source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(self, show_progress=True, optimized=True, skip_configuration=False): if not skip_configuration: configuration_command = ['python', 'waf', 'configure', '--enable-examples', '--disable-gtk', '--disable-python'] if optimized: configuration_command += ['--build-profile=optimized', '--out=build/optimized'] subprocess.call(configuration_command, cwd=self.path, stdout= subprocess.PIPE, stderr=subprocess.PIPE) build_process = subprocess.Popen(['python', 'waf', 'build'], cwd=self. path, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if show_progress: line_iterator = self.get_build_output(build_process) pbar = None try: [initial, total] = next(line_iterator) pbar = tqdm(line_iterator, initial=initial, total=total, unit= 'file', desc='Building ns-3', smoothing=0) for current, total in pbar: pbar.n = current except StopIteration: if pbar is not None: pbar.n = pbar.total else: build_process.communicate()
configure_and_build
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, show_progress=True, optimized=True, skip_configuration=False):\n if not skip_configuration:\n configuration_command = ['python', 'waf', 'configure',\n '--enable-examples', '--disable-gtk', '--disable-python']\n if optimized:\n configuration_command += ['--build-profile=optimized',\n '--out=build/optimized']\n subprocess.call(configuration_command, cwd=self.path, stdout=\n subprocess.PIPE, stderr=subprocess.PIPE)\n build_process = subprocess.Popen(['python', 'waf', 'build'], cwd=self.\n path, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n if show_progress:\n line_iterator = self.get_build_output(build_process)\n pbar = None\n try:\n [initial, total] = next(line_iterator)\n pbar = tqdm(line_iterator, initial=initial, total=total, unit=\n 'file', desc='Building ns-3', smoothing=0)\n for current, total in pbar:\n pbar.n = current\n except StopIteration:\n if pbar is not None:\n pbar.n = pbar.total\n else:\n build_process.communicate()\n", "role": "user" }, { "content": "configure_and_build", "role": "assistant" } ]
def x(self, process): while True: output = process.stdout.readline() if output == b'' and process.poll() is not None: if process.returncode > 0: raise Exception( 'Compilation ended with an error.\nSTDERR\n%s\nSTDOUT\n%s' % (process.stderr.read(), process.stdout.read())) return if output: matches = re.search('\\[\\s*(\\d+?)/(\\d+)\\].*', output.strip( ).decode('utf-8')) if matches is not None: yield [int(matches.group(1)), int(matches.group(2))]
get_build_output
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, process):\n while True:\n output = process.stdout.readline()\n if output == b'' and process.poll() is not None:\n if process.returncode > 0:\n raise Exception(\n 'Compilation ended with an error.\\nSTDERR\\n%s\\nSTDOUT\\n%s'\n % (process.stderr.read(), process.stdout.read()))\n return\n if output:\n matches = re.search('\\\\[\\\\s*(\\\\d+?)/(\\\\d+)\\\\].*', output.strip(\n ).decode('utf-8'))\n if matches is not None:\n yield [int(matches.group(1)), int(matches.group(2))]\n", "role": "user" }, { "content": "get_build_output", "role": "assistant" } ]
def x(self): result = subprocess.check_output([self.script_executable, '--PrintHelp' ], env=self.environment, cwd=self.path).decode('utf-8') options = re.findall( '.*Program\\s(?:Options|Arguments):(.*)General\\sArguments.*', result, re.DOTALL) global_options = subprocess.check_output([self.script_executable, '--PrintGlobals'], env=self.environment, cwd=self.path).decode('utf-8') args = [] if len(options): args += re.findall('.*--(.*?)[?::|=].*', options[0], re.MULTILINE) if len(global_options): args += [k for k in re.findall('.*--(.*?)[?::|=].*', global_options, re.MULTILINE) if k not in ['RngRun', 'RngSeed', 'SchedulerType', 'SimulatorImplementationType', 'ChecksumEnabled']] return sorted(args)
get_available_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n result = subprocess.check_output([self.script_executable, '--PrintHelp'\n ], env=self.environment, cwd=self.path).decode('utf-8')\n options = re.findall(\n '.*Program\\\\s(?:Options|Arguments):(.*)General\\\\sArguments.*',\n result, re.DOTALL)\n global_options = subprocess.check_output([self.script_executable,\n '--PrintGlobals'], env=self.environment, cwd=self.path).decode('utf-8')\n args = []\n if len(options):\n args += re.findall('.*--(.*?)[?::|=].*', options[0], re.MULTILINE)\n if len(global_options):\n args += [k for k in re.findall('.*--(.*?)[?::|=].*', global_options,\n re.MULTILINE) if k not in ['RngRun', 'RngSeed', 'SchedulerType',\n 'SimulatorImplementationType', 'ChecksumEnabled']]\n return sorted(args)\n", "role": "user" }, { "content": "get_available_parameters", "role": "assistant" } ]
def x(self, parameter_list, data_folder): for idx, parameter in enumerate(parameter_list): current_result = {'params': {}, 'meta': {}} current_result['params'].update(parameter) command = [self.script_executable] + [('--%s=%s' % (param, value)) for param, value in parameter.items()] current_result['meta']['id'] = str(uuid.uuid4()) temp_dir = os.path.join(data_folder, current_result['meta']['id']) os.makedirs(temp_dir) start = time.time() stdout_file_path = os.path.join(temp_dir, 'stdout') stderr_file_path = os.path.join(temp_dir, 'stderr') with open(stdout_file_path, 'w') as stdout_file, open(stderr_file_path, 'w') as stderr_file: return_code = subprocess.call(command, cwd=temp_dir, env=self. environment, stdout=stdout_file, stderr=stderr_file) end = time.time() if return_code > 0: complete_command = [self.script] complete_command.extend(command[1:]) complete_command = 'python waf --run "%s"' % ' '.join( complete_command) with open(stdout_file_path, 'r') as stdout_file, open( stderr_file_path, 'r') as stderr_file: raise Exception( """Simulation exited with an error. Params: %s Stderr: %s Stdout: %s Use this command to reproduce: %s""" % (parameter, stderr_file.read(), stdout_file.read(), complete_command)) current_result['meta']['elapsed_time'] = end - start yield current_result
run_simulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_list, data_folder):\n for idx, parameter in enumerate(parameter_list):\n current_result = {'params': {}, 'meta': {}}\n current_result['params'].update(parameter)\n command = [self.script_executable] + [('--%s=%s' % (param, value)) for\n param, value in parameter.items()]\n current_result['meta']['id'] = str(uuid.uuid4())\n temp_dir = os.path.join(data_folder, current_result['meta']['id'])\n os.makedirs(temp_dir)\n start = time.time()\n stdout_file_path = os.path.join(temp_dir, 'stdout')\n stderr_file_path = os.path.join(temp_dir, 'stderr')\n with open(stdout_file_path, 'w') as stdout_file, open(stderr_file_path,\n 'w') as stderr_file:\n return_code = subprocess.call(command, cwd=temp_dir, env=self.\n environment, stdout=stdout_file, stderr=stderr_file)\n end = time.time()\n if return_code > 0:\n complete_command = [self.script]\n complete_command.extend(command[1:])\n complete_command = 'python waf --run \"%s\"' % ' '.join(\n complete_command)\n with open(stdout_file_path, 'r') as stdout_file, open(\n stderr_file_path, 'r') as stderr_file:\n raise Exception(\n \"\"\"Simulation exited with an error.\nParams: %s\n\nStderr: %s\nStdout: %s\nUse this command to reproduce:\n%s\"\"\"\n % (parameter, stderr_file.read(), stdout_file.read(),\n complete_command))\n current_result['meta']['elapsed_time'] = end - start\n yield current_result\n", "role": "user" }, { "content": "run_simulations", "role": "assistant" } ]
def x(param_ranges): for key in param_ranges: if not isinstance(param_ranges[key], list): param_ranges[key] = [param_ranges[key]] return [dict(zip(param_ranges, v)) for v in product(*param_ranges.values()) ]
list_param_combinations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(param_ranges):\n for key in param_ranges:\n if not isinstance(param_ranges[key], list):\n param_ranges[key] = [param_ranges[key]]\n return [dict(zip(param_ranges, v)) for v in product(*param_ranges.values())\n ]\n", "role": "user" }, { "content": "list_param_combinations", "role": "assistant" } ]
def x(script, result, debug=False): if not debug: command = 'python waf --run "' + script + ' ' + ' '.join([( '--%s=%s' % (param, value)) for param, value in result['params' ].items()]) + '"' else: command = ('python waf --run ' + script + ' --command-template="' + 'gdb --args %s ' + ' '.join([('--%s=%s' % (param, value)) for param, value in result['params'].items()]) + '"') return command
get_command_from_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(script, result, debug=False):\n if not debug:\n command = 'python waf --run \"' + script + ' ' + ' '.join([(\n '--%s=%s' % (param, value)) for param, value in result['params'\n ].items()]) + '\"'\n else:\n command = ('python waf --run ' + script + ' --command-template=\"' +\n 'gdb --args %s ' + ' '.join([('--%s=%s' % (param, value)) for \n param, value in result['params'].items()]) + '\"')\n return command\n", "role": "user" }, { "content": "get_command_from_result", "role": "assistant" } ]
def x(result, dtypes={}, converters={}): np.seterr(all='raise') parsed = {} for filename, contents in result['output'].items(): if dtypes.get(filename) is None: dtypes[filename] = None if converters.get(filename) is None: converters[filename] = None with warnings.catch_warnings(): warnings.simplefilter('ignore') parsed[filename] = np.genfromtxt(io.StringIO(contents), dtype= dtypes[filename], converters=converters[filename]).tolist() return parsed
automatic_parser
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(result, dtypes={}, converters={}):\n np.seterr(all='raise')\n parsed = {}\n for filename, contents in result['output'].items():\n if dtypes.get(filename) is None:\n dtypes[filename] = None\n if converters.get(filename) is None:\n converters[filename] = None\n with warnings.catch_warnings():\n warnings.simplefilter('ignore')\n parsed[filename] = np.genfromtxt(io.StringIO(contents), dtype=\n dtypes[filename], converters=converters[filename]).tolist()\n return parsed\n", "role": "user" }, { "content": "automatic_parser", "role": "assistant" } ]
def x(cls, ns_path, script, campaign_dir, runner_type='Auto', overwrite= False, optimized=True, check_repo=True): ns_path = os.path.abspath(ns_path) campaign_dir = os.path.abspath(campaign_dir) if Path(campaign_dir).exists() and not overwrite: manager = CampaignManager.load(campaign_dir, ns_path, runner_type= runner_type, optimized=optimized, check_repo=check_repo) if manager.db.get_script() == script: return manager else: del manager runner = CampaignManager.create_runner(ns_path, script, runner_type= runner_type, optimized=optimized) params = runner.get_available_parameters() commit = '' if check_repo: from git import Repo, exc commit = Repo(ns_path).head.commit.hexsha db = DatabaseManager.new(script=script, params=params, commit=commit, campaign_dir=campaign_dir, overwrite=overwrite) return cls(db, runner, check_repo)
new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, ns_path, script, campaign_dir, runner_type='Auto', overwrite=\n False, optimized=True, check_repo=True):\n ns_path = os.path.abspath(ns_path)\n campaign_dir = os.path.abspath(campaign_dir)\n if Path(campaign_dir).exists() and not overwrite:\n manager = CampaignManager.load(campaign_dir, ns_path, runner_type=\n runner_type, optimized=optimized, check_repo=check_repo)\n if manager.db.get_script() == script:\n return manager\n else:\n del manager\n runner = CampaignManager.create_runner(ns_path, script, runner_type=\n runner_type, optimized=optimized)\n params = runner.get_available_parameters()\n commit = ''\n if check_repo:\n from git import Repo, exc\n commit = Repo(ns_path).head.commit.hexsha\n db = DatabaseManager.new(script=script, params=params, commit=commit,\n campaign_dir=campaign_dir, overwrite=overwrite)\n return cls(db, runner, check_repo)\n", "role": "user" }, { "content": "new", "role": "assistant" } ]
def x(cls, campaign_dir, ns_path=None, runner_type='Auto', optimized=True, check_repo=True): if ns_path is not None: ns_path = os.path.abspath(ns_path) campaign_dir = os.path.abspath(campaign_dir) db = DatabaseManager.load(campaign_dir) script = db.get_script() runner = None if ns_path is not None: runner = CampaignManager.create_runner(ns_path, script, runner_type, optimized) return cls(db, runner, check_repo)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, campaign_dir, ns_path=None, runner_type='Auto', optimized=True,\n check_repo=True):\n if ns_path is not None:\n ns_path = os.path.abspath(ns_path)\n campaign_dir = os.path.abspath(campaign_dir)\n db = DatabaseManager.load(campaign_dir)\n script = db.get_script()\n runner = None\n if ns_path is not None:\n runner = CampaignManager.create_runner(ns_path, script, runner_type,\n optimized)\n return cls(db, runner, check_repo)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(ns_path, script, runner_type='Auto', optimized=True): if runner_type == 'Auto' and DRMAA_AVAILABLE: runner_type = 'GridRunner' elif runner_type == 'Auto': runner_type = 'ParallelRunner' return locals().get(runner_type, globals().get(runner_type))(ns_path, script, optimized=optimized)
create_runner
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_path, script, runner_type='Auto', optimized=True):\n if runner_type == 'Auto' and DRMAA_AVAILABLE:\n runner_type = 'GridRunner'\n elif runner_type == 'Auto':\n runner_type = 'ParallelRunner'\n return locals().get(runner_type, globals().get(runner_type))(ns_path,\n script, optimized=optimized)\n", "role": "user" }, { "content": "create_runner", "role": "assistant" } ]
def x(self, param_list, show_progress=True): if self.runner is None: raise Exception( 'No runner was ever specified for this CampaignManager.') if param_list == []: return desired_params = self.db.get_params() for p in param_list: passed = list(p.keys()) available = ['RngRun'] + desired_params if set(passed) != set(available): raise ValueError( """Specified parameter combination does not match the supported parameters: Passed: %s Supported: %s""" % (sorted(passed), sorted(available))) if self.check_repo: self.check_repo_ok() self.runner.configure_and_build(skip_configuration=True) shuffle(param_list) results = self.runner.run_simulations(param_list, self.db.get_data_dir()) if show_progress: result_generator = tqdm(results, total=len(param_list), unit= 'simulation', desc='Running simulations') else: result_generator = results for result in result_generator: self.db.insert_result(result)
run_simulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, param_list, show_progress=True):\n if self.runner is None:\n raise Exception(\n 'No runner was ever specified for this CampaignManager.')\n if param_list == []:\n return\n desired_params = self.db.get_params()\n for p in param_list:\n passed = list(p.keys())\n available = ['RngRun'] + desired_params\n if set(passed) != set(available):\n raise ValueError(\n \"\"\"Specified parameter combination does not match the supported parameters:\nPassed: %s\nSupported: %s\"\"\"\n % (sorted(passed), sorted(available)))\n if self.check_repo:\n self.check_repo_ok()\n self.runner.configure_and_build(skip_configuration=True)\n shuffle(param_list)\n results = self.runner.run_simulations(param_list, self.db.get_data_dir())\n if show_progress:\n result_generator = tqdm(results, total=len(param_list), unit=\n 'simulation', desc='Running simulations')\n else:\n result_generator = results\n for result in result_generator:\n self.db.insert_result(result)\n", "role": "user" }, { "content": "run_simulations", "role": "assistant" } ]
def x(self, param_list, runs=None): params_to_simulate = [] if runs is not None: next_runs = self.db.get_next_rngruns() available_params = [r['params'] for r in self.db.get_results()] for param_comb in param_list: needed_runs = runs for i, p in enumerate(available_params): if param_comb == {k: p[k] for k in p.keys() if k != 'RngRun'}: needed_runs -= 1 new_param_combs = [] for needed_run in range(needed_runs): new_param = deepcopy(param_comb) new_param['RngRun'] = next(next_runs) new_param_combs += [new_param] params_to_simulate += new_param_combs else: for param_comb in param_list: if not self.db.get_results(param_comb): params_to_simulate += [param_comb] return params_to_simulate
get_missing_simulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, param_list, runs=None):\n params_to_simulate = []\n if runs is not None:\n next_runs = self.db.get_next_rngruns()\n available_params = [r['params'] for r in self.db.get_results()]\n for param_comb in param_list:\n needed_runs = runs\n for i, p in enumerate(available_params):\n if param_comb == {k: p[k] for k in p.keys() if k != 'RngRun'}:\n needed_runs -= 1\n new_param_combs = []\n for needed_run in range(needed_runs):\n new_param = deepcopy(param_comb)\n new_param['RngRun'] = next(next_runs)\n new_param_combs += [new_param]\n params_to_simulate += new_param_combs\n else:\n for param_comb in param_list:\n if not self.db.get_results(param_comb):\n params_to_simulate += [param_comb]\n return params_to_simulate\n", "role": "user" }, { "content": "get_missing_simulations", "role": "assistant" } ]
def x(self, param_list, runs=None): if isinstance(param_list, dict): param_list = list_param_combinations(param_list) self.run_simulations(self.get_missing_simulations(param_list, runs))
run_missing_simulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, param_list, runs=None):\n if isinstance(param_list, dict):\n param_list = list_param_combinations(param_list)\n self.run_simulations(self.get_missing_simulations(param_list, runs))\n", "role": "user" }, { "content": "run_missing_simulations", "role": "assistant" } ]
def x(self, parameter_space, result_parsing_function, runs): return np.array(self.get_space(self.db.get_complete_results(), {}, parameter_space, runs, result_parsing_function))
get_results_as_numpy_array
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, result_parsing_function, runs):\n return np.array(self.get_space(self.db.get_complete_results(), {},\n parameter_space, runs, result_parsing_function))\n", "role": "user" }, { "content": "get_results_as_numpy_array", "role": "assistant" } ]
def x(self, parameter_space, result_parsing_function, filename, runs): for key in parameter_space: if not isinstance(parameter_space[key], list): parameter_space[key] = [parameter_space[key]] dimension_labels = [{key: str(parameter_space[key])} for key in parameter_space.keys() if len(parameter_space[key]) > 1] + [{'runs': range(runs)}] return savemat(filename, {'results': self.get_results_as_numpy_array( parameter_space, result_parsing_function, runs=runs), 'dimension_labels': dimension_labels})
save_to_mat_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, result_parsing_function, filename, runs):\n for key in parameter_space:\n if not isinstance(parameter_space[key], list):\n parameter_space[key] = [parameter_space[key]]\n dimension_labels = [{key: str(parameter_space[key])} for key in\n parameter_space.keys() if len(parameter_space[key]) > 1] + [{'runs':\n range(runs)}]\n return savemat(filename, {'results': self.get_results_as_numpy_array(\n parameter_space, result_parsing_function, runs=runs),\n 'dimension_labels': dimension_labels})\n", "role": "user" }, { "content": "save_to_mat_file", "role": "assistant" } ]
def x(self, parameter_space, result_parsing_function, filename, runs): np.save(filename, self.get_results_as_numpy_array(parameter_space, result_parsing_function, runs=runs))
save_to_npy_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, result_parsing_function, filename, runs):\n np.save(filename, self.get_results_as_numpy_array(parameter_space,\n result_parsing_function, runs=runs))\n", "role": "user" }, { "content": "save_to_npy_file", "role": "assistant" } ]
def x(self, parameter_space, folder_name, runs): self.space_to_folders(self.db.get_results(), {}, parameter_space, runs, folder_name)
save_to_folders
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, folder_name, runs):\n self.space_to_folders(self.db.get_results(), {}, parameter_space, runs,\n folder_name)\n", "role": "user" }, { "content": "save_to_folders", "role": "assistant" } ]
def x(self, current_result_list, current_query, param_space, runs, current_directory): if not param_space: for run, r in enumerate(current_result_list[:runs]): files = self.db.get_result_files(r) new_dir = os.path.join(current_directory, 'run=%s' % run) os.makedirs(new_dir, exist_ok=True) for filename, filepath in files.items(): shutil.copyfile(filepath, os.path.join(new_dir, filename)) return [key, value] = list(param_space.items())[0] for v in value: next_query = deepcopy(current_query) temp_query = deepcopy(current_query) next_query[key] = v folder_name = ('%s=%s' % (key, v)).replace('/', '_') new_dir = os.path.join(current_directory, folder_name) os.makedirs(new_dir, exist_ok=True) next_param_space = deepcopy(param_space) del next_param_space[key] temp_query[key] = v temp_result_list = [r for r in current_result_list if self. satisfies_query(r, temp_query)] self.space_to_folders(temp_result_list, next_query, next_param_space, runs, new_dir)
space_to_folders
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, current_result_list, current_query, param_space, runs,\n current_directory):\n if not param_space:\n for run, r in enumerate(current_result_list[:runs]):\n files = self.db.get_result_files(r)\n new_dir = os.path.join(current_directory, 'run=%s' % run)\n os.makedirs(new_dir, exist_ok=True)\n for filename, filepath in files.items():\n shutil.copyfile(filepath, os.path.join(new_dir, filename))\n return\n [key, value] = list(param_space.items())[0]\n for v in value:\n next_query = deepcopy(current_query)\n temp_query = deepcopy(current_query)\n next_query[key] = v\n folder_name = ('%s=%s' % (key, v)).replace('/', '_')\n new_dir = os.path.join(current_directory, folder_name)\n os.makedirs(new_dir, exist_ok=True)\n next_param_space = deepcopy(param_space)\n del next_param_space[key]\n temp_query[key] = v\n temp_result_list = [r for r in current_result_list if self.\n satisfies_query(r, temp_query)]\n self.space_to_folders(temp_result_list, next_query,\n next_param_space, runs, new_dir)\n", "role": "user" }, { "content": "space_to_folders", "role": "assistant" } ]
def x(self, parameter_space, result_parsing_function, output_labels, runs): np_array = np.array(self.get_space(self.db.get_complete_results(), {}, collections.OrderedDict([(k, v) for k, v in parameter_space.items() ]), runs, result_parsing_function)) clean_parameter_space = collections.OrderedDict([(k, v) for k, v in parameter_space.items()]) clean_parameter_space['runs'] = range(runs) if isinstance(output_labels, list): clean_parameter_space['metrics'] = output_labels xr_array = xr.DataArray(np_array, coords=clean_parameter_space, dims= list(clean_parameter_space.keys())) return xr_array
get_results_as_xarray
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_space, result_parsing_function, output_labels, runs):\n np_array = np.array(self.get_space(self.db.get_complete_results(), {},\n collections.OrderedDict([(k, v) for k, v in parameter_space.items()\n ]), runs, result_parsing_function))\n clean_parameter_space = collections.OrderedDict([(k, v) for k, v in\n parameter_space.items()])\n clean_parameter_space['runs'] = range(runs)\n if isinstance(output_labels, list):\n clean_parameter_space['metrics'] = output_labels\n xr_array = xr.DataArray(np_array, coords=clean_parameter_space, dims=\n list(clean_parameter_space.keys()))\n return xr_array\n", "role": "user" }, { "content": "get_results_as_xarray", "role": "assistant" } ]
def x(self, current_result_list, current_query, param_space, runs, result_parsing_function): if result_parsing_function is None: result_parsing_function = CampaignManager.files_in_dictionary if not param_space: results = [r for r in current_result_list if self.satisfies_query(r, current_query)] parsed = [] for r in results[:runs]: parsed.append(result_parsing_function(r)) return parsed space = [] [key, value] = list(param_space.items())[0] for v in value: next_query = deepcopy(current_query) temp_query = deepcopy(current_query) next_query[key] = v next_param_space = deepcopy(param_space) del next_param_space[key] temp_query[key] = v temp_result_list = [r for r in current_result_list if self. satisfies_query(r, temp_query)] space.append(self.get_space(temp_result_list, next_query, next_param_space, runs, result_parsing_function)) return space
get_space
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, current_result_list, current_query, param_space, runs,\n result_parsing_function):\n if result_parsing_function is None:\n result_parsing_function = CampaignManager.files_in_dictionary\n if not param_space:\n results = [r for r in current_result_list if self.satisfies_query(r,\n current_query)]\n parsed = []\n for r in results[:runs]:\n parsed.append(result_parsing_function(r))\n return parsed\n space = []\n [key, value] = list(param_space.items())[0]\n for v in value:\n next_query = deepcopy(current_query)\n temp_query = deepcopy(current_query)\n next_query[key] = v\n next_param_space = deepcopy(param_space)\n del next_param_space[key]\n temp_query[key] = v\n temp_result_list = [r for r in current_result_list if self.\n satisfies_query(r, temp_query)]\n space.append(self.get_space(temp_result_list, next_query,\n next_param_space, runs, result_parsing_function))\n return space\n", "role": "user" }, { "content": "get_space", "role": "assistant" } ]
def x(self): from git import Repo, exc if self.runner is not None: path = self.runner.path try: repo = Repo(path) except exc.InvalidGitRepositoryError: raise Exception( """No git repository detected. In order to use SEM and its reproducibility enforcing features, please create a git repository at the root of your ns-3 project.""" ) current_commit = repo.head.commit.hexsha campaign_commit = self.db.get_commit() if repo.is_dirty(untracked_files=True): raise Exception('ns-3 repository is not clean') if current_commit != campaign_commit: raise Exception( 'ns-3 repository is on a different commit from the one specified in the campaign' )
check_repo_ok
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n from git import Repo, exc\n if self.runner is not None:\n path = self.runner.path\n try:\n repo = Repo(path)\n except exc.InvalidGitRepositoryError:\n raise Exception(\n \"\"\"No git repository detected.\nIn order to use SEM and its reproducibility enforcing features, please create a git repository at the root of your ns-3 project.\"\"\"\n )\n current_commit = repo.head.commit.hexsha\n campaign_commit = self.db.get_commit()\n if repo.is_dirty(untracked_files=True):\n raise Exception('ns-3 repository is not clean')\n if current_commit != campaign_commit:\n raise Exception(\n 'ns-3 repository is on a different commit from the one specified in the campaign'\n )\n", "role": "user" }, { "content": "check_repo_ok", "role": "assistant" } ]
def x(ns_3_path, results_dir, script, no_optimization, parameters, max_processes): sem.parallelrunner.MAX_PARALLEL_PROCESSES = max_processes campaign = sem.CampaignManager.new(ns_3_path, script, results_dir, overwrite=False, optimized=not no_optimization) click.echo(campaign) [params, defaults] = zip(*get_params_and_defaults(campaign.db. get_params(), campaign.db)) if not parameters: string_defaults = list() for idx, d in enumerate(defaults): if d is not None: string_defaults.append(str(d)) else: string_defaults.append(d) script_params = query_parameters(params, defaults=string_defaults) else: script_params = import_parameters_from_file(parameters) campaign.run_missing_simulations(script_params, runs=click.prompt( 'Total runs', type=int))
run
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ns_3_path, results_dir, script, no_optimization, parameters,\n max_processes):\n sem.parallelrunner.MAX_PARALLEL_PROCESSES = max_processes\n campaign = sem.CampaignManager.new(ns_3_path, script, results_dir,\n overwrite=False, optimized=not no_optimization)\n click.echo(campaign)\n [params, defaults] = zip(*get_params_and_defaults(campaign.db.\n get_params(), campaign.db))\n if not parameters:\n string_defaults = list()\n for idx, d in enumerate(defaults):\n if d is not None:\n string_defaults.append(str(d))\n else:\n string_defaults.append(d)\n script_params = query_parameters(params, defaults=string_defaults)\n else:\n script_params = import_parameters_from_file(parameters)\n campaign.run_missing_simulations(script_params, runs=click.prompt(\n 'Total runs', type=int))\n", "role": "user" }, { "content": "run", "role": "assistant" } ]
def x(results_dir, result_id, hide_simulation_output, parameters, no_pager): campaign = sem.CampaignManager.load(results_dir) if hide_simulation_output: get_results_function = campaign.db.get_results else: get_results_function = campaign.db.get_complete_results if result_id: output = '\n\n\n'.join([pprint.pformat(item) for item in get_results_function(result_id=result_id)]) else: [params, defaults] = zip(*get_params_and_defaults(campaign.db. get_params(), campaign.db)) if not parameters: string_defaults = list() for idx, d in enumerate(defaults): string_defaults.append(str(d)) script_params = query_parameters(params, string_defaults) else: script_params = import_parameters_from_file(parameters) output = '\n\n\n'.join([pprint.pformat(item) for item in get_results_function(script_params)]) if no_pager: click.echo(output) else: click.echo_via_pager(output)
view
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results_dir, result_id, hide_simulation_output, parameters, no_pager):\n campaign = sem.CampaignManager.load(results_dir)\n if hide_simulation_output:\n get_results_function = campaign.db.get_results\n else:\n get_results_function = campaign.db.get_complete_results\n if result_id:\n output = '\\n\\n\\n'.join([pprint.pformat(item) for item in\n get_results_function(result_id=result_id)])\n else:\n [params, defaults] = zip(*get_params_and_defaults(campaign.db.\n get_params(), campaign.db))\n if not parameters:\n string_defaults = list()\n for idx, d in enumerate(defaults):\n string_defaults.append(str(d))\n script_params = query_parameters(params, string_defaults)\n else:\n script_params = import_parameters_from_file(parameters)\n output = '\\n\\n\\n'.join([pprint.pformat(item) for item in\n get_results_function(script_params)])\n if no_pager:\n click.echo(output)\n else:\n click.echo_via_pager(output)\n", "role": "user" }, { "content": "view", "role": "assistant" } ]
def x(results_dir, result_id): campaign = sem.CampaignManager.load(results_dir) result = campaign.db.get_results(result_id=result_id)[0] click.echo('Simulation command:') click.echo(sem.utils.get_command_from_result(campaign.db.get_script(), result)) click.echo('Debug command:') click.echo(sem.utils.get_command_from_result(campaign.db.get_script(), result, debug=True))
command
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results_dir, result_id):\n campaign = sem.CampaignManager.load(results_dir)\n result = campaign.db.get_results(result_id=result_id)[0]\n click.echo('Simulation command:')\n click.echo(sem.utils.get_command_from_result(campaign.db.get_script(),\n result))\n click.echo('Debug command:')\n click.echo(sem.utils.get_command_from_result(campaign.db.get_script(),\n result, debug=True))\n", "role": "user" }, { "content": "command", "role": "assistant" } ]
def x(results_dir, filename, do_not_try_parsing, parameters): _, extension = os.path.splitext(filename) campaign = sem.CampaignManager.load(results_dir) [params, defaults] = zip(*get_params_and_defaults(campaign.db. get_params(), campaign.db)) if do_not_try_parsing: parsing_function = None else: parsing_function = sem.utils.automatic_parser if not parameters: string_defaults = list() for idx, d in enumerate(defaults): string_defaults.append(str(d)) parameter_query = query_parameters(params, string_defaults) else: parameter_query = import_parameters_from_file(parameters) if extension == '.mat': campaign.save_to_mat_file(parameter_query, parsing_function, filename, runs=click.prompt('Runs', type=int)) elif extension == '.npy': campaign.save_to_npy_file(parameter_query, parsing_function, filename, runs=click.prompt('Runs', type=int)) elif extension == '': campaign.save_to_folders(parameter_query, filename, runs=click. prompt('Runs', type=int)) else: raise ValueError('Format not recognized')
export
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(results_dir, filename, do_not_try_parsing, parameters):\n _, extension = os.path.splitext(filename)\n campaign = sem.CampaignManager.load(results_dir)\n [params, defaults] = zip(*get_params_and_defaults(campaign.db.\n get_params(), campaign.db))\n if do_not_try_parsing:\n parsing_function = None\n else:\n parsing_function = sem.utils.automatic_parser\n if not parameters:\n string_defaults = list()\n for idx, d in enumerate(defaults):\n string_defaults.append(str(d))\n parameter_query = query_parameters(params, string_defaults)\n else:\n parameter_query = import_parameters_from_file(parameters)\n if extension == '.mat':\n campaign.save_to_mat_file(parameter_query, parsing_function,\n filename, runs=click.prompt('Runs', type=int))\n elif extension == '.npy':\n campaign.save_to_npy_file(parameter_query, parsing_function,\n filename, runs=click.prompt('Runs', type=int))\n elif extension == '':\n campaign.save_to_folders(parameter_query, filename, runs=click.\n prompt('Runs', type=int))\n else:\n raise ValueError('Format not recognized')\n", "role": "user" }, { "content": "export", "role": "assistant" } ]
def x(move, output_dir, sources): jsons = [] for s in sources: filename = '%s.json' % os.path.split(s)[1] jsons += [os.path.join(s, filename)] reference_config = TinyDB(jsons[0]).table('config') for j in jsons[1:]: for i, j in zip(reference_config.all(), TinyDB(j).table('config').all() ): assert i == j filename = '%s.json' % os.path.split(output_dir)[1] output_json = os.path.join(output_dir, filename) output_data = os.path.join(output_dir, 'data') os.makedirs(output_data) db = TinyDB(output_json) db.table('config').insert_multiple(reference_config.all()) for s in sources: filename = '%s.json' % os.path.split(s)[1] current_db = TinyDB(os.path.join(s, filename)) db.table('results').insert_multiple(current_db.table('results').all()) for s in sources: for r in glob.glob(os.path.join(s, 'data/*')): basename = os.path.basename(r) if move: shutil.move(r, os.path.join(output_data, basename)) else: shutil.copytree(r, os.path.join(output_data, basename)) if move: for s in sources: shutil.rmtree(os.path.join(s, 'data/*')) shutil.rmtree(os.path.join(s, '%s.json' % os.path.split(s)[1])) shutil.rmtree(s)
merge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(move, output_dir, sources):\n jsons = []\n for s in sources:\n filename = '%s.json' % os.path.split(s)[1]\n jsons += [os.path.join(s, filename)]\n reference_config = TinyDB(jsons[0]).table('config')\n for j in jsons[1:]:\n for i, j in zip(reference_config.all(), TinyDB(j).table('config').all()\n ):\n assert i == j\n filename = '%s.json' % os.path.split(output_dir)[1]\n output_json = os.path.join(output_dir, filename)\n output_data = os.path.join(output_dir, 'data')\n os.makedirs(output_data)\n db = TinyDB(output_json)\n db.table('config').insert_multiple(reference_config.all())\n for s in sources:\n filename = '%s.json' % os.path.split(s)[1]\n current_db = TinyDB(os.path.join(s, filename))\n db.table('results').insert_multiple(current_db.table('results').all())\n for s in sources:\n for r in glob.glob(os.path.join(s, 'data/*')):\n basename = os.path.basename(r)\n if move:\n shutil.move(r, os.path.join(output_data, basename))\n else:\n shutil.copytree(r, os.path.join(output_data, basename))\n if move:\n for s in sources:\n shutil.rmtree(os.path.join(s, 'data/*'))\n shutil.rmtree(os.path.join(s, '%s.json' % os.path.split(s)[1]))\n shutil.rmtree(s)\n", "role": "user" }, { "content": "merge", "role": "assistant" } ]
def x(param_list, db): return [[p, d] for p, d in db.get_all_values_of_all_params().items()]
get_params_and_defaults
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(param_list, db):\n return [[p, d] for p, d in db.get_all_values_of_all_params().items()]\n", "role": "user" }, { "content": "get_params_and_defaults", "role": "assistant" } ]
def x(param_list, defaults=None): script_params = collections.OrderedDict([k, []] for k in param_list) for param, default in zip(list(script_params.keys()), defaults): user_input = click.prompt('%s' % param, default=default) script_params[param] = ast.literal_eval(user_input) return script_params
query_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(param_list, defaults=None):\n script_params = collections.OrderedDict([k, []] for k in param_list)\n for param, default in zip(list(script_params.keys()), defaults):\n user_input = click.prompt('%s' % param, default=default)\n script_params[param] = ast.literal_eval(user_input)\n return script_params\n", "role": "user" }, { "content": "query_parameters", "role": "assistant" } ]
def x(parameters_file): params = {} with open(parameters_file, 'r') as f: matches = re.findall('(.*): (.*)', f.read()) for m in matches: params[m[0]] = ast.literal_eval(m[1]) return params
import_parameters_from_file
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(parameters_file):\n params = {}\n with open(parameters_file, 'r') as f:\n matches = re.findall('(.*): (.*)', f.read())\n for m in matches:\n params[m[0]] = ast.literal_eval(m[1])\n return params\n", "role": "user" }, { "content": "import_parameters_from_file", "role": "assistant" } ]
def x(self, parameter_list, data_folder): self.data_folder = data_folder with Pool(processes=MAX_PARALLEL_PROCESSES) as pool: for result in pool.imap_unordered(self.launch_simulation, parameter_list): yield result
run_simulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_list, data_folder):\n self.data_folder = data_folder\n with Pool(processes=MAX_PARALLEL_PROCESSES) as pool:\n for result in pool.imap_unordered(self.launch_simulation,\n parameter_list):\n yield result\n", "role": "user" }, { "content": "run_simulations", "role": "assistant" } ]
def x(self, parameter): return next(SimulationRunner.run_simulations(self, [parameter], self. data_folder))
launch_simulation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter):\n return next(SimulationRunner.run_simulations(self, [parameter], self.\n data_folder))\n", "role": "user" }, { "content": "launch_simulation", "role": "assistant" } ]
def x(self, obj, beautify=False, raise_exception=False): return self.helper.string.serialization.json.stringify(obj=obj, beautify=beautify, raise_exception=raise_exception)
stringify
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj, beautify=False, raise_exception=False):\n return self.helper.string.serialization.json.stringify(obj=obj,\n beautify=beautify, raise_exception=raise_exception)\n", "role": "user" }, { "content": "stringify", "role": "assistant" } ]
def x(self, text, encoding='utf8', raise_exception=False): return self.helper.string.serialization.json.parse(text=text, encoding= encoding, raise_exception=raise_exception)
parse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, encoding='utf8', raise_exception=False):\n return self.helper.string.serialization.json.parse(text=text, encoding=\n encoding, raise_exception=raise_exception)\n", "role": "user" }, { "content": "parse", "role": "assistant" } ]
def x(cls, script, commit, params, campaign_dir, overwrite=False): if not Path(campaign_dir).is_absolute(): raise ValueError('Path is not absolute') if Path(campaign_dir).exists() and not overwrite: raise FileExistsError('The specified directory already exists') elif Path(campaign_dir).exists() and overwrite: campaign_dir_name = os.path.basename(campaign_dir) folder_contents = set(os.listdir(campaign_dir)) allowed_files = set(['data', '%s.json' % campaign_dir_name] + [os. path.basename(os.path.normpath(f)) for f in glob.glob(os.path. join(campaign_dir, '.*'))]) if not folder_contents.issubset(allowed_files): raise ValueError( 'The specified directory cannot be overwritten because it contains user files.' ) shutil.rmtree(campaign_dir) os.makedirs(campaign_dir) tinydb = TinyDB(os.path.join(campaign_dir, '%s.json' % os.path.basename (campaign_dir))) config = {'script': script, 'commit': commit, 'params': sorted(params)} tinydb.table('config').insert(config) return cls(tinydb, campaign_dir)
new
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, script, commit, params, campaign_dir, overwrite=False):\n if not Path(campaign_dir).is_absolute():\n raise ValueError('Path is not absolute')\n if Path(campaign_dir).exists() and not overwrite:\n raise FileExistsError('The specified directory already exists')\n elif Path(campaign_dir).exists() and overwrite:\n campaign_dir_name = os.path.basename(campaign_dir)\n folder_contents = set(os.listdir(campaign_dir))\n allowed_files = set(['data', '%s.json' % campaign_dir_name] + [os.\n path.basename(os.path.normpath(f)) for f in glob.glob(os.path.\n join(campaign_dir, '.*'))])\n if not folder_contents.issubset(allowed_files):\n raise ValueError(\n 'The specified directory cannot be overwritten because it contains user files.'\n )\n shutil.rmtree(campaign_dir)\n os.makedirs(campaign_dir)\n tinydb = TinyDB(os.path.join(campaign_dir, '%s.json' % os.path.basename\n (campaign_dir)))\n config = {'script': script, 'commit': commit, 'params': sorted(params)}\n tinydb.table('config').insert(config)\n return cls(tinydb, campaign_dir)\n", "role": "user" }, { "content": "new", "role": "assistant" } ]
def x(cls, campaign_dir): if not Path(campaign_dir).is_absolute(): raise ValueError('Path is not absolute') if not Path(campaign_dir).exists(): raise ValueError('Directory does not exist') filename = '%s.json' % os.path.split(campaign_dir)[1] filepath = os.path.join(campaign_dir, filename) try: tinydb = TinyDB(filepath) assert set(tinydb.table('config').all()[0].keys()) == set(['script', 'params', 'commit']) except: os.remove(filepath) raise ValueError('Specified campaign directory seems corrupt') return cls(tinydb, campaign_dir)
load
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cls, campaign_dir):\n if not Path(campaign_dir).is_absolute():\n raise ValueError('Path is not absolute')\n if not Path(campaign_dir).exists():\n raise ValueError('Directory does not exist')\n filename = '%s.json' % os.path.split(campaign_dir)[1]\n filepath = os.path.join(campaign_dir, filename)\n try:\n tinydb = TinyDB(filepath)\n assert set(tinydb.table('config').all()[0].keys()) == set(['script',\n 'params', 'commit'])\n except:\n os.remove(filepath)\n raise ValueError('Specified campaign directory seems corrupt')\n return cls(tinydb, campaign_dir)\n", "role": "user" }, { "content": "load", "role": "assistant" } ]
def x(self): available_runs = [result['params']['RngRun'] for result in self. get_results()] yield from DatabaseManager.get_next_values(available_runs)
get_next_rngruns
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n available_runs = [result['params']['RngRun'] for result in self.\n get_results()]\n yield from DatabaseManager.get_next_values(available_runs)\n", "role": "user" }, { "content": "get_next_rngruns", "role": "assistant" } ]
def x(self, result): example_result = {'params': {k: ['...'] for k in self.get_params() + [ 'RngRun']}, 'meta': {k: ['...'] for k in ['elapsed_time', 'id']}} if not DatabaseManager.have_same_structure(result, example_result): raise ValueError('%s:\nExpected: %s\nGot: %s' % ( 'Result dictionary does not correspond to database format', pformat(example_result, depth=1), pformat(result, depth=1))) self.db.table('results').insert(result)
insert_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, result):\n example_result = {'params': {k: ['...'] for k in self.get_params() + [\n 'RngRun']}, 'meta': {k: ['...'] for k in ['elapsed_time', 'id']}}\n if not DatabaseManager.have_same_structure(result, example_result):\n raise ValueError('%s:\\nExpected: %s\\nGot: %s' % (\n 'Result dictionary does not correspond to database format',\n pformat(example_result, depth=1), pformat(result, depth=1)))\n self.db.table('results').insert(result)\n", "role": "user" }, { "content": "insert_result", "role": "assistant" } ]
def x(self, params=None, result_id=None): if result_id is not None: return [dict(i) for i in self.db.table('results').all() if i['meta' ]['id'] == result_id] if params is None: return [dict(i) for i in self.db.table('results').all()] all_params = set(['RngRun'] + self.get_params()) param_subset = set(params.keys()) if not all_params.issuperset(param_subset): raise ValueError('%s:\nParameters: %s\nQuery: %s' % ( 'Specified parameter keys do not match database format', all_params, param_subset)) query_params = {} for key in params: if not isinstance(params[key], list): query_params[key] = [params[key]] else: query_params[key] = params[key] if not query_params.keys(): return [dict(i) for i in self.db.table('results').all()] query = reduce(and_, [reduce(or_, [(where('params')[key] == v) for v in value]) for key, value in query_params.items()]) return [dict(i) for i in self.db.table('results').search(query)]
get_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None, result_id=None):\n if result_id is not None:\n return [dict(i) for i in self.db.table('results').all() if i['meta'\n ]['id'] == result_id]\n if params is None:\n return [dict(i) for i in self.db.table('results').all()]\n all_params = set(['RngRun'] + self.get_params())\n param_subset = set(params.keys())\n if not all_params.issuperset(param_subset):\n raise ValueError('%s:\\nParameters: %s\\nQuery: %s' % (\n 'Specified parameter keys do not match database format',\n all_params, param_subset))\n query_params = {}\n for key in params:\n if not isinstance(params[key], list):\n query_params[key] = [params[key]]\n else:\n query_params[key] = params[key]\n if not query_params.keys():\n return [dict(i) for i in self.db.table('results').all()]\n query = reduce(and_, [reduce(or_, [(where('params')[key] == v) for v in\n value]) for key, value in query_params.items()])\n return [dict(i) for i in self.db.table('results').search(query)]\n", "role": "user" }, { "content": "get_results", "role": "assistant" } ]
def x(self, result): if isinstance(result, dict): result_id = result['meta']['id'] else: result_id = result result_data_dir = os.path.join(self.get_data_dir(), result_id) filenames = next(os.walk(result_data_dir))[2] filename_path_pairs = [(f, os.path.join(self.get_data_dir(), result_id, f)) for f in filenames] return {k: v for k, v in filename_path_pairs}
get_result_files
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, result):\n if isinstance(result, dict):\n result_id = result['meta']['id']\n else:\n result_id = result\n result_data_dir = os.path.join(self.get_data_dir(), result_id)\n filenames = next(os.walk(result_data_dir))[2]\n filename_path_pairs = [(f, os.path.join(self.get_data_dir(), result_id,\n f)) for f in filenames]\n return {k: v for k, v in filename_path_pairs}\n", "role": "user" }, { "content": "get_result_files", "role": "assistant" } ]
def x(self, params=None, result_id=None): if result_id is not None: results = deepcopy(self.get_results(result_id=result_id)) else: results = deepcopy(self.get_results(params)) for r in results: r['output'] = {} available_files = self.get_result_files(r['meta']['id']) for name, filepath in available_files.items(): with open(filepath, 'r') as file_contents: r['output'][name] = file_contents.read() return results
get_complete_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, params=None, result_id=None):\n if result_id is not None:\n results = deepcopy(self.get_results(result_id=result_id))\n else:\n results = deepcopy(self.get_results(params))\n for r in results:\n r['output'] = {}\n available_files = self.get_result_files(r['meta']['id'])\n for name, filepath in available_files.items():\n with open(filepath, 'r') as file_contents:\n r['output'][name] = file_contents.read()\n return results\n", "role": "user" }, { "content": "get_complete_results", "role": "assistant" } ]
def x(self): self.db.purge_table('results') map(shutil.rmtree, glob.glob(os.path.join(self.get_data_dir(), '*.*')))
wipe_results
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n self.db.purge_table('results')\n map(shutil.rmtree, glob.glob(os.path.join(self.get_data_dir(), '*.*')))\n", "role": "user" }, { "content": "wipe_results", "role": "assistant" } ]
def x(d1, d2): if set(d1.keys()) != set(d2.keys()): return False for k1, k2 in zip(sorted(d1.keys()), sorted(d2.keys())): if isinstance(d1[k1], dict) != isinstance(d2[k2], dict): return False elif isinstance(d1[k1], dict) and isinstance(d2[k2], dict): if not DatabaseManager.have_same_structure(d1[k1], d2[k2]): return False return True
have_same_structure
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(d1, d2):\n if set(d1.keys()) != set(d2.keys()):\n return False\n for k1, k2 in zip(sorted(d1.keys()), sorted(d2.keys())):\n if isinstance(d1[k1], dict) != isinstance(d2[k2], dict):\n return False\n elif isinstance(d1[k1], dict) and isinstance(d2[k2], dict):\n if not DatabaseManager.have_same_structure(d1[k1], d2[k2]):\n return False\n return True\n", "role": "user" }, { "content": "have_same_structure", "role": "assistant" } ]
def x(self): values = collections.OrderedDict([[p, []] for p in sorted(self. get_params())]) for result in self.get_results(): for param in self.get_params(): values[param] += [result['params'][param]] sorted_values = collections.OrderedDict([[k, sorted(list(set(values[k]) ))] for k in values.keys()]) for k in sorted_values.keys(): if sorted_values[k] == []: sorted_values[k] = None return sorted_values
get_all_values_of_all_params
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n values = collections.OrderedDict([[p, []] for p in sorted(self.\n get_params())])\n for result in self.get_results():\n for param in self.get_params():\n values[param] += [result['params'][param]]\n sorted_values = collections.OrderedDict([[k, sorted(list(set(values[k])\n ))] for k in values.keys()])\n for k in sorted_values.keys():\n if sorted_values[k] == []:\n sorted_values[k] = None\n return sorted_values\n", "role": "user" }, { "content": "get_all_values_of_all_params", "role": "assistant" } ]
def x(self, obj, method='json', beautify=False, raise_exception=False): return self.helper.string.serialization.serialize(obj=obj, method= method, beautify=beautify, raise_exception=raise_exception)
serialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, obj, method='json', beautify=False, raise_exception=False):\n return self.helper.string.serialization.serialize(obj=obj, method=\n method, beautify=beautify, raise_exception=raise_exception)\n", "role": "user" }, { "content": "serialize", "role": "assistant" } ]
def x(self, text, method='json', encoding='utf8', raise_exception=False): return self.helper.string.serialization.deserialize(text, method=method, encoding=encoding, raise_exception=raise_exception)
deserialize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, text, method='json', encoding='utf8', raise_exception=False):\n return self.helper.string.serialization.deserialize(text, method=method,\n encoding=encoding, raise_exception=raise_exception)\n", "role": "user" }, { "content": "deserialize", "role": "assistant" } ]
def x(self, parameter_list, data_folder): s = drmaa.Session() s.initialize() jobs = {} for parameter in parameter_list: current_result = {'params': {}, 'meta': {}} current_result['params'].update(parameter) command = ' '.join([self.script_executable] + [('--%s=%s' % (param, value)) for param, value in parameter.items()]) current_result['meta']['id'] = str(uuid.uuid4()) temp_dir = os.path.join(data_folder, current_result['meta']['id']) if not os.path.exists(temp_dir): os.makedirs(temp_dir) jt = s.createJobTemplate() jt.remoteCommand = os.path.dirname(os.path.abspath(__file__) ) + '/run_program.sh' jt.args = [command] jt.jobEnvironment = self.environment jt.workingDirectory = temp_dir jt.nativeSpecification = SIMULATION_GRID_PARAMS output_filename = os.path.join(temp_dir, 'stdout') error_filename = os.path.join(temp_dir, 'stderr') jt.outputPath = ':' + output_filename jt.errorPath = ':' + error_filename jobid = s.runJob(jt) jobs[jobid] = {'template': jt, 'result': current_result, 'output': output_filename, 'error': error_filename} try: while len(jobs): found_done = False for curjob in jobs.keys(): try: status = s.jobStatus(curjob) except drmaa.errors.DrmCommunicationException: pass if status is drmaa.JobState.DONE: current_result = jobs[curjob]['result'] current_result['meta']['elapsed_time'] = 0 try: s.deleteJobTemplate(jobs[curjob]['template']) except drmaa.errors.DrmCommunicationException: pass del jobs[curjob] found_done = True yield current_result break if not found_done: time.sleep(6) finally: try: for v in jobs.values(): s.deleteJobTemplate(v['template']) s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction. TERMINATE) s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True) s.exit() except drmaa.errors.NoActiveSessionException: pass
run_simulations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, parameter_list, data_folder):\n s = drmaa.Session()\n s.initialize()\n jobs = {}\n for parameter in parameter_list:\n current_result = {'params': {}, 'meta': {}}\n current_result['params'].update(parameter)\n command = ' '.join([self.script_executable] + [('--%s=%s' % (param,\n value)) for param, value in parameter.items()])\n current_result['meta']['id'] = str(uuid.uuid4())\n temp_dir = os.path.join(data_folder, current_result['meta']['id'])\n if not os.path.exists(temp_dir):\n os.makedirs(temp_dir)\n jt = s.createJobTemplate()\n jt.remoteCommand = os.path.dirname(os.path.abspath(__file__)\n ) + '/run_program.sh'\n jt.args = [command]\n jt.jobEnvironment = self.environment\n jt.workingDirectory = temp_dir\n jt.nativeSpecification = SIMULATION_GRID_PARAMS\n output_filename = os.path.join(temp_dir, 'stdout')\n error_filename = os.path.join(temp_dir, 'stderr')\n jt.outputPath = ':' + output_filename\n jt.errorPath = ':' + error_filename\n jobid = s.runJob(jt)\n jobs[jobid] = {'template': jt, 'result': current_result, 'output':\n output_filename, 'error': error_filename}\n try:\n while len(jobs):\n found_done = False\n for curjob in jobs.keys():\n try:\n status = s.jobStatus(curjob)\n except drmaa.errors.DrmCommunicationException:\n pass\n if status is drmaa.JobState.DONE:\n current_result = jobs[curjob]['result']\n current_result['meta']['elapsed_time'] = 0\n try:\n s.deleteJobTemplate(jobs[curjob]['template'])\n except drmaa.errors.DrmCommunicationException:\n pass\n del jobs[curjob]\n found_done = True\n yield current_result\n break\n if not found_done:\n time.sleep(6)\n finally:\n try:\n for v in jobs.values():\n s.deleteJobTemplate(v['template'])\n s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.\n TERMINATE)\n s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True)\n s.exit()\n except drmaa.errors.NoActiveSessionException:\n pass\n", "role": "user" }, { "content": "run_simulations", "role": "assistant" } ]
def x(self): stdout = self.run_program('%s %s' % (self.script_executable, '--PrintHelp'), environment=self.environment, native_spec= BUILD_GRID_PARAMS) options = re.findall( '.*Program\\s(?:Arguments|Options):(.*)General\\sArguments.*', stdout, re.DOTALL) if len(options): args = re.findall('.*--(.*?):.*', options[0], re.MULTILINE) return args else: return []
get_available_parameters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n stdout = self.run_program('%s %s' % (self.script_executable,\n '--PrintHelp'), environment=self.environment, native_spec=\n BUILD_GRID_PARAMS)\n options = re.findall(\n '.*Program\\\\s(?:Arguments|Options):(.*)General\\\\sArguments.*',\n stdout, re.DOTALL)\n if len(options):\n args = re.findall('.*--(.*?):.*', options[0], re.MULTILINE)\n return args\n else:\n return []\n", "role": "user" }, { "content": "get_available_parameters", "role": "assistant" } ]
def x(self, command, working_directory=os.getcwd(), environment=None, cleanup_files=True, native_spec='-l cputype=intel'): try: s = drmaa.Session() s.initialize() jt = s.createJobTemplate() jt.remoteCommand = os.path.dirname(os.path.abspath(__file__) ) + '/run_program.sh' jt.args = [command] if environment is not None: jt.jobEnvironment = environment jt.workingDirectory = working_directory jt.nativeSpecification = native_spec output_filename = os.path.join(working_directory, 'output.txt') jt.outputPath = ':' + output_filename jt.joinFiles = True jobid = s.runJob(jt) s.wait(jobid, drmaa.Session.TIMEOUT_WAIT_FOREVER) with open(output_filename, 'r') as output: stdout = output.read() if cleanup_files: os.remove(output_filename) finally: try: s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction. TERMINATE) s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True) s.exit() except drmaa.errors.NoActiveSessionException: pass return stdout
run_program
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, command, working_directory=os.getcwd(), environment=None,\n cleanup_files=True, native_spec='-l cputype=intel'):\n try:\n s = drmaa.Session()\n s.initialize()\n jt = s.createJobTemplate()\n jt.remoteCommand = os.path.dirname(os.path.abspath(__file__)\n ) + '/run_program.sh'\n jt.args = [command]\n if environment is not None:\n jt.jobEnvironment = environment\n jt.workingDirectory = working_directory\n jt.nativeSpecification = native_spec\n output_filename = os.path.join(working_directory, 'output.txt')\n jt.outputPath = ':' + output_filename\n jt.joinFiles = True\n jobid = s.runJob(jt)\n s.wait(jobid, drmaa.Session.TIMEOUT_WAIT_FOREVER)\n with open(output_filename, 'r') as output:\n stdout = output.read()\n if cleanup_files:\n os.remove(output_filename)\n finally:\n try:\n s.control(drmaa.JOB_IDS_SESSION_ALL, drmaa.JobControlAction.\n TERMINATE)\n s.synchronize([drmaa.JOB_IDS_SESSION_ALL], dispose=True)\n s.exit()\n except drmaa.errors.NoActiveSessionException:\n pass\n return stdout\n", "role": "user" }, { "content": "run_program", "role": "assistant" } ]
def x(labels, mask=None, size_fn=None): labels_type = labels.dtype background = labels == 0 if mask is not None: background &= mask blabels, count = scind.label(background, four_connect) labels = labels.copy().astype(int) lcount = np.max(labels) labels[blabels != 0] = blabels[blabels != 0] + lcount + 1 lmax = lcount + count + 1 is_not_hole = np.ascontiguousarray(np.zeros(lmax + 1, np.uint8)) to_do = np.unique(np.hstack((labels[0, :], labels[:, 0], labels[-1, :], labels[:, -1]))) to_do = to_do[to_do != 0] is_not_hole[to_do] = True to_do = list(to_do) adjacent_non_hole = np.ascontiguousarray(np.zeros(lmax + 1), np.uint32) i = np.hstack([labels[:-1, :].flatten(), labels[:, :-1].flatten()]) j = np.hstack([labels[1:, :].flatten(), labels[:, 1:].flatten()]) i, j = i[i != j], j[i != j] if len(i) > 0: order = np.lexsort((j, i)) i = i[order] j = j[order] first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])]) i, j = np.hstack((i[first], j[first])), np.hstack((j[first], i[first])) order = np.lexsort((j, i)) i = i[order] j = j[order] first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])]) i, j = i[first], j[first] i_count = np.bincount(i) if len(i_count) < lmax + 1: i_count = np.hstack((i_count, np.zeros(lmax + 1 - len(i_count), int))) indexer = Indexes([i_count]) if size_fn is not None: areas = np.bincount(labels.flatten()) for ii, area in enumerate(areas): if ii > 0 and area > 0 and not is_not_hole[ii] and not size_fn( area, ii <= lcount): is_not_hole[ii] = True to_do.append(ii) to_do_count = len(to_do) if len(to_do) < len(is_not_hole): to_do += [0] * (len(is_not_hole) - len(to_do)) to_do = np.ascontiguousarray(np.array(to_do), np.uint32) fill_labeled_holes_loop(np.ascontiguousarray(i, np.uint32), np. ascontiguousarray(j, np.uint32), np.ascontiguousarray(indexer. fwd_idx, np.uint32), np.ascontiguousarray(i_count, np.uint32), is_not_hole, adjacent_non_hole, to_do, lcount, to_do_count) new_indexes = np.arange(len(is_not_hole)).astype(np.uint32) new_indexes[lcount + 1:] = 0 is_not_hole = is_not_hole.astype(bool) new_indexes[~is_not_hole] = adjacent_non_hole[~is_not_hole] if mask is not None: labels[mask] = new_indexes[labels[mask]] else: labels = new_indexes[labels] return labels.astype(labels_type)
fill_labeled_holes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, mask=None, size_fn=None):\n labels_type = labels.dtype\n background = labels == 0\n if mask is not None:\n background &= mask\n blabels, count = scind.label(background, four_connect)\n labels = labels.copy().astype(int)\n lcount = np.max(labels)\n labels[blabels != 0] = blabels[blabels != 0] + lcount + 1\n lmax = lcount + count + 1\n is_not_hole = np.ascontiguousarray(np.zeros(lmax + 1, np.uint8))\n to_do = np.unique(np.hstack((labels[0, :], labels[:, 0], labels[-1, :],\n labels[:, -1])))\n to_do = to_do[to_do != 0]\n is_not_hole[to_do] = True\n to_do = list(to_do)\n adjacent_non_hole = np.ascontiguousarray(np.zeros(lmax + 1), np.uint32)\n i = np.hstack([labels[:-1, :].flatten(), labels[:, :-1].flatten()])\n j = np.hstack([labels[1:, :].flatten(), labels[:, 1:].flatten()])\n i, j = i[i != j], j[i != j]\n if len(i) > 0:\n order = np.lexsort((j, i))\n i = i[order]\n j = j[order]\n first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])])\n i, j = np.hstack((i[first], j[first])), np.hstack((j[first], i[first]))\n order = np.lexsort((j, i))\n i = i[order]\n j = j[order]\n first = np.hstack([[True], (i[:-1] != i[1:]) | (j[:-1] != j[1:])])\n i, j = i[first], j[first]\n i_count = np.bincount(i)\n if len(i_count) < lmax + 1:\n i_count = np.hstack((i_count, np.zeros(lmax + 1 - len(i_count),\n int)))\n indexer = Indexes([i_count])\n if size_fn is not None:\n areas = np.bincount(labels.flatten())\n for ii, area in enumerate(areas):\n if ii > 0 and area > 0 and not is_not_hole[ii] and not size_fn(\n area, ii <= lcount):\n is_not_hole[ii] = True\n to_do.append(ii)\n to_do_count = len(to_do)\n if len(to_do) < len(is_not_hole):\n to_do += [0] * (len(is_not_hole) - len(to_do))\n to_do = np.ascontiguousarray(np.array(to_do), np.uint32)\n fill_labeled_holes_loop(np.ascontiguousarray(i, np.uint32), np.\n ascontiguousarray(j, np.uint32), np.ascontiguousarray(indexer.\n fwd_idx, np.uint32), np.ascontiguousarray(i_count, np.uint32),\n is_not_hole, adjacent_non_hole, to_do, lcount, to_do_count)\n new_indexes = np.arange(len(is_not_hole)).astype(np.uint32)\n new_indexes[lcount + 1:] = 0\n is_not_hole = is_not_hole.astype(bool)\n new_indexes[~is_not_hole] = adjacent_non_hole[~is_not_hole]\n if mask is not None:\n labels[mask] = new_indexes[labels[mask]]\n else:\n labels = new_indexes[labels]\n return labels.astype(labels_type)\n", "role": "user" }, { "content": "fill_labeled_holes", "role": "assistant" } ]
def x(labels): high = labels.max() + 1 if high > np.iinfo(labels.dtype).max: labels = labels.astype(np.int) image_with_high_background = labels.copy() image_with_high_background[labels == 0] = high min_label = scind.minimum_filter(image_with_high_background, footprint= np.ones((3, 3), bool), mode='constant', cval=high) max_label = scind.maximum_filter(labels, footprint=np.ones((3, 3), bool ), mode='constant', cval=0) return (min_label != max_label) & (labels > 0)
adjacent
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n high = labels.max() + 1\n if high > np.iinfo(labels.dtype).max:\n labels = labels.astype(np.int)\n image_with_high_background = labels.copy()\n image_with_high_background[labels == 0] = high\n min_label = scind.minimum_filter(image_with_high_background, footprint=\n np.ones((3, 3), bool), mode='constant', cval=high)\n max_label = scind.maximum_filter(labels, footprint=np.ones((3, 3), bool\n ), mode='constant', cval=0)\n return (min_label != max_label) & (labels > 0)\n", "role": "user" }, { "content": "adjacent", "role": "assistant" } ]
def x(image, strel1, strel2): hit_or_miss = scind.binary_hit_or_miss(image, strel1, strel2) return np.logical_and(image, np.logical_not(hit_or_miss))
binary_thin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, strel1, strel2):\n hit_or_miss = scind.binary_hit_or_miss(image, strel1, strel2)\n return np.logical_and(image, np.logical_not(hit_or_miss))\n", "role": "user" }, { "content": "binary_thin", "role": "assistant" } ]
def x(image, iterations=-1): global binary_shrink_top_right, binary_shrink_bottom_left if binary_shrink_top_right is None: binary_shrink_top_right = make_table(False, np.array([[0, 0, 0], [0, 1, 0], [0, 1, 0]], bool), np.array([[1, 1, 1], [0, 1, 0], [0, 1, 0]], bool)) binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [ 0, 1, 0], [1, 0, 0]], bool), np.array([[1, 1, 1], [0, 1, 1], [1, 0, 1]], bool)) binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [ 1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1, 1], [0, 0, 1]], bool)) binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [ 1, 1, 0], [0, 1, 1]], bool), np.array([[0, 0, 1], [1, 1, 1], [0, 1, 0]], bool)) binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [ 0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [1, 0, 1]], bool)) binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [ 0, 1, 0], [1, 1, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [0, 1, 1]], bool)) binary_shrink_bottom_left = make_table(False, np.array([[0, 1, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0], [0, 1, 0], [ 1, 1, 1]], bool)) binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 1], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [1, 1, 0], [ 1, 1, 1]], bool)) binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 0], [0, 1, 1], [0, 0, 0]], bool), np.array([[1, 0, 0], [1, 1, 1], [ 1, 0, 0]], bool)) binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 0], [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 1, 0], [1, 1, 1], [ 1, 0, 0]], bool)) binary_shrink_bottom_left &= make_table(False, np.array([[1, 0, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [0, 1, 1], [ 1, 1, 1]], bool)) binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 1], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 1, 0], [0, 1, 1], [ 1, 1, 1]], bool)) orig_image = image index_i, index_j, image = prepare_for_index_lookup(image, False) if iterations == -1: iterations = len(index_i) for i in range(iterations): pixel_count = len(index_i) for table in (binary_shrink_top_right, binary_shrink_bottom_left): index_i, index_j = index_lookup(index_i, index_j, image, table, 1) if len(index_i) == pixel_count: break image = extract_from_image_lookup(orig_image, index_i, index_j) return image
binary_shrink_old
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, iterations=-1):\n global binary_shrink_top_right, binary_shrink_bottom_left\n if binary_shrink_top_right is None:\n binary_shrink_top_right = make_table(False, np.array([[0, 0, 0], [0,\n 1, 0], [0, 1, 0]], bool), np.array([[1, 1, 1], [0, 1, 0], [0, 1,\n 0]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 0, 1, 0], [1, 0, 0]], bool), np.array([[1, 1, 1], [0, 1, 1], [1,\n 0, 1]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1, 1], [0,\n 0, 1]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 1, 1, 0], [0, 1, 1]], bool), np.array([[0, 0, 1], [1, 1, 1], [0,\n 1, 0]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [1,\n 0, 1]], bool))\n binary_shrink_top_right &= make_table(False, np.array([[0, 0, 0], [\n 0, 1, 0], [1, 1, 1]], bool), np.array([[1, 1, 1], [1, 1, 0], [0,\n 1, 1]], bool))\n binary_shrink_bottom_left = make_table(False, np.array([[0, 1, 0],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0], [0, 1, 0], [\n 1, 1, 1]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 1],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [1, 1, 0], [\n 1, 1, 1]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[0, 0, 0],\n [0, 1, 1], [0, 0, 0]], bool), np.array([[1, 0, 0], [1, 1, 1], [\n 1, 0, 0]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 0],\n [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 1, 0], [1, 1, 1], [\n 1, 0, 0]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[1, 0, 0],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 1], [0, 1, 1], [\n 1, 1, 1]], bool))\n binary_shrink_bottom_left &= make_table(False, np.array([[1, 1, 1],\n [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 1, 0], [0, 1, 1], [\n 1, 1, 1]], bool))\n orig_image = image\n index_i, index_j, image = prepare_for_index_lookup(image, False)\n if iterations == -1:\n iterations = len(index_i)\n for i in range(iterations):\n pixel_count = len(index_i)\n for table in (binary_shrink_top_right, binary_shrink_bottom_left):\n index_i, index_j = index_lookup(index_i, index_j, image, table, 1)\n if len(index_i) == pixel_count:\n break\n image = extract_from_image_lookup(orig_image, index_i, index_j)\n return image\n", "role": "user" }, { "content": "binary_shrink_old", "role": "assistant" } ]
def x(image, iterations=-1): global erode_table, binary_shrink_ulr_table, binary_shrink_lrl_table global binary_shrink_urb_table, binary_shrink_llt_table if erode_table is None: erode_table = np.array([(pattern_of(index)[1, 1] and scind.label( pattern_of(index - 16))[1] != 1) for index in range(512)]) erode_table[index_of(np.ones((3, 3), bool))] = True binary_shrink_ulr_table = erode_table | make_table(False, np.array( [[0, 0, 0], [1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[1, 0, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]], bool)) binary_shrink_urb_table = erode_table | make_table(False, np.array( [[0, 1, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0, 0, 1], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1, 0], [1, 1, 0]], bool)) binary_shrink_lrl_table = erode_table | make_table(False, np.array( [[0, 0, 0], [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[0, 0, 0], [0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 0], [1, 1, 0], [0, 0, 1]], bool)) binary_shrink_llt_table = erode_table | make_table(False, np.array( [[0, 0, 0], [0, 1, 0], [0, 1, 0]], bool), np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0, 0, 0], [0, 1, 0], [1, 0, 0]], bool), np.array([[0, 1, 1], [0, 1, 1], [1, 0, 0]], bool)) orig_image = image index_i, index_j, image = prepare_for_index_lookup(image, False) if iterations == -1: iterations = len(index_i) for i in range(iterations): pixel_count = len(index_i) for table in (binary_shrink_ulr_table, binary_shrink_urb_table, binary_shrink_lrl_table, binary_shrink_llt_table): index_i, index_j = index_lookup(index_i, index_j, image, table, 1) if len(index_i) == pixel_count: break image = extract_from_image_lookup(orig_image, index_i, index_j) return image
binary_shrink
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, iterations=-1):\n global erode_table, binary_shrink_ulr_table, binary_shrink_lrl_table\n global binary_shrink_urb_table, binary_shrink_llt_table\n if erode_table is None:\n erode_table = np.array([(pattern_of(index)[1, 1] and scind.label(\n pattern_of(index - 16))[1] != 1) for index in range(512)])\n erode_table[index_of(np.ones((3, 3), bool))] = True\n binary_shrink_ulr_table = erode_table | make_table(False, np.array(\n [[0, 0, 0], [1, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 0],\n [1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[1,\n 0, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[1, 0, 0], [0, 1,\n 1], [0, 1, 1]], bool))\n binary_shrink_urb_table = erode_table | make_table(False, np.array(\n [[0, 1, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 1, 0],\n [0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0,\n 0, 1], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 1], [1, 1,\n 0], [1, 1, 0]], bool))\n binary_shrink_lrl_table = erode_table | make_table(False, np.array(\n [[0, 0, 0], [0, 1, 1], [0, 0, 0]], bool), np.array([[0, 0, 0],\n [1, 1, 1], [0, 0, 0]], bool)) & make_table(False, np.array([[0,\n 0, 0], [0, 1, 0], [0, 0, 1]], bool), np.array([[1, 1, 0], [1, 1,\n 0], [0, 0, 1]], bool))\n binary_shrink_llt_table = erode_table | make_table(False, np.array(\n [[0, 0, 0], [0, 1, 0], [0, 1, 0]], bool), np.array([[0, 1, 0],\n [0, 1, 0], [0, 1, 0]], bool)) & make_table(False, np.array([[0,\n 0, 0], [0, 1, 0], [1, 0, 0]], bool), np.array([[0, 1, 1], [0, 1,\n 1], [1, 0, 0]], bool))\n orig_image = image\n index_i, index_j, image = prepare_for_index_lookup(image, False)\n if iterations == -1:\n iterations = len(index_i)\n for i in range(iterations):\n pixel_count = len(index_i)\n for table in (binary_shrink_ulr_table, binary_shrink_urb_table,\n binary_shrink_lrl_table, binary_shrink_llt_table):\n index_i, index_j = index_lookup(index_i, index_j, image, table, 1)\n if len(index_i) == pixel_count:\n break\n image = extract_from_image_lookup(orig_image, index_i, index_j)\n return image\n", "role": "user" }, { "content": "binary_shrink", "role": "assistant" } ]
def x(radius): iradius = int(radius) x, y = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1] radius2 = radius * radius strel = np.zeros(x.shape) strel[x * x + y * y <= radius2] = 1 return strel
strel_disk
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(radius):\n iradius = int(radius)\n x, y = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]\n radius2 = radius * radius\n strel = np.zeros(x.shape)\n strel[x * x + y * y <= radius2] = 1\n return strel\n", "role": "user" }, { "content": "strel_disk", "role": "assistant" } ]
def x(radius): iradius = int(radius) i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1] strel = (i + j <= radius) & (i + j >= -radius) & (i - j <= radius) & (i - j >= -radius) return strel
strel_diamond
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(radius):\n iradius = int(radius)\n i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]\n strel = (i + j <= radius) & (i + j >= -radius) & (i - j <= radius) & (i -\n j >= -radius)\n return strel\n", "role": "user" }, { "content": "strel_diamond", "role": "assistant" } ]
def x(length, angle): angle = float(angle) * np.pi / 180.0 x_off = int(np.finfo(float).eps + np.cos(angle) * length / 2) y_off = -int(np.finfo(float).eps + np.sin(angle) * length / 2) x_center = abs(x_off) y_center = abs(y_off) strel = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool) draw_line(strel, (y_center - y_off, x_center - x_off), (y_center, x_center), True) draw_line(strel, (y_center + y_off, x_center + x_off), (y_center, x_center), True) return strel
strel_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(length, angle):\n angle = float(angle) * np.pi / 180.0\n x_off = int(np.finfo(float).eps + np.cos(angle) * length / 2)\n y_off = -int(np.finfo(float).eps + np.sin(angle) * length / 2)\n x_center = abs(x_off)\n y_center = abs(y_off)\n strel = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool)\n draw_line(strel, (y_center - y_off, x_center - x_off), (y_center,\n x_center), True)\n draw_line(strel, (y_center + y_off, x_center + x_off), (y_center,\n x_center), True)\n return strel\n", "role": "user" }, { "content": "strel_line", "role": "assistant" } ]
def x(radius): iradius = int(radius) i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1] dradius = float(iradius) * np.sqrt(2) strel = (i + j <= dradius) & (i + j >= -dradius) & (i - j <= dradius) & ( i - j >= -dradius) return strel
strel_octagon
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(radius):\n iradius = int(radius)\n i, j = np.mgrid[-iradius:iradius + 1, -iradius:iradius + 1]\n dradius = float(iradius) * np.sqrt(2)\n strel = (i + j <= dradius) & (i + j >= -dradius) & (i - j <= dradius) & (\n i - j >= -dradius)\n return strel\n", "role": "user" }, { "content": "strel_octagon", "role": "assistant" } ]
def x(x, y): x_center = int(np.abs(x)) y_center = int(np.abs(y)) result = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool) result[y_center, x_center] = True result[y_center + int(y), x_center + int(x)] = True return result
strel_pair
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y):\n x_center = int(np.abs(x))\n y_center = int(np.abs(y))\n result = np.zeros((y_center * 2 + 1, x_center * 2 + 1), bool)\n result[y_center, x_center] = True\n result[y_center + int(y), x_center + int(x)] = True\n return result\n", "role": "user" }, { "content": "strel_pair", "role": "assistant" } ]
def x(xoff, yoff, n): xoff, yoff, n = [int(t) for t in (xoff, yoff, n)] center_x, center_y = abs(n * xoff), abs(n * yoff) result = np.zeros((center_y * 2 + 1, center_x * 2 + 1), bool) k = np.arange(-n, n + 1) result[center_y + yoff * k, center_x + xoff * k] = True return result
strel_periodicline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(xoff, yoff, n):\n xoff, yoff, n = [int(t) for t in (xoff, yoff, n)]\n center_x, center_y = abs(n * xoff), abs(n * yoff)\n result = np.zeros((center_y * 2 + 1, center_x * 2 + 1), bool)\n k = np.arange(-n, n + 1)\n result[center_y + yoff * k, center_x + xoff * k] = True\n return result\n", "role": "user" }, { "content": "strel_periodicline", "role": "assistant" } ]
def x(width, height): return np.ones([(int((hw - 1) // 2) * 2 + 1) for hw in (height, width)], bool)
strel_rectangle
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(width, height):\n return np.ones([(int((hw - 1) // 2) * 2 + 1) for hw in (height, width)],\n bool)\n", "role": "user" }, { "content": "strel_rectangle", "role": "assistant" } ]
def x(image, structure=np.ones((3, 3), dtype=bool), offset=None): center = np.array(structure.shape) // 2 if offset is None: offset = center origin = np.array(offset) - center return scind.maximum_filter(image, footprint=structure, origin=origin, mode='constant', cval=np.min(image))
cpmaximum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, structure=np.ones((3, 3), dtype=bool), offset=None):\n center = np.array(structure.shape) // 2\n if offset is None:\n offset = center\n origin = np.array(offset) - center\n return scind.maximum_filter(image, footprint=structure, origin=origin,\n mode='constant', cval=np.min(image))\n", "role": "user" }, { "content": "cpmaximum", "role": "assistant" } ]
def x(image): unique_labels = np.unique(image[image != 0]) if len(unique_labels) == 0: return image, 0 consecutive_labels = np.arange(len(unique_labels)) + 1 label_table = np.zeros(unique_labels.max() + 1, int) label_table[unique_labels] = consecutive_labels new_image = label_table[image] return new_image, len(unique_labels)
relabel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image):\n unique_labels = np.unique(image[image != 0])\n if len(unique_labels) == 0:\n return image, 0\n consecutive_labels = np.arange(len(unique_labels)) + 1\n label_table = np.zeros(unique_labels.max() + 1, int)\n label_table[unique_labels] = consecutive_labels\n new_image = label_table[image]\n return new_image, len(unique_labels)\n", "role": "user" }, { "content": "relabel", "role": "assistant" } ]
def x(image): labels = image.astype(int) points, counts = convex_hull(labels, np.array([1])) output = np.zeros(image.shape, int) for i in range(counts[0]): inext = (i + 1) % counts[0] draw_line(output, points[i, 1:], points[inext, 1:], 1) output = fill_labeled_holes(output) return output == 1
convex_hull_image
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image):\n labels = image.astype(int)\n points, counts = convex_hull(labels, np.array([1]))\n output = np.zeros(image.shape, int)\n for i in range(counts[0]):\n inext = (i + 1) % counts[0]\n draw_line(output, points[i, 1:], points[inext, 1:], 1)\n output = fill_labeled_holes(output)\n return output == 1\n", "role": "user" }, { "content": "convex_hull_image", "role": "assistant" } ]
def x(labels, indexes=None, fast=True): if indexes is None: indexes = np.unique(labels) indexes.sort() indexes = indexes[indexes != 0] else: indexes = np.array(indexes) if len(indexes) == 0: return np.zeros((0, 2), int), np.zeros((0,), int) outlines = outline(labels) coords = np.argwhere(outlines > 0).astype(np.int32) if len(coords) == 0: return np.zeros((0, 3), int), np.zeros((len(indexes),), int) i = coords[:, 0] j = coords[:, 1] labels_per_point = labels[i, j] pixel_labels = np.column_stack((i, j, labels_per_point)) return convex_hull_ijv(pixel_labels, indexes, fast)
convex_hull
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indexes=None, fast=True):\n if indexes is None:\n indexes = np.unique(labels)\n indexes.sort()\n indexes = indexes[indexes != 0]\n else:\n indexes = np.array(indexes)\n if len(indexes) == 0:\n return np.zeros((0, 2), int), np.zeros((0,), int)\n outlines = outline(labels)\n coords = np.argwhere(outlines > 0).astype(np.int32)\n if len(coords) == 0:\n return np.zeros((0, 3), int), np.zeros((len(indexes),), int)\n i = coords[:, 0]\n j = coords[:, 1]\n labels_per_point = labels[i, j]\n pixel_labels = np.column_stack((i, j, labels_per_point))\n return convex_hull_ijv(pixel_labels, indexes, fast)\n", "role": "user" }, { "content": "convex_hull", "role": "assistant" } ]
def x(p1, p2, p3): v1 = (p2 - p1).astype(np.float) v2 = (p3 - p1).astype(np.float) cross1 = v1[:, 1] cross1 *= v2[:, 0] cross2 = v2[:, 1] cross2 *= v1[:, 0] a = cross1 a -= cross2 a /= 2.0 del v1, v2, cross1, cross2 a = a.copy() a = np.abs(a) a[a < np.finfo(np.float32).eps] = 0 return a
triangle_areas
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p1, p2, p3):\n v1 = (p2 - p1).astype(np.float)\n v2 = (p3 - p1).astype(np.float)\n cross1 = v1[:, 1]\n cross1 *= v2[:, 0]\n cross2 = v2[:, 1]\n cross2 *= v1[:, 0]\n a = cross1\n a -= cross2\n a /= 2.0\n del v1, v2, cross1, cross2\n a = a.copy()\n a = np.abs(a)\n a[a < np.finfo(np.float32).eps] = 0\n return a\n", "role": "user" }, { "content": "triangle_areas", "role": "assistant" } ]
def x(ch_pts, ch_counts): if len(ch_pts) == 0: return np.zeros((0, 3), int) ch_counts = ch_counts[ch_counts != 0] indexer_in = Indexes(ch_counts) idx_1 = np.arange(ch_pts.shape[0]) + 1 idx_1[indexer_in.fwd_idx + indexer_in.counts - 1] = indexer_in.fwd_idx ch_pts1 = ch_pts[idx_1, 1:] n_i = np.abs(ch_pts[:, 1] - ch_pts1[:, 0]) + 1 horizontal = n_i == 1 if np.any(horizontal): i_horiz = ch_pts[horizontal, 1] l_horiz = ch_pts[horizontal, 0] j_first_horiz = ch_pts[horizontal, 2] j_last_horiz = ch_pts1[horizontal, 1] else: i_horiz = l_horiz = j_first_horiz = j_last_horiz = np.zeros(0, int) if np.any(~horizontal): ch_pts, ch_pts1, n_i = [x[~horizontal] for x in (ch_pts, ch_pts1, n_i)] indexer = Indexes(n_i) l = ch_pts[indexer.rev_idx, 0] sign = np.sign(ch_pts1[:, 0] - ch_pts[:, 1]) i = ch_pts[indexer.rev_idx, 1] + sign[indexer.rev_idx] * indexer.idx[0] j = ch_pts[indexer.rev_idx, 2] + indexer.idx[0] * (ch_pts1[indexer. rev_idx, 1] - ch_pts[indexer.rev_idx, 2]).astype(float) / (n_i[ indexer.rev_idx] - 1) else: i = l = np.zeros(0, int) j = np.zeros(0) line_labels = np.concatenate((l_horiz, l_horiz, l)) i = np.concatenate((i_horiz, i_horiz, i)) j = np.concatenate((j_first_horiz.astype(float), j_last_horiz.astype( float), j)) order = np.lexsort((j, i, line_labels)) i, j, line_labels = i[order], j[order], line_labels[order] firsts = np.hstack([[0], np.argwhere((line_labels[:-1] != line_labels[1 :]) | (i[:-1] != i[1:])).flatten() + 1, [len(line_labels)]]) counts = firsts[1:] - firsts[:-1] run_indexer = Indexes(counts) i = i[run_indexer.fwd_idx] j0 = np.ceil(j[run_indexer.fwd_idx]).astype(int) j1 = np.floor(j[run_indexer.fwd_idx + run_indexer.counts[0] - 1]).astype( int) l = line_labels[run_indexer.fwd_idx] out_indexer = Indexes(j1 - j0 + 1) ijv = np.column_stack((i[out_indexer.rev_idx], j0[out_indexer.rev_idx] + out_indexer.idx[0], l[out_indexer.rev_idx])) return ijv
fill_convex_hulls
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(ch_pts, ch_counts):\n if len(ch_pts) == 0:\n return np.zeros((0, 3), int)\n ch_counts = ch_counts[ch_counts != 0]\n indexer_in = Indexes(ch_counts)\n idx_1 = np.arange(ch_pts.shape[0]) + 1\n idx_1[indexer_in.fwd_idx + indexer_in.counts - 1] = indexer_in.fwd_idx\n ch_pts1 = ch_pts[idx_1, 1:]\n n_i = np.abs(ch_pts[:, 1] - ch_pts1[:, 0]) + 1\n horizontal = n_i == 1\n if np.any(horizontal):\n i_horiz = ch_pts[horizontal, 1]\n l_horiz = ch_pts[horizontal, 0]\n j_first_horiz = ch_pts[horizontal, 2]\n j_last_horiz = ch_pts1[horizontal, 1]\n else:\n i_horiz = l_horiz = j_first_horiz = j_last_horiz = np.zeros(0, int)\n if np.any(~horizontal):\n ch_pts, ch_pts1, n_i = [x[~horizontal] for x in (ch_pts, ch_pts1, n_i)]\n indexer = Indexes(n_i)\n l = ch_pts[indexer.rev_idx, 0]\n sign = np.sign(ch_pts1[:, 0] - ch_pts[:, 1])\n i = ch_pts[indexer.rev_idx, 1] + sign[indexer.rev_idx] * indexer.idx[0]\n j = ch_pts[indexer.rev_idx, 2] + indexer.idx[0] * (ch_pts1[indexer.\n rev_idx, 1] - ch_pts[indexer.rev_idx, 2]).astype(float) / (n_i[\n indexer.rev_idx] - 1)\n else:\n i = l = np.zeros(0, int)\n j = np.zeros(0)\n line_labels = np.concatenate((l_horiz, l_horiz, l))\n i = np.concatenate((i_horiz, i_horiz, i))\n j = np.concatenate((j_first_horiz.astype(float), j_last_horiz.astype(\n float), j))\n order = np.lexsort((j, i, line_labels))\n i, j, line_labels = i[order], j[order], line_labels[order]\n firsts = np.hstack([[0], np.argwhere((line_labels[:-1] != line_labels[1\n :]) | (i[:-1] != i[1:])).flatten() + 1, [len(line_labels)]])\n counts = firsts[1:] - firsts[:-1]\n run_indexer = Indexes(counts)\n i = i[run_indexer.fwd_idx]\n j0 = np.ceil(j[run_indexer.fwd_idx]).astype(int)\n j1 = np.floor(j[run_indexer.fwd_idx + run_indexer.counts[0] - 1]).astype(\n int)\n l = line_labels[run_indexer.fwd_idx]\n out_indexer = Indexes(j1 - j0 + 1)\n ijv = np.column_stack((i[out_indexer.rev_idx], j0[out_indexer.rev_idx] +\n out_indexer.idx[0], l[out_indexer.rev_idx]))\n return ijv\n", "role": "user" }, { "content": "fill_convex_hulls", "role": "assistant" } ]
def x(labels, pt0, pt1, value=1): y0, x0 = pt0 y1, x1 = pt1 diff_y = abs(y1 - y0) diff_x = abs(x1 - x0) x = x0 y = y0 labels[y, x] = value step_x = x1 > x0 and 1 or -1 step_y = y1 > y0 and 1 or -1 if diff_y > diff_x: remainder = diff_x * 2 - diff_y while y != y1: if remainder >= 0: x += step_x remainder -= diff_y * 2 y += step_y remainder += diff_x * 2 labels[y, x] = value else: remainder = diff_y * 2 - diff_x while x != x1: if remainder >= 0: y += step_y remainder -= diff_x * 2 x += step_x remainder += diff_y * 2 labels[y, x] = value
draw_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, pt0, pt1, value=1):\n y0, x0 = pt0\n y1, x1 = pt1\n diff_y = abs(y1 - y0)\n diff_x = abs(x1 - x0)\n x = x0\n y = y0\n labels[y, x] = value\n step_x = x1 > x0 and 1 or -1\n step_y = y1 > y0 and 1 or -1\n if diff_y > diff_x:\n remainder = diff_x * 2 - diff_y\n while y != y1:\n if remainder >= 0:\n x += step_x\n remainder -= diff_y * 2\n y += step_y\n remainder += diff_x * 2\n labels[y, x] = value\n else:\n remainder = diff_y * 2 - diff_x\n while x != x1:\n if remainder >= 0:\n y += step_y\n remainder -= diff_x * 2\n x += step_x\n remainder += diff_y * 2\n labels[y, x] = value\n", "role": "user" }, { "content": "draw_line", "role": "assistant" } ]
def x(pt0i, pt0j, pt1i, pt1j): assert len(pt0i) == len(pt0j) assert len(pt0i) == len(pt1i) assert len(pt0i) == len(pt1j) pt0i = np.array(pt0i, int) pt0j = np.array(pt0j, int) pt1i = np.array(pt1i, int) pt1j = np.array(pt1j, int) if len(pt0i) == 0: return [np.zeros((0,), int)] * 4 diff_i = np.abs(pt0i - pt1i) diff_j = np.abs(pt0j - pt1j) count = np.maximum(diff_i, diff_j).astype(int) + 1 index = np.cumsum(count) - count step_i = (pt1i > pt0i).astype(int) * 2 - 1 step_j = (pt1j > pt0j).astype(int) * 2 - 1 n_pts = index[-1] + count[-1] i = np.zeros(n_pts, int) j = np.zeros(n_pts, int) i[index] = pt0i j[index] = pt0j mask = diff_i >= diff_j count_t = count[mask] if len(count_t) > 0: last_n = np.max(count_t) diff_i_t = diff_i[mask] diff_j_t = diff_j[mask] remainder = diff_j_t * 2 - diff_i_t current_i = pt0i[mask] current_j = pt0j[mask] index_t = index[mask] step_i_t = step_i[mask] step_j_t = step_j[mask] for n in range(1, last_n + 1): mask = count_t > n remainder = remainder[mask] current_i = current_i[mask] current_j = current_j[mask] index_t = index_t[mask] count_t = count_t[mask] diff_i_t = diff_i_t[mask] diff_j_t = diff_j_t[mask] step_i_t = step_i_t[mask] step_j_t = step_j_t[mask] remainder_mask = remainder >= 0 current_j[remainder_mask] += step_j_t[remainder_mask] remainder[remainder_mask] -= diff_i_t[remainder_mask] * 2 current_i += step_i_t remainder += diff_j_t * 2 i[index_t + n] = current_i j[index_t + n] = current_j mask = diff_j > diff_i count_t = count[mask] if len(count_t) > 0: last_n = np.max(count_t) diff_i_t = diff_i[mask] diff_j_t = diff_j[mask] remainder = diff_i_t * 2 - diff_j_t current_i = pt0i[mask] current_j = pt0j[mask] index_t = index[mask] step_i_t = step_i[mask] step_j_t = step_j[mask] for n in range(1, last_n + 1): mask = count_t > n remainder = remainder[mask] current_i = current_i[mask] current_j = current_j[mask] index_t = index_t[mask] count_t = count_t[mask] diff_i_t = diff_i_t[mask] diff_j_t = diff_j_t[mask] step_i_t = step_i_t[mask] step_j_t = step_j_t[mask] remainder_mask = remainder >= 0 current_i[remainder_mask] += step_i_t[remainder_mask] remainder[remainder_mask] -= diff_j_t[remainder_mask] * 2 current_j += step_j_t remainder += diff_i_t * 2 i[index_t + n] = current_i j[index_t + n] = current_j return index, count, i, j
get_line_pts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pt0i, pt0j, pt1i, pt1j):\n assert len(pt0i) == len(pt0j)\n assert len(pt0i) == len(pt1i)\n assert len(pt0i) == len(pt1j)\n pt0i = np.array(pt0i, int)\n pt0j = np.array(pt0j, int)\n pt1i = np.array(pt1i, int)\n pt1j = np.array(pt1j, int)\n if len(pt0i) == 0:\n return [np.zeros((0,), int)] * 4\n diff_i = np.abs(pt0i - pt1i)\n diff_j = np.abs(pt0j - pt1j)\n count = np.maximum(diff_i, diff_j).astype(int) + 1\n index = np.cumsum(count) - count\n step_i = (pt1i > pt0i).astype(int) * 2 - 1\n step_j = (pt1j > pt0j).astype(int) * 2 - 1\n n_pts = index[-1] + count[-1]\n i = np.zeros(n_pts, int)\n j = np.zeros(n_pts, int)\n i[index] = pt0i\n j[index] = pt0j\n mask = diff_i >= diff_j\n count_t = count[mask]\n if len(count_t) > 0:\n last_n = np.max(count_t)\n diff_i_t = diff_i[mask]\n diff_j_t = diff_j[mask]\n remainder = diff_j_t * 2 - diff_i_t\n current_i = pt0i[mask]\n current_j = pt0j[mask]\n index_t = index[mask]\n step_i_t = step_i[mask]\n step_j_t = step_j[mask]\n for n in range(1, last_n + 1):\n mask = count_t > n\n remainder = remainder[mask]\n current_i = current_i[mask]\n current_j = current_j[mask]\n index_t = index_t[mask]\n count_t = count_t[mask]\n diff_i_t = diff_i_t[mask]\n diff_j_t = diff_j_t[mask]\n step_i_t = step_i_t[mask]\n step_j_t = step_j_t[mask]\n remainder_mask = remainder >= 0\n current_j[remainder_mask] += step_j_t[remainder_mask]\n remainder[remainder_mask] -= diff_i_t[remainder_mask] * 2\n current_i += step_i_t\n remainder += diff_j_t * 2\n i[index_t + n] = current_i\n j[index_t + n] = current_j\n mask = diff_j > diff_i\n count_t = count[mask]\n if len(count_t) > 0:\n last_n = np.max(count_t)\n diff_i_t = diff_i[mask]\n diff_j_t = diff_j[mask]\n remainder = diff_i_t * 2 - diff_j_t\n current_i = pt0i[mask]\n current_j = pt0j[mask]\n index_t = index[mask]\n step_i_t = step_i[mask]\n step_j_t = step_j[mask]\n for n in range(1, last_n + 1):\n mask = count_t > n\n remainder = remainder[mask]\n current_i = current_i[mask]\n current_j = current_j[mask]\n index_t = index_t[mask]\n count_t = count_t[mask]\n diff_i_t = diff_i_t[mask]\n diff_j_t = diff_j_t[mask]\n step_i_t = step_i_t[mask]\n step_j_t = step_j_t[mask]\n remainder_mask = remainder >= 0\n current_i[remainder_mask] += step_i_t[remainder_mask]\n remainder[remainder_mask] -= diff_j_t[remainder_mask] * 2\n current_j += step_j_t\n remainder += diff_i_t * 2\n i[index_t + n] = current_i\n j[index_t + n] = current_j\n return index, count, i, j\n", "role": "user" }, { "content": "get_line_pts", "role": "assistant" } ]
def x(pt0i, pt0j, pt1i, pt1j, shape): pt0i, pt0j, pt1i, pt1j = [np.round(np.atleast_1d(x)).astype(int) for x in (pt0i, pt0j, pt1i, pt1j)] result = np.zeros(shape, bool) discard_me = pt0i == pt1i index, count, i, j = get_line_pts(pt0i[discard_me], pt0j[discard_me], pt1i[discard_me], pt1j[discard_me]) result[i, j] = True pt0i, pt0j, pt1i, pt1j = [x[~discard_me] for x in (pt0i, pt0j, pt1i, pt1j)] reverse_me = pt0i > pt1i pt0i[reverse_me], pt0j[reverse_me], pt1i[reverse_me], pt1j[reverse_me ] = pt1i[reverse_me], pt1j[reverse_me], pt0i[reverse_me], pt0j[ reverse_me] index, count, i, j = get_line_pts(pt0i, pt0j, pt1i, pt1j) result[i, j] = True indexer = Indexes(count) dont_use = pt0i[indexer.rev_idx] == i dont_use[:-1] |= (indexer.rev_idx[:-1] == indexer.rev_idx[1:]) & (i[:-1 ] == i[1:]) i, j = i[~dont_use], j[~dont_use] hitcounts = scipy.sparse.coo_matrix((np.ones(len(i), int), (i, j)), shape=shape, dtype=np.uint16).toarray() result[np.cumsum(hitcounts, 1) % 2 == 1] = True return result
polygon_lines_to_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pt0i, pt0j, pt1i, pt1j, shape):\n pt0i, pt0j, pt1i, pt1j = [np.round(np.atleast_1d(x)).astype(int) for x in\n (pt0i, pt0j, pt1i, pt1j)]\n result = np.zeros(shape, bool)\n discard_me = pt0i == pt1i\n index, count, i, j = get_line_pts(pt0i[discard_me], pt0j[discard_me],\n pt1i[discard_me], pt1j[discard_me])\n result[i, j] = True\n pt0i, pt0j, pt1i, pt1j = [x[~discard_me] for x in (pt0i, pt0j, pt1i, pt1j)]\n reverse_me = pt0i > pt1i\n pt0i[reverse_me], pt0j[reverse_me], pt1i[reverse_me], pt1j[reverse_me\n ] = pt1i[reverse_me], pt1j[reverse_me], pt0i[reverse_me], pt0j[\n reverse_me]\n index, count, i, j = get_line_pts(pt0i, pt0j, pt1i, pt1j)\n result[i, j] = True\n indexer = Indexes(count)\n dont_use = pt0i[indexer.rev_idx] == i\n dont_use[:-1] |= (indexer.rev_idx[:-1] == indexer.rev_idx[1:]) & (i[:-1\n ] == i[1:])\n i, j = i[~dont_use], j[~dont_use]\n hitcounts = scipy.sparse.coo_matrix((np.ones(len(i), int), (i, j)),\n shape=shape, dtype=np.uint16).toarray()\n result[np.cumsum(hitcounts, 1) % 2 == 1] = True\n return result\n", "role": "user" }, { "content": "polygon_lines_to_mask", "role": "assistant" } ]
def x(whatever_it_returned): if getattr(whatever_it_returned, '__getitem__', False): return np.array(whatever_it_returned) else: return np.array([whatever_it_returned])
fixup_scipy_ndimage_result
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(whatever_it_returned):\n if getattr(whatever_it_returned, '__getitem__', False):\n return np.array(whatever_it_returned)\n else:\n return np.array([whatever_it_returned])\n", "role": "user" }, { "content": "fixup_scipy_ndimage_result", "role": "assistant" } ]
def x(labels): max_labels = np.max(labels) if max_labels == 0: return np.zeros((2, 0), int) result = scind.center_of_mass(np.ones(labels.shape), labels, np.arange( max_labels) + 1) result = np.array(result) if result.ndim == 1: result.shape = 2, 1 return result return result.transpose()
centers_of_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n max_labels = np.max(labels)\n if max_labels == 0:\n return np.zeros((2, 0), int)\n result = scind.center_of_mass(np.ones(labels.shape), labels, np.arange(\n max_labels) + 1)\n result = np.array(result)\n if result.ndim == 1:\n result.shape = 2, 1\n return result\n return result.transpose()\n", "role": "user" }, { "content": "centers_of_labels", "role": "assistant" } ]
def x(image, labels, indices): if len(indices) == 0: return np.zeros((2, 0), int) result = scind.maximum_position(image, labels, indices) result = np.array(result, int) if result.ndim == 1: result.shape = 2, 1 return result return result.transpose()
maximum_position_of_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, labels, indices):\n if len(indices) == 0:\n return np.zeros((2, 0), int)\n result = scind.maximum_position(image, labels, indices)\n result = np.array(result, int)\n if result.ndim == 1:\n result.shape = 2, 1\n return result\n return result.transpose()\n", "role": "user" }, { "content": "maximum_position_of_labels", "role": "assistant" } ]
def x(labels_a, labels_b, distance): if np.max(labels_a) == 0 or np.max(labels_b) == 0: return np.zeros((0, 2), int) hull_a, point_counts_a = convex_hull(labels_a) hull_b, point_counts_b = convex_hull(labels_b) centers_a, radii_a = minimum_enclosing_circle(labels_a, hull_and_point_count=(hull_a, point_counts_a)) centers_b, radii_b = minimum_enclosing_circle(labels_b, hull_and_point_count=(hull_b, point_counts_b)) indexer_a = np.cumsum(point_counts_a) indexer_a[1:] = indexer_a[:-1] indexer_a[0] = 0 indexer_b = np.cumsum(point_counts_b) indexer_b[1:] = indexer_b[:-1] indexer_b[0] = 0 i, j = np.mgrid[0:len(radii_a), 0:len(radii_b)] ab_distance = np.sqrt((centers_a[i, 0] - centers_b[j, 0]) ** 2 + ( centers_a[i, 1] - centers_b[j, 1]) ** 2) ab_distance_minus_radii = ab_distance - radii_a[i] - radii_b[j] ab_distance_minus_radii -= np.sqrt(np.finfo(float).eps) ab_easy_wins = ab_distance <= distance ij_wins = np.dstack((hull_a[indexer_a[i[ab_easy_wins]], 0], hull_b[ indexer_b[j[ab_easy_wins]], 0])) ij_wins.shape = ij_wins.shape[1:] ab_consider = (ab_distance_minus_radii <= distance) & ~ab_easy_wins ij_consider = np.dstack((i[ab_consider], j[ab_consider])) ij_consider.shape = ij_consider.shape[1:] if np.product(ij_consider.shape) == 0: return ij_wins if True: wins = [] distance2 = distance ** 2 for ii, jj in ij_consider: a = hull_a[indexer_a[ii]:indexer_a[ii] + point_counts_a[ii], 1:] b = hull_b[indexer_b[jj]:indexer_b[jj] + point_counts_b[jj], 1:] d = minimum_distance2(a, centers_a[ii, :], b, centers_b[jj, :]) if d <= distance2: wins.append((hull_a[indexer_a[ii], 0], hull_b[indexer_b[jj], 0])) ij_wins = np.vstack((ij_wins, np.array(wins))) return ij_wins else: hull_next_a = np.arange(hull_a.shape[0]) + 1 hull_next_a[indexer_a + point_counts_a - 1] = indexer_a hull_next_b = np.arange(hull_b.shape[0]) + 1 hull_next_b[indexer_b + point_counts_b - 1] = indexer_b next_b = hull_b[hull_next_b, 1:] vector_b = hull_b[:, 1:] - next_b b_len = point_counts_b[ij_consider[:, 1]] b_index = np.cumsum(point_counts_b) b_elems = b_index[-1] b_index[1:] = b_index[:-1] b_index[0] = 0 b_indexer = np.zeros(b_elems, int) b_indexer[b_index[1:]] = 1 b_indexer = np.cumsum(b_indexer) b_sub_index = np.arange(b_elems) - b_index[b_indexer] b_i = ij_consider[b_indexer, 0] b_j = ij_consider[b_indexer, 1] b_vector_b = vector_b[indexer_b[b_j] + b_sub_index, :] b_center_vector = next_b[indexer_b[b_j] + b_sub_index, :] - centers_a[ indexer_a[b_i]] cross = b_vector_b[:, 0] * b_center_vector[:, 1] - b_vector_b[:, 1 ] * b_center_vector[:, 0] hits = all_true(cross > 0, b_index) | all_true(cross < 0, b_index) ij_wins = np.vstack((ij_wins, ij_consider[hits, :])) ij_consider = ij_consider[~hits, :] if ij_consider.shape[0] == 0: return ij_wins
associate_by_distance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels_a, labels_b, distance):\n if np.max(labels_a) == 0 or np.max(labels_b) == 0:\n return np.zeros((0, 2), int)\n hull_a, point_counts_a = convex_hull(labels_a)\n hull_b, point_counts_b = convex_hull(labels_b)\n centers_a, radii_a = minimum_enclosing_circle(labels_a,\n hull_and_point_count=(hull_a, point_counts_a))\n centers_b, radii_b = minimum_enclosing_circle(labels_b,\n hull_and_point_count=(hull_b, point_counts_b))\n indexer_a = np.cumsum(point_counts_a)\n indexer_a[1:] = indexer_a[:-1]\n indexer_a[0] = 0\n indexer_b = np.cumsum(point_counts_b)\n indexer_b[1:] = indexer_b[:-1]\n indexer_b[0] = 0\n i, j = np.mgrid[0:len(radii_a), 0:len(radii_b)]\n ab_distance = np.sqrt((centers_a[i, 0] - centers_b[j, 0]) ** 2 + (\n centers_a[i, 1] - centers_b[j, 1]) ** 2)\n ab_distance_minus_radii = ab_distance - radii_a[i] - radii_b[j]\n ab_distance_minus_radii -= np.sqrt(np.finfo(float).eps)\n ab_easy_wins = ab_distance <= distance\n ij_wins = np.dstack((hull_a[indexer_a[i[ab_easy_wins]], 0], hull_b[\n indexer_b[j[ab_easy_wins]], 0]))\n ij_wins.shape = ij_wins.shape[1:]\n ab_consider = (ab_distance_minus_radii <= distance) & ~ab_easy_wins\n ij_consider = np.dstack((i[ab_consider], j[ab_consider]))\n ij_consider.shape = ij_consider.shape[1:]\n if np.product(ij_consider.shape) == 0:\n return ij_wins\n if True:\n wins = []\n distance2 = distance ** 2\n for ii, jj in ij_consider:\n a = hull_a[indexer_a[ii]:indexer_a[ii] + point_counts_a[ii], 1:]\n b = hull_b[indexer_b[jj]:indexer_b[jj] + point_counts_b[jj], 1:]\n d = minimum_distance2(a, centers_a[ii, :], b, centers_b[jj, :])\n if d <= distance2:\n wins.append((hull_a[indexer_a[ii], 0], hull_b[indexer_b[jj],\n 0]))\n ij_wins = np.vstack((ij_wins, np.array(wins)))\n return ij_wins\n else:\n hull_next_a = np.arange(hull_a.shape[0]) + 1\n hull_next_a[indexer_a + point_counts_a - 1] = indexer_a\n hull_next_b = np.arange(hull_b.shape[0]) + 1\n hull_next_b[indexer_b + point_counts_b - 1] = indexer_b\n next_b = hull_b[hull_next_b, 1:]\n vector_b = hull_b[:, 1:] - next_b\n b_len = point_counts_b[ij_consider[:, 1]]\n b_index = np.cumsum(point_counts_b)\n b_elems = b_index[-1]\n b_index[1:] = b_index[:-1]\n b_index[0] = 0\n b_indexer = np.zeros(b_elems, int)\n b_indexer[b_index[1:]] = 1\n b_indexer = np.cumsum(b_indexer)\n b_sub_index = np.arange(b_elems) - b_index[b_indexer]\n b_i = ij_consider[b_indexer, 0]\n b_j = ij_consider[b_indexer, 1]\n b_vector_b = vector_b[indexer_b[b_j] + b_sub_index, :]\n b_center_vector = next_b[indexer_b[b_j] + b_sub_index, :] - centers_a[\n indexer_a[b_i]]\n cross = b_vector_b[:, 0] * b_center_vector[:, 1] - b_vector_b[:, 1\n ] * b_center_vector[:, 0]\n hits = all_true(cross > 0, b_index) | all_true(cross < 0, b_index)\n ij_wins = np.vstack((ij_wins, ij_consider[hits, :]))\n ij_consider = ij_consider[~hits, :]\n if ij_consider.shape[0] == 0:\n return ij_wins\n", "role": "user" }, { "content": "associate_by_distance", "role": "assistant" } ]
def x(hull_a, center_a, hull_b, center_b): if hull_a.shape[0] < 3 or hull_b.shape[0] < 3: return slow_minimum_distance2(hull_a, hull_b) else: return faster_minimum_distance2(hull_a, center_a, hull_b, center_b)
minimum_distance2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hull_a, center_a, hull_b, center_b):\n if hull_a.shape[0] < 3 or hull_b.shape[0] < 3:\n return slow_minimum_distance2(hull_a, hull_b)\n else:\n return faster_minimum_distance2(hull_a, center_a, hull_b, center_b)\n", "role": "user" }, { "content": "minimum_distance2", "role": "assistant" } ]
def x(hull_a, hull_b): d2_min = np.iinfo(int).max for a in hull_a: if within_hull(a, hull_b): return 0 for b in hull_b: if within_hull(b, hull_a): return 0 for pt_a in hull_a: for pt_b in hull_b: d2_min = min(d2_min, np.sum((pt_a - pt_b) ** 2)) for h1, h2 in ((hull_a, hull_b), (hull_b, hull_a)): for pt1 in h1: prev_pt2 = h2[-1, :] for pt2 in h2: if np.dot(pt2 - prev_pt2, pt1 - prev_pt2) > 0 and np.dot( prev_pt2 - pt2, pt1 - pt2) > 0: d2_min = min(d2_min, distance2_to_line(pt1, prev_pt2, pt2)) prev_pt2 = pt2 return d2_min
slow_minimum_distance2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hull_a, hull_b):\n d2_min = np.iinfo(int).max\n for a in hull_a:\n if within_hull(a, hull_b):\n return 0\n for b in hull_b:\n if within_hull(b, hull_a):\n return 0\n for pt_a in hull_a:\n for pt_b in hull_b:\n d2_min = min(d2_min, np.sum((pt_a - pt_b) ** 2))\n for h1, h2 in ((hull_a, hull_b), (hull_b, hull_a)):\n for pt1 in h1:\n prev_pt2 = h2[-1, :]\n for pt2 in h2:\n if np.dot(pt2 - prev_pt2, pt1 - prev_pt2) > 0 and np.dot(\n prev_pt2 - pt2, pt1 - pt2) > 0:\n d2_min = min(d2_min, distance2_to_line(pt1, prev_pt2, pt2))\n prev_pt2 = pt2\n return d2_min\n", "role": "user" }, { "content": "slow_minimum_distance2", "role": "assistant" } ]
def x(hull_a, center_a, hull_b, center_b): if within_hull(center_a, hull_b): return 0 farthest_b = find_farthest(center_a, hull_b) if within_hull(hull_b[farthest_b, :], hull_a): return 0 visible_b = find_visible(hull_b, center_a, farthest_b) if within_hull(center_b, hull_a): return 0 farthest_a = find_farthest(center_b, hull_a) if within_hull(hull_a[farthest_a, :], hull_b): return 0 visible_a = find_visible(hull_a, center_b, farthest_a) i = visible_a[0] i_next = (i + 1) % hull_a.shape[0] j = visible_b[1] j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0] a = hull_a[i, :] a_next = hull_a[i_next, :] b = hull_b[j, :] b_next = hull_b[j_next, :] d2_min = np.sum((a - b) ** 2) while i != visible_a[1] and j != visible_b[0]: if lines_intersect(a, a_next, b, b_next): return 0 if np.dot(b - b_next, a - b_next) > 0 and np.dot(b_next - b, a - b ) > 0: d2a = distance2_to_line(b, a, a_next) else: d2a = np.sum((a_next - b) ** 2) if np.dot(a - a_next, b - a_next) > 0 and np.dot(a_next - a, b - a ) > 0: d2b = distance2_to_line(a, b, b_next) else: d2b = np.sum((b_next - a) ** 2) if d2a < d2_min and d2a < d2b: d2_min = d2a a = a_next i = i_next i_next = (i + 1) % hull_a.shape[0] a_next = hull_a[i_next, :] elif d2b < d2_min: d2_min = d2b b = b_next j = j_next j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0] b_next = hull_b[j_next, :] else: return d2_min while i != visible_a[1]: d2_min = min(d2_min, np.sum((a_next - b) ** 2)) a = a_next i = i_next i_next = (i + 1) % hull_a.shape[0] a_next = hull_a[i_next, :] while j != visible_b[0]: d2_min = min(d2_min, np.sum((b_next - a) ** 2)) b = b_next j = j_next j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0] b_next = hull_b[j_next, :] return d2_min
faster_minimum_distance2
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hull_a, center_a, hull_b, center_b):\n if within_hull(center_a, hull_b):\n return 0\n farthest_b = find_farthest(center_a, hull_b)\n if within_hull(hull_b[farthest_b, :], hull_a):\n return 0\n visible_b = find_visible(hull_b, center_a, farthest_b)\n if within_hull(center_b, hull_a):\n return 0\n farthest_a = find_farthest(center_b, hull_a)\n if within_hull(hull_a[farthest_a, :], hull_b):\n return 0\n visible_a = find_visible(hull_a, center_b, farthest_a)\n i = visible_a[0]\n i_next = (i + 1) % hull_a.shape[0]\n j = visible_b[1]\n j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]\n a = hull_a[i, :]\n a_next = hull_a[i_next, :]\n b = hull_b[j, :]\n b_next = hull_b[j_next, :]\n d2_min = np.sum((a - b) ** 2)\n while i != visible_a[1] and j != visible_b[0]:\n if lines_intersect(a, a_next, b, b_next):\n return 0\n if np.dot(b - b_next, a - b_next) > 0 and np.dot(b_next - b, a - b\n ) > 0:\n d2a = distance2_to_line(b, a, a_next)\n else:\n d2a = np.sum((a_next - b) ** 2)\n if np.dot(a - a_next, b - a_next) > 0 and np.dot(a_next - a, b - a\n ) > 0:\n d2b = distance2_to_line(a, b, b_next)\n else:\n d2b = np.sum((b_next - a) ** 2)\n if d2a < d2_min and d2a < d2b:\n d2_min = d2a\n a = a_next\n i = i_next\n i_next = (i + 1) % hull_a.shape[0]\n a_next = hull_a[i_next, :]\n elif d2b < d2_min:\n d2_min = d2b\n b = b_next\n j = j_next\n j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]\n b_next = hull_b[j_next, :]\n else:\n return d2_min\n while i != visible_a[1]:\n d2_min = min(d2_min, np.sum((a_next - b) ** 2))\n a = a_next\n i = i_next\n i_next = (i + 1) % hull_a.shape[0]\n a_next = hull_a[i_next, :]\n while j != visible_b[0]:\n d2_min = min(d2_min, np.sum((b_next - a) ** 2))\n b = b_next\n j = j_next\n j_next = (j + hull_b.shape[0] - 1) % hull_b.shape[0]\n b_next = hull_b[j_next, :]\n return d2_min\n", "role": "user" }, { "content": "faster_minimum_distance2", "role": "assistant" } ]
def x(pt1_p, pt2_p, pt1_q, pt2_q): for pt1_a, pt2_a, pt1_b, pt2_b in ((pt1_p, pt2_p, pt1_q, pt2_q), (pt1_q, pt2_q, pt1_p, pt2_p)): v_a = pt2_a - pt1_a cross_a_1b = np.cross(v_a, pt1_b - pt2_a) if cross_a_1b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt1_b): return True cross_a_2b = np.cross(v_a, pt2_b - pt2_a) if cross_a_2b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt2_b): return True if (cross_a_1b < 0) == (cross_a_2b < 0): return False return True
lines_intersect
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pt1_p, pt2_p, pt1_q, pt2_q):\n for pt1_a, pt2_a, pt1_b, pt2_b in ((pt1_p, pt2_p, pt1_q, pt2_q), (pt1_q,\n pt2_q, pt1_p, pt2_p)):\n v_a = pt2_a - pt1_a\n cross_a_1b = np.cross(v_a, pt1_b - pt2_a)\n if cross_a_1b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt1_b):\n return True\n cross_a_2b = np.cross(v_a, pt2_b - pt2_a)\n if cross_a_2b == 0 and colinear_intersection_test(pt1_a, pt2_a, pt2_b):\n return True\n if (cross_a_1b < 0) == (cross_a_2b < 0):\n return False\n return True\n", "role": "user" }, { "content": "lines_intersect", "role": "assistant" } ]
def x(point, hull): d_start = np.sum((point - hull[0, :]) ** 2) d_end = np.sum((point - hull[-1, :]) ** 2) if d_start > d_end: i = 1 inc = 1 term = hull.shape[0] d2_max = d_start else: i = hull.shape[0] - 2 inc = -1 term = -1 d2_max = d_end while i != term: d2 = np.sum((point - hull[i, :]) ** 2) if d2 < d2_max: break i += inc d2_max = d2 return i - inc
find_farthest
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point, hull):\n d_start = np.sum((point - hull[0, :]) ** 2)\n d_end = np.sum((point - hull[-1, :]) ** 2)\n if d_start > d_end:\n i = 1\n inc = 1\n term = hull.shape[0]\n d2_max = d_start\n else:\n i = hull.shape[0] - 2\n inc = -1\n term = -1\n d2_max = d_end\n while i != term:\n d2 = np.sum((point - hull[i, :]) ** 2)\n if d2 < d2_max:\n break\n i += inc\n d2_max = d2\n return i - inc\n", "role": "user" }, { "content": "find_farthest", "role": "assistant" } ]
def x(hull, observer, background): pt_background = hull[background, :] vector = pt_background - observer i = background dmax = 0 while True: i_next = (i + 1) % hull.shape[0] pt_next = hull[i_next, :] d = -np.cross(vector, pt_next - pt_background) if d < dmax or i_next == background: i_min = i break dmax = d i = i_next dmax = 0 i = background while True: i_next = (i + hull.shape[0] - 1) % hull.shape[0] pt_next = hull[i_next, :] d = np.cross(vector, pt_next - pt_background) if d < dmax or i_next == background: i_max = i break dmax = d i = i_next return i_min, i_max
find_visible
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(hull, observer, background):\n pt_background = hull[background, :]\n vector = pt_background - observer\n i = background\n dmax = 0\n while True:\n i_next = (i + 1) % hull.shape[0]\n pt_next = hull[i_next, :]\n d = -np.cross(vector, pt_next - pt_background)\n if d < dmax or i_next == background:\n i_min = i\n break\n dmax = d\n i = i_next\n dmax = 0\n i = background\n while True:\n i_next = (i + hull.shape[0] - 1) % hull.shape[0]\n pt_next = hull[i_next, :]\n d = np.cross(vector, pt_next - pt_background)\n if d < dmax or i_next == background:\n i_max = i\n break\n dmax = d\n i = i_next\n return i_min, i_max\n", "role": "user" }, { "content": "find_visible", "role": "assistant" } ]
def x(pt, l0, l1): pt = np.atleast_1d(pt) l0 = np.atleast_1d(l0) l1 = np.atleast_1d(l1) reshape = pt.ndim == 1 if reshape: pt.shape = l0.shape = l1.shape = 1, pt.shape[0] result = ((l0[:, 0] - l1[:, 0]) * (l0[:, 1] - pt[:, 1]) - (l0[:, 0] - pt[:, 0]) * (l0[:, 1] - l1[:, 1])) ** 2 / np.sum((l1 - l0) ** 2, 1) if reshape: result = result[0] return result
distance2_to_line
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pt, l0, l1):\n pt = np.atleast_1d(pt)\n l0 = np.atleast_1d(l0)\n l1 = np.atleast_1d(l1)\n reshape = pt.ndim == 1\n if reshape:\n pt.shape = l0.shape = l1.shape = 1, pt.shape[0]\n result = ((l0[:, 0] - l1[:, 0]) * (l0[:, 1] - pt[:, 1]) - (l0[:, 0] -\n pt[:, 0]) * (l0[:, 1] - l1[:, 1])) ** 2 / np.sum((l1 - l0) ** 2, 1)\n if reshape:\n result = result[0]\n return result\n", "role": "user" }, { "content": "distance2_to_line", "role": "assistant" } ]
def x(point, hull): h_prev_pt = hull[-1, :] for h_pt in hull: if np.cross(h_pt - h_prev_pt, point - h_pt) >= 0: return False h_prev_pt = h_pt return True
within_hull
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point, hull):\n h_prev_pt = hull[-1, :]\n for h_pt in hull:\n if np.cross(h_pt - h_prev_pt, point - h_pt) >= 0:\n return False\n h_prev_pt = h_pt\n return True\n", "role": "user" }, { "content": "within_hull", "role": "assistant" } ]
def x(a, indexes): if len(indexes) == 0: return np.zeros(0, bool) elif len(indexes) == 1: return np.all(a) cs = np.zeros(len(a) + 1, int) cs[1:] = np.cumsum(a) augmented_indexes = np.zeros(len(indexes) + 1, int) augmented_indexes[0:-1] = indexes + 1 augmented_indexes[-1] = len(a) + 1 counts = augmented_indexes[1:] - augmented_indexes[0:-1] hits = cs[augmented_indexes[1:] - 1] - cs[augmented_indexes[0:-1] - 1] return counts == hits
all_true
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a, indexes):\n if len(indexes) == 0:\n return np.zeros(0, bool)\n elif len(indexes) == 1:\n return np.all(a)\n cs = np.zeros(len(a) + 1, int)\n cs[1:] = np.cumsum(a)\n augmented_indexes = np.zeros(len(indexes) + 1, int)\n augmented_indexes[0:-1] = indexes + 1\n augmented_indexes[-1] = len(a) + 1\n counts = augmented_indexes[1:] - augmented_indexes[0:-1]\n hits = cs[augmented_indexes[1:] - 1] - cs[augmented_indexes[0:-1] - 1]\n return counts == hits\n", "role": "user" }, { "content": "all_true", "role": "assistant" } ]
def x(image, labels, indexes, wants_compactness=False): if len(indexes) == 0: return np.zeros((0, 2)), np.zeros((0,)), np.zeros((0,)), np.zeros((0,) ), np.zeros((0,)) i, j = np.argwhere(labels != 0).transpose() return ellipse_from_second_moments_ijv(i, j, image[i, j], labels[i, j], indexes, wants_compactness)
ellipse_from_second_moments
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, labels, indexes, wants_compactness=False):\n if len(indexes) == 0:\n return np.zeros((0, 2)), np.zeros((0,)), np.zeros((0,)), np.zeros((0,)\n ), np.zeros((0,))\n i, j = np.argwhere(labels != 0).transpose()\n return ellipse_from_second_moments_ijv(i, j, image[i, j], labels[i, j],\n indexes, wants_compactness)\n", "role": "user" }, { "content": "ellipse_from_second_moments", "role": "assistant" } ]
def x(i, j, image, labels, indexes, wants_compactness=False): if len(indexes) == 0: return [np.zeros((0, 2))] + [np.zeros((0,))] * (5 if wants_compactness else 4) if len(i) == 0: return [np.zeros((len(indexes), 2)), np.ones(len(indexes))] + [np. zeros(len(indexes))] * (4 if wants_compactness else 3) nlabels = np.max(indexes) + 1 m = np.array([[None, 0, None], [0, None, None], [None, None, None]], object ) if np.all(image == 1): image = 1 m[0, 0] = intensity = np.bincount(labels) else: m[0, 0] = intensity = np.bincount(labels, image) ic = np.bincount(labels, i * image) / intensity jc = np.bincount(labels, j * image) / intensity i = i - ic[labels] j = j - jc[labels] m[1, 1] = np.bincount(labels, i * j * image) m[2, 0] = np.bincount(labels, i * i * image) m[0, 2] = np.bincount(labels, j * j * image) a = m[2, 0] / m[0, 0] b = 2 * m[1, 1] / m[0, 0] c = m[0, 2] / m[0, 0] theta = np.arctan2(b, c - a) / 2 temp = np.sqrt(b ** 2 + (a - c) ** 2) mystery_constant = 0.095 mystery_multiplier = 0.9975 major_axis_len = np.sqrt(8 * (a + c + temp) ) * mystery_multiplier + mystery_constant minor_axis_len = np.sqrt(8 * (a + c - temp) ) * mystery_multiplier + mystery_constant eccentricity = np.sqrt(1 - (minor_axis_len / major_axis_len) ** 2) compactness = 2 * np.pi * (a + c) / m[0, 0] return [np.column_stack((ic[indexes], jc[indexes])), eccentricity[ indexes], major_axis_len[indexes], minor_axis_len[indexes], theta[ indexes]] + ([compactness[indexes]] if wants_compactness else [])
ellipse_from_second_moments_ijv
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(i, j, image, labels, indexes, wants_compactness=False):\n if len(indexes) == 0:\n return [np.zeros((0, 2))] + [np.zeros((0,))] * (5 if\n wants_compactness else 4)\n if len(i) == 0:\n return [np.zeros((len(indexes), 2)), np.ones(len(indexes))] + [np.\n zeros(len(indexes))] * (4 if wants_compactness else 3)\n nlabels = np.max(indexes) + 1\n m = np.array([[None, 0, None], [0, None, None], [None, None, None]], object\n )\n if np.all(image == 1):\n image = 1\n m[0, 0] = intensity = np.bincount(labels)\n else:\n m[0, 0] = intensity = np.bincount(labels, image)\n ic = np.bincount(labels, i * image) / intensity\n jc = np.bincount(labels, j * image) / intensity\n i = i - ic[labels]\n j = j - jc[labels]\n m[1, 1] = np.bincount(labels, i * j * image)\n m[2, 0] = np.bincount(labels, i * i * image)\n m[0, 2] = np.bincount(labels, j * j * image)\n a = m[2, 0] / m[0, 0]\n b = 2 * m[1, 1] / m[0, 0]\n c = m[0, 2] / m[0, 0]\n theta = np.arctan2(b, c - a) / 2\n temp = np.sqrt(b ** 2 + (a - c) ** 2)\n mystery_constant = 0.095\n mystery_multiplier = 0.9975\n major_axis_len = np.sqrt(8 * (a + c + temp)\n ) * mystery_multiplier + mystery_constant\n minor_axis_len = np.sqrt(8 * (a + c - temp)\n ) * mystery_multiplier + mystery_constant\n eccentricity = np.sqrt(1 - (minor_axis_len / major_axis_len) ** 2)\n compactness = 2 * np.pi * (a + c) / m[0, 0]\n return [np.column_stack((ic[indexes], jc[indexes])), eccentricity[\n indexes], major_axis_len[indexes], minor_axis_len[indexes], theta[\n indexes]] + ([compactness[indexes]] if wants_compactness else [])\n", "role": "user" }, { "content": "ellipse_from_second_moments_ijv", "role": "assistant" } ]
def x(labels, indexes): fix = fixup_scipy_ndimage_result areas = fix(scind.sum(np.ones(labels.shape), labels, np.array(indexes, dtype=np.int32))) y, x = np.mgrid[0:labels.shape[0], 0:labels.shape[1]] xmin = fix(scind.minimum(x, labels, indexes)) xmax = fix(scind.maximum(x, labels, indexes)) ymin = fix(scind.minimum(y, labels, indexes)) ymax = fix(scind.maximum(y, labels, indexes)) bbareas = (xmax - xmin + 1) * (ymax - ymin + 1) return areas / bbareas
calculate_extents
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indexes):\n fix = fixup_scipy_ndimage_result\n areas = fix(scind.sum(np.ones(labels.shape), labels, np.array(indexes,\n dtype=np.int32)))\n y, x = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]\n xmin = fix(scind.minimum(x, labels, indexes))\n xmax = fix(scind.maximum(x, labels, indexes))\n ymin = fix(scind.minimum(y, labels, indexes))\n ymax = fix(scind.maximum(y, labels, indexes))\n bbareas = (xmax - xmin + 1) * (ymax - ymin + 1)\n return areas / bbareas\n", "role": "user" }, { "content": "calculate_extents", "role": "assistant" } ]
def x(labels, indexes): m = table_idx_from_labels(labels) pixel_score = __perimeter_scoring[m] return fixup_scipy_ndimage_result(scind.sum(pixel_score, labels, np. array(indexes, dtype=np.int32)))
calculate_perimeters
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indexes):\n m = table_idx_from_labels(labels)\n pixel_score = __perimeter_scoring[m]\n return fixup_scipy_ndimage_result(scind.sum(pixel_score, labels, np.\n array(indexes, dtype=np.int32)))\n", "role": "user" }, { "content": "calculate_perimeters", "role": "assistant" } ]
def x(labels): m = np.zeros((labels.shape[0], labels.shape[1]), int) exponent = 0 for i in range(-1, 2): ilow = i == -1 and 1 or 0 iend = i == 1 and labels.shape[0] - 1 or labels.shape[0] for j in range(-1, 2): jlow = j == -1 and 1 or 0 jend = j == 1 and labels.shape[1] - 1 or labels.shape[1] mask = np.zeros(labels.shape, bool) mask[ilow:iend, jlow:jend] = labels[ilow:iend, jlow:jend ] == labels[ilow + i:iend + i, jlow + j:jend + j] m[mask] += 2 ** exponent exponent += 1 return m
table_idx_from_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n m = np.zeros((labels.shape[0], labels.shape[1]), int)\n exponent = 0\n for i in range(-1, 2):\n ilow = i == -1 and 1 or 0\n iend = i == 1 and labels.shape[0] - 1 or labels.shape[0]\n for j in range(-1, 2):\n jlow = j == -1 and 1 or 0\n jend = j == 1 and labels.shape[1] - 1 or labels.shape[1]\n mask = np.zeros(labels.shape, bool)\n mask[ilow:iend, jlow:jend] = labels[ilow:iend, jlow:jend\n ] == labels[ilow + i:iend + i, jlow + j:jend + j]\n m[mask] += 2 ** exponent\n exponent += 1\n return m\n", "role": "user" }, { "content": "table_idx_from_labels", "role": "assistant" } ]
def x(labels, indexes=None): if getattr(indexes, '__getitem__', False): indexes = np.array(indexes, dtype=np.int32) elif indexes is not None: indexes = np.array([indexes], dtype=np.int32) else: labels = labels != 0 indexes = np.array([1], dtype=np.int32) hull, counts = convex_hull(labels, indexes) result = np.zeros((counts.shape[0],)) result[counts == 1] = 1 if not np.any(counts > 1): return result index_of_label = np.zeros(hull[:, 0].max() + 1, int) index_of_label[indexes] = np.array(list(range(indexes.shape[0]))) hull_index = np.zeros((counts.shape[0],), int) hull_index[1:] = np.cumsum(counts[:-1]) if np.any(counts == 2): diff_2 = hull[hull_index[counts == 2], 1:] - hull[hull_index[counts == 2] + 1, 1:] result[counts == 2] = np.sqrt(np.sum(diff_2 ** 2, 1)) + 1 if not np.any(counts >= 3): return result counts_per_label = np.zeros(hull[:, 0].max() + 1, counts.dtype) counts_per_label[indexes] = counts hull_nd = hull[counts_per_label[hull[:, 0]] >= 3] counts_nd = counts[counts >= 3] indexes_nd = indexes[counts >= 3] index_of_label_nd = np.zeros((index_of_label.shape[0],), int) index_of_label_nd[indexes_nd] = np.array(list(range(indexes_nd.shape[0]))) hull_index_nd = np.zeros((counts_nd.shape[0],), int) if hull_index_nd.shape[0] > 1: hull_index_nd[1:] = np.cumsum(counts_nd[:-1]) index_of_label_per_pixel_nd = index_of_label_nd[hull_nd[:, 0]] hull_index_per_pixel_nd = hull_index_nd[index_of_label_per_pixel_nd] within_label_index = np.array(list(range(hull_nd.shape[0])) ) - hull_index_per_pixel_nd within_hull = np.zeros((counts_nd.shape[0], 2)) within_hull[:, 0] = scind.sum(hull_nd[:, 1], hull_nd[:, 0], indexes_nd ) / counts_nd within_hull[:, 1] = scind.sum(hull_nd[:, 2], hull_nd[:, 0], indexes_nd ) / counts_nd within_hull_per_pixel = within_hull[index_of_label_per_pixel_nd] hull_nd[hull_nd[:, 1] >= within_hull_per_pixel[:, 0], 1] += 1 hull_nd[hull_nd[:, 2] >= within_hull_per_pixel[:, 1], 2] += 1 plus_one_idx = np.array(list(range(hull_nd.shape[0]))) + 1 modulo_mask = within_label_index + 1 == counts_nd[ index_of_label_per_pixel_nd] plus_one_idx[modulo_mask] = hull_index_per_pixel_nd[modulo_mask] area_per_pt_nd = triangle_areas(hull_nd[:, 1:], hull_nd[plus_one_idx, 1 :], within_hull_per_pixel) result[counts >= 3] = scind.sum(area_per_pt_nd, hull_nd[:, 0], indexes_nd) return result
calculate_convex_hull_areas
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indexes=None):\n if getattr(indexes, '__getitem__', False):\n indexes = np.array(indexes, dtype=np.int32)\n elif indexes is not None:\n indexes = np.array([indexes], dtype=np.int32)\n else:\n labels = labels != 0\n indexes = np.array([1], dtype=np.int32)\n hull, counts = convex_hull(labels, indexes)\n result = np.zeros((counts.shape[0],))\n result[counts == 1] = 1\n if not np.any(counts > 1):\n return result\n index_of_label = np.zeros(hull[:, 0].max() + 1, int)\n index_of_label[indexes] = np.array(list(range(indexes.shape[0])))\n hull_index = np.zeros((counts.shape[0],), int)\n hull_index[1:] = np.cumsum(counts[:-1])\n if np.any(counts == 2):\n diff_2 = hull[hull_index[counts == 2], 1:] - hull[hull_index[counts ==\n 2] + 1, 1:]\n result[counts == 2] = np.sqrt(np.sum(diff_2 ** 2, 1)) + 1\n if not np.any(counts >= 3):\n return result\n counts_per_label = np.zeros(hull[:, 0].max() + 1, counts.dtype)\n counts_per_label[indexes] = counts\n hull_nd = hull[counts_per_label[hull[:, 0]] >= 3]\n counts_nd = counts[counts >= 3]\n indexes_nd = indexes[counts >= 3]\n index_of_label_nd = np.zeros((index_of_label.shape[0],), int)\n index_of_label_nd[indexes_nd] = np.array(list(range(indexes_nd.shape[0])))\n hull_index_nd = np.zeros((counts_nd.shape[0],), int)\n if hull_index_nd.shape[0] > 1:\n hull_index_nd[1:] = np.cumsum(counts_nd[:-1])\n index_of_label_per_pixel_nd = index_of_label_nd[hull_nd[:, 0]]\n hull_index_per_pixel_nd = hull_index_nd[index_of_label_per_pixel_nd]\n within_label_index = np.array(list(range(hull_nd.shape[0]))\n ) - hull_index_per_pixel_nd\n within_hull = np.zeros((counts_nd.shape[0], 2))\n within_hull[:, 0] = scind.sum(hull_nd[:, 1], hull_nd[:, 0], indexes_nd\n ) / counts_nd\n within_hull[:, 1] = scind.sum(hull_nd[:, 2], hull_nd[:, 0], indexes_nd\n ) / counts_nd\n within_hull_per_pixel = within_hull[index_of_label_per_pixel_nd]\n hull_nd[hull_nd[:, 1] >= within_hull_per_pixel[:, 0], 1] += 1\n hull_nd[hull_nd[:, 2] >= within_hull_per_pixel[:, 1], 2] += 1\n plus_one_idx = np.array(list(range(hull_nd.shape[0]))) + 1\n modulo_mask = within_label_index + 1 == counts_nd[\n index_of_label_per_pixel_nd]\n plus_one_idx[modulo_mask] = hull_index_per_pixel_nd[modulo_mask]\n area_per_pt_nd = triangle_areas(hull_nd[:, 1:], hull_nd[plus_one_idx, 1\n :], within_hull_per_pixel)\n result[counts >= 3] = scind.sum(area_per_pt_nd, hull_nd[:, 0], indexes_nd)\n return result\n", "role": "user" }, { "content": "calculate_convex_hull_areas", "role": "assistant" } ]
def x(labels, indexes=None): if indexes is not None: """ Convert to compat 32bit integer """ indexes = np.array(indexes, dtype=np.int32) areas = scind.sum(np.ones(labels.shape), labels, indexes) convex_hull_areas = calculate_convex_hull_areas(labels, indexes) return areas / convex_hull_areas
calculate_solidity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indexes=None):\n if indexes is not None:\n \"\"\" Convert to compat 32bit integer \"\"\"\n indexes = np.array(indexes, dtype=np.int32)\n areas = scind.sum(np.ones(labels.shape), labels, indexes)\n convex_hull_areas = calculate_convex_hull_areas(labels, indexes)\n return areas / convex_hull_areas\n", "role": "user" }, { "content": "calculate_solidity", "role": "assistant" } ]
def x(labels, indexes=None): if indexes is None: labels = labels != 0 indexes = np.array([1], dtype=np.int32) elif getattr(indexes, '__getitem__', False): indexes = np.array(indexes, dtype=np.int32) else: indexes = np.array([indexes], dtype=np.int32) fix = fixup_scipy_ndimage_result I_shape = labels.shape[0] + 3, labels.shape[1] + 3 I00 = np.zeros(I_shape, int) I01 = np.zeros(I_shape, int) I10 = np.zeros(I_shape, int) I11 = np.zeros(I_shape, int) slice_00 = [slice(1, labels.shape[0] + 1), slice(1, labels.shape[1] + 1)] slice_01 = [slice(1, labels.shape[0] + 1), slice(0, labels.shape[1])] slice_10 = [slice(labels.shape[0]), slice(1, labels.shape[1] + 1)] slice_11 = [slice(0, labels.shape[0]), slice(0, labels.shape[1])] I00[slice_00] = labels I01[slice_01] = labels I10[slice_10] = labels I11[slice_11] = labels EQ00_01 = I00 == I01 EQ01_00 = EQ00_01 EQ00_10 = I00 == I10 EQ10_00 = EQ00_10 EQ00_11 = I00 == I11 EQ11_00 = EQ00_11 EQ01_10 = I01 == I10 EQ10_01 = EQ01_10 EQ01_11 = I01 == I11 EQ11_01 = EQ01_11 EQ10_11 = I10 == I11 EQ11_10 = EQ10_11 NE00_01 = np.logical_not(EQ00_01) NE01_00 = NE00_01 NE00_10 = np.logical_not(EQ00_10) NE10_00 = NE00_10 NE00_11 = np.logical_not(EQ00_11) NE11_00 = NE00_11 NE01_10 = np.logical_not(EQ01_10) NE10_01 = NE01_10 NE01_11 = np.logical_not(EQ01_11) NE11_01 = NE01_11 NE10_11 = np.logical_not(EQ10_11) NE11_10 = NE10_11 Q1_condition = (NE00_01 & NE00_10 & NE00_11).astype(int) Q1_condition[slice_00] += (NE01_00 & NE01_10 & NE01_11)[slice_01] Q1_condition[slice_00] += (NE10_00 & NE10_01 & NE10_11)[slice_10] Q1_condition[slice_00] += (NE11_00 & NE11_01 & NE11_10)[slice_11] Q1 = fix(scind.sum(Q1_condition, I00, indexes)) Q3_condition = (EQ00_10 & EQ00_01 & NE00_11).astype(int) Q3_condition[slice_00] += (NE11_00 & EQ11_10 & EQ11_01)[slice_11] Q3_condition += NE00_01 & EQ00_10 & EQ00_11 Q3_condition += NE00_10 & EQ00_01 & EQ00_11 Q3 = fix(scind.sum(Q3_condition, I00, indexes)) QD_condition = (NE00_01 & NE00_10 & EQ00_11).astype(int) QD_condition[slice_00] += (NE01_00 & NE01_11 & EQ01_10)[slice_01] QD = fix(scind.sum(QD_condition, I00, indexes)) W = (Q1 - Q3 - 2 * QD).astype(float) / 4.0 if indexes is None: return W[0] return W
euler_number
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indexes=None):\n if indexes is None:\n labels = labels != 0\n indexes = np.array([1], dtype=np.int32)\n elif getattr(indexes, '__getitem__', False):\n indexes = np.array(indexes, dtype=np.int32)\n else:\n indexes = np.array([indexes], dtype=np.int32)\n fix = fixup_scipy_ndimage_result\n I_shape = labels.shape[0] + 3, labels.shape[1] + 3\n I00 = np.zeros(I_shape, int)\n I01 = np.zeros(I_shape, int)\n I10 = np.zeros(I_shape, int)\n I11 = np.zeros(I_shape, int)\n slice_00 = [slice(1, labels.shape[0] + 1), slice(1, labels.shape[1] + 1)]\n slice_01 = [slice(1, labels.shape[0] + 1), slice(0, labels.shape[1])]\n slice_10 = [slice(labels.shape[0]), slice(1, labels.shape[1] + 1)]\n slice_11 = [slice(0, labels.shape[0]), slice(0, labels.shape[1])]\n I00[slice_00] = labels\n I01[slice_01] = labels\n I10[slice_10] = labels\n I11[slice_11] = labels\n EQ00_01 = I00 == I01\n EQ01_00 = EQ00_01\n EQ00_10 = I00 == I10\n EQ10_00 = EQ00_10\n EQ00_11 = I00 == I11\n EQ11_00 = EQ00_11\n EQ01_10 = I01 == I10\n EQ10_01 = EQ01_10\n EQ01_11 = I01 == I11\n EQ11_01 = EQ01_11\n EQ10_11 = I10 == I11\n EQ11_10 = EQ10_11\n NE00_01 = np.logical_not(EQ00_01)\n NE01_00 = NE00_01\n NE00_10 = np.logical_not(EQ00_10)\n NE10_00 = NE00_10\n NE00_11 = np.logical_not(EQ00_11)\n NE11_00 = NE00_11\n NE01_10 = np.logical_not(EQ01_10)\n NE10_01 = NE01_10\n NE01_11 = np.logical_not(EQ01_11)\n NE11_01 = NE01_11\n NE10_11 = np.logical_not(EQ10_11)\n NE11_10 = NE10_11\n Q1_condition = (NE00_01 & NE00_10 & NE00_11).astype(int)\n Q1_condition[slice_00] += (NE01_00 & NE01_10 & NE01_11)[slice_01]\n Q1_condition[slice_00] += (NE10_00 & NE10_01 & NE10_11)[slice_10]\n Q1_condition[slice_00] += (NE11_00 & NE11_01 & NE11_10)[slice_11]\n Q1 = fix(scind.sum(Q1_condition, I00, indexes))\n Q3_condition = (EQ00_10 & EQ00_01 & NE00_11).astype(int)\n Q3_condition[slice_00] += (NE11_00 & EQ11_10 & EQ11_01)[slice_11]\n Q3_condition += NE00_01 & EQ00_10 & EQ00_11\n Q3_condition += NE00_10 & EQ00_01 & EQ00_11\n Q3 = fix(scind.sum(Q3_condition, I00, indexes))\n QD_condition = (NE00_01 & NE00_10 & EQ00_11).astype(int)\n QD_condition[slice_00] += (NE01_00 & NE01_11 & EQ01_10)[slice_01]\n QD = fix(scind.sum(QD_condition, I00, indexes))\n W = (Q1 - Q3 - 2 * QD).astype(float) / 4.0\n if indexes is None:\n return W[0]\n return W\n", "role": "user" }, { "content": "euler_number", "role": "assistant" } ]
def x(shape, block_shape): shape = np.array(shape) block_shape = np.array(block_shape) i, j = np.mgrid[0:shape[0], 0:shape[1]] ijmax = (shape.astype(float) / block_shape.astype(float)).astype(int) ijmax = np.maximum(ijmax, 1) multiplier = ijmax.astype(float) / shape.astype(float) i = (i * multiplier[0]).astype(int) j = (j * multiplier[1]).astype(int) labels = i * ijmax[1] + j indexes = np.array(list(range(np.product(ijmax)))) return labels, indexes
block
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(shape, block_shape):\n shape = np.array(shape)\n block_shape = np.array(block_shape)\n i, j = np.mgrid[0:shape[0], 0:shape[1]]\n ijmax = (shape.astype(float) / block_shape.astype(float)).astype(int)\n ijmax = np.maximum(ijmax, 1)\n multiplier = ijmax.astype(float) / shape.astype(float)\n i = (i * multiplier[0]).astype(int)\n j = (j * multiplier[1]).astype(int)\n labels = i * ijmax[1] + j\n indexes = np.array(list(range(np.product(ijmax))))\n return labels, indexes\n", "role": "user" }, { "content": "block", "role": "assistant" } ]
def x(image, radius=None, mask=None, footprint=None): final_image = image - opening(image, radius, mask, footprint) if not mask is None: not_mask = np.logical_not(mask) final_image[not_mask] = image[not_mask] return final_image
white_tophat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, radius=None, mask=None, footprint=None):\n final_image = image - opening(image, radius, mask, footprint)\n if not mask is None:\n not_mask = np.logical_not(mask)\n final_image[not_mask] = image[not_mask]\n return final_image\n", "role": "user" }, { "content": "white_tophat", "role": "assistant" } ]
def x(image, radius=None, mask=None, footprint=None): final_image = closing(image, radius, mask, footprint) - image if not mask is None: not_mask = np.logical_not(mask) final_image[not_mask] = image[not_mask] return final_image
black_tophat
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, radius=None, mask=None, footprint=None):\n final_image = closing(image, radius, mask, footprint) - image\n if not mask is None:\n not_mask = np.logical_not(mask)\n final_image[not_mask] = image[not_mask]\n return final_image\n", "role": "user" }, { "content": "black_tophat", "role": "assistant" } ]
def x(image, radius=None, mask=None, footprint=None): if footprint is None: if radius is None: footprint = np.ones((3, 3), bool) radius = 1 else: footprint = strel_disk(radius) == 1 else: radius = max(1, np.max(np.array(footprint.shape) // 2)) iradius = int(np.ceil(radius)) big_image = np.ones(np.array(image.shape) + iradius * 2) big_image[iradius:-iradius, iradius:-iradius] = image if not mask is None: not_mask = np.logical_not(mask) big_image[iradius:-iradius, iradius:-iradius][not_mask] = 1 processed_image = scind.grey_erosion(big_image, footprint=footprint) final_image = processed_image[iradius:-iradius, iradius:-iradius] if not mask is None: final_image[not_mask] = image[not_mask] return final_image
grey_erosion
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, radius=None, mask=None, footprint=None):\n if footprint is None:\n if radius is None:\n footprint = np.ones((3, 3), bool)\n radius = 1\n else:\n footprint = strel_disk(radius) == 1\n else:\n radius = max(1, np.max(np.array(footprint.shape) // 2))\n iradius = int(np.ceil(radius))\n big_image = np.ones(np.array(image.shape) + iradius * 2)\n big_image[iradius:-iradius, iradius:-iradius] = image\n if not mask is None:\n not_mask = np.logical_not(mask)\n big_image[iradius:-iradius, iradius:-iradius][not_mask] = 1\n processed_image = scind.grey_erosion(big_image, footprint=footprint)\n final_image = processed_image[iradius:-iradius, iradius:-iradius]\n if not mask is None:\n final_image[not_mask] = image[not_mask]\n return final_image\n", "role": "user" }, { "content": "grey_erosion", "role": "assistant" } ]
def x(image, mask, footprint=None, offset=None): assert tuple(image.shape) == tuple(mask.shape) assert np.all(image <= mask) if footprint is None: footprint = np.ones([3] * image.ndim, bool) else: footprint = footprint.copy() if offset is None: assert all([(d % 2 == 1) for d in footprint.shape] ), 'Footprint dimensions must all be odd' offset = np.array([(d // 2) for d in footprint.shape]) footprint[[slice(d, d + 1) for d in offset]] = False padding = (np.array(footprint.shape) // 2).astype(int) dims = np.zeros(image.ndim + 1, int) dims[1:] = np.array(image.shape) + 2 * padding dims[0] = 2 inside_slices = [slice(p, -p) for p in padding] values = np.ones(dims) * np.min(image) values[[0] + inside_slices] = image values[[1] + inside_slices] = mask value_stride = np.array(values.strides[1:]) // values.dtype.itemsize image_stride = values.strides[0] // values.dtype.itemsize footprint_mgrid = np.mgrid[[slice(-o, d - o) for d, o in zip(footprint. shape, offset)]] footprint_offsets = footprint_mgrid[:, footprint].transpose() strides = np.array([np.sum(value_stride * footprint_offset) for footprint_offset in footprint_offsets], np.int32) values = values.flatten() value_sort = np.lexsort([-values]).astype(np.int32) prev = -np.ones(len(values), np.int32) next = -np.ones(len(values), np.int32) prev[value_sort[1:]] = value_sort[:-1] next[value_sort[:-1]] = value_sort[1:] values, value_map = rank_order(values) current = value_sort[0] slow = False if slow: while current != -1: if current < image_stride: current_value = values[current] if current_value == 0: break neighbors = strides + current for neighbor in neighbors: if neighbor < 0: raise IndexError( 'Index out of bounds: %d, current=%d, current_value=%d' % (neighbor, np.unravel_index(current, dims), current_value)) neighbor_value = values[neighbor] if neighbor_value < current_value: mask_value = values[neighbor + image_stride] if neighbor_value < mask_value: if mask_value < current_value: link = neighbor + image_stride values[neighbor] = mask_value else: link = current values[neighbor] = current_value nprev = prev[neighbor] nnext = next[neighbor] next[nprev] = nnext if nnext != -1: prev[nnext] = nprev next[neighbor] = next[link] prev[neighbor] = link prev[next[link]] = neighbor next[link] = neighbor current = next[current] else: grey_reconstruction_loop(values, prev, next, strides, current, image_stride) values = value_map[values[:image_stride]] values.shape = np.array(image.shape) + 2 * padding return values[inside_slices]
grey_reconstruction
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask, footprint=None, offset=None):\n assert tuple(image.shape) == tuple(mask.shape)\n assert np.all(image <= mask)\n if footprint is None:\n footprint = np.ones([3] * image.ndim, bool)\n else:\n footprint = footprint.copy()\n if offset is None:\n assert all([(d % 2 == 1) for d in footprint.shape]\n ), 'Footprint dimensions must all be odd'\n offset = np.array([(d // 2) for d in footprint.shape])\n footprint[[slice(d, d + 1) for d in offset]] = False\n padding = (np.array(footprint.shape) // 2).astype(int)\n dims = np.zeros(image.ndim + 1, int)\n dims[1:] = np.array(image.shape) + 2 * padding\n dims[0] = 2\n inside_slices = [slice(p, -p) for p in padding]\n values = np.ones(dims) * np.min(image)\n values[[0] + inside_slices] = image\n values[[1] + inside_slices] = mask\n value_stride = np.array(values.strides[1:]) // values.dtype.itemsize\n image_stride = values.strides[0] // values.dtype.itemsize\n footprint_mgrid = np.mgrid[[slice(-o, d - o) for d, o in zip(footprint.\n shape, offset)]]\n footprint_offsets = footprint_mgrid[:, footprint].transpose()\n strides = np.array([np.sum(value_stride * footprint_offset) for\n footprint_offset in footprint_offsets], np.int32)\n values = values.flatten()\n value_sort = np.lexsort([-values]).astype(np.int32)\n prev = -np.ones(len(values), np.int32)\n next = -np.ones(len(values), np.int32)\n prev[value_sort[1:]] = value_sort[:-1]\n next[value_sort[:-1]] = value_sort[1:]\n values, value_map = rank_order(values)\n current = value_sort[0]\n slow = False\n if slow:\n while current != -1:\n if current < image_stride:\n current_value = values[current]\n if current_value == 0:\n break\n neighbors = strides + current\n for neighbor in neighbors:\n if neighbor < 0:\n raise IndexError(\n 'Index out of bounds: %d, current=%d, current_value=%d'\n % (neighbor, np.unravel_index(current, dims),\n current_value))\n neighbor_value = values[neighbor]\n if neighbor_value < current_value:\n mask_value = values[neighbor + image_stride]\n if neighbor_value < mask_value:\n if mask_value < current_value:\n link = neighbor + image_stride\n values[neighbor] = mask_value\n else:\n link = current\n values[neighbor] = current_value\n nprev = prev[neighbor]\n nnext = next[neighbor]\n next[nprev] = nnext\n if nnext != -1:\n prev[nnext] = nprev\n next[neighbor] = next[link]\n prev[neighbor] = link\n prev[next[link]] = neighbor\n next[link] = neighbor\n current = next[current]\n else:\n grey_reconstruction_loop(values, prev, next, strides, current,\n image_stride)\n values = value_map[values[:image_stride]]\n values.shape = np.array(image.shape) + 2 * padding\n return values[inside_slices]\n", "role": "user" }, { "content": "grey_reconstruction", "role": "assistant" } ]
def x(image, radius=None, mask=None, footprint=None): eroded_image = grey_erosion(image, radius, mask, footprint) return grey_dilation(eroded_image, radius, mask, footprint)
opening
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, radius=None, mask=None, footprint=None):\n eroded_image = grey_erosion(image, radius, mask, footprint)\n return grey_dilation(eroded_image, radius, mask, footprint)\n", "role": "user" }, { "content": "opening", "role": "assistant" } ]
def x(image, radius=None, mask=None, footprint=None): dilated_image = grey_dilation(image, radius, mask, footprint) return grey_erosion(dilated_image, radius, mask, footprint)
closing
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, radius=None, mask=None, footprint=None):\n dilated_image = grey_dilation(image, radius, mask, footprint)\n return grey_erosion(dilated_image, radius, mask, footprint)\n", "role": "user" }, { "content": "closing", "role": "assistant" } ]
def x(image, linelength=10, dAngle=10, mask=None): nAngles = 180 // dAngle openingstack = np.zeros((nAngles, image.shape[0], image.shape[1]), image.dtype) for iAngle in range(nAngles): angle = dAngle * iAngle se = strel_line(linelength, angle) openingstack[iAngle, :, :] = opening(image, mask=mask, footprint=se) imLines = np.max(openingstack, axis=0) - np.min(openingstack, axis=0) return imLines
openlines
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, linelength=10, dAngle=10, mask=None):\n nAngles = 180 // dAngle\n openingstack = np.zeros((nAngles, image.shape[0], image.shape[1]),\n image.dtype)\n for iAngle in range(nAngles):\n angle = dAngle * iAngle\n se = strel_line(linelength, angle)\n openingstack[iAngle, :, :] = opening(image, mask=mask, footprint=se)\n imLines = np.max(openingstack, axis=0) - np.min(openingstack, axis=0)\n return imLines\n", "role": "user" }, { "content": "openlines", "role": "assistant" } ]
def x(image, table, border_value, iterations=None): center_is_zero = np.array([(x & 2 ** 4 == 0) for x in range(2 ** 9)]) use_index_trick = False if not np.any(table[center_is_zero]) and (np.issubdtype(image.dtype, bool) or np.issubdtype(image.dtype, int)): use_index_trick = True invert = False elif np.all(table[~center_is_zero]) and np.issubdtype(image.dtype, bool): use_index_trick = True invert = True image = ~image table = ~table[511 - np.arange(512)] border_value = not border_value if use_index_trick: orig_image = image index_i, index_j, image = prepare_for_index_lookup(image, border_value) index_i, index_j = index_lookup(index_i, index_j, image, table, iterations) image = extract_from_image_lookup(orig_image, index_i, index_j) if invert: image = ~image return image counter = 0 while counter != iterations: counter += 1 if image.shape[0] < 3 or image.shape[1] < 3: image = image.astype(bool) indexer = np.zeros(image.shape, int) indexer[1:, 1:] += image[:-1, :-1] * 2 ** 0 indexer[1:, :] += image[:-1, :] * 2 ** 1 indexer[1:, :-1] += image[:-1, 1:] * 2 ** 2 indexer[:, 1:] += image[:, :-1] * 2 ** 3 indexer[:, :] += image[:, :] * 2 ** 4 indexer[:, :-1] += image[:, 1:] * 2 ** 5 indexer[:-1, 1:] += image[1:, :-1] * 2 ** 6 indexer[:-1, :] += image[1:, :] * 2 ** 7 indexer[:-1, :-1] += image[1:, 1:] * 2 ** 8 else: indexer = table_lookup_index(np.ascontiguousarray(image, np.uint8)) if border_value: indexer[0, :] |= 2 ** 0 + 2 ** 1 + 2 ** 2 indexer[-1, :] |= 2 ** 6 + 2 ** 7 + 2 ** 8 indexer[:, 0] |= 2 ** 0 + 2 ** 3 + 2 ** 6 indexer[:, -1] |= 2 ** 2 + 2 ** 5 + 2 ** 8 new_image = table[indexer] if np.all(new_image == image): break image = new_image return image
table_lookup
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, table, border_value, iterations=None):\n center_is_zero = np.array([(x & 2 ** 4 == 0) for x in range(2 ** 9)])\n use_index_trick = False\n if not np.any(table[center_is_zero]) and (np.issubdtype(image.dtype,\n bool) or np.issubdtype(image.dtype, int)):\n use_index_trick = True\n invert = False\n elif np.all(table[~center_is_zero]) and np.issubdtype(image.dtype, bool):\n use_index_trick = True\n invert = True\n image = ~image\n table = ~table[511 - np.arange(512)]\n border_value = not border_value\n if use_index_trick:\n orig_image = image\n index_i, index_j, image = prepare_for_index_lookup(image, border_value)\n index_i, index_j = index_lookup(index_i, index_j, image, table,\n iterations)\n image = extract_from_image_lookup(orig_image, index_i, index_j)\n if invert:\n image = ~image\n return image\n counter = 0\n while counter != iterations:\n counter += 1\n if image.shape[0] < 3 or image.shape[1] < 3:\n image = image.astype(bool)\n indexer = np.zeros(image.shape, int)\n indexer[1:, 1:] += image[:-1, :-1] * 2 ** 0\n indexer[1:, :] += image[:-1, :] * 2 ** 1\n indexer[1:, :-1] += image[:-1, 1:] * 2 ** 2\n indexer[:, 1:] += image[:, :-1] * 2 ** 3\n indexer[:, :] += image[:, :] * 2 ** 4\n indexer[:, :-1] += image[:, 1:] * 2 ** 5\n indexer[:-1, 1:] += image[1:, :-1] * 2 ** 6\n indexer[:-1, :] += image[1:, :] * 2 ** 7\n indexer[:-1, :-1] += image[1:, 1:] * 2 ** 8\n else:\n indexer = table_lookup_index(np.ascontiguousarray(image, np.uint8))\n if border_value:\n indexer[0, :] |= 2 ** 0 + 2 ** 1 + 2 ** 2\n indexer[-1, :] |= 2 ** 6 + 2 ** 7 + 2 ** 8\n indexer[:, 0] |= 2 ** 0 + 2 ** 3 + 2 ** 6\n indexer[:, -1] |= 2 ** 2 + 2 ** 5 + 2 ** 8\n new_image = table[indexer]\n if np.all(new_image == image):\n break\n image = new_image\n return image\n", "role": "user" }, { "content": "table_lookup", "role": "assistant" } ]
def x(index): return np.array([[index & 2 ** 0, index & 2 ** 1, index & 2 ** 2], [ index & 2 ** 3, index & 2 ** 4, index & 2 ** 5], [index & 2 ** 6, index & 2 ** 7, index & 2 ** 8]], bool)
pattern_of
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(index):\n return np.array([[index & 2 ** 0, index & 2 ** 1, index & 2 ** 2], [\n index & 2 ** 3, index & 2 ** 4, index & 2 ** 5], [index & 2 ** 6, \n index & 2 ** 7, index & 2 ** 8]], bool)\n", "role": "user" }, { "content": "pattern_of", "role": "assistant" } ]