os.path.join(working_directory, 'output.txt')\n jt.outputPath = ':' + output_filename\n jt.joinFiles = True\n jobid = s.runJob(jt)\n s.wait(jobid, drmaa.Session.TIMEOUT_WAIT_FOREVER)\n with open(output_filename, 'r') as output:\n stdout = output.read()\n if cleanup_files:\n os.remove(output_filename)\n finally:\n try:\n s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.\n TERMINATE)\n s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True)\n s.exit()\n except drmaa.errors.NoActiveSessionException:\n pass\n return stdout\n",
"role": "user"
},
{
"content": "run_program",
"role": "assistant"
}
] |
def x(labels, mask=None, size_fn=None):
labels_type = labels.dtype
background = labels == 0
if mask is not None:
background &= mask
blabels, count = scind.label(background, four_connect)
labels = labels.copy().astype(int)
lcount = np.max(labels)
labels[blabels != 0] = blabels[blabels != 0] + lcount + 1
lmax = lcount + count + 1
is_not_hole = np.ascontiguousarray(np.zeros(lmax + 1, np.uint8))
to_do = np.unique(np.hstack((labels[0, :], labels[:, 0], labels[-1, :],
labels[:, -1])))
to_do = to_do[to_do != 0]
is_not_hole[to_do] = True
to_do = list(to_do)
adjacent_non_hole = np.ascontiguousarray(np.zeros(lmax + 1), np.uint32)
i = np.hstack([labels[:-1, :].flatten(), labels[:, :-1].flatten()])
j = np.hstack([labels[1:, :].flatten(), labels[:, 1:].flatten()])
i, j = i[i != j], j[i != j]
if len(i) > 0:
order = np.lexsort((j, i))
i = i[order]
j = j[order]
first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])])
i, j = np.hstack((i[first], j[first])), np.hstack((j[first], i[first]))
order = np.lexsort((j, i))
i = i[order]
j = j[order]
first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])])
i, j = i[first], j[first]
i_count = np.bincount(i)
if len(i_count) < lmax + 1:
i_count = np.hstack((i_count, np.zeros(lmax + 1 - len(i_count),
int)))
indexer = Indexes([i_count])
if size_fn is not None:
areas = np.bincount(labels.flatten())
for ii, area in enumerate(areas):
if ii > 0 and area > 0 and not is_not_hole[ii] and not size_fn(
area, ii <= lcount):
is_not_hole[ii] = True
to_do.append(ii)
to_do_count = len(to_do)
if len(to_do) < len(is_not_hole):
to_do += [0] * (len(is_not_hole) - len(to_do))
to_do = np.ascontiguousarray(np.array(to_do), np.uint32)
fill_labeled_holes_loop(np.ascontiguousarray(i, np.uint32), np.
ascontiguousarray(j, np.uint32), np.ascontiguousarray(indexer.
fwd_idx, np.uint32), np.ascontiguousarray(i_count, np.uint32),
is_not_hole, adjacent_non_hole, to_do, lcount, to_do_count)
new_indexes = np.arange(len(is_not_hole)).astype(np.uint32)
new_indexes[lcount + 1:] = 0
is_not_hole = is_not_hole.astype(bool)
new_indexes[~is_not_hole] = adjacent_non_hole[~is_not_hole]
if mask is not None:
labels[mask] = new_indexes[labels[mask]]
else:
labels = new_indexes[labels]
return labels.astype(labels_type)
| fill_labeled_holes | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, mask=None, size_fn=None):\n labels_type = labels.dtype\n background = labels == 0\n if mask is not None:\n background &= mask\n blabels, count = scind.label(background, four_connect)\n labels = labels.copy().astype(int)\n lcount = np.max(labels)\n labels[blabels != 0] = blabels[blabels != 0] + lcount + 1\n lmax = lcount + count + 1\n is_not_hole = np.ascontiguousarray(np.zeros(lmax + 1, np.uint8))\n to_do = np.unique(np.hstack((labels[0, :], labels[:, 0], labels[-1, :],\n labels[:, -1])))\n to_do = to_do[to_do != 0]\n is_not_hole[to_do] = True\n to_do = list(to_do)\n adjacent_non_hole = np.ascontiguousarray(np.zeros(lmax + 1), np.uint32)\n i = np.hstack([labels[:-1, :].flatten(), labels[:, :-1].flatten()])\n j = np.hstack([labels[1:, :].flatten(), labels[:, 1:].flatten()])\n i, j = i[i != j], j[i != j]\n if len(i) > 0:\n order = np.lexsort((j, i))\n i = i[order]\n j = j[order]\n first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])])\n i, j = np.hstack((i[first], j[first])), np.hstack((j[first], i[first]))\n order = np.lexsort((j, i))\n i = i[order]\n j = j[order]\n first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])])\n i, j = i[first], j[first]\n i_count = np.bincount(i)\n if len(i_count) < lmax + 1:\n i_count = np.hstack((i_count, np.zeros(lmax + 1 - len(i_count),\n int)))\n indexer = Indexes([i_count])\n if size_fn is not None:\n areas = np.bincount(labels.flatten())\n for ii, area in enumerate(areas):\n if ii > 0 and area > 0 and not is_not_hole[ii] and not size_fn(\n area, ii <= lcount):\n is_not_hole[ii] = True\n to_do.append(ii)\n to_do_count = len(to_do)\n if len(to_do) < len(is_not_hole):\n to_do += [0] * (len(is_not_hole) - len(to_do))\n to_do = np.ascontiguousarray(np.array(to_do), np.uint32)\n fill_labeled_holes_loop(np.ascontiguousarray(i, np.uint32), np.\n ascontiguousarray(j, np.uint32), np.ascontiguousarray(indexer.\n fwd_idx, np.uint32), np.ascontiguousarray(i_count, np.uint32),\n is_not_hole, adjacent_non_hole, to_do, lcount, to_do_count)\n new_indexes = np.arange(len(is_not_hole)).astype(np.uint32)\n new_indexes[lcount + 1:] = 0\n is_not_hole = is_not_hole.astype(bool)\n new_indexes[~is_not_hole] = adjacent_non_hole[~is_not_hole]\n if mask is not None:\n labels[mask] = new_indexes[labels[mask]]\n else:\n labels = new_indexes[labels]\n return labels.astype(labels_type)\n",
"role": "user"
},
{
"content": "fill_labeled_holes",
"role": "assistant"
}
] |
def x(labels):
high = labels.max() + 1
if high > np.iinfo(labels.dtype).max:
labels = labels.astype(np.int)
image_with_high_background = labels.copy()
image_with_high_background[labels == 0] = high
min_label = scind.minimum_filter(image_with_high_background, footprint=
np.ones((3, 3), bool), mode='constant', cval=high)
max_label = scind.maximum_filter(labels, footprint=np.ones((3, 3), bool
), mode='constant', cval=0)
return (min_label != max_label) & (labels > 0)
| adjacent | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n high = labels.max() + 1\n if high > np.iinfo(labels.dtype).max:\n labels = labels.astype(np.int)\n image_with_high_background = labels.copy()\n image_with_high_background[labels == 0] = high\n min_label = scind.minimum_filter(image_with_high_background, footprint=\n np.ones((3, 3), bool), mode='constant', cval=high)\n max_label = scind.maximum_filter(labels, footprint=np.ones((3, 3), bool\n ), mode='constant', cval=0)\n return (min_label != max_label) & (labels > 0)\n",
"role": "user"
},
{
"content": "adjacent",
"role": "assistant"
}
] |
def x(image, strel1, strel2):
hit_or_miss = scind.binary_hit_or_miss(image, strel1, strel2)
return np.logical_and(image, np.logical_not(hit_or_miss))
| binary_thin | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, strel1, strel2):\n hit_or_miss = scind.binary_hit_or_miss(image, strel1, strel2)\n return np.logical_and(image, np.logical_not(hit_or_miss))\n",
"role": "user"
},
{
"content": "binary_thin",
"role": "assistant"
}
] |
def x(image, iterations=-1):
global binary_shrink_top_right, binary_shrink_bottom_left
if binary_shrink_top_right is None:
binary_shrink_top_right = make_table(False, np.array([[0, 0, 0], [0,
1, 0], [0, 1, 0]], bool), np.array([[1, 1, 1], [0, 1, 0], [0, 1,
0]], bool))
binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [
0, 1, 0], [1, 0, 0]], bool), np.array([[1, 1, 1], [0, 1, 1], [1,
0, 1]], bool))
binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [
1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1, 1], [0,
0, 1]], bool))
binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [
1, 1, 0], [0, 1, 1]], bool), np.array([[0, 0, 1], [1, 1, 1], [0,
1, 0]], bool))
binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [
0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [1,
0, 1]], bool))
binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [
0, 1, 0], [1, 1, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [0,
1, 1]], bool))
binary_shrink_bottom_left = make_table(False, np.array([[0, 1, 0],
[0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0], [0, 1, 0], [
1, 1, 1]], bool))
binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 1],
[0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [1, 1, 0], [
1, 1, 1]], bool))
binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 0],
[0, 1, 1], [0, 0, 0]], bool), np.array([[1, 0, 0], [1, 1, 1], [
1, 0, 0]], bool))
binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 0],
[0, 1, 1], [0, 0, 0]], bool), np.array([[0, 1, 0], [1, 1, 1], [
1, 0, 0]], bool))
binary_shrink_bottom_left &= make_table(False, np.array([[1, 0, 0],
[0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [0, 1, 1], [
1, 1, 1]], bool))
binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 1],
[0, 1, 0], [0, 0, 0]], bool), np.array([[1, 1, 0], [0, 1, 1], [
1, 1, 1]], bool))
orig_image = image
index_i, index_j, image = prepare_for_index_lookup(image, False)
if iterations == -1:
iterations = len(index_i)
for i in range(iterations):
pixel_count = len(index_i)
for table in (binary_shrink_top_right, binary_shrink_bottom_left):
index_i, index_j = index_lookup(index_i, index_j, image, table, 1)
if len(index_i) == pixel_count:
break
image = extract_from_image_lookup(orig_image, index_i, index_j)
return image
| binary_shrink_old | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, iterations=-1):\n global binary_shrink_top_right, binary_shrink_bottom_left\n if binary_shrink_top_right is None:\n binary_shrink_top_right = make_table(False, np.array([[0, 0, 0], [0,\n 1, 0], [0, 1, 0]], bool), np.array([[1, 1, 1], [0, 1, 0], [0, 1,\n 0]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 0, 1, 0], [1, 0, 0]], bool), np.array([[1, 1, 1], [0, 1, 1], [1,\n 0, 1]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1, 1], [0,\n 0, 1]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 1, 1, 0], [0, 1, 1]], bool), np.array([[0, 0, 1], [1, 1, 1], [0,\n 1, 0]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [1,\n 0, 1]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 0, 1, 0], [1, 1, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [0,\n 1, 1]], bool))\n binary_shrink_bottom_left = make_table(False, np.array([[0, 1, 0],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0], [0, 1, 0], [\n 1, 1, 1]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 1],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [1, 1, 0], [\n 1, 1, 1]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 0],\n [0, 1, 1], [0, 0, 0]], bool), np.array([[1, 0, 0], [1, 1, 1], [\n 1, 0, 0]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 0],\n [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 1, 0], [1, 1, 1], [\n 1, 0, 0]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[1, 0, 0],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [0, 1, 1], [\n 1, 1, 1]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 1],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 1, 0], [0, 1, 1], [\n 1, 1, 1]], bool))\n orig_image = image\n index_i, index_j, image = prepare_for_index_lookup(image, False)\n if iterations == -1:\n iterations = len(index_i)\n for i in range(iterations):\n pixel_count = len(index_i)\n for table in (binary_shrink_top_right, binary_shrink_bottom_left):\n index_i, index_j = index_lookup(index_i, index_j, image, table, 1)\n if len(index_i) == pixel_count:\n break\n image = extract_from_image_lookup(orig_image, index_i, index_j)\n return image\n",
"role": "user"
},
{
"content": "binary_shrink_old",
"role": "assistant"
}
] |
def x(image, iterations=-1):
global erode_table, binary_shrink_ulr_table, binary_shrink_lrl_table
global binary_shrink_urb_table, binary_shrink_llt_table
if erode_table is None:
erode_table = np.array([(pattern_of(index)[1, 1] and scind.label(
pattern_of(index - 16))[1] != 1) for index in range(512)])
erode_table[index_of(np.ones((3, 3), bool))] = True
binary_shrink_ulr_table = erode_table | make_table(False, np.array(
[[0, 0, 0], [1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 0],
[1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[1,
0, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 0], [0, 1,
1], [0, 1, 1]], bool))
binary_shrink_urb_table = erode_table | make_table(False, np.array(
[[0, 1, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0],
[0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0,
0, 1], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1,
0], [1, 1, 0]], bool))
binary_shrink_lrl_table = erode_table | make_table(False, np.array(
[[0, 0, 0], [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 0, 0],
[1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[0,
0, 0], [0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 0], [1, 1,
0], [0, 0, 1]], bool))
binary_shrink_llt_table = erode_table | make_table(False, np.array(
[[0, 0, 0], [0, 1, 0], [0, 1, 0]], bool), np.array([[0, 1, 0],
[0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0,
0, 0], [0, 1, 0], [1, 0, 0]], bool), np.array([[0, 1, 1], [0, 1,
1], [1, 0, 0]], bool))
orig_image = image
index_i, index_j, image = prepare_for_index_lookup(image, False)
if iterations == -1:
iterations = len(index_i)
for i in range(iterations):
pixel_count = len(index_i)
for table in (binary_shrink_ulr_table, binary_shrink_urb_table,
binary_shrink_lrl_table, binary_shrink_llt_table):
index_i, index_j = index_lookup(index_i, index_j, image, table, 1)
if len(index_i) == pixel_count:
break
image = extract_from_image_lookup(orig_image, index_i, index_j)
return image
| binary_shrink | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, iterations=-1):\n global erode_table, binary_shrink_ulr_table, binary_shrink_lrl_table\n global binary_shrink_urb_table, binary_shrink_llt_table\n if erode_table is None:\n erode_table = np.array([(pattern_of(index)[1, 1] and scind.label(\n pattern_of(index - 16))[1] != 1) for index in range(512)])\n erode_table[index_of(np.ones((3, 3), bool))] = True\n binary_shrink_ulr_table = erode_table | make_table(False, np.array(\n [[0, 0, 0], [1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 0],\n [1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[1,\n 0, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 0], [0, 1,\n 1], [0, 1, 1]], bool))\n binary_shrink_urb_table = erode_table | make_table(False, np.array(\n [[0, 1, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0],\n [0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0,\n 0, 1], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1,\n 0], [1, 1, 0]], bool))\n binary_shrink_lrl_table = erode_table | make_table(False, np.array(\n [[0, 0, 0], [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 0, 0],\n [1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[0,\n 0, 0], [0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 0], [1, 1,\n 0], [0, 0, 1]], bool))\n binary_shrink_llt_table = erode_table | make_table(False, np.array(\n [[0, 0, 0], [0, 1, 0], [0, 1, 0]], bool), np.array([[0, 1, 0],\n [0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0,\n 0, 0], [0, 1, 0], [1, 0, 0]], bool), np.array([[0, 1, 1], [0, 1,\n 1], [1, 0, 0]], bool))\n orig_image = image\n index_i, index_j, image = prepare_for_index_lookup(image, False)\n if iterations == -1:\n iterations = len(index_i)\n for i in range(iterations):\n pixel_count = len(index_i)\n for table in (binary_shrink_ulr_table, binary_shrink_urb_table,\n binary_shrink_lrl_table, binary_shrink_llt_table):\n index_i, index_j = index_lookup(index_i, index_j, image, table, 1)\n if len(index_i) == pixel_count:\n break\n image = extract_from_image_lookup(orig_image, index_i, index_j)\n return image\n",
"role": "user"
},
{
"content": "binary_shrink",
"role": "assistant"
}
] |
def x(radius):
iradius = int(radius)
x, y = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]
radius2 = radius * radius
strel = np.zeros(x.shape)
strel[x * x + y * y <= radius2] = 1
return strel
| strel_disk | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(radius):\n iradius = int(radius)\n x, y = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]\n radius2 = radius * radius\n strel = np.zeros(x.shape)\n strel[x * x + y * y <= radius2] = 1\n return strel\n",
"role": "user"
},
{
"content": "strel_disk",
"role": "assistant"
}
] |
def x(radius):
iradius = int(radius)
i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]
strel = (i + j <= radius) & (i + j >= -radius) & (i - j <= radius) & (i -
j >= -radius)
return strel
| strel_diamond | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(radius):\n iradius = int(radius)\n i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]\n strel = (i + j <= radius) & (i + j >= -radius) & (i - j <= radius) & (i -\n j >= -radius)\n return strel\n",
"role": "user"
},
{
"content": "strel_diamond",
"role": "assistant"
}
] |
def x(length, angle):
angle = float(angle) * np.pi / 180.0
x_off = int(np.finfo(float).eps + np.cos(angle) * length / 2)
y_off = -int(np.finfo(float).eps + np.sin(angle) * length / 2)
x_center = abs(x_off)
y_center = abs(y_off)
strel = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool)
draw_line(strel, (y_center - y_off, x_center - x_off), (y_center,
x_center), True)
draw_line(strel, (y_center + y_off, x_center + x_off), (y_center,
x_center), True)
return strel
| strel_line | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(length, angle):\n angle = float(angle) * np.pi / 180.0\n x_off = int(np.finfo(float).eps + np.cos(angle) * length / 2)\n y_off = -int(np.finfo(float).eps + np.sin(angle) * length / 2)\n x_center = abs(x_off)\n y_center = abs(y_off)\n strel = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool)\n draw_line(strel, (y_center - y_off, x_center - x_off), (y_center,\n x_center), True)\n draw_line(strel, (y_center + y_off, x_center + x_off), (y_center,\n x_center), True)\n return strel\n",
"role": "user"
},
{
"content": "strel_line",
"role": "assistant"
}
] |
def x(radius):
iradius = int(radius)
i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]
dradius = float(iradius) * np.sqrt(2)
strel = (i + j <= dradius) & (i + j >= -dradius) & (i - j <= dradius) & (
i - j >= -dradius)
return strel
| strel_octagon | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(radius):\n iradius = int(radius)\n i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]\n dradius = float(iradius) * np.sqrt(2)\n strel = (i + j <= dradius) & (i + j >= -dradius) & (i - j <= dradius) & (\n i - j >= -dradius)\n return strel\n",
"role": "user"
},
{
"content": "strel_octagon",
"role": "assistant"
}
] |
def x(x, y):
x_center = int(np.abs(x))
y_center = int(np.abs(y))
result = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool)
result[y_center, x_center] = True
result[y_center + int(y), x_center + int(x)] = True
return result
| strel_pair | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y):\n x_center = int(np.abs(x))\n y_center = int(np.abs(y))\n result = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool)\n result[y_center, x_center] = True\n result[y_center + int(y), x_center + int(x)] = True\n return result\n",
"role": "user"
},
{
"content": "strel_pair",
"role": "assistant"
}
] |
def x(xoff, yoff, n):
xoff, yoff, n = [int(t) for t in (xoff, yoff, n)]
center_x, center_y = abs(n * xoff), abs(n * yoff)
result = np.zeros((center_y * 2 + 1, center_x * 2 + 1), bool)
k = np.arange(-n, n + 1)
result[center_y + yoff * k, center_x + xoff * k] = True
return result
| strel_periodicline | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xoff, yoff, n):\n xoff, yoff, n = [int(t) for t in (xoff, yoff, n)]\n center_x, center_y = abs(n * xoff), abs(n * yoff)\n result = np.zeros((center_y * 2 + 1, center_x * 2 + 1), bool)\n k = np.arange(-n, n + 1)\n result[center_y + yoff * k, center_x + xoff * k] = True\n return result\n",
"role": "user"
},
{
"content": "strel_periodicline",
"role": "assistant"
}
] |
def x(width, height):
return np.ones([(int((hw - 1) // 2) * 2 + 1) for hw in (height, width)],
bool)
| strel_rectangle | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(width, height):\n return np.ones([(int((hw - 1) // 2) * 2 + 1) for hw in (height, width)],\n bool)\n",
"role": "user"
},
{
"content": "strel_rectangle",
"role": "assistant"
}
] |
def x(image, structure=np.ones((3, 3), dtype=bool), offset=None):
center = np.array(structure.shape) // 2
if offset is None:
offset = center
origin = np.array(offset) - center
return scind.maximum_filter(image, footprint=structure, origin=origin,
mode='constant', cval=np.min(image))
| cpmaximum | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, structure=np.ones((3, 3), dtype=bool), offset=None):\n center = np.array(structure.shape) // 2\n if offset is None:\n offset = center\n origin = np.array(offset) - center\n return scind.maximum_filter(image, footprint=structure, origin=origin,\n mode='constant', cval=np.min(image))\n",
"role": "user"
},
{
"content": "cpmaximum",
"role": "assistant"
}
] |
def x(image):
unique_labels = np.unique(image[image != 0])
if len(unique_labels) == 0:
return image, 0
consecutive_labels = np.arange(len(unique_labels)) + 1
label_table = np.zeros(unique_labels.max() + 1, int)
label_table[unique_labels] = consecutive_labels
new_image = label_table[image]
return new_image, len(unique_labels)
| relabel | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n unique_labels = np.unique(image[image != 0])\n if len(unique_labels) == 0:\n return image, 0\n consecutive_labels = np.arange(len(unique_labels)) + 1\n label_table = np.zeros(unique_labels.max() + 1, int)\n label_table[unique_labels] = consecutive_labels\n new_image = label_table[image]\n return new_image, len(unique_labels)\n",
"role": "user"
},
{
"content": "relabel",
"role": "assistant"
}
] |
def x(image):
labels = image.astype(int)
points, counts = convex_hull(labels, np.array([1]))
output = np.zeros(image.shape, int)
for i in range(counts[0]):
inext = (i + 1) % counts[0]
draw_line(output, points[i, 1:], points[inext, 1:], 1)
output = fill_labeled_holes(output)
return output == 1
| convex_hull_image | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n labels = image.astype(int)\n points, counts = convex_hull(labels, np.array([1]))\n output = np.zeros(image.shape, int)\n for i in range(counts[0]):\n inext = (i + 1) % counts[0]\n draw_line(output, points[i, 1:], points[inext, 1:], 1)\n output = fill_labeled_holes(output)\n return output == 1\n",
"role": "user"
},
{
"content": "convex_hull_image",
"role": "assistant"
}
] |
def x(labels, indexes=None, fast=True):
if indexes is None:
indexes = np.unique(labels)
indexes.sort()
indexes = indexes[indexes != 0]
else:
indexes = np.array(indexes)
if len(indexes) == 0:
return np.zeros((0, 2), int), np.zeros((0,), int)
outlines = outline(labels)
coords = np.argwhere(outlines > 0).astype(np.int32)
if len(coords) == 0:
return np.zeros((0, 3), int), np.zeros((len(indexes),), int)
i = coords[:, 0]
j = coords[:, 1]
labels_per_point = labels[i, j]
pixel_labels = np.column_stack((i, j, labels_per_point))
return convex_hull_ijv(pixel_labels, indexes, fast)
| convex_hull | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indexes=None, fast=True):\n if indexes is None:\n indexes = np.unique(labels)\n indexes.sort()\n indexes = indexes[indexes != 0]\n else:\n indexes = np.array(indexes)\n if len(indexes) == 0:\n return np.zeros((0, 2), int), np.zeros((0,), int)\n outlines = outline(labels)\n coords = np.argwhere(outlines > 0).astype(np.int32)\n if len(coords) == 0:\n return np.zeros((0, 3), int), np.zeros((len(indexes),), int)\n i = coords[:, 0]\n j = coords[:, 1]\n labels_per_point = labels[i, j]\n pixel_labels = np.column_stack((i, j, labels_per_point))\n return convex_hull_ijv(pixel_labels, indexes, fast)\n",
"role": "user"
},
{
"content": "convex_hull",
"role": "assistant"
}
] |
def x(p1, p2, p3):
v1 = (p2 - p1).astype(np.float)
v2 = (p3 - p1).astype(np.float)
cross1 = v1[:, 1]
cross1 *= v2[:, 0]
cross2 = v2[:, 1]
cross2 *= v1[:, 0]
a = cross1
a -= cross2
a /= 2.0
del v1, v2, cross1, cross2
a = a.copy()
a = np.abs(a)
a[a < np.finfo(np.float32).eps] = 0
return a
| triangle_areas | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p1, p2, p3):\n v1 = (p2 - p1).astype(np.float)\n v2 = (p3 - p1).astype(np.float)\n cross1 = v1[:, 1]\n cross1 *= v2[:, 0]\n cross2 = v2[:, 1]\n cross2 *= v1[:, 0]\n a = cross1\n a -= cross2\n a /= 2.0\n del v1, v2, cross1, cross2\n a = a.copy()\n a = np.abs(a)\n a[a < np.finfo(np.float32).eps] = 0\n return a\n",
"role": "user"
},
{
"content": "triangle_areas",
"role": "assistant"
}
] |
def x(ch_pts, ch_counts):
if len(ch_pts) == 0:
return np.zeros((0, 3), int)
ch_counts = ch_counts[ch_counts != 0]
indexer_in = Indexes(ch_counts)
idx_1 = np.arange(ch_pts.shape[0]) + 1
idx_1[indexer_in.fwd_idx + indexer_in.counts - 1] = indexer_in.fwd_idx
ch_pts1 = ch_pts[idx_1, 1:]
n_i = np.abs(ch_pts[:, 1] - ch_pts1[:, 0]) + 1
horizontal = n_i == 1
if np.any(horizontal):
i_horiz = ch_pts[horizontal, 1]
l_horiz = ch_pts[horizontal, 0]
j_first_horiz = ch_pts[horizontal, 2]
j_last_horiz = ch_pts1[horizontal, 1]
else:
i_horiz = l_horiz = j_first_horiz = j_last_horiz = np.zeros(0, int)
if np.any(~horizontal):
ch_pts, ch_pts1, n_i = [x[~horizontal] for x in (ch_pts, ch_pts1, n_i)]
indexer = Indexes(n_i)
l = ch_pts[indexer.rev_idx, 0]
sign = np.sign(ch_pts1[:, 0] - ch_pts[:, 1])
i = ch_pts[indexer.rev_idx, 1] + sign[indexer.rev_idx] * indexer.idx[0]
j = ch_pts[indexer.rev_idx, 2] + indexer.idx[0] * (ch_pts1[indexer.
rev_idx, 1] - ch_pts[indexer.rev_idx, 2]).astype(float) / (n_i[
indexer.rev_idx] - 1)
else:
i = l = np.zeros(0, int)
j = np.zeros(0)
line_labels = np.concatenate((l_horiz, l_horiz, l))
i = np.concatenate((i_horiz, i_horiz, i))
j = np.concatenate((j_first_horiz.astype(float), j_last_horiz.astype(
float), j))
order = np.lexsort((j, i, line_labels))
i, j, line_labels = i[order], j[order], line_labels[order]
firsts = np.hstack([[0], np.argwhere((line_labels[:-1] != line_labels[1
:]) | (i[:-1] != i[1:])).flatten() + 1, [len(line_labels)]])
counts = firsts[1:] - firsts[:-1]
run_indexer = Indexes(counts)
i = i[run_indexer.fwd_idx]
j0 = np.ceil(j[run_indexer.fwd_idx]).astype(int)
j1 = np.floor(j[run_indexer.fwd_idx + run_indexer.counts[0] - 1]).astype(
int)
l = line_labels[run_indexer.fwd_idx]
out_indexer = Indexes(j1 - j0 + 1)
ijv = np.column_stack((i[out_indexer.rev_idx], j0[out_indexer.rev_idx] +
out_indexer.idx[0], l[out_indexer.rev_idx]))
return ijv
| fill_convex_hulls | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ch_pts, ch_counts):\n if len(ch_pts) == 0:\n return np.zeros((0, 3), int)\n ch_counts = ch_counts[ch_counts != 0]\n indexer_in = Indexes(ch_counts)\n idx_1 = np.arange(ch_pts.shape[0]) + 1\n idx_1[indexer_in.fwd_idx + indexer_in.counts - 1] = indexer_in.fwd_idx\n ch_pts1 = ch_pts[idx_1, 1:]\n n_i = np.abs(ch_pts[:, 1] - ch_pts1[:, 0]) + 1\n horizontal = n_i == 1\n if np.any(horizontal):\n i_horiz = ch_pts[horizontal, 1]\n l_horiz = ch_pts[horizontal, 0]\n j_first_horiz = ch_pts[horizontal, 2]\n j_last_horiz = ch_pts1[horizontal, 1]\n else:\n i_horiz = l_horiz = j_first_horiz = j_last_horiz = np.zeros(0, int)\n if np.any(~horizontal):\n ch_pts, ch_pts1, n_i = [x[~horizontal] for x in (ch_pts, ch_pts1, n_i)]\n indexer = Indexes(n_i)\n l = ch_pts[indexer.rev_idx, 0]\n sign = np.sign(ch_pts1[:, 0] - ch_pts[:, 1])\n i = ch_pts[indexer.rev_idx, 1] + sign[indexer.rev_idx] * indexer.idx[0]\n j = ch_pts[indexer.rev_idx, 2] + indexer.idx[0] * (ch_pts1[indexer.\n rev_idx, 1] - ch_pts[indexer.rev_idx, 2]).astype(float) / (n_i[\n indexer.rev_idx] - 1)\n else:\n i = l = np.zeros(0, int)\n j = np.zeros(0)\n line_labels = np.concatenate((l_horiz, l_horiz, l))\n i = np.concatenate((i_horiz, i_horiz, i))\n j = np.concatenate((j_first_horiz.astype(float), j_last_horiz.astype(\n float), j))\n order = np.lexsort((j, i, line_labels))\n i, j, line_labels = i[order], j[order], line_labels[order]\n firsts = np.hstack([[0], np.argwhere((line_labels[:-1] != line_labels[1\n :]) | (i[:-1] != i[1:])).flatten() + 1, [len(line_labels)]])\n counts = firsts[1:] - firsts[:-1]\n run_indexer = Indexes(counts)\n i = i[run_indexer.fwd_idx]\n j0 = np.ceil(j[run_indexer.fwd_idx]).astype(int)\n j1 = np.floor(j[run_indexer.fwd_idx + run_indexer.counts[0] - 1]).astype(\n int)\n l = line_labels[run_indexer.fwd_idx]\n out_indexer = Indexes(j1 - j0 + 1)\n ijv = np.column_stack((i[out_indexer.rev_idx], j0[out_indexer.rev_idx] +\n out_indexer.idx[0], l[out_indexer.rev_idx]))\n return ijv\n",
"role": "user"
},
{
"content": "fill_convex_hulls",
"role": "assistant"
}
] |
def x(labels, pt0, pt1, value=1):
y0, x0 = pt0
y1, x1 = pt1
diff_y = abs(y1 - y0)
diff_x = abs(x1 - x0)
x = x0
y = y0
labels[y, x] = value
step_x = x1 > x0 and 1 or -1
step_y = y1 > y0 and 1 or -1
if diff_y > diff_x:
remainder = diff_x * 2 - diff_y
while y != y1:
if remainder >= 0:
x += step_x
remainder -= diff_y * 2
y += step_y
remainder += diff_x * 2
labels[y, x] = value
else:
remainder = diff_y * 2 - diff_x
while x != x1:
if remainder >= 0:
y += step_y
remainder -= diff_x * 2
x += step_x
remainder += diff_y * 2
labels[y, x] = value
| draw_line | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, pt0, pt1, value=1):\n y0, x0 = pt0\n y1, x1 = pt1\n diff_y = abs(y1 - y0)\n diff_x = abs(x1 - x0)\n x = x0\n y = y0\n labels[y, x] = value\n step_x = x1 > x0 and 1 or -1\n step_y = y1 > y0 and 1 or -1\n if diff_y > diff_x:\n remainder = diff_x * 2 - diff_y\n while y != y1:\n if remainder >= 0:\n x += step_x\n remainder -= diff_y * 2\n y += step_y\n remainder += diff_x * 2\n labels[y, x] = value\n else:\n remainder = diff_y * 2 - diff_x\n while x != x1:\n if remainder >= 0:\n y += step_y\n remainder -= diff_x * 2\n x += step_x\n remainder += diff_y * 2\n labels[y, x] = value\n",
"role": "user"
},
{
"content": "draw_line",
"role": "assistant"
}
] |
def x(pt0i, pt0j, pt1i, pt1j):
assert len(pt0i) == len(pt0j)
assert len(pt0i) == len(pt1i)
assert len(pt0i) == len(pt1j)
pt0i = np.array(pt0i, int)
pt0j = np.array(pt0j, int)
pt1i = np.array(pt1i, int)
pt1j = np.array(pt1j, int)
if len(pt0i) == 0:
return [np.zeros((0,), int)] * 4
diff_i = np.abs(pt0i - pt1i)
diff_j = np.abs(pt0j - pt1j)
count = np.maximum(diff_i, diff_j).astype(int) + 1
index = np.cumsum(count) - count
step_i = (pt1i > pt0i).astype(int) * 2 - 1
step_j = (pt1j > pt0j).astype(int) * 2 - 1
n_pts = index[-1] + count[-1]
i = np.zeros(n_pts, int)
j = np.zeros(n_pts, int)
i[index] = pt0i
j[index] = pt0j
mask = diff_i >= diff_j
count_t = count[mask]
if len(count_t) > 0:
last_n = np.max(count_t)
diff_i_t = diff_i[mask]
diff_j_t = diff_j[mask]
remainder = diff_j_t * 2 - diff_i_t
current_i = pt0i[mask]
current_j = pt0j[mask]
index_t = index[mask]
step_i_t = step_i[mask]
step_j_t = step_j[mask]
for n in range(1, last_n + 1):
mask = count_t > n
remainder = remainder[mask]
current_i = current_i[mask]
current_j = current_j[mask]
index_t = index_t[mask]
count_t = count_t[mask]
diff_i_t = diff_i_t[mask]
diff_j_t = diff_j_t[mask]
step_i_t = step_i_t[mask]
step_j_t = step_j_t[mask]
remainder_mask = remainder >= 0
current_j[remainder_mask] += step_j_t[remainder_mask]
remainder[remainder_mask] -= diff_i_t[remainder_mask] * 2
current_i += step_i_t
remainder += diff_j_t * 2
i[index_t + n] = current_i
j[index_t + n] = current_j
mask = diff_j > diff_i
count_t = count[mask]
if len(count_t) > 0:
last_n = np.max(count_t)
diff_i_t = diff_i[mask]
diff_j_t = diff_j[mask]
remainder = diff_i_t * 2 - diff_j_t
current_i = pt0i[mask]
current_j = pt0j[mask]
index_t = index[mask]
step_i_t = step_i[mask]
step_j_t = step_j[mask]
for n in range(1, last_n + 1):
mask = count_t > n
remainder = remainder[mask]
current_i = current_i[mask]
current_j = current_j[mask]
index_t = index_t[mask]
count_t = count_t[mask]
diff_i_t = diff_i_t[mask]
diff_j_t = diff_j_t[mask]
step_i_t = step_i_t[mask]
step_j_t = step_j_t[mask]
remainder_mask = remainder >= 0
current_i[remainder_mask] += step_i_t[remainder_mask]
remainder[remainder_mask] -= diff_j_t[remainder_mask] * 2
current_j += step_j_t
remainder += diff_i_t * 2
i[index_t + n] = current_i
j[index_t + n] = current_j
return index, count, i, j
| get_line_pts | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pt0i, pt0j, pt1i, pt1j):\n assert len(pt0i) == len(pt0j)\n assert len(pt0i) == len(pt1i)\n assert len(pt0i) == len(pt1j)\n pt0i = np.array(pt0i, int)\n pt0j = np.array(pt0j, int)\n pt1i = np.array(pt1i, int)\n pt1j = np.array(pt1j, int)\n if len(pt0i) == 0:\n return [np.zeros((0,), int)] * 4\n diff_i = np.abs(pt0i - pt1i)\n diff_j = np.abs(pt0j - pt1j)\n count = np.maximum(diff_i, diff_j).astype(int) + 1\n index = np.cumsum(count) - count\n step_i = (pt1i > pt0i).astype(int) * 2 - 1\n step_j = (pt1j > pt0j).astype(int) * 2 - 1\n n_pts = index[-1] + count[-1]\n i = np.zeros(n_pts, int)\n j = np.zeros(n_pts, int)\n i[index] = pt0i\n j[index] = pt0j\n mask = diff_i >= diff_j\n count_t = count[mask]\n if len(count_t) > 0:\n last_n = np.max(count_t)\n diff_i_t = diff_i[mask]\n diff_j_t = diff_j[mask]\n remainder = diff_j_t * 2 - diff_i_t\n current_i = pt0i[mask]\n current_j = pt0j[mask]\n index_t = index[mask]\n step_i_t = step_i[mask]\n step_j_t = step_j[mask]\n for n in range(1, last_n + 1):\n mask = count_t > n\n remainder = remainder[mask]\n current_i = current_i[mask]\n current_j = current_j[mask]\n index_t = index_t[mask]\n count_t = count_t[mask]\n diff_i_t = diff_i_t[mask]\n diff_j_t = diff_j_t[mask]\n step_i_t = step_i_t[mask]\n step_j_t = step_j_t[mask]\n remainder_mask = remainder >= 0\n current_j[remainder_mask] += step_j_t[remainder_mask]\n remainder[remainder_mask] -= diff_i_t[remainder_mask] * 2\n current_i += step_i_t\n remainder += diff_j_t * 2\n i[index_t + n] = current_i\n j[index_t + n] = current_j\n mask = diff_j > diff_i\n count_t = count[mask]\n if len(count_t) > 0:\n last_n = np.max(count_t)\n diff_i_t = diff_i[mask]\n diff_j_t = diff_j[mask]\n remainder = diff_i_t * 2 - diff_j_t\n current_i = pt0i[mask]\n current_j = pt0j[mask]\n index_t = index[mask]\n step_i_t = step_i[mask]\n step_j_t = step_j[mask]\n for n in range(1, last_n + 1):\n mask = count_t > n\n remainder = remainder[mask]\n current_i = current_i[mask]\n current_j = current_j[mask]\n index_t = index_t[mask]\n count_t = count_t[mask]\n diff_i_t = diff_i_t[mask]\n diff_j_t = diff_j_t[mask]\n step_i_t = step_i_t[mask]\n step_j_t = step_j_t[mask]\n remainder_mask = remainder >= 0\n current_i[remainder_mask] += step_i_t[remainder_mask]\n remainder[remainder_mask] -= diff_j_t[remainder_mask] * 2\n current_j += step_j_t\n remainder += diff_i_t * 2\n i[index_t + n] = current_i\n j[index_t + n] = current_j\n return index, count, i, j\n",
"role": "user"
},
{
"content": "get_line_pts",
"role": "assistant"
}
] |
def x(pt0i, pt0j, pt1i, pt1j, shape):
pt0i, pt0j, pt1i, pt1j = [np.round(np.atleast_1d(x)).astype(int) for x in
(pt0i, pt0j, pt1i, pt1j)]
result = np.zeros(shape, bool)
discard_me = pt0i == pt1i
index, count, i, j = get_line_pts(pt0i[discard_me], pt0j[discard_me],
pt1i[discard_me], pt1j[discard_me])
result[i, j] = True
pt0i, pt0j, pt1i, pt1j = [x[~discard_me] for x in (pt0i, pt0j, pt1i, pt1j)]
reverse_me = pt0i > pt1i
pt0i[reverse_me], pt0j[reverse_me], pt1i[reverse_me], pt1j[reverse_me
] = pt1i[reverse_me], pt1j[reverse_me], pt0i[reverse_me], pt0j[
reverse_me]
index, count, i, j = get_line_pts(pt0i, pt0j, pt1i, pt1j)
result[i, j] = True
indexer = Indexes(count)
dont_use = pt0i[indexer.rev_idx] == i
dont_use[:-1] |= (indexer.rev_idx[:-1] == indexer.rev_idx[1:]) & (i[:-1
] == i[1:])
i, j = i[~dont_use], j[~dont_use]
hitcounts = scipy.sparse.coo_matrix((np.ones(len(i), int), (i, j)),
shape=shape, dtype=np.uint16).toarray()
result[np.cumsum(hitcounts, 1) % 2 == 1] = True
return result
| polygon_lines_to_mask | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pt0i, pt0j, pt1i, pt1j, shape):\n pt0i, pt0j, pt1i, pt1j = [np.round(np.atleast_1d(x)).astype(int) for x in\n (pt0i, pt0j, pt1i, pt1j)]\n result = np.zeros(shape, bool)\n discard_me = pt0i == pt1i\n index, count, i, j = get_line_pts(pt0i[discard_me], pt0j[discard_me],\n pt1i[discard_me], pt1j[discard_me])\n result[i, j] = True\n pt0i, pt0j, pt1i, pt1j = [x[~discard_me] for x in (pt0i, pt0j, pt1i, pt1j)]\n reverse_me = pt0i > pt1i\n pt0i[reverse_me], pt0j[reverse_me], pt1i[reverse_me], pt1j[reverse_me\n ] = pt1i[reverse_me], pt1j[reverse_me], pt0i[reverse_me], pt0j[\n reverse_me]\n index, count, i, j = get_line_pts(pt0i, pt0j, pt1i, pt1j)\n result[i, j] = True\n indexer = Indexes(count)\n dont_use = pt0i[indexer.rev_idx] == i\n dont_use[:-1] |= (indexer.rev_idx[:-1] == indexer.rev_idx[1:]) & (i[:-1\n ] == i[1:])\n i, j = i[~dont_use], j[~dont_use]\n hitcounts = scipy.sparse.coo_matrix((np.ones(len(i), int), (i, j)),\n shape=shape, dtype=np.uint16).toarray()\n result[np.cumsum(hitcounts, 1) % 2 == 1] = True\n return result\n",
"role": "user"
},
{
"content": "polygon_lines_to_mask",
"role": "assistant"
}
] |
def x(whatever_it_returned):
if getattr(whatever_it_returned, '__getitem__', False):
return np.array(whatever_it_returned)
else:
return np.array([whatever_it_returned])
| fixup_scipy_ndimage_result | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(whatever_it_returned):\n if getattr(whatever_it_returned, '__getitem__', False):\n return np.array(whatever_it_returned)\n else:\n return np.array([whatever_it_returned])\n",
"role": "user"
},
{
"content": "fixup_scipy_ndimage_result",
"role": "assistant"
}
] |
def x(labels):
max_labels = np.max(labels)
if max_labels == 0:
return np.zeros((2, 0), int)
result = scind.center_of_mass(np.ones(labels.shape), labels, np.arange(
max_labels) + 1)
result = np.array(result)
if result.ndim == 1:
result.shape = 2, 1
return result
return result.transpose()
| centers_of_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n max_labels = np.max(labels)\n if max_labels == 0:\n return np.zeros((2, 0), int)\n result = scind.center_of_mass(np.ones(labels.shape), labels, np.arange(\n max_labels) + 1)\n result = np.array(result)\n if result.ndim == 1:\n result.shape = 2, 1\n return result\n return result.transpose()\n",
"role": "user"
},
{
"content": "centers_of_labels",
"role": "assistant"
}
] |
def x(image, labels, indices):
if len(indices) == 0:
return np.zeros((2, 0), int)
result = scind.maximum_position(image, labels, indices)
result = np.array(result, int)
if result.ndim == 1:
result.shape = 2, 1
return result
return result.transpose()
| maximum_position_of_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, labels, indices):\n if len(indices) == 0:\n return np.zeros((2, 0), int)\n result = scind.maximum_position(image, labels, indices)\n result = np.array(result, int)\n if result.ndim == 1:\n result.shape = 2, 1\n return result\n return result.transpose()\n",
"role": "user"
},
{
"content": "maximum_position_of_labels",
"role": "assistant"
}
] |
def x(labels_a, labels_b, distance):
if np.max(labels_a) == 0 or np.max(labels_b) == 0:
return np.zeros((0, 2), int)
hull_a, point_counts_a = convex_hull(labels_a)
hull_b, point_counts_b = convex_hull(labels_b)
centers_a, radii_a = minimum_enclosing_circle(labels_a,
hull_and_point_count=(hull_a, point_counts_a))
centers_b, radii_b = minimum_enclosing_circle(labels_b,
hull_and_point_count=(hull_b, point_counts_b))
indexer_a = np.cumsum(point_counts_a)
indexer_a[1:] = indexer_a[:-1]
indexer_a[0] = 0
indexer_b = np.cumsum(point_counts_b)
indexer_b[1:] = indexer_b[:-1]
indexer_b[0] = 0
i, j = np.mgrid[0:len(radii_a), 0:len(radii_b)]
ab_distance = np.sqrt((centers_a[i, 0] - centers_b[j, 0]) ** 2 + (
centers_a[i, 1] - centers_b[j, 1]) ** 2)
ab_distance_minus_radii = ab_distance - radii_a[i] - radii_b[j]
ab_distance_minus_radii -= np.sqrt(np.finfo(float).eps)
ab_easy_wins = ab_distance <= distance
ij_wins = np.dstack((hull_a[indexer_a[i[ab_easy_wins]], 0], hull_b[
indexer_b[j[ab_easy_wins]], 0]))
ij_wins.shape = ij_wins.shape[1:]
ab_consider = (ab_distance_minus_radii <= distance) & ~ab_easy_wins
ij_consider = np.dstack((i[ab_consider], j[ab_consider]))
ij_consider.shape = ij_consider.shape[1:]
if np.product(ij_consider.shape) == 0:
return ij_wins
if True:
wins = []
distance2 = distance ** 2
for ii, jj in ij_consider:
a = hull_a[indexer_a[ii]:indexer_a[ii] + point_counts_a[ii], 1:]
b = hull_b[indexer_b[jj]:indexer_b[jj] + point_counts_b[jj], 1:]
d = minimum_distance2(a, centers_a[ii, :], b, centers_b[jj, :])
if d <= distance2:
wins.append((hull_a[indexer_a[ii], 0], hull_b[indexer_b[jj],
0]))
ij_wins = np.vstack((ij_wins, np.array(wins)))
return ij_wins
else:
hull_next_a = np.arange(hull_a.shape[0]) + 1
hull_next_a[indexer_a + point_counts_a - 1] = indexer_a
hull_next_b = np.arange(hull_b.shape[0]) + 1
hull_next_b[indexer_b + point_counts_b - 1] = indexer_b
next_b = hull_b[hull_next_b, 1:]
vector_b = hull_b[:, 1:] - next_b
b_len = point_counts_b[ij_consider[:, 1]]
b_index = np.cumsum(point_counts_b)
b_elems = b_index[-1]
b_index[1:] = b_index[:-1]
b_index[0] = 0
b_indexer = np.zeros(b_elems, int)
b_indexer[b_index[1:]] = 1
b_indexer = np.cumsum(b_indexer)
b_sub_index = np.arange(b_elems) - b_index[b_indexer]
b_i = ij_consider[b_indexer, 0]
b_j = ij_consider[b_indexer, 1]
b_vector_b = vector_b[indexer_b[b_j] + b_sub_index, :]
b_center_vector = next_b[indexer_b[b_j] + b_sub_index, :] - centers_a[
indexer_a[b_i]]
cross = b_vector_b[:, 0] * b_center_vector[:, 1] - b_vector_b[:, 1
] * b_center_vector[:, 0]
hits = all_true(cross > 0, b_index) | all_true(cross < 0, b_index)
ij_wins = np.vstack((ij_wins, ij_consider[hits, :]))
ij_consider = ij_consider[~hits, :]
if ij_consider.shape[0] == 0:
return ij_wins
| associate_by_distance | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels_a, labels_b, distance):\n if np.max(labels_a) == 0 or np.max(labels_b) == 0:\n return np.zeros((0, 2), int)\n hull_a, point_counts_a = convex_hull(labels_a)\n hull_b, point_counts_b = convex_hull(labels_b)\n centers_a, radii_a = minimum_enclosing_circle(labels_a,\n hull_and_point_count=(hull_a, point_counts_a))\n centers_b, radii_b = minimum_enclosing_circle(labels_b,\n hull_and_point_count=(hull_b, point_counts_b))\n indexer_a = np.cumsum(point_counts_a)\n indexer_a[1:] = indexer_a[:-1]\n indexer_a[0] = 0\n indexer_b = np.cumsum(point_counts_b)\n indexer_b[1:] = indexer_b[:-1]\n indexer_b[0] = 0\n i, j = np.mgrid[0:len(radii_a), 0:len(radii_b)]\n ab_distance = np.sqrt((centers_a[i, 0] - centers_b[j, 0]) ** 2 + (\n centers_a[i, 1] - centers_b[j, 1]) ** 2)\n ab_distance_minus_radii = ab_distance - radii_a[i] - radii_b[j]\n ab_distance_minus_radii -= np.sqrt(np.finfo(float).eps)\n ab_easy_wins = ab_distance <= distance\n ij_wins = np.dstack((hull_a[indexer_a[i[ab_easy_wins]], 0], hull_b[\n indexer_b[j[ab_easy_wins]], 0]))\n ij_wins.shape = ij_wins.shape[1:]\n ab_consider = (ab_distance_minus_radii <= distance) & ~ab_easy_wins\n ij_consider = np.dstack((i[ab_consider], j[ab_consider]))\n ij_consider.shape = ij_consider.shape[1:]\n if np.product(ij_consider.shape) == 0:\n return ij_wins\n if True:\n wins = []\n distance2 = distance ** 2\n for ii, jj in ij_consider:\n a = hull_a[indexer_a[ii]:indexer_a[ii] + point_counts_a[ii], 1:]\n b = hull_b[indexer_b[jj]:indexer_b[jj] + point_counts_b[jj], 1:]\n d = minimum_distance2(a, centers_a[ii, :], b, centers_b[jj, :])\n if d <= distance2:\n wins.append((hull_a[indexer_a[ii], 0], hull_b[indexer_b[jj],\n 0]))\n ij_wins = np.vstack((ij_wins, np.array(wins)))\n return ij_wins\n else:\n hull_next_a = np.arange(hull_a.shape[0]) + 1\n hull_next_a[indexer_a + point_counts_a - 1] = indexer_a\n hull_next_b = np.arange(hull_b.shape[0]) + 1\n hull_next_b[indexer_b + point_counts_b - 1] = indexer_b\n next_b = hull_b[hull_next_b, 1:]\n vector_b = hull_b[:, 1:] - next_b\n b_len = point_counts_b[ij_consider[:, 1]]\n b_index = np.cumsum(point_counts_b)\n b_elems = b_index[-1]\n b_index[1:] = b_index[:-1]\n b_index[0] = 0\n b_indexer = np.zeros(b_elems, int)\n b_indexer[b_index[1:]] = 1\n b_indexer = np.cumsum(b_indexer)\n b_sub_index = np.arange(b_elems) - b_index[b_indexer]\n b_i = ij_consider[b_indexer, 0]\n b_j = ij_consider[b_indexer, 1]\n b_vector_b = vector_b[indexer_b[b_j] + b_sub_index, :]\n b_center_vector = next_b[indexer_b[b_j] + b_sub_index, :] - centers_a[\n indexer_a[b_i]]\n cross = b_vector_b[:, 0] * b_center_vector[:, 1] - b_vector_b[:, 1\n ] * b_center_vector[:, 0]\n hits = all_true(cross > 0, b_index) | all_true(cross < 0, b_index)\n ij_wins = np.vstack((ij_wins, ij_consider[hits, :]))\n ij_consider = ij_consider[~hits, :]\n if ij_consider.shape[0] == 0:\n return ij_wins\n",
"role": "user"
},
{
"content": "associate_by_distance",
"role": "assistant"
}
] |
def x(hull_a, center_a, hull_b, center_b):
if hull_a.shape[0] < 3 or hull_b.shape[0] < 3:
return slow_minimum_distance2(hull_a, hull_b)
else:
return faster_minimum_distance2(hull_a, center_a, hull_b, center_b)
| minimum_distance2 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hull_a, center_a, hull_b, center_b):\n if hull_a.shape[0] < 3 or hull_b.shape[0] < 3:\n return slow_minimum_distance2(hull_a, hull_b)\n else:\n return faster_minimum_distance2(hull_a, center_a, hull_b, center_b)\n",
"role": "user"
},
{
"content": "minimum_distance2",
"role": "assistant"
}
] |
def x(hull_a, hull_b):
d2_min = np.iinfo(int).max
for a in hull_a:
if within_hull(a, hull_b):
return 0
for b in hull_b:
if within_hull(b, hull_a):
return 0
for pt_a in hull_a:
for pt_b in hull_b:
d2_min = min(d2_min, np.sum((pt_a - pt_b) ** 2))
for h1, h2 in ((hull_a, hull_b), (hull_b, hull_a)):
for pt1 in h1:
prev_pt2 = h2[-1, :]
for pt2 in h2:
if np.dot(pt2 - prev_pt2, pt1 - prev_pt2) > 0 and np.dot(
prev_pt2 - pt2, pt1 - pt2) > 0:
d2_min = min(d2_min, distance2_to_line(pt1, prev_pt2, pt2))
prev_pt2 = pt2
return d2_min
| slow_minimum_distance2 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hull_a, hull_b):\n d2_min = np.iinfo(int).max\n for a in hull_a:\n if within_hull(a, hull_b):\n return 0\n for b in hull_b:\n if within_hull(b, hull_a):\n return 0\n for pt_a in hull_a:\n for pt_b in hull_b:\n d2_min = min(d2_min, np.sum((pt_a - pt_b) ** 2))\n for h1, h2 in ((hull_a, hull_b), (hull_b, hull_a)):\n for pt1 in h1:\n prev_pt2 = h2[-1, :]\n for pt2 in h2:\n if np.dot(pt2 - prev_pt2, pt1 - prev_pt2) > 0 and np.dot(\n prev_pt2 - pt2, pt1 - pt2) > 0:\n d2_min = min(d2_min, distance2_to_line(pt1, prev_pt2, pt2))\n prev_pt2 = pt2\n return d2_min\n",
"role": "user"
},
{
"content": "slow_minimum_distance2",
"role": "assistant"
}
] |
def x(hull_a, center_a, hull_b, center_b):
if within_hull(center_a, hull_b):
return 0
farthest_b = find_farthest(center_a, hull_b)
if within_hull(hull_b[farthest_b, :], hull_a):
return 0
visible_b = find_visible(hull_b, center_a, farthest_b)
if within_hull(center_b, hull_a):
return 0
farthest_a = find_farthest(center_b, hull_a)
if within_hull(hull_a[farthest_a, :], hull_b):
return 0
visible_a = find_visible(hull_a, center_b, farthest_a)
i = visible_a[0]
i_next = (i + 1) % hull_a.shape[0]
j = visible_b[1]
j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]
a = hull_a[i, :]
a_next = hull_a[i_next, :]
b = hull_b[j, :]
b_next = hull_b[j_next, :]
d2_min = np.sum((a - b) ** 2)
while i != visible_a[1] and j != visible_b[0]:
if lines_intersect(a, a_next, b, b_next):
return 0
if np.dot(b - b_next, a - b_next) > 0 and np.dot(b_next - b, a - b
) > 0:
d2a = distance2_to_line(b, a, a_next)
else:
d2a = np.sum((a_next - b) ** 2)
if np.dot(a - a_next, b - a_next) > 0 and np.dot(a_next - a, b - a
) > 0:
d2b = distance2_to_line(a, b, b_next)
else:
d2b = np.sum((b_next - a) ** 2)
if d2a < d2_min and d2a < d2b:
d2_min = d2a
a = a_next
i = i_next
i_next = (i + 1) % hull_a.shape[0]
a_next = hull_a[i_next, :]
elif d2b < d2_min:
d2_min = d2b
b = b_next
j = j_next
j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]
b_next = hull_b[j_next, :]
else:
return d2_min
while i != visible_a[1]:
d2_min = min(d2_min, np.sum((a_next - b) ** 2))
a = a_next
i = i_next
i_next = (i + 1) % hull_a.shape[0]
a_next = hull_a[i_next, :]
while j != visible_b[0]:
d2_min = min(d2_min, np.sum((b_next - a) ** 2))
b = b_next
j = j_next
j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]
b_next = hull_b[j_next, :]
return d2_min
| faster_minimum_distance2 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hull_a, center_a, hull_b, center_b):\n if within_hull(center_a, hull_b):\n return 0\n farthest_b = find_farthest(center_a, hull_b)\n if within_hull(hull_b[farthest_b, :], hull_a):\n return 0\n visible_b = find_visible(hull_b, center_a, farthest_b)\n if within_hull(center_b, hull_a):\n return 0\n farthest_a = find_farthest(center_b, hull_a)\n if within_hull(hull_a[farthest_a, :], hull_b):\n return 0\n visible_a = find_visible(hull_a, center_b, farthest_a)\n i = visible_a[0]\n i_next = (i + 1) % hull_a.shape[0]\n j = visible_b[1]\n j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]\n a = hull_a[i, :]\n a_next = hull_a[i_next, :]\n b = hull_b[j, :]\n b_next = hull_b[j_next, :]\n d2_min = np.sum((a - b) ** 2)\n while i != visible_a[1] and j != visible_b[0]:\n if lines_intersect(a, a_next, b, b_next):\n return 0\n if np.dot(b - b_next, a - b_next) > 0 and np.dot(b_next - b, a - b\n ) > 0:\n d2a = distance2_to_line(b, a, a_next)\n else:\n d2a = np.sum((a_next - b) ** 2)\n if np.dot(a - a_next, b - a_next) > 0 and np.dot(a_next - a, b - a\n ) > 0:\n d2b = distance2_to_line(a, b, b_next)\n else:\n d2b = np.sum((b_next - a) ** 2)\n if d2a < d2_min and d2a < d2b:\n d2_min = d2a\n a = a_next\n i = i_next\n i_next = (i + 1) % hull_a.shape[0]\n a_next = hull_a[i_next, :]\n elif d2b < d2_min:\n d2_min = d2b\n b = b_next\n j = j_next\n j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]\n b_next = hull_b[j_next, :]\n else:\n return d2_min\n while i != visible_a[1]:\n d2_min = min(d2_min, np.sum((a_next - b) ** 2))\n a = a_next\n i = i_next\n i_next = (i + 1) % hull_a.shape[0]\n a_next = hull_a[i_next, :]\n while j != visible_b[0]:\n d2_min = min(d2_min, np.sum((b_next - a) ** 2))\n b = b_next\n j = j_next\n j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]\n b_next = hull_b[j_next, :]\n return d2_min\n",
"role": "user"
},
{
"content": "faster_minimum_distance2",
"role": "assistant"
}
] |
def x(pt1_p, pt2_p, pt1_q, pt2_q):
for pt1_a, pt2_a, pt1_b, pt2_b in ((pt1_p, pt2_p, pt1_q, pt2_q), (pt1_q,
pt2_q, pt1_p, pt2_p)):
v_a = pt2_a - pt1_a
cross_a_1b = np.cross(v_a, pt1_b - pt2_a)
if cross_a_1b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt1_b):
return True
cross_a_2b = np.cross(v_a, pt2_b - pt2_a)
if cross_a_2b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt2_b):
return True
if (cross_a_1b < 0) == (cross_a_2b < 0):
return False
return True
| lines_intersect | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pt1_p, pt2_p, pt1_q, pt2_q):\n for pt1_a, pt2_a, pt1_b, pt2_b in ((pt1_p, pt2_p, pt1_q, pt2_q), (pt1_q,\n pt2_q, pt1_p, pt2_p)):\n v_a = pt2_a - pt1_a\n cross_a_1b = np.cross(v_a, pt1_b - pt2_a)\n if cross_a_1b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt1_b):\n return True\n cross_a_2b = np.cross(v_a, pt2_b - pt2_a)\n if cross_a_2b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt2_b):\n return True\n if (cross_a_1b < 0) == (cross_a_2b < 0):\n return False\n return True\n",
"role": "user"
},
{
"content": "lines_intersect",
"role": "assistant"
}
] |
def x(point, hull):
d_start = np.sum((point - hull[0, :]) ** 2)
d_end = np.sum((point - hull[-1, :]) ** 2)
if d_start > d_end:
i = 1
inc = 1
term = hull.shape[0]
d2_max = d_start
else:
i = hull.shape[0] - 2
inc = -1
term = -1
d2_max = d_end
while i != term:
d2 = np.sum((point - hull[i, :]) ** 2)
if d2 < d2_max:
break
i += inc
d2_max = d2
return i - inc
| find_farthest | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(point, hull):\n d_start = np.sum((point - hull[0, :]) ** 2)\n d_end = np.sum((point - hull[-1, :]) ** 2)\n if d_start > d_end:\n i = 1\n inc = 1\n term = hull.shape[0]\n d2_max = d_start\n else:\n i = hull.shape[0] - 2\n inc = -1\n term = -1\n d2_max = d_end\n while i != term:\n d2 = np.sum((point - hull[i, :]) ** 2)\n if d2 < d2_max:\n break\n i += inc\n d2_max = d2\n return i - inc\n",
"role": "user"
},
{
"content": "find_farthest",
"role": "assistant"
}
] |
def x(hull, observer, background):
pt_background = hull[background, :]
vector = pt_background - observer
i = background
dmax = 0
while True:
i_next = (i + 1) % hull.shape[0]
pt_next = hull[i_next, :]
d = -np.cross(vector, pt_next - pt_background)
if d < dmax or i_next == background:
i_min = i
break
dmax = d
i = i_next
dmax = 0
i = background
while True:
i_next = (i + hull.shape[0] - 1) % hull.shape[0]
pt_next = hull[i_next, :]
d = np.cross(vector, pt_next - pt_background)
if d < dmax or i_next == background:
i_max = i
break
dmax = d
i = i_next
return i_min, i_max
| find_visible | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(hull, observer, background):\n pt_background = hull[background, :]\n vector = pt_background - observer\n i = background\n dmax = 0\n while True:\n i_next = (i + 1) % hull.shape[0]\n pt_next = hull[i_next, :]\n d = -np.cross(vector, pt_next - pt_background)\n if d < dmax or i_next == background:\n i_min = i\n break\n dmax = d\n i = i_next\n dmax = 0\n i = background\n while True:\n i_next = (i + hull.shape[0] - 1) % hull.shape[0]\n pt_next = hull[i_next, :]\n d = np.cross(vector, pt_next - pt_background)\n if d < dmax or i_next == background:\n i_max = i\n break\n dmax = d\n i = i_next\n return i_min, i_max\n",
"role": "user"
},
{
"content": "find_visible",
"role": "assistant"
}
] |
def x(pt, l0, l1):
pt = np.atleast_1d(pt)
l0 = np.atleast_1d(l0)
l1 = np.atleast_1d(l1)
reshape = pt.ndim == 1
if reshape:
pt.shape = l0.shape = l1.shape = 1, pt.shape[0]
result = ((l0[:, 0] - l1[:, 0]) * (l0[:, 1] - pt[:, 1]) - (l0[:, 0] -
pt[:, 0]) * (l0[:, 1] - l1[:, 1])) ** 2 / np.sum((l1 - l0) ** 2, 1)
if reshape:
result = result[0]
return result
| distance2_to_line | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pt, l0, l1):\n pt = np.atleast_1d(pt)\n l0 = np.atleast_1d(l0)\n l1 = np.atleast_1d(l1)\n reshape = pt.ndim == 1\n if reshape:\n pt.shape = l0.shape = l1.shape = 1, pt.shape[0]\n result = ((l0[:, 0] - l1[:, 0]) * (l0[:, 1] - pt[:, 1]) - (l0[:, 0] -\n pt[:, 0]) * (l0[:, 1] - l1[:, 1])) ** 2 / np.sum((l1 - l0) ** 2, 1)\n if reshape:\n result = result[0]\n return result\n",
"role": "user"
},
{
"content": "distance2_to_line",
"role": "assistant"
}
] |
def x(point, hull):
h_prev_pt = hull[-1, :]
for h_pt in hull:
if np.cross(h_pt - h_prev_pt, point - h_pt) >= 0:
return False
h_prev_pt = h_pt
return True
| within_hull | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(point, hull):\n h_prev_pt = hull[-1, :]\n for h_pt in hull:\n if np.cross(h_pt - h_prev_pt, point - h_pt) >= 0:\n return False\n h_prev_pt = h_pt\n return True\n",
"role": "user"
},
{
"content": "within_hull",
"role": "assistant"
}
] |
def x(a, indexes):
if len(indexes) == 0:
return np.zeros(0, bool)
elif len(indexes) == 1:
return np.all(a)
cs = np.zeros(len(a) + 1, int)
cs[1:] = np.cumsum(a)
augmented_indexes = np.zeros(len(indexes) + 1, int)
augmented_indexes[0:-1] = indexes + 1
augmented_indexes[-1] = len(a) + 1
counts = augmented_indexes[1:] - augmented_indexes[0:-1]
hits = cs[augmented_indexes[1:] - 1] - cs[augmented_indexes[0:-1] - 1]
return counts == hits
| all_true | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, indexes):\n if len(indexes) == 0:\n return np.zeros(0, bool)\n elif len(indexes) == 1:\n return np.all(a)\n cs = np.zeros(len(a) + 1, int)\n cs[1:] = np.cumsum(a)\n augmented_indexes = np.zeros(len(indexes) + 1, int)\n augmented_indexes[0:-1] = indexes + 1\n augmented_indexes[-1] = len(a) + 1\n counts = augmented_indexes[1:] - augmented_indexes[0:-1]\n hits = cs[augmented_indexes[1:] - 1] - cs[augmented_indexes[0:-1] - 1]\n return counts == hits\n",
"role": "user"
},
{
"content": "all_true",
"role": "assistant"
}
] |
def x(image, labels, indexes, wants_compactness=False):
if len(indexes) == 0:
return np.zeros((0, 2)), np.zeros((0,)), np.zeros((0,)), np.zeros((0,)
), np.zeros((0,))
i, j = np.argwhere(labels != 0).transpose()
return ellipse_from_second_moments_ijv(i, j, image[i, j], labels[i, j],
indexes, wants_compactness)
| ellipse_from_second_moments | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, labels, indexes, wants_compactness=False):\n if len(indexes) == 0:\n return np.zeros((0, 2)), np.zeros((0,)), np.zeros((0,)), np.zeros((0,)\n ), np.zeros((0,))\n i, j = np.argwhere(labels != 0).transpose()\n return ellipse_from_second_moments_ijv(i, j, image[i, j], labels[i, j],\n indexes, wants_compactness)\n",
"role": "user"
},
{
"content": "ellipse_from_second_moments",
"role": "assistant"
}
] |
def x(i, j, image, labels, indexes, wants_compactness=False):
if len(indexes) == 0:
return [np.zeros((0, 2))] + [np.zeros((0,))] * (5 if
wants_compactness else 4)
if len(i) == 0:
return [np.zeros((len(indexes), 2)), np.ones(len(indexes))] + [np.
zeros(len(indexes))] * (4 if wants_compactness else 3)
nlabels = np.max(indexes) + 1
m = np.array([[None, 0, None], [0, None, None], [None, None, None]], object
)
if np.all(image == 1):
image = 1
m[0, 0] = intensity = np.bincount(labels)
else:
m[0, 0] = intensity = np.bincount(labels, image)
ic = np.bincount(labels, i * image) / intensity
jc = np.bincount(labels, j * image) / intensity
i = i - ic[labels]
j = j - jc[labels]
m[1, 1] = np.bincount(labels, i * j * image)
m[2, 0] = np.bincount(labels, i * i * image)
m[0, 2] = np.bincount(labels, j * j * image)
a = m[2, 0] / m[0, 0]
b = 2 * m[1, 1] / m[0, 0]
c = m[0, 2] / m[0, 0]
theta = np.arctan2(b, c - a) / 2
temp = np.sqrt(b ** 2 + (a - c) ** 2)
mystery_constant = 0.095
mystery_multiplier = 0.9975
major_axis_len = np.sqrt(8 * (a + c + temp)
) * mystery_multiplier + mystery_constant
minor_axis_len = np.sqrt(8 * (a + c - temp)
) * mystery_multiplier + mystery_constant
eccentricity = np.sqrt(1 - (minor_axis_len / major_axis_len) ** 2)
compactness = 2 * np.pi * (a + c) / m[0, 0]
return [np.column_stack((ic[indexes], jc[indexes])), eccentricity[
indexes], major_axis_len[indexes], minor_axis_len[indexes], theta[
indexes]] + ([compactness[indexes]] if wants_compactness else [])
| ellipse_from_second_moments_ijv | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i, j, image, labels, indexes, wants_compactness=False):\n if len(indexes) == 0:\n return [np.zeros((0, 2))] + [np.zeros((0,))] * (5 if\n wants_compactness else 4)\n if len(i) == 0:\n return [np.zeros((len(indexes), 2)), np.ones(len(indexes))] + [np.\n zeros(len(indexes))] * (4 if wants_compactness else 3)\n nlabels = np.max(indexes) + 1\n m = np.array([[None, 0, None], [0, None, None], [None, None, None]], object\n )\n if np.all(image == 1):\n image = 1\n m[0, 0] = intensity = np.bincount(labels)\n else:\n m[0, 0] = intensity = np.bincount(labels, image)\n ic = np.bincount(labels, i * image) / intensity\n jc = np.bincount(labels, j * image) / intensity\n i = i - ic[labels]\n j = j - jc[labels]\n m[1, 1] = np.bincount(labels, i * j * image)\n m[2, 0] = np.bincount(labels, i * i * image)\n m[0, 2] = np.bincount(labels, j * j * image)\n a = m[2, 0] / m[0, 0]\n b = 2 * m[1, 1] / m[0, 0]\n c = m[0, 2] / m[0, 0]\n theta = np.arctan2(b, c - a) / 2\n temp = np.sqrt(b ** 2 + (a - c) ** 2)\n mystery_constant = 0.095\n mystery_multiplier = 0.9975\n major_axis_len = np.sqrt(8 * (a + c + temp)\n ) * mystery_multiplier + mystery_constant\n minor_axis_len = np.sqrt(8 * (a + c - temp)\n ) * mystery_multiplier + mystery_constant\n eccentricity = np.sqrt(1 - (minor_axis_len / major_axis_len) ** 2)\n compactness = 2 * np.pi * (a + c) / m[0, 0]\n return [np.column_stack((ic[indexes], jc[indexes])), eccentricity[\n indexes], major_axis_len[indexes], minor_axis_len[indexes], theta[\n indexes]] + ([compactness[indexes]] if wants_compactness else [])\n",
"role": "user"
},
{
"content": "ellipse_from_second_moments_ijv",
"role": "assistant"
}
] |
def x(labels, indexes):
fix = fixup_scipy_ndimage_result
areas = fix(scind.sum(np.ones(labels.shape), labels, np.array(indexes,
dtype=np.int32)))
y, x = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]
xmin = fix(scind.minimum(x, labels, indexes))
xmax = fix(scind.maximum(x, labels, indexes))
ymin = fix(scind.minimum(y, labels, indexes))
ymax = fix(scind.maximum(y, labels, indexes))
bbareas = (xmax - xmin + 1) * (ymax - ymin + 1)
return areas / bbareas
| calculate_extents | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indexes):\n fix = fixup_scipy_ndimage_result\n areas = fix(scind.sum(np.ones(labels.shape), labels, np.array(indexes,\n dtype=np.int32)))\n y, x = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]\n xmin = fix(scind.minimum(x, labels, indexes))\n xmax = fix(scind.maximum(x, labels, indexes))\n ymin = fix(scind.minimum(y, labels, indexes))\n ymax = fix(scind.maximum(y, labels, indexes))\n bbareas = (xmax - xmin + 1) * (ymax - ymin + 1)\n return areas / bbareas\n",
"role": "user"
},
{
"content": "calculate_extents",
"role": "assistant"
}
] |
def x(labels, indexes):
m = table_idx_from_labels(labels)
pixel_score = __perimeter_scoring[m]
return fixup_scipy_ndimage_result(scind.sum(pixel_score, labels, np.
array(indexes, dtype=np.int32)))
| calculate_perimeters | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indexes):\n m = table_idx_from_labels(labels)\n pixel_score = __perimeter_scoring[m]\n return fixup_scipy_ndimage_result(scind.sum(pixel_score, labels, np.\n array(indexes, dtype=np.int32)))\n",
"role": "user"
},
{
"content": "calculate_perimeters",
"role": "assistant"
}
] |
def x(labels):
m = np.zeros((labels.shape[0], labels.shape[1]), int)
exponent = 0
for i in range(-1, 2):
ilow = i == -1 and 1 or 0
iend = i == 1 and labels.shape[0] - 1 or labels.shape[0]
for j in range(-1, 2):
jlow = j == -1 and 1 or 0
jend = j == 1 and labels.shape[1] - 1 or labels.shape[1]
mask = np.zeros(labels.shape, bool)
mask[ilow:iend, jlow:jend] = labels[ilow:iend, jlow:jend
] == labels[ilow + i:iend + i, jlow + j:jend + j]
m[mask] += 2 ** exponent
exponent += 1
return m
| table_idx_from_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n m = np.zeros((labels.shape[0], labels.shape[1]), int)\n exponent = 0\n for i in range(-1, 2):\n ilow = i == -1 and 1 or 0\n iend = i == 1 and labels.shape[0] - 1 or labels.shape[0]\n for j in range(-1, 2):\n jlow = j == -1 and 1 or 0\n jend = j == 1 and labels.shape[1] - 1 or labels.shape[1]\n mask = np.zeros(labels.shape, bool)\n mask[ilow:iend, jlow:jend] = labels[ilow:iend, jlow:jend\n ] == labels[ilow + i:iend + i, jlow + j:jend + j]\n m[mask] += 2 ** exponent\n exponent += 1\n return m\n",
"role": "user"
},
{
"content": "table_idx_from_labels",
"role": "assistant"
}
] |
def x(labels, indexes=None):
if getattr(indexes, '__getitem__', False):
indexes = np.array(indexes, dtype=np.int32)
elif indexes is not None:
indexes = np.array([indexes], dtype=np.int32)
else:
labels = labels != 0
indexes = np.array([1], dtype=np.int32)
hull, counts = convex_hull(labels, indexes)
result = np.zeros((counts.shape[0],))
result[counts == 1] = 1
if not np.any(counts > 1):
return result
index_of_label = np.zeros(hull[:, 0].max() + 1, int)
index_of_label[indexes] = np.array(list(range(indexes.shape[0])))
hull_index = np.zeros((counts.shape[0],), int)
hull_index[1:] = np.cumsum(counts[:-1])
if np.any(counts == 2):
diff_2 = hull[hull_index[counts == 2], 1:] - hull[hull_index[counts ==
2] + 1, 1:]
result[counts == 2] = np.sqrt(np.sum(diff_2 ** 2, 1)) + 1
if not np.any(counts >= 3):
return result
counts_per_label = np.zeros(hull[:, 0].max() + 1, counts.dtype)
counts_per_label[indexes] = counts
hull_nd = hull[counts_per_label[hull[:, 0]] >= 3]
counts_nd = counts[counts >= 3]
indexes_nd = indexes[counts >= 3]
index_of_label_nd = np.zeros((index_of_label.shape[0],), int)
index_of_label_nd[indexes_nd] = np.array(list(range(indexes_nd.shape[0])))
hull_index_nd = np.zeros((counts_nd.shape[0],), int)
if hull_index_nd.shape[0] > 1:
hull_index_nd[1:] = np.cumsum(counts_nd[:-1])
index_of_label_per_pixel_nd = index_of_label_nd[hull_nd[:, 0]]
hull_index_per_pixel_nd = hull_index_nd[index_of_label_per_pixel_nd]
within_label_index = np.array(list(range(hull_nd.shape[0]))
) - hull_index_per_pixel_nd
within_hull = np.zeros((counts_nd.shape[0], 2))
within_hull[:, 0] = scind.sum(hull_nd[:, 1], hull_nd[:, 0], indexes_nd
) / counts_nd
within_hull[:, 1] = scind.sum(hull_nd[:, 2], hull_nd[:, 0], indexes_nd
) / counts_nd
within_hull_per_pixel = within_hull[index_of_label_per_pixel_nd]
hull_nd[hull_nd[:, 1] >= within_hull_per_pixel[:, 0], 1] += 1
hull_nd[hull_nd[:, 2] >= within_hull_per_pixel[:, 1], 2] += 1
plus_one_idx = np.array(list(range(hull_nd.shape[0]))) + 1
modulo_mask = within_label_index + 1 == counts_nd[
index_of_label_per_pixel_nd]
plus_one_idx[modulo_mask] = hull_index_per_pixel_nd[modulo_mask]
area_per_pt_nd = triangle_areas(hull_nd[:, 1:], hull_nd[plus_one_idx, 1
:], within_hull_per_pixel)
result[counts >= 3] = scind.sum(area_per_pt_nd, hull_nd[:, 0], indexes_nd)
return result
| calculate_convex_hull_areas | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indexes=None):\n if getattr(indexes, '__getitem__', False):\n indexes = np.array(indexes, dtype=np.int32)\n elif indexes is not None:\n indexes = np.array([indexes], dtype=np.int32)\n else:\n labels = labels != 0\n indexes = np.array([1], dtype=np.int32)\n hull, counts = convex_hull(labels, indexes)\n result = np.zeros((counts.shape[0],))\n result[counts == 1] = 1\n if not np.any(counts > 1):\n return result\n index_of_label = np.zeros(hull[:, 0].max() + 1, int)\n index_of_label[indexes] = np.array(list(range(indexes.shape[0])))\n hull_index = np.zeros((counts.shape[0],), int)\n hull_index[1:] = np.cumsum(counts[:-1])\n if np.any(counts == 2):\n diff_2 = hull[hull_index[counts == 2], 1:] - hull[hull_index[counts ==\n 2] + 1, 1:]\n result[counts == 2] = np.sqrt(np.sum(diff_2 ** 2, 1)) + 1\n if not np.any(counts >= 3):\n return result\n counts_per_label = np.zeros(hull[:, 0].max() + 1, counts.dtype)\n counts_per_label[indexes] = counts\n hull_nd = hull[counts_per_label[hull[:, 0]] >= 3]\n counts_nd = counts[counts >= 3]\n indexes_nd = indexes[counts >= 3]\n index_of_label_nd = np.zeros((index_of_label.shape[0],), int)\n index_of_label_nd[indexes_nd] = np.array(list(range(indexes_nd.shape[0])))\n hull_index_nd = np.zeros((counts_nd.shape[0],), int)\n if hull_index_nd.shape[0] > 1:\n hull_index_nd[1:] = np.cumsum(counts_nd[:-1])\n index_of_label_per_pixel_nd = index_of_label_nd[hull_nd[:, 0]]\n hull_index_per_pixel_nd = hull_index_nd[index_of_label_per_pixel_nd]\n within_label_index = np.array(list(range(hull_nd.shape[0]))\n ) - hull_index_per_pixel_nd\n within_hull = np.zeros((counts_nd.shape[0], 2))\n within_hull[:, 0] = scind.sum(hull_nd[:, 1], hull_nd[:, 0], indexes_nd\n ) / counts_nd\n within_hull[:, 1] = scind.sum(hull_nd[:, 2], hull_nd[:, 0], indexes_nd\n ) / counts_nd\n within_hull_per_pixel = within_hull[index_of_label_per_pixel_nd]\n hull_nd[hull_nd[:, 1] >= within_hull_per_pixel[:, 0], 1] += 1\n hull_nd[hull_nd[:, 2] >= within_hull_per_pixel[:, 1], 2] += 1\n plus_one_idx = np.array(list(range(hull_nd.shape[0]))) + 1\n modulo_mask = within_label_index + 1 == counts_nd[\n index_of_label_per_pixel_nd]\n plus_one_idx[modulo_mask] = hull_index_per_pixel_nd[modulo_mask]\n area_per_pt_nd = triangle_areas(hull_nd[:, 1:], hull_nd[plus_one_idx, 1\n :], within_hull_per_pixel)\n result[counts >= 3] = scind.sum(area_per_pt_nd, hull_nd[:, 0], indexes_nd)\n return result\n",
"role": "user"
},
{
"content": "calculate_convex_hull_areas",
"role": "assistant"
}
] |
def x(labels, indexes=None):
if indexes is not None:
""" Convert to compat 32bit integer """
indexes = np.array(indexes, dtype=np.int32)
areas = scind.sum(np.ones(labels.shape), labels, indexes)
convex_hull_areas = calculate_convex_hull_areas(labels, indexes)
return areas / convex_hull_areas
| calculate_solidity | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indexes=None):\n if indexes is not None:\n \"\"\" Convert to compat 32bit integer \"\"\"\n indexes = np.array(indexes, dtype=np.int32)\n areas = scind.sum(np.ones(labels.shape), labels, indexes)\n convex_hull_areas = calculate_convex_hull_areas(labels, indexes)\n return areas / convex_hull_areas\n",
"role": "user"
},
{
"content": "calculate_solidity",
"role": "assistant"
}
] |
def x(labels, indexes=None):
if indexes is None:
labels = labels != 0
indexes = np.array([1], dtype=np.int32)
elif getattr(indexes, '__getitem__', False):
indexes = np.array(indexes, dtype=np.int32)
else:
indexes = np.array([indexes], dtype=np.int32)
fix = fixup_scipy_ndimage_result
I_shape = labels.shape[0] + 3, labels.shape[1] + 3
I00 = np.zeros(I_shape, int)
I01 = np.zeros(I_shape, int)
I10 = np.zeros(I_shape, int)
I11 = np.zeros(I_shape, int)
slice_00 = [slice(1, labels.shape[0] + 1), slice(1, labels.shape[1] + 1)]
slice_01 = [slice(1, labels.shape[0] + 1), slice(0, labels.shape[1])]
slice_10 = [slice(labels.shape[0]), slice(1, labels.shape[1] + 1)]
slice_11 = [slice(0, labels.shape[0]), slice(0, labels.shape[1])]
I00[slice_00] = labels
I01[slice_01] = labels
I10[slice_10] = labels
I11[slice_11] = labels
EQ00_01 = I00 == I01
EQ01_00 = EQ00_01
EQ00_10 = I00 == I10
EQ10_00 = EQ00_10
EQ00_11 = I00 == I11
EQ11_00 = EQ00_11
EQ01_10 = I01 == I10
EQ10_01 = EQ01_10
EQ01_11 = I01 == I11
EQ11_01 = EQ01_11
EQ10_11 = I10 == I11
EQ11_10 = EQ10_11
NE00_01 = np.logical_not(EQ00_01)
NE01_00 = NE00_01
NE00_10 = np.logical_not(EQ00_10)
NE10_00 = NE00_10
NE00_11 = np.logical_not(EQ00_11)
NE11_00 = NE00_11
NE01_10 = np.logical_not(EQ01_10)
NE10_01 = NE01_10
NE01_11 = np.logical_not(EQ01_11)
NE11_01 = NE01_11
NE10_11 = np.logical_not(EQ10_11)
NE11_10 = NE10_11
Q1_condition = (NE00_01 & NE00_10 & NE00_11).astype(int)
Q1_condition[slice_00] += (NE01_00 & NE01_10 & NE01_11)[slice_01]
Q1_condition[slice_00] += (NE10_00 & NE10_01 & NE10_11)[slice_10]
Q1_condition[slice_00] += (NE11_00 & NE11_01 & NE11_10)[slice_11]
Q1 = fix(scind.sum(Q1_condition, I00, indexes))
Q3_condition = (EQ00_10 & EQ00_01 & NE00_11).astype(int)
Q3_condition[slice_00] += (NE11_00 & EQ11_10 & EQ11_01)[slice_11]
Q3_condition += NE00_01 & EQ00_10 & EQ00_11
Q3_condition += NE00_10 & EQ00_01 & EQ00_11
Q3 = fix(scind.sum(Q3_condition, I00, indexes))
QD_condition = (NE00_01 & NE00_10 & EQ00_11).astype(int)
QD_condition[slice_00] += (NE01_00 & NE01_11 & EQ01_10)[slice_01]
QD = fix(scind.sum(QD_condition, I00, indexes))
W = (Q1 - Q3 - 2 * QD).astype(float) / 4.0
if indexes is None:
return W[0]
return W
| euler_number | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indexes=None):\n if indexes is None:\n labels = labels != 0\n indexes = np.array([1], dtype=np.int32)\n elif getattr(indexes, '__getitem__', False):\n indexes = np.array(indexes, dtype=np.int32)\n else:\n indexes = np.array([indexes], dtype=np.int32)\n fix = fixup_scipy_ndimage_result\n I_shape = labels.shape[0] + 3, labels.shape[1] + 3\n I00 = np.zeros(I_shape, int)\n I01 = np.zeros(I_shape, int)\n I10 = np.zeros(I_shape, int)\n I11 = np.zeros(I_shape, int)\n slice_00 = [slice(1, labels.shape[0] + 1), slice(1, labels.shape[1] + 1)]\n slice_01 = [slice(1, labels.shape[0] + 1), slice(0, labels.shape[1])]\n slice_10 = [slice(labels.shape[0]), slice(1, labels.shape[1] + 1)]\n slice_11 = [slice(0, labels.shape[0]), slice(0, labels.shape[1])]\n I00[slice_00] = labels\n I01[slice_01] = labels\n I10[slice_10] = labels\n I11[slice_11] = labels\n EQ00_01 = I00 == I01\n EQ01_00 = EQ00_01\n EQ00_10 = I00 == I10\n EQ10_00 = EQ00_10\n EQ00_11 = I00 == I11\n EQ11_00 = EQ00_11\n EQ01_10 = I01 == I10\n EQ10_01 = EQ01_10\n EQ01_11 = I01 == I11\n EQ11_01 = EQ01_11\n EQ10_11 = I10 == I11\n EQ11_10 = EQ10_11\n NE00_01 = np.logical_not(EQ00_01)\n NE01_00 = NE00_01\n NE00_10 = np.logical_not(EQ00_10)\n NE10_00 = NE00_10\n NE00_11 = np.logical_not(EQ00_11)\n NE11_00 = NE00_11\n NE01_10 = np.logical_not(EQ01_10)\n NE10_01 = NE01_10\n NE01_11 = np.logical_not(EQ01_11)\n NE11_01 = NE01_11\n NE10_11 = np.logical_not(EQ10_11)\n NE11_10 = NE10_11\n Q1_condition = (NE00_01 & NE00_10 & NE00_11).astype(int)\n Q1_condition[slice_00] += (NE01_00 & NE01_10 & NE01_11)[slice_01]\n Q1_condition[slice_00] += (NE10_00 & NE10_01 & NE10_11)[slice_10]\n Q1_condition[slice_00] += (NE11_00 & NE11_01 & NE11_10)[slice_11]\n Q1 = fix(scind.sum(Q1_condition, I00, indexes))\n Q3_condition = (EQ00_10 & EQ00_01 & NE00_11).astype(int)\n Q3_condition[slice_00] += (NE11_00 & EQ11_10 & EQ11_01)[slice_11]\n Q3_condition += NE00_01 & EQ00_10 & EQ00_11\n Q3_condition += NE00_10 & EQ00_01 & EQ00_11\n Q3 = fix(scind.sum(Q3_condition, I00, indexes))\n QD_condition = (NE00_01 & NE00_10 & EQ00_11).astype(int)\n QD_condition[slice_00] += (NE01_00 & NE01_11 & EQ01_10)[slice_01]\n QD = fix(scind.sum(QD_condition, I00, indexes))\n W = (Q1 - Q3 - 2 * QD).astype(float) / 4.0\n if indexes is None:\n return W[0]\n return W\n",
"role": "user"
},
{
"content": "euler_number",
"role": "assistant"
}
] |
def x(shape, block_shape):
shape = np.array(shape)
block_shape = np.array(block_shape)
i, j = np.mgrid[0:shape[0], 0:shape[1]]
ijmax = (shape.astype(float) / block_shape.astype(float)).astype(int)
ijmax = np.maximum(ijmax, 1)
multiplier = ijmax.astype(float) / shape.astype(float)
i = (i * multiplier[0]).astype(int)
j = (j * multiplier[1]).astype(int)
labels = i * ijmax[1] + j
indexes = np.array(list(range(np.product(ijmax))))
return labels, indexes
| block | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(shape, block_shape):\n shape = np.array(shape)\n block_shape = np.array(block_shape)\n i, j = np.mgrid[0:shape[0], 0:shape[1]]\n ijmax = (shape.astype(float) / block_shape.astype(float)).astype(int)\n ijmax = np.maximum(ijmax, 1)\n multiplier = ijmax.astype(float) / shape.astype(float)\n i = (i * multiplier[0]).astype(int)\n j = (j * multiplier[1]).astype(int)\n labels = i * ijmax[1] + j\n indexes = np.array(list(range(np.product(ijmax))))\n return labels, indexes\n",
"role": "user"
},
{
"content": "block",
"role": "assistant"
}
] |
def x(image, radius=None, mask=None, footprint=None):
final_image = image - opening(image, radius, mask, footprint)
if not mask is None:
not_mask = np.logical_not(mask)
final_image[not_mask] = image[not_mask]
return final_image
| white_tophat | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, radius=None, mask=None, footprint=None):\n final_image = image - opening(image, radius, mask, footprint)\n if not mask is None:\n not_mask = np.logical_not(mask)\n final_image[not_mask] = image[not_mask]\n return final_image\n",
"role": "user"
},
{
"content": "white_tophat",
"role": "assistant"
}
] |
def x(image, radius=None, mask=None, footprint=None):
final_image = closing(image, radius, mask, footprint) - image
if not mask is None:
not_mask = np.logical_not(mask)
final_image[not_mask] = image[not_mask]
return final_image
| black_tophat | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, radius=None, mask=None, footprint=None):\n final_image = closing(image, radius, mask, footprint) - image\n if not mask is None:\n not_mask = np.logical_not(mask)\n final_image[not_mask] = image[not_mask]\n return final_image\n",
"role": "user"
},
{
"content": "black_tophat",
"role": "assistant"
}
] |
def x(image, radius=None, mask=None, footprint=None):
if footprint is None:
if radius is None:
footprint = np.ones((3, 3), bool)
radius = 1
else:
footprint = strel_disk(radius) == 1
else:
radius = max(1, np.max(np.array(footprint.shape) // 2))
iradius = int(np.ceil(radius))
big_image = np.ones(np.array(image.shape) + iradius * 2)
big_image[iradius:-iradius, iradius:-iradius] = image
if not mask is None:
not_mask = np.logical_not(mask)
big_image[iradius:-iradius, iradius:-iradius][not_mask] = 1
processed_image = scind.grey_erosion(big_image, footprint=footprint)
final_image = processed_image[iradius:-iradius, iradius:-iradius]
if not mask is None:
final_image[not_mask] = image[not_mask]
return final_image
| grey_erosion | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, radius=None, mask=None, footprint=None):\n if footprint is None:\n if radius is None:\n footprint = np.ones((3, 3), bool)\n radius = 1\n else:\n footprint = strel_disk(radius) == 1\n else:\n radius = max(1, np.max(np.array(footprint.shape) // 2))\n iradius = int(np.ceil(radius))\n big_image = np.ones(np.array(image.shape) + iradius * 2)\n big_image[iradius:-iradius, iradius:-iradius] = image\n if not mask is None:\n not_mask = np.logical_not(mask)\n big_image[iradius:-iradius, iradius:-iradius][not_mask] = 1\n processed_image = scind.grey_erosion(big_image, footprint=footprint)\n final_image = processed_image[iradius:-iradius, iradius:-iradius]\n if not mask is None:\n final_image[not_mask] = image[not_mask]\n return final_image\n",
"role": "user"
},
{
"content": "grey_erosion",
"role": "assistant"
}
] |
def x(image, mask, footprint=None, offset=None):
assert tuple(image.shape) == tuple(mask.shape)
assert np.all(image <= mask)
if footprint is None:
footprint = np.ones([3] * image.ndim, bool)
else:
footprint = footprint.copy()
if offset is None:
assert all([(d % 2 == 1) for d in footprint.shape]
), 'Footprint dimensions must all be odd'
offset = np.array([(d // 2) for d in footprint.shape])
footprint[[slice(d, d + 1) for d in offset]] = False
padding = (np.array(footprint.shape) // 2).astype(int)
dims = np.zeros(image.ndim + 1, int)
dims[1:] = np.array(image.shape) + 2 * padding
dims[0] = 2
inside_slices = [slice(p, -p) for p in padding]
values = np.ones(dims) * np.min(image)
values[[0] + inside_slices] = image
values[[1] + inside_slices] = mask
value_stride = np.array(values.strides[1:]) // values.dtype.itemsize
image_stride = values.strides[0] // values.dtype.itemsize
footprint_mgrid = np.mgrid[[slice(-o, d - o) for d, o in zip(footprint.
shape, offset)]]
footprint_offsets = footprint_mgrid[:, footprint].transpose()
strides = np.array([np.sum(value_stride * footprint_offset) for
footprint_offset in footprint_offsets], np.int32)
values = values.flatten()
value_sort = np.lexsort([-values]).astype(np.int32)
prev = -np.ones(len(values), np.int32)
next = -np.ones(len(values), np.int32)
prev[value_sort[1:]] = value_sort[:-1]
next[value_sort[:-1]] = value_sort[1:]
values, value_map = rank_order(values)
current = value_sort[0]
slow = False
if slow:
while current != -1:
if current < image_stride:
current_value = values[current]
if current_value == 0:
break
neighbors = strides + current
for neighbor in neighbors:
if neighbor < 0:
raise IndexError(
'Index out of bounds: %d, current=%d, current_value=%d'
% (neighbor, np.unravel_index(current, dims),
current_value))
neighbor_value = values[neighbor]
if neighbor_value < current_value:
mask_value = values[neighbor + image_stride]
if neighbor_value < mask_value:
if mask_value < current_value:
link = neighbor + image_stride
values[neighbor] = mask_value
else:
link = current
values[neighbor] = current_value
nprev = prev[neighbor]
nnext = next[neighbor]
next[nprev] = nnext
if nnext != -1:
prev[nnext] = nprev
next[neighbor] = next[link]
prev[neighbor] = link
prev[next[link]] = neighbor
next[link] = neighbor
current = next[current]
else:
grey_reconstruction_loop(values, prev, next, strides, current,
image_stride)
values = value_map[values[:image_stride]]
values.shape = np.array(image.shape) + 2 * padding
return values[inside_slices]
| grey_reconstruction | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask, footprint=None, offset=None):\n assert tuple(image.shape) == tuple(mask.shape)\n assert np.all(image <= mask)\n if footprint is None:\n footprint = np.ones([3] * image.ndim, bool)\n else:\n footprint = footprint.copy()\n if offset is None:\n assert all([(d % 2 == 1) for d in footprint.shape]\n ), 'Footprint dimensions must all be odd'\n offset = np.array([(d // 2) for d in footprint.shape])\n footprint[[slice(d, d + 1) for d in offset]] = False\n padding = (np.array(footprint.shape) // 2).astype(int)\n dims = np.zeros(image.ndim + 1, int)\n dims[1:] = np.array(image.shape) + 2 * padding\n dims[0] = 2\n inside_slices = [slice(p, -p) for p in padding]\n values = np.ones(dims) * np.min(image)\n values[[0] + inside_slices] = image\n values[[1] + inside_slices] = mask\n value_stride = np.array(values.strides[1:]) // values.dtype.itemsize\n image_stride = values.strides[0] // values.dtype.itemsize\n footprint_mgrid = np.mgrid[[slice(-o, d - o) for d, o in zip(footprint.\n shape, offset)]]\n footprint_offsets = footprint_mgrid[:, footprint].transpose()\n strides = np.array([np.sum(value_stride * footprint_offset) for\n footprint_offset in footprint_offsets], np.int32)\n values = values.flatten()\n value_sort = np.lexsort([-values]).astype(np.int32)\n prev = -np.ones(len(values), np.int32)\n next = -np.ones(len(values), np.int32)\n prev[value_sort[1:]] = value_sort[:-1]\n next[value_sort[:-1]] = value_sort[1:]\n values, value_map = rank_order(values)\n current = value_sort[0]\n slow = False\n if slow:\n while current != -1:\n if current < image_stride:\n current_value = values[current]\n if current_value == 0:\n break\n neighbors = strides + current\n for neighbor in neighbors:\n if neighbor < 0:\n raise IndexError(\n 'Index out of bounds: %d, current=%d, current_value=%d'\n % (neighbor, np.unravel_index(current, dims),\n current_value))\n neighbor_value = values[neighbor]\n if neighbor_value < current_value:\n mask_value = values[neighbor + image_stride]\n if neighbor_value < mask_value:\n if mask_value < current_value:\n link = neighbor + image_stride\n values[neighbor] = mask_value\n else:\n link = current\n values[neighbor] = current_value\n nprev = prev[neighbor]\n nnext = next[neighbor]\n next[nprev] = nnext\n if nnext != -1:\n prev[nnext] = nprev\n next[neighbor] = next[link]\n prev[neighbor] = link\n prev[next[link]] = neighbor\n next[link] = neighbor\n current = next[current]\n else:\n grey_reconstruction_loop(values, prev, next, strides, current,\n image_stride)\n values = value_map[values[:image_stride]]\n values.shape = np.array(image.shape) + 2 * padding\n return values[inside_slices]\n",
"role": "user"
},
{
"content": "grey_reconstruction",
"role": "assistant"
}
] |
def x(image, radius=None, mask=None, footprint=None):
eroded_image = grey_erosion(image, radius, mask, footprint)
return grey_dilation(eroded_image, radius, mask, footprint)
| opening | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, radius=None, mask=None, footprint=None):\n eroded_image = grey_erosion(image, radius, mask, footprint)\n return grey_dilation(eroded_image, radius, mask, footprint)\n",
"role": "user"
},
{
"content": "opening",
"role": "assistant"
}
] |
def x(image, radius=None, mask=None, footprint=None):
dilated_image = grey_dilation(image, radius, mask, footprint)
return grey_erosion(dilated_image, radius, mask, footprint)
| closing | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, radius=None, mask=None, footprint=None):\n dilated_image = grey_dilation(image, radius, mask, footprint)\n return grey_erosion(dilated_image, radius, mask, footprint)\n",
"role": "user"
},
{
"content": "closing",
"role": "assistant"
}
] |
def x(image, linelength=10, dAngle=10, mask=None):
nAngles = 180 // dAngle
openingstack = np.zeros((nAngles, image.shape[0], image.shape[1]),
image.dtype)
for iAngle in range(nAngles):
angle = dAngle * iAngle
se = strel_line(linelength, angle)
openingstack[iAngle, :, :] = opening(image, mask=mask, footprint=se)
imLines = np.max(openingstack, axis=0) - np.min(openingstack, axis=0)
return imLines
| openlines | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, linelength=10, dAngle=10, mask=None):\n nAngles = 180 // dAngle\n openingstack = np.zeros((nAngles, image.shape[0], image.shape[1]),\n image.dtype)\n for iAngle in range(nAngles):\n angle = dAngle * iAngle\n se = strel_line(linelength, angle)\n openingstack[iAngle, :, :] = opening(image, mask=mask, footprint=se)\n imLines = np.max(openingstack, axis=0) - np.min(openingstack, axis=0)\n return imLines\n",
"role": "user"
},
{
"content": "openlines",
"role": "assistant"
}
] |
def x(image, table, border_value, iterations=None):
center_is_zero = np.array([(x & 2 ** 4 == 0) for x in range(2 ** 9)])
use_index_trick = False
if not np.any(table[center_is_zero]) and (np.issubdtype(image.dtype,
bool) or np.issubdtype(image.dtype, int)):
use_index_trick = True
invert = False
elif np.all(table[~center_is_zero]) and np.issubdtype(image.dtype, bool):
use_index_trick = True
invert = True
image = ~image
table = ~table[511 - np.arange(512)]
border_value = not border_value
if use_index_trick:
orig_image = image
index_i, index_j, image = prepare_for_index_lookup(image, border_value)
index_i, index_j = index_lookup(index_i, index_j, image, table,
iterations)
image = extract_from_image_lookup(orig_image, index_i, index_j)
if invert:
image = ~image
return image
counter = 0
while counter != iterations:
counter += 1
if image.shape[0] < 3 or image.shape[1] < 3:
image = image.astype(bool)
indexer = np.zeros(image.shape, int)
indexer[1:, 1:] += image[:-1, :-1] * 2 ** 0
indexer[1:, :] += image[:-1, :] * 2 ** 1
indexer[1:, :-1] += image[:-1, 1:] * 2 ** 2
indexer[:, 1:] += image[:, :-1] * 2 ** 3
indexer[:, :] += image[:, :] * 2 ** 4
indexer[:, :-1] += image[:, 1:] * 2 ** 5
indexer[:-1, 1:] += image[1:, :-1] * 2 ** 6
indexer[:-1, :] += image[1:, :] * 2 ** 7
indexer[:-1, :-1] += image[1:, 1:] * 2 ** 8
else:
indexer = table_lookup_index(np.ascontiguousarray(image, np.uint8))
if border_value:
indexer[0, :] |= 2 ** 0 + 2 ** 1 + 2 ** 2
indexer[-1, :] |= 2 ** 6 + 2 ** 7 + 2 ** 8
indexer[:, 0] |= 2 ** 0 + 2 ** 3 + 2 ** 6
indexer[:, -1] |= 2 ** 2 + 2 ** 5 + 2 ** 8
new_image = table[indexer]
if np.all(new_image == image):
break
image = new_image
return image
| table_lookup | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, table, border_value, iterations=None):\n center_is_zero = np.array([(x & 2 ** 4 == 0) for x in range(2 ** 9)])\n use_index_trick = False\n if not np.any(table[center_is_zero]) and (np.issubdtype(image.dtype,\n bool) or np.issubdtype(image.dtype, int)):\n use_index_trick = True\n invert = False\n elif np.all(table[~center_is_zero]) and np.issubdtype(image.dtype, bool):\n use_index_trick = True\n invert = True\n image = ~image\n table = ~table[511 - np.arange(512)]\n border_value = not border_value\n if use_index_trick:\n orig_image = image\n index_i, index_j, image = prepare_for_index_lookup(image, border_value)\n index_i, index_j = index_lookup(index_i, index_j, image, table,\n iterations)\n image = extract_from_image_lookup(orig_image, index_i, index_j)\n if invert:\n image = ~image\n return image\n counter = 0\n while counter != iterations:\n counter += 1\n if image.shape[0] < 3 or image.shape[1] < 3:\n image = image.astype(bool)\n indexer = np.zeros(image.shape, int)\n indexer[1:, 1:] += image[:-1, :-1] * 2 ** 0\n indexer[1:, :] += image[:-1, :] * 2 ** 1\n indexer[1:, :-1] += image[:-1, 1:] * 2 ** 2\n indexer[:, 1:] += image[:, :-1] * 2 ** 3\n indexer[:, :] += image[:, :] * 2 ** 4\n indexer[:, :-1] += image[:, 1:] * 2 ** 5\n indexer[:-1, 1:] += image[1:, :-1] * 2 ** 6\n indexer[:-1, :] += image[1:, :] * 2 ** 7\n indexer[:-1, :-1] += image[1:, 1:] * 2 ** 8\n else:\n indexer = table_lookup_index(np.ascontiguousarray(image, np.uint8))\n if border_value:\n indexer[0, :] |= 2 ** 0 + 2 ** 1 + 2 ** 2\n indexer[-1, :] |= 2 ** 6 + 2 ** 7 + 2 ** 8\n indexer[:, 0] |= 2 ** 0 + 2 ** 3 + 2 ** 6\n indexer[:, -1] |= 2 ** 2 + 2 ** 5 + 2 ** 8\n new_image = table[indexer]\n if np.all(new_image == image):\n break\n image = new_image\n return image\n",
"role": "user"
},
{
"content": "table_lookup",
"role": "assistant"
}
] |
def x(index):
return np.array([[index & 2 ** 0, index & 2 ** 1, index & 2 ** 2], [
index & 2 ** 3, index & 2 ** 4, index & 2 ** 5], [index & 2 ** 6,
index & 2 ** 7, index & 2 ** 8]], bool)
| pattern_of | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(index):\n return np.array([[index & 2 ** 0, index & 2 ** 1, index & 2 ** 2], [\n index & 2 ** 3, index & 2 ** 4, index & 2 ** 5], [index & 2 ** 6, \n index & 2 ** 7, index & 2 ** 8]], bool)\n",
"role": "user"
},
{
"content": "pattern_of",
"role": "assistant"
}
] |