id
stringlengths 14
117
| description
stringlengths 29
13k
| code
stringlengths 10
49.8k
| test_samples
sequence | source
class label 3
classes | prompt
stringlengths 391
104k
|
---|---|---|---|---|---|
1369_D. TediousLee_937 | Lee tried so hard to make a good div.2 D problem to balance his recent contest, but it still doesn't feel good at all. Lee invented it so tediously slow that he managed to develop a phobia about div.2 D problem setting instead. And now he is hiding behind the bushes...
Let's define a Rooted Dead Bush (RDB) of level n as a rooted tree constructed as described below.
A rooted dead bush of level 1 is a single vertex. To construct an RDB of level i we, at first, construct an RDB of level i-1, then for each vertex u:
* if u has no children then we will add a single child to it;
* if u has one child then we will add two children to it;
* if u has more than one child, then we will skip it.
<image> Rooted Dead Bushes of level 1, 2 and 3.
Let's define a claw as a rooted tree with four vertices: one root vertex (called also as center) with three children. It looks like a claw:
<image> The center of the claw is the vertex with label 1.
Lee has a Rooted Dead Bush of level n. Initially, all vertices of his RDB are green.
In one move, he can choose a claw in his RDB, if all vertices in the claw are green and all vertices of the claw are children of its center, then he colors the claw's vertices in yellow.
He'd like to know the maximum number of yellow vertices he can achieve. Since the answer might be very large, print it modulo 10^9+7.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.
Next t lines contain test cases — one per line.
The first line of each test case contains one integer n (1 ≤ n ≤ 2 ⋅ 10^6) — the level of Lee's RDB.
Output
For each test case, print a single integer — the maximum number of yellow vertices Lee can make modulo 10^9 + 7.
Example
Input
7
1
2
3
4
5
100
2000000
Output
0
0
4
4
12
990998587
804665184
Note
It's easy to see that the answer for RDB of level 1 or 2 is 0.
The answer for RDB of level 3 is 4 since there is only one claw we can choose: \{1, 2, 3, 4\}.
The answer for RDB of level 4 is 4 since we can choose either single claw \{1, 3, 2, 4\} or single claw \{2, 7, 5, 6\}. There are no other claws in the RDB of level 4 (for example, we can't choose \{2, 1, 7, 6\}, since 1 is not a child of center vertex 2).
<image> Rooted Dead Bush of level 4. | import sys
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
INF = 10 ** 19
MOD = 10 ** 9 + 7
def mat_pow(mat, init, K, MOD):
""" 行列累乗 """
def mat_dot(A, B, MOD):
""" 行列の積 """
# 1次元リストが来たら2次元の行列にする
if not isinstance(A[0], list) and not isinstance(A[0], tuple):
A = [A]
if not isinstance(B[0], list) and not isinstance(A[0], tuple):
B = [[b] for b in B]
n1 = len(A)
n2 = len(A[0])
_ = len(B)
m2 = len(B[0])
res = list2d(n1, m2, 0)
for i in range(n1):
for j in range(m2):
for k in range(n2):
res[i][j] += A[i][k] * B[k][j]
res[i][j] %= MOD
return res
def _mat_pow(mat, k, MOD):
""" 行列matをk乗する """
n = len(mat)
res = list2d(n, n, 0)
for i in range(n):
res[i][i] = 1
# 繰り返し二乗法
while k > 0:
if k & 1:
res = mat_dot(res, mat, MOD)
mat = mat_dot(mat, mat, MOD)
k >>= 1
return res
# 行列累乗でK項先へ
res = _mat_pow(mat, K, MOD)
# 最後に初期値と掛ける
res = mat_dot(res, init, MOD)
return [a[0] for a in res]
for _ in range(INT()):
N = INT()
mat = [
[5, 6, 0, 4],
[3, 2, 0, 0],
[1, 2, 0, 0],
[0, 0, 0, 1],
]
init = [4, 0, 0, 1]
if N % 3 == 0:
res = mat_pow(mat, init, N//3-1, MOD)
ans = res[0]
print(ans)
else:
res = mat_pow(mat, init, N//3, MOD)
ans = res[3-N%3]
print(ans)
| {
"input": [
"7\n1\n2\n3\n4\n5\n100\n2000000\n",
"3\n1234567\n1268501\n1268499\n",
"3\n60615\n1268501\n1268499\n",
"7\n1\n2\n3\n4\n5\n110\n2000000\n",
"3\n89610\n1268501\n1268499\n",
"7\n2\n2\n5\n4\n5\n110\n2000000\n",
"7\n2\n2\n5\n4\n5\n100\n2000000\n",
"7\n2\n2\n5\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n1268499\n",
"7\n1\n1\n3\n4\n5\n100\n2000000\n",
"3\n60615\n288786\n1268499\n",
"3\n89610\n1699286\n1268499\n",
"7\n2\n2\n3\n4\n5\n110\n1478999\n",
"7\n2\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n4\n2\n100\n2000000\n",
"3\n112294\n1268501\n889172\n",
"7\n1\n1\n3\n4\n1\n100\n2000000\n",
"3\n48142\n288786\n1268499\n",
"7\n2\n2\n3\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n4\n5\n101\n2000000\n",
"7\n2\n2\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n889172\n",
"3\n48142\n288786\n375262\n",
"7\n2\n2\n6\n8\n5\n110\n1478999\n",
"7\n3\n2\n5\n8\n5\n101\n2000000\n",
"7\n2\n4\n8\n1\n2\n100\n2000000\n",
"3\n112294\n1071675\n666482\n",
"3\n7174\n288786\n375262\n",
"7\n2\n4\n4\n1\n2\n100\n2000000\n",
"3\n112294\n1249048\n666482\n",
"3\n7174\n351971\n375262\n",
"7\n2\n4\n7\n1\n2\n100\n2000000\n",
"3\n7174\n351971\n310335\n",
"3\n7174\n351971\n144653\n",
"3\n7174\n351971\n244158\n",
"3\n7174\n631188\n244158\n",
"3\n7174\n182217\n244158\n",
"3\n12118\n182217\n244158\n",
"3\n20664\n182217\n244158\n",
"3\n20664\n182217\n376770\n",
"3\n20664\n182217\n428443\n",
"3\n27552\n182217\n428443\n",
"3\n38466\n182217\n428443\n",
"3\n38466\n182217\n561112\n",
"3\n38466\n182217\n524106\n",
"3\n38466\n182217\n484934\n",
"3\n38466\n182217\n405486\n",
"3\n38466\n144862\n405486\n",
"3\n38466\n209207\n405486\n",
"3\n38466\n313208\n405486\n",
"3\n27685\n313208\n405486\n",
"3\n27685\n123315\n405486\n",
"3\n40306\n123315\n405486\n",
"7\n2\n2\n3\n4\n5\n110\n2000000\n"
],
"output": [
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"788765312\n999997375\n999999350\n",
"995629981\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n",
"732651206\n999997375\n999999350\n",
"0\n0\n12\n4\n12\n782548134\n804665184\n",
"0\n0\n12\n4\n12\n990998587\n804665184\n",
"0\n0\n12\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n999999350\n",
"0\n0\n4\n4\n12\n990998587\n804665184\n",
"995629981\n834524045\n999999350\n",
"732651206\n540789644\n999999350\n",
"0\n0\n4\n4\n12\n782548134\n793574295\n",
"0\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n4\n0\n990998587\n804665184\n",
"684869733\n999997375\n387737221\n",
"0\n0\n4\n4\n0\n990998587\n804665184\n",
"614103887\n834524045\n999999350\n",
"0\n0\n4\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n4\n12\n981997171\n804665184\n",
"0\n0\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n387737221\n",
"614103887\n834524045\n438814745\n",
"0\n0\n24\n96\n12\n782548134\n793574295\n",
"4\n0\n12\n96\n12\n981997171\n804665184\n",
"0\n4\n96\n0\n0\n990998587\n804665184\n",
"684869733\n855522687\n619095610\n",
"469558586\n834524045\n438814745\n",
"0\n4\n4\n0\n0\n990998587\n804665184\n",
"684869733\n280332756\n619095610\n",
"469558586\n460226479\n438814745\n",
"0\n4\n48\n0\n0\n990998587\n804665184\n",
"469558586\n460226479\n553297662\n",
"469558586\n460226479\n284836013\n",
"469558586\n460226479\n548018697\n",
"469558586\n594755495\n548018697\n",
"469558586\n942659168\n548018697\n",
"677997523\n942659168\n548018697\n",
"2318044\n942659168\n548018697\n",
"2318044\n942659168\n845451688\n",
"2318044\n942659168\n218254841\n",
"69490322\n942659168\n218254841\n",
"40959384\n942659168\n218254841\n",
"40959384\n942659168\n511582588\n",
"40959384\n942659168\n159286033\n",
"40959384\n942659168\n990756980\n",
"40959384\n942659168\n264676407\n",
"40959384\n826951984\n264676407\n",
"40959384\n574398935\n264676407\n",
"40959384\n584751069\n264676407\n",
"201721844\n584751069\n264676407\n",
"201721844\n343942044\n264676407\n",
"808368223\n343942044\n264676407\n",
"0\n0\n4\n4\n12\n782548134\n804665184\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Lee tried so hard to make a good div.2 D problem to balance his recent contest, but it still doesn't feel good at all. Lee invented it so tediously slow that he managed to develop a phobia about div.2 D problem setting instead. And now he is hiding behind the bushes...
Let's define a Rooted Dead Bush (RDB) of level n as a rooted tree constructed as described below.
A rooted dead bush of level 1 is a single vertex. To construct an RDB of level i we, at first, construct an RDB of level i-1, then for each vertex u:
* if u has no children then we will add a single child to it;
* if u has one child then we will add two children to it;
* if u has more than one child, then we will skip it.
<image> Rooted Dead Bushes of level 1, 2 and 3.
Let's define a claw as a rooted tree with four vertices: one root vertex (called also as center) with three children. It looks like a claw:
<image> The center of the claw is the vertex with label 1.
Lee has a Rooted Dead Bush of level n. Initially, all vertices of his RDB are green.
In one move, he can choose a claw in his RDB, if all vertices in the claw are green and all vertices of the claw are children of its center, then he colors the claw's vertices in yellow.
He'd like to know the maximum number of yellow vertices he can achieve. Since the answer might be very large, print it modulo 10^9+7.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases.
Next t lines contain test cases — one per line.
The first line of each test case contains one integer n (1 ≤ n ≤ 2 ⋅ 10^6) — the level of Lee's RDB.
Output
For each test case, print a single integer — the maximum number of yellow vertices Lee can make modulo 10^9 + 7.
Example
Input
7
1
2
3
4
5
100
2000000
Output
0
0
4
4
12
990998587
804665184
Note
It's easy to see that the answer for RDB of level 1 or 2 is 0.
The answer for RDB of level 3 is 4 since there is only one claw we can choose: \{1, 2, 3, 4\}.
The answer for RDB of level 4 is 4 since we can choose either single claw \{1, 3, 2, 4\} or single claw \{2, 7, 5, 6\}. There are no other claws in the RDB of level 4 (for example, we can't choose \{2, 1, 7, 6\}, since 1 is not a child of center vertex 2).
<image> Rooted Dead Bush of level 4.
### Input:
7
1
2
3
4
5
100
2000000
### Output:
0
0
4
4
12
990998587
804665184
### Input:
3
1234567
1268501
1268499
### Output:
788765312
999997375
999999350
### Code:
import sys
def input(): return sys.stdin.readline().strip()
def list2d(a, b, c): return [[c] * b for i in range(a)]
def list3d(a, b, c, d): return [[[d] * c for j in range(b)] for i in range(a)]
def list4d(a, b, c, d, e): return [[[[e] * d for j in range(c)] for j in range(b)] for i in range(a)]
def ceil(x, y=1): return int(-(-x // y))
def INT(): return int(input())
def MAP(): return map(int, input().split())
def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)]
def Yes(): print('Yes')
def No(): print('No')
def YES(): print('YES')
def NO(): print('NO')
INF = 10 ** 19
MOD = 10 ** 9 + 7
def mat_pow(mat, init, K, MOD):
""" 行列累乗 """
def mat_dot(A, B, MOD):
""" 行列の積 """
# 1次元リストが来たら2次元の行列にする
if not isinstance(A[0], list) and not isinstance(A[0], tuple):
A = [A]
if not isinstance(B[0], list) and not isinstance(A[0], tuple):
B = [[b] for b in B]
n1 = len(A)
n2 = len(A[0])
_ = len(B)
m2 = len(B[0])
res = list2d(n1, m2, 0)
for i in range(n1):
for j in range(m2):
for k in range(n2):
res[i][j] += A[i][k] * B[k][j]
res[i][j] %= MOD
return res
def _mat_pow(mat, k, MOD):
""" 行列matをk乗する """
n = len(mat)
res = list2d(n, n, 0)
for i in range(n):
res[i][i] = 1
# 繰り返し二乗法
while k > 0:
if k & 1:
res = mat_dot(res, mat, MOD)
mat = mat_dot(mat, mat, MOD)
k >>= 1
return res
# 行列累乗でK項先へ
res = _mat_pow(mat, K, MOD)
# 最後に初期値と掛ける
res = mat_dot(res, init, MOD)
return [a[0] for a in res]
for _ in range(INT()):
N = INT()
mat = [
[5, 6, 0, 4],
[3, 2, 0, 0],
[1, 2, 0, 0],
[0, 0, 0, 1],
]
init = [4, 0, 0, 1]
if N % 3 == 0:
res = mat_pow(mat, init, N//3-1, MOD)
ans = res[0]
print(ans)
else:
res = mat_pow(mat, init, N//3, MOD)
ans = res[3-N%3]
print(ans)
|
1391_C. Cyclic Permutations _941 | A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
* For every 1 ≤ i ≤ n, find the largest j such that 1 ≤ j < i and p_j > p_i, and add an undirected edge between node i and node j
* For every 1 ≤ i ≤ n, find the smallest j such that i < j ≤ n and p_j > p_i, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n = 4, and p = [3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 10^9+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3 ≤ n ≤ 10^6).
Output
Output a single integer 0 ≤ x < 10^9+7, the number of cyclic permutations of length n modulo 10^9+7.
Examples
Input
4
Output
16
Input
583291
Output
135712853
Note
There are 16 cyclic permutations for n = 4. [4,2,1,3] is one such permutation, having a cycle of length four: 4 → 3 → 2 → 1 → 4.
Nodes v_1, v_2, …, v_k form a simple cycle if the following conditions hold:
* k ≥ 3.
* v_i ≠ v_j for any pair of indices i and j. (1 ≤ i < j ≤ k)
* v_i and v_{i+1} share an edge for all i (1 ≤ i < k), and v_1 and v_k share an edge. | n = int(input())
M = 10**9+7
fact = [1]*(n+2)
for i in range(2, n+1):
fact[i] = (i*fact[i-1])%M
print(((fact[n]-pow(2, n-1, M))+M)%M) | {
"input": [
"4\n",
"583291\n",
"66\n",
"652615\n",
"482331\n",
"336161\n",
"33\n",
"1000000\n",
"79531\n",
"768208\n",
"3\n",
"885131\n",
"58\n",
"138868\n",
"562984\n",
"359885\n",
"12\n",
"53728\n",
"252321\n",
"714009\n",
"38\n",
"43930\n",
"597870\n",
"66136\n",
"13\n",
"100083\n",
"316077\n",
"181696\n",
"36\n",
"740\n",
"326728\n",
"80255\n",
"17\n",
"103643\n",
"158472\n",
"360620\n",
"23\n",
"1388\n",
"651093\n",
"39028\n",
"18679\n",
"310113\n",
"702449\n",
"22\n",
"372\n",
"609216\n",
"23689\n",
"732\n",
"345589\n",
"5\n",
"220\n",
"671417\n",
"16856\n",
"440\n",
"351815\n",
"6\n",
"243\n",
"671630\n",
"24656\n",
"863\n",
"247579\n",
"9\n",
"46\n",
"536252\n",
"14146\n",
"1269\n",
"454065\n",
"7\n",
"28\n",
"845736\n",
"17998\n",
"1076\n",
"444455\n",
"14\n",
"29\n",
"31000\n",
"165\n",
"804806\n",
"25\n",
"21\n",
"16274\n",
"134\n",
"26\n",
"34\n",
"32187\n",
"173\n",
"48\n",
"55\n",
"52487\n",
"339\n",
"8\n",
"10\n",
"96584\n",
"652\n",
"94614\n",
"96\n",
"9943\n",
"185\n",
"14252\n",
"258\n",
"6600\n",
"133\n",
"8164\n",
"67\n",
"15363\n",
"75\n",
"22959\n",
"77\n"
],
"output": [
"16\n",
"135712853\n",
"257415584\n",
"960319213\n",
"722928541\n",
"234634596\n",
"762187807\n",
"23581336\n",
"162141608\n",
"635322133\n",
"2\n",
"329995454\n",
"528435283\n",
"121164347\n",
"22806685\n",
"75508555\n",
"478999552\n",
"577462895\n",
"360904578\n",
"588154168\n",
"33995846\n",
"131474467\n",
"123747326\n",
"471871040\n",
"227016662\n",
"430066838\n",
"1497981\n",
"183617081\n",
"163357854\n",
"623871952\n",
"139550916\n",
"334979249\n",
"425540655\n",
"217761566\n",
"482435471\n",
"754525926\n",
"856540256\n",
"966344561\n",
"133401775\n",
"972591773\n",
"548151998\n",
"28492139\n",
"944336269\n",
"600543485\n",
"556134810\n",
"986932871\n",
"205121094\n",
"990470109\n",
"626671276\n",
"104\n",
"803006216\n",
"750722336\n",
"608801934\n",
"766599140\n",
"56799687\n",
"688\n",
"398564198\n",
"76202428\n",
"573850707\n",
"834128820\n",
"824213660\n",
"362624\n",
"369570169\n",
"118554507\n",
"88761518\n",
"572219329\n",
"701346436\n",
"4976\n",
"901540166\n",
"213139888\n",
"506406970\n",
"562455768\n",
"897018573\n",
"178282399\n",
"768543267\n",
"961088\n",
"571465220\n",
"809136826\n",
"423955172\n",
"71798726\n",
"243976420\n",
"106056590\n",
"425487579\n",
"353337769\n",
"312408527\n",
"821102330\n",
"139698655\n",
"885818726\n",
"624353643\n",
"165154703\n",
"40192\n",
"3628288\n",
"512861840\n",
"28243227\n",
"368256383\n",
"828964361\n",
"736433594\n",
"240523978\n",
"180171940\n",
"510152781\n",
"215879251\n",
"638229047\n",
"12466570\n",
"951564524\n",
"524474619\n",
"612354659\n",
"425296444\n",
"380023236\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
A permutation of length n is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).
Consider a permutation p of length n, we build a graph of size n using it as follows:
* For every 1 ≤ i ≤ n, find the largest j such that 1 ≤ j < i and p_j > p_i, and add an undirected edge between node i and node j
* For every 1 ≤ i ≤ n, find the smallest j such that i < j ≤ n and p_j > p_i, and add an undirected edge between node i and node j
In cases where no such j exists, we make no edges. Also, note that we make edges between the corresponding indices, not the values at those indices.
For clarity, consider as an example n = 4, and p = [3,1,4,2]; here, the edges of the graph are (1,3),(2,1),(2,3),(4,3).
A permutation p is cyclic if the graph built using p has at least one simple cycle.
Given n, find the number of cyclic permutations of length n. Since the number may be very large, output it modulo 10^9+7.
Please refer to the Notes section for the formal definition of a simple cycle
Input
The first and only line contains a single integer n (3 ≤ n ≤ 10^6).
Output
Output a single integer 0 ≤ x < 10^9+7, the number of cyclic permutations of length n modulo 10^9+7.
Examples
Input
4
Output
16
Input
583291
Output
135712853
Note
There are 16 cyclic permutations for n = 4. [4,2,1,3] is one such permutation, having a cycle of length four: 4 → 3 → 2 → 1 → 4.
Nodes v_1, v_2, …, v_k form a simple cycle if the following conditions hold:
* k ≥ 3.
* v_i ≠ v_j for any pair of indices i and j. (1 ≤ i < j ≤ k)
* v_i and v_{i+1} share an edge for all i (1 ≤ i < k), and v_1 and v_k share an edge.
### Input:
4
### Output:
16
### Input:
583291
### Output:
135712853
### Code:
n = int(input())
M = 10**9+7
fact = [1]*(n+2)
for i in range(2, n+1):
fact[i] = (i*fact[i-1])%M
print(((fact[n]-pow(2, n-1, M))+M)%M) |
1506_F. Triangular Paths_950 | Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The k-th layer of the triangle contains k points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers (r, c) (1 ≤ c ≤ r), where r is the number of the layer, and c is the number of the point in the layer. From each point (r, c) there are two directed edges to the points (r+1, c) and (r+1, c+1), but only one of the edges is activated. If r + c is even, then the edge to the point (r+1, c) is activated, otherwise the edge to the point (r+1, c+1) is activated. Look at the picture for a better understanding.
<image> Activated edges are colored in black. Non-activated edges are colored in gray.
From the point (r_1, c_1) it is possible to reach the point (r_2, c_2), if there is a path between them only from activated edges. For example, in the picture above, there is a path from (1, 1) to (3, 2), but there is no path from (2, 1) to (1, 1).
Initially, you are at the point (1, 1). For each turn, you can:
* Replace activated edge for point (r, c). That is if the edge to the point (r+1, c) is activated, then instead of it, the edge to the point (r+1, c+1) becomes activated, otherwise if the edge to the point (r+1, c+1), then instead if it, the edge to the point (r+1, c) becomes activated. This action increases the cost of the path by 1;
* Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of n points of an infinite triangle (r_1, c_1), (r_2, c_2), …, (r_n, c_n). Find the minimum cost path from (1, 1), passing through all n points in arbitrary order.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) is the number of test cases. Then t test cases follow.
Each test case begins with a line containing one integer n (1 ≤ n ≤ 2 ⋅ 10^5) is the number of points to visit.
The second line contains n numbers r_1, r_2, …, r_n (1 ≤ r_i ≤ 10^9), where r_i is the number of the layer in which i-th point is located.
The third line contains n numbers c_1, c_2, …, c_n (1 ≤ c_i ≤ r_i), where c_i is the number of the i-th point in the r_i layer.
It is guaranteed that all n points are distinct.
It is guaranteed that there is always at least one way to traverse all n points.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
Example
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2 | #!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
from collections import deque, Counter, defaultdict
from heapq import heapify, heappush, heappop
def solve(Y, X, N):
points = list(zip(Y, X))
points.sort()
res = 0
y1 = x1 = 1
for y2, x2 in points:
if y1 - x1 == y2 - x2:
if (y1 + x1) % 2 == 0:
res += y2 - y1
else:
y3 = y2 - y1 + 1
x3 = x2 - x1 + 1
if (y1 + x1) % 2 == 0:
res += (y3 - x3) // 2
else:
res += (y3 - x3 + 1) // 2
y1, x1 = y2, x2
return res
def main():
for _ in range(inInt()):
N = inInt()
Y = inLst()
X = inLst()
outInt(solve(Y, X, N))
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
############ ---- Input Functions ---- ############
# Integer inputs
inInt = lambda: int(input())
# List inputs
inLst = lambda: list(map(int,input().split()))
# String input (transforms into list of chars)
inStr = lambda: list(input())
# Space separated integer variable inputs
inVar = lambda: map(int,input().split())
########### ---- Output Functions ---- ############
# Print integer
outInt = lambda n: sys.stdout.write(str(n) + "\n")
# Print integer list
outLst = lambda lst: sys.stdout.write(" ".join(map(str,lst)) + "\n")
# Print string
outStr = lambda s: sys.stdout.write("".join(s) + "\n")
# endregion
if __name__ == "__main__":
main()
| {
"input": [
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 13 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000100\n1 1000000000\n4\n3 12 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 2 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 13 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 6 8\n2 4 2 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 10\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100011000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000100\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 21 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 18 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000001\n4\n3 10 5 7\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 20 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 17\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n2 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000100\n1 1000000000\n4\n3 16 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 6 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 17 2 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n4 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n2 1000000000\n4\n3 12 5 7\n2 5 2 4\n",
"4\n3\n1 5 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 6 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 6 2\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1110000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n2 9 5 8\n2 4 2 4\n",
"4\n3\n1 11 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n1 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100001000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 13 3\n1 3 1\n2\n2 5\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 17 5 8\n3 5 3 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 7 4\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 7\n2 4 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 20 2\n1 2 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000010\n2 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 2\n2\n3 7\n2 2\n2\n1 1101000110\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 16 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 6 3\n1 1 1\n2\n2 4\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 6 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n1 3\n2\n1 1100000010\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 8 5 7\n2 5 3 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 16 4 11\n1 5 2 4\n",
"4\n3\n1 14 2\n1 3 2\n2\n8 4\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 21 5 7\n2 8 4 4\n",
"4\n3\n1 10 2\n1 3 2\n2\n3 2\n2 1\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 17 4 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 8\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 14\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100101000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 2\n1 3 2\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1101000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1110000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1000010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 13 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 4 1\n2\n8 7\n2 2\n2\n1 1101000010\n1 1000000000\n4\n3 21 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 13 5 8\n3 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100010100\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n3 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 9 2\n1 3 1\n2\n2 13\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 6 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 3\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 3\n2\n1 1100000000\n1 1000000000\n4\n2 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 3\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 6 8\n2 5 4 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 8 4\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 4 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 5\n2\n1 1100010000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n1 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n4 7\n1 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 5 2\n1 1 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 10 4\n1 3 1\n2\n4 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 2 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n4 10 5 8\n2 5 2 4\n",
"4\n3\n1 11 2\n1 3 1\n2\n2 4\n2 3\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 11\n2 5 2 4\n",
"4\n3\n1 4 2\n1 1 1\n2\n2 9\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n2 7\n2 4\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 1\n2\n2 8\n2 2\n2\n1 1100100000\n1 1000000000\n4\n3 10 5 8\n3 5 3 4\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 2 1\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 9\n1 4 2 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 7 2\n1 2 2\n2\n8 7\n2 2\n2\n2 1101000000\n1 1000000000\n4\n3 21 5 13\n2 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 5 3\n1 3 1\n2\n2 4\n2 3\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 13\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n1 3\n2\n1 1100000000\n1 1000000000\n4\n3 12 5 8\n2 5 4 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 8\n2 2\n2\n1 1100000000\n1 1000000001\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n5 7\n2 2\n2\n1 1101001000\n1 1000000000\n4\n3 10 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 2\n2\n3 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n2 4\n2 3\n2\n1 1100010000\n1 1000000000\n4\n6 10 5 8\n3 5 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 3 2\n1 1 1\n2\n2 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 4 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 8 3\n1 3 2\n2\n2 7\n2 2\n2\n2 1100100000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 2\n2\n8 7\n2 2\n2\n1 1101000000\n1 1000000000\n4\n3 21 5 7\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n2 5 3 4\n",
"4\n3\n1 7 2\n1 3 1\n2\n4 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 5 8\n2 5 4 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 7\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 16 4 11\n2 5 2 4\n",
"4\n3\n1 3 2\n1 2 2\n2\n2 17\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 7\n1 4 2 4\n",
"4\n3\n1 11 2\n1 5 1\n2\n2 4\n2 3\n2\n2 1100000000\n2 1000000000\n4\n3 10 5 8\n2 5 2 3\n",
"4\n3\n1 10 2\n1 3 1\n2\n3 7\n2 2\n2\n1 1000000000\n1 1000000000\n4\n3 18 5 9\n2 4 2 4\n",
"4\n3\n1 8 2\n1 3 1\n2\n2 3\n2 2\n2\n1 1100010000\n1 1000000000\n4\n3 10 5 8\n2 5 2 4\n",
"4\n3\n1 8 2\n1 2 1\n2\n4 2\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 9 5 8\n2 4 2 4\n",
"4\n3\n1 7 2\n1 6 1\n2\n8 7\n2 2\n2\n2 1100000000\n1 1000000000\n4\n3 15 5 7\n2 5 2 4\n",
"4\n3\n1 4 2\n1 3 1\n2\n2 5\n2 2\n2\n1 1100000000\n1 1000000000\n4\n3 10 5 8\n2 5 3 4\n"
],
"output": [
"\n0\n1\n999999999\n2\n",
"0\n1\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"2\n3\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"0\n1\n50005000\n2\n",
"2\n3\n50005000\n2\n",
"0\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"2\n3\n50005000\n3\n",
"0\n2\n50000500\n2\n",
"2\n4\n50050000\n2\n",
"1\n4\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"4\n1\n50000000\n2\n",
"5\n3\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000050\n3\n",
"0\n2\n50500500\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n50049999\n2\n",
"2\n1\n50005000\n4\n",
"2\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"2\n2\n50000000\n2\n",
"1\n2\n50000000\n2\n",
"1\n1\n50000000\n4\n",
"2\n3\n50000000\n5\n",
"3\n2\n50000000\n2\n",
"2\n3\n50005000\n4\n",
"1\n8\n50000000\n2\n",
"2\n3\n50000000\n8\n",
"3\n2\n999999999\n2\n",
"1\n8\n50000000\n3\n",
"3\n3\n50000000\n8\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500005\n8\n",
"2\n3\n50500005\n8\n",
"2\n4\n50050000\n4\n",
"1\n1\n50000000\n1\n",
"2\n3\n50500000\n2\n",
"2\n1\n50005050\n2\n",
"2\n2\n50000000\n6\n",
"1\n2\n50000000\n3\n",
"5\n3\n50050000\n2\n",
"5\n3\n50005000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"2\n4\n50000000\n2\n",
"3\n1\n50000000\n2\n",
"3\n1\n50000001\n2\n",
"2\n6\n50000000\n3\n",
"1\n1\n50005000\n2\n",
"3\n3\n50050000\n2\n",
"1\n3\n50000000\n5\n",
"0\n2\n50005500\n2\n",
"1\n4\n50000049\n2\n",
"9\n3\n50000000\n2\n",
"0\n2\n50000000\n6\n",
"1\n4\n50049999\n3\n",
"1\n2\n50000000\n7\n",
"1\n6\n50000000\n3\n",
"2\n2\n50000000\n3\n",
"1\n8\n50000050\n3\n",
"3\n2\n50500005\n8\n",
"1\n3\n50000000\n3\n",
"4\n1\n50000001\n2\n",
"3\n3\n50500001\n8\n",
"1\n3\n50000050\n5\n",
"1\n6\n50000001\n2\n",
"2\n2\n50000000\n4\n",
"6\n3\n50500000\n8\n",
"3\n2\n50500055\n8\n",
"1\n3\n50000000\n7\n",
"1\n7\n50000000\n3\n",
"1\n6\n50000001\n3\n",
"1\n2\n50000000\n4\n",
"6\n3\n50500000\n6\n",
"2\n1\n50000000\n2\n",
"1\n1\n55000000\n2\n",
"3\n3\n50005000\n3\n",
"5\n1\n50000000\n2\n",
"1\n2\n50000000\n5\n",
"2\n2\n50050000\n2\n",
"2\n1\n50000000\n4\n",
"1\n6\n50500000\n2\n",
"2\n2\n50000500\n2\n",
"5\n2\n50050000\n2\n",
"2\n4\n50050000\n8\n",
"3\n1\n50000001\n3\n",
"2\n3\n50500000\n8\n",
"1\n3\n50000000\n6\n",
"3\n0\n50000000\n2\n",
"1\n5\n50000000\n3\n",
"0\n2\n50000000\n1\n",
"3\n1\n999999999\n7\n",
"9\n1\n50000001\n2\n",
"1\n6\n50000006\n2\n",
"2\n2\n50500055\n8\n",
"2\n3\n50000000\n6\n",
"6\n3\n50000000\n3\n",
"2\n0\n50000000\n4\n",
"3\n2\n999999999\n6\n",
"3\n0\n50000005\n2\n",
"0\n1\n50000000\n1\n",
"4\n1\n999999999\n7\n",
"2\n3\n50005000\n6\n",
"6\n3\n50000000\n6\n",
"4\n0\n999999999\n7\n",
"2\n2\n50500000\n6\n",
"0\n1\n999999999\n2\n",
"2\n7\n50000000\n2\n",
"0\n1\n50000000\n3\n",
"2\n3\n50050500\n2\n",
"3\n4\n50050000\n2\n",
"0\n3\n50500000\n3\n",
"2\n3\n55000000\n2\n",
"2\n1\n5000\n2\n",
"0\n2\n50000000\n4\n",
"2\n2\n50005000\n5\n",
"1\n3\n50500005\n8\n",
"0\n2\n999999999\n2\n",
"2\n4\n50050000\n6\n",
"3\n1\n50005050\n2\n",
"3\n2\n50500000\n8\n",
"3\n6\n50050000\n2\n",
"0\n3\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n2\n",
"0\n1\n50000000\n2\n",
"2\n3\n50050000\n2\n",
"1\n3\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"1\n1\n50000000\n2\n",
"1\n4\n49999999\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n3\n50000000\n2\n",
"0\n2\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"2\n3\n50050000\n2\n",
"2\n3\n50005000\n2\n",
"1\n4\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"2\n2\n50005000\n2\n",
"0\n2\n50000000\n5\n",
"0\n2\n50500500\n2\n",
"2\n3\n50050000\n2\n",
"2\n3\n50000000\n2\n",
"3\n2\n999999999\n2\n",
"0\n2\n50000000\n2\n",
"0\n3\n50000000\n3\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"1\n1\n50000000\n2\n",
"4\n1\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n4\n50000000\n2\n",
"3\n3\n50500000\n8\n",
"1\n2\n50000000\n2\n",
"2\n4\n50050000\n4\n",
"3\n2\n999999999\n7\n",
"0\n8\n50000000\n3\n",
"3\n3\n50500000\n8\n",
"3\n3\n50500000\n8\n",
"2\n3\n50005000\n2\n",
"3\n1\n50000000\n2\n",
"1\n6\n50000000\n2\n",
"0\n2\n50000000\n3\n",
"1\n4\n49999999\n2\n",
"2\n1\n50005000\n2\n",
"0\n2\n50500500\n2\n",
"1\n2\n50000000\n2\n",
"2\n1\n50005000\n2\n",
"2\n2\n50000000\n2\n",
"1\n3\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"2\n3\n50050000\n2\n",
"3\n3\n50500000\n8\n",
"0\n2\n50000000\n2\n",
"2\n2\n50000000\n2\n",
"0\n2\n50000000\n5\n",
"0\n3\n50000000\n5\n",
"1\n8\n50000000\n3\n",
"3\n1\n50000001\n2\n",
"3\n2\n999999999\n7\n",
"2\n1\n50005000\n2\n",
"3\n2\n50000000\n2\n",
"0\n3\n50000000\n5\n",
"0\n2\n50000000\n2\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The k-th layer of the triangle contains k points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers (r, c) (1 ≤ c ≤ r), where r is the number of the layer, and c is the number of the point in the layer. From each point (r, c) there are two directed edges to the points (r+1, c) and (r+1, c+1), but only one of the edges is activated. If r + c is even, then the edge to the point (r+1, c) is activated, otherwise the edge to the point (r+1, c+1) is activated. Look at the picture for a better understanding.
<image> Activated edges are colored in black. Non-activated edges are colored in gray.
From the point (r_1, c_1) it is possible to reach the point (r_2, c_2), if there is a path between them only from activated edges. For example, in the picture above, there is a path from (1, 1) to (3, 2), but there is no path from (2, 1) to (1, 1).
Initially, you are at the point (1, 1). For each turn, you can:
* Replace activated edge for point (r, c). That is if the edge to the point (r+1, c) is activated, then instead of it, the edge to the point (r+1, c+1) becomes activated, otherwise if the edge to the point (r+1, c+1), then instead if it, the edge to the point (r+1, c) becomes activated. This action increases the cost of the path by 1;
* Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of n points of an infinite triangle (r_1, c_1), (r_2, c_2), …, (r_n, c_n). Find the minimum cost path from (1, 1), passing through all n points in arbitrary order.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) is the number of test cases. Then t test cases follow.
Each test case begins with a line containing one integer n (1 ≤ n ≤ 2 ⋅ 10^5) is the number of points to visit.
The second line contains n numbers r_1, r_2, …, r_n (1 ≤ r_i ≤ 10^9), where r_i is the number of the layer in which i-th point is located.
The third line contains n numbers c_1, c_2, …, c_n (1 ≤ c_i ≤ r_i), where c_i is the number of the i-th point in the r_i layer.
It is guaranteed that all n points are distinct.
It is guaranteed that there is always at least one way to traverse all n points.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
Example
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
### Input:
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
### Output:
0
1
999999999
2
### Input:
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1100000000
1 1000000000
4
3 10 5 8
2 5 2 4
### Output:
0
1
50000000
2
### Code:
#!/usr/bin/env python
import os
import sys
from io import BytesIO, IOBase
from collections import deque, Counter, defaultdict
from heapq import heapify, heappush, heappop
def solve(Y, X, N):
points = list(zip(Y, X))
points.sort()
res = 0
y1 = x1 = 1
for y2, x2 in points:
if y1 - x1 == y2 - x2:
if (y1 + x1) % 2 == 0:
res += y2 - y1
else:
y3 = y2 - y1 + 1
x3 = x2 - x1 + 1
if (y1 + x1) % 2 == 0:
res += (y3 - x3) // 2
else:
res += (y3 - x3 + 1) // 2
y1, x1 = y2, x2
return res
def main():
for _ in range(inInt()):
N = inInt()
Y = inLst()
X = inLst()
outInt(solve(Y, X, N))
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
############ ---- Input Functions ---- ############
# Integer inputs
inInt = lambda: int(input())
# List inputs
inLst = lambda: list(map(int,input().split()))
# String input (transforms into list of chars)
inStr = lambda: list(input())
# Space separated integer variable inputs
inVar = lambda: map(int,input().split())
########### ---- Output Functions ---- ############
# Print integer
outInt = lambda n: sys.stdout.write(str(n) + "\n")
# Print integer list
outLst = lambda lst: sys.stdout.write(" ".join(map(str,lst)) + "\n")
# Print string
outStr = lambda s: sys.stdout.write("".join(s) + "\n")
# endregion
if __name__ == "__main__":
main()
|
161_B. Discounts_956 | One day Polycarpus stopped by a supermarket on his way home. It turns out that the supermarket is having a special offer for stools. The offer is as follows: if a customer's shopping cart contains at least one stool, the customer gets a 50% discount on the cheapest item in the cart (that is, it becomes two times cheaper). If there are several items with the same minimum price, the discount is available for only one of them!
Polycarpus has k carts, and he wants to buy up all stools and pencils from the supermarket. Help him distribute the stools and the pencils among the shopping carts, so that the items' total price (including the discounts) is the least possible.
Polycarpus must use all k carts to purchase the items, no shopping cart can remain empty. Each shopping cart can contain an arbitrary number of stools and/or pencils.
Input
The first input line contains two integers n and k (1 ≤ k ≤ n ≤ 103) — the number of items in the supermarket and the number of carts, correspondingly. Next n lines describe the items as "ci ti" (without the quotes), where ci (1 ≤ ci ≤ 109) is an integer denoting the price of the i-th item, ti (1 ≤ ti ≤ 2) is an integer representing the type of item i (1 for a stool and 2 for a pencil). The numbers in the lines are separated by single spaces.
Output
In the first line print a single real number with exactly one decimal place — the minimum total price of the items, including the discounts.
In the following k lines print the descriptions of the items in the carts. In the i-th line print the description of the i-th cart as "t b1 b2 ... bt" (without the quotes), where t is the number of items in the i-th cart, and the sequence b1, b2, ..., bt (1 ≤ bj ≤ n) gives the indices of items to put in this cart in the optimal distribution. All indices of items in all carts should be pairwise different, each item must belong to exactly one cart. You can print the items in carts and the carts themselves in any order. The items are numbered from 1 to n in the order in which they are specified in the input.
If there are multiple optimal distributions, you are allowed to print any of them.
Examples
Input
3 2
2 1
3 2
3 1
Output
5.5
2 1 2
1 3
Input
4 3
4 1
1 2
2 2
3 2
Output
8.0
1 1
2 4 2
1 3
Note
In the first sample case the first cart should contain the 1st and 2nd items, and the second cart should contain the 3rd item. This way each cart has a stool and each cart has a 50% discount for the cheapest item. The total price of all items will be: 2·0.5 + (3 + 3·0.5) = 1 + 4.5 = 5.5. | n, k = list(map(int, input().split()))
p = [[], []]
for i in range(1, n + 1):
c, t = map(int, input().split())
p[t > 1].append((c, i))
if k > len(p[0]):
l = k - len(p[0]) - 1
print(sum(c for c, i in p[0]) / 2 + sum(c for c, i in p[1]))
print('\n'.join('1 ' + str(i) for c, i in p[0]))
print('\n'.join('1 ' + str(i) for c, i in p[1][: l]))
print(len(p[1]) - l, ' '.join(str(i) for c, i in p[1][l: ]))
else:
p[1].sort()
p[0].sort(reverse = True)
print(sum(c for c, i in p[0][: k - 1]) / 2 + sum(c for c, i in p[0][k - 1: ]) + sum(c for c, i in p[1]) - min(c for c, i in p[1] + p[0][k - 1: ]) / 2)
print('\n'.join('1 ' + str(i) for c, i in p[0][: k - 1]))
print(n - k + 1, ' '.join(str(i) for c, i in p[0][k - 1:]), ' '.join(str(i) for c, i in p[1]))
# Made By Mostafa_Khaled | {
"input": [
"3 2\n2 1\n3 2\n3 1\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n1 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"1 1\n1 2\n",
"10 1\n1 1\n2 2\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n4 1\n1 2\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n28 2\n7 1\n23 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n5 2\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 21\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n2 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n15 1\n8 1\n22 1\n20 1\n1 2\n1 2\n",
"4 3\n4 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n51 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n4 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n4 1\n",
"4 3\n5 1\n1 1\n2 2\n3 2\n",
"5 4\n24 1\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n5 2\n3 2\n",
"20 3\n28 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"1 1\n5 1\n",
"5 4\n24 2\n19 1\n97 2\n7 1\n23 2\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 1\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n83859496 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n13 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"7 4\n10 1\n10 1\n10 1\n12 1\n2 2\n10 2\n3 2\n",
"20 3\n50 2\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n10 1\n993310357 2\n372545570 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n27388567 2\n13 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n204988757 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n0 1\n17 1\n539523264 2\n4 1\n8 1\n12 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 2\n24 1\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n393042586 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n32704773 2\n5 1\n25 2\n337838080 2\n25402536 2\n5 1\n24 1\n",
"11 11\n6 2\n6 2\n1 2\n2 2\n3 1\n0 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n40790764 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 2\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"10 1\n28 1\n1 2\n1 2\n1 2\n13 1\n16 1\n22 1\n20 1\n1 2\n1 2\n",
"10 1\n1 1\n2 1\n1 1\n23 2\n17 2\n1 1\n1 1\n30 2\n1 1\n9 2\n",
"4 3\n1 1\n1 2\n2 2\n3 2\n",
"5 4\n10 1\n10 1\n10 1\n9 1\n0 2\n",
"7 4\n10 1\n18 1\n10 1\n9 1\n2 1\n5 2\n3 2\n",
"7 5\n10 1\n10 1\n10 1\n9 1\n0 1\n5 2\n3 2\n",
"20 3\n28 1\n786180179 2\n16 1\n617105650 2\n23 1\n21 1\n22 1\n7 1\n314215182 2\n409797301 2\n14 1\n993310357 2\n436007055 2\n791297014 2\n13 1\n25 1\n307921408 2\n625842662 2\n136238241 2\n13 1\n",
"7 4\n10 1\n10 1\n10 1\n9 1\n4 1\n5 2\n0 2\n",
"11 11\n6 2\n6 2\n2 2\n3 2\n3 1\n6 2\n1 1\n1 1\n3 1\n3 1\n6 2\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n2 1\n13 1\n539523264 2\n7 1\n8 1\n5 1\n363470241 1\n9838294 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n4 1\n1 1\n1 2\n3 2\n",
"7 4\n10 1\n10 1\n10 1\n6 1\n3 1\n5 2\n3 2\n",
"7 4\n10 2\n10 1\n10 1\n9 1\n1 1\n5 2\n3 2\n",
"21 12\n42856481 2\n562905883 2\n942536731 2\n206667673 2\n451074408 2\n27 1\n29 1\n172761267 2\n23 1\n24 1\n106235116 2\n126463249 2\n29 1\n9 1\n99465650 2\n5 1\n25 1\n337838080 2\n109402491 2\n5 1\n24 1\n",
"21 7\n14 1\n882797755 2\n17 1\n906492329 2\n209923513 2\n802927469 2\n949195463 2\n677323647 2\n2129083 2\n4 1\n13 1\n539523264 2\n7 1\n8 1\n12 1\n363470241 1\n12602882 2\n18716193 2\n30 1\n17 1\n24 1\n",
"4 3\n5 1\n2 1\n2 2\n3 2\n",
"1 1\n2 2\n"
],
"output": [
"5.5\n1 3 \n2 1 2 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"32.5\n1 10\n1 9\n1 5\n1 8\n1 7\n1 11\n1 6\n1 2\n1 1\n1 4\n1 3\n",
"5362337336.5\n1 19 \n1 21 \n1 3 \n1 20 \n1 1 \n1 11 \n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9 \n",
"0.5\n1 1 \n",
"105.5\n10 1 7 8 6 5 2 3 4 9 10 \n",
"1.0\n1 1 \n",
"85.5\n10 1 3 6 7 9 2 10 5 4 8 \n",
"8.0\n1 1 \n1 2 \n2 3 4 \n",
"76.0\n1 1 \n1 2 \n1 4 \n2 3 5 \n",
"26.5\n1 3 \n1 2 \n1 1 \n2 4 5 \n",
"33.0\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"30.0\n1 3 \n1 2 \n1 1 \n1 4 \n3 5 6 7 \n",
"5354453716.0\n1 1 \n1 16 \n18 5 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 \n",
"34.5\n1 3 \n1 2 \n1 1 \n4 4 5 6 7 \n",
"3142600975.0\n1 13\n1 7\n1 6\n1 17\n1 21\n1 10\n1 9\n1 14\n1 20\n1 16\n1 3\n1 2\n1 5\n1 18\n1 4\n1 8\n1 12\n1 19\n1 11\n1 15\n1 1\n",
"33.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"1.0\n1 1\n",
"97.5\n10 1 7 8 5 6 2 3 4 9 10\n",
"7.5\n1 1\n1 2\n2 4 3\n",
"99.0\n1 1\n1 2\n1 4\n2 3 5\n",
"30.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"5354453718.5\n1 16\n1 5\n18 7 6 3 11 15 20 8 12 14 2 18 4 10 13 9 17 19 1\n",
"35.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3142600975.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5180602223.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.0\n1 1\n",
"8.0\n1 1\n1 2\n2 4 3\n",
"145.0\n1 1\n1 2\n1 4\n2 3 5\n",
"35.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453714.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3142600987.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 18 4 8 12 19 11 15 1 17\n",
"5180602221.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"2.5\n1 1\n",
"157.0\n1 2\n1 4\n1 3\n2 1 5\n",
"40.0\n1 4\n1 1\n1 2\n4 3 5 6 7\n",
"5354453736.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3328975900.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 15 1 17\n",
"5180602218.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"40.0\n1 4\n1 1\n1 2\n4 3 6 7 5\n",
"5245604062.5\n1 16\n1 5\n18 7 6 3 15 20 11 8 12 14 2 18 4 10 13 9 17 19 1\n",
"3277821177.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 19 11 1 15 17\n",
"5180602221.0\n1 16\n1 19\n1 21\n1 3\n1 11\n1 20\n15 1 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"3373407443.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 19 8 12 11 1 15 17\n",
"5180602222.5\n1 16\n1 19\n1 21\n1 3\n1 11\n1 1\n15 15 14 13 10 7 4 2 6 8 12 5 18 17 9 20\n",
"3193821222.5\n1 7\n1 13\n1 6\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n1 2\n10 5 4 18 8 12 11 1 15 19 17\n",
"26.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 11\n1 4\n1 3\n1 6\n",
"5193204587.5\n1 19\n1 21\n1 3\n1 20\n1 1\n1 11\n15 15 14 13 10 7 4 2 6 8 12 16 5 18 17 9\n",
"103.5\n10 1 7 8 6 5 2 3 4 9 10\n",
"85.5\n10 2 1 3 6 7 9 8 4 5 10\n",
"6.5\n1 1\n1 4\n2 3 2\n",
"24.0\n1 1\n1 2\n1 3\n2 4 5\n",
"37.0\n1 2\n1 1\n1 3\n4 4 5 6 7\n",
"27.5\n1 1\n1 2\n1 3\n1 4\n3 5 6 7\n",
"5417915201.0\n1 1\n1 16\n18 5 7 6 3 11 15 20 8 12 14 2 18 4 13 10 9 17 19\n",
"33.0\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"34.5\n1 5\n1 9\n1 10\n1 7\n1 8\n1 1\n1 2\n1 6\n1 11\n1 4\n1 3\n",
"5180602215.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 14 13 15 10 7 4 2 6 8 12 5 18 17 9\n",
"6.5\n1 1\n1 2\n2 4 3\n",
"30.5\n1 1\n1 2\n1 3\n4 4 5 6 7\n",
"33.0\n1 2\n1 3\n1 4\n4 5 1 6 7\n",
"3158207129.0\n1 7\n1 13\n1 6\n1 17\n1 10\n1 21\n1 9\n1 14\n1 16\n1 20\n1 3\n10 2 5 18 4 8 12 19 11 15 1\n",
"5183366811.5\n1 16\n1 19\n1 21\n1 3\n1 20\n1 1\n15 11 15 14 13 10 7 4 2 6 8 12 5 18 17 9\n",
"8.5\n1 1\n1 2\n2 4 3\n",
"2.0\n1 1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
One day Polycarpus stopped by a supermarket on his way home. It turns out that the supermarket is having a special offer for stools. The offer is as follows: if a customer's shopping cart contains at least one stool, the customer gets a 50% discount on the cheapest item in the cart (that is, it becomes two times cheaper). If there are several items with the same minimum price, the discount is available for only one of them!
Polycarpus has k carts, and he wants to buy up all stools and pencils from the supermarket. Help him distribute the stools and the pencils among the shopping carts, so that the items' total price (including the discounts) is the least possible.
Polycarpus must use all k carts to purchase the items, no shopping cart can remain empty. Each shopping cart can contain an arbitrary number of stools and/or pencils.
Input
The first input line contains two integers n and k (1 ≤ k ≤ n ≤ 103) — the number of items in the supermarket and the number of carts, correspondingly. Next n lines describe the items as "ci ti" (without the quotes), where ci (1 ≤ ci ≤ 109) is an integer denoting the price of the i-th item, ti (1 ≤ ti ≤ 2) is an integer representing the type of item i (1 for a stool and 2 for a pencil). The numbers in the lines are separated by single spaces.
Output
In the first line print a single real number with exactly one decimal place — the minimum total price of the items, including the discounts.
In the following k lines print the descriptions of the items in the carts. In the i-th line print the description of the i-th cart as "t b1 b2 ... bt" (without the quotes), where t is the number of items in the i-th cart, and the sequence b1, b2, ..., bt (1 ≤ bj ≤ n) gives the indices of items to put in this cart in the optimal distribution. All indices of items in all carts should be pairwise different, each item must belong to exactly one cart. You can print the items in carts and the carts themselves in any order. The items are numbered from 1 to n in the order in which they are specified in the input.
If there are multiple optimal distributions, you are allowed to print any of them.
Examples
Input
3 2
2 1
3 2
3 1
Output
5.5
2 1 2
1 3
Input
4 3
4 1
1 2
2 2
3 2
Output
8.0
1 1
2 4 2
1 3
Note
In the first sample case the first cart should contain the 1st and 2nd items, and the second cart should contain the 3rd item. This way each cart has a stool and each cart has a 50% discount for the cheapest item. The total price of all items will be: 2·0.5 + (3 + 3·0.5) = 1 + 4.5 = 5.5.
### Input:
3 2
2 1
3 2
3 1
### Output:
5.5
1 3
2 1 2
### Input:
4 3
4 1
1 2
2 2
3 2
### Output:
8.0
1 1
1 2
2 3 4
### Code:
n, k = list(map(int, input().split()))
p = [[], []]
for i in range(1, n + 1):
c, t = map(int, input().split())
p[t > 1].append((c, i))
if k > len(p[0]):
l = k - len(p[0]) - 1
print(sum(c for c, i in p[0]) / 2 + sum(c for c, i in p[1]))
print('\n'.join('1 ' + str(i) for c, i in p[0]))
print('\n'.join('1 ' + str(i) for c, i in p[1][: l]))
print(len(p[1]) - l, ' '.join(str(i) for c, i in p[1][l: ]))
else:
p[1].sort()
p[0].sort(reverse = True)
print(sum(c for c, i in p[0][: k - 1]) / 2 + sum(c for c, i in p[0][k - 1: ]) + sum(c for c, i in p[1]) - min(c for c, i in p[1] + p[0][k - 1: ]) / 2)
print('\n'.join('1 ' + str(i) for c, i in p[0][: k - 1]))
print(n - k + 1, ' '.join(str(i) for c, i in p[0][k - 1:]), ' '.join(str(i) for c, i in p[1]))
# Made By Mostafa_Khaled |
180_D. Name_960 | Everything got unclear to us in a far away constellation Tau Ceti. Specifically, the Taucetians choose names to their children in a very peculiar manner.
Two young parents abac and bbad think what name to give to their first-born child. They decided that the name will be the permutation of letters of string s. To keep up with the neighbours, they decided to call the baby so that the name was lexicographically strictly larger than the neighbour's son's name t.
On the other hand, they suspect that a name tax will be introduced shortly. According to it, the Taucetians with lexicographically larger names will pay larger taxes. That's the reason abac and bbad want to call the newborn so that the name was lexicographically strictly larger than name t and lexicographically minimum at that.
The lexicographical order of strings is the order we are all used to, the "dictionary" order. Such comparison is used in all modern programming languages to compare strings. Formally, a string p of length n is lexicographically less than string q of length m, if one of the two statements is correct:
* n < m, and p is the beginning (prefix) of string q (for example, "aba" is less than string "abaa"),
* p1 = q1, p2 = q2, ..., pk - 1 = qk - 1, pk < qk for some k (1 ≤ k ≤ min(n, m)), here characters in strings are numbered starting from 1.
Write a program that, given string s and the heighbours' child's name t determines the string that is the result of permutation of letters in s. The string should be lexicographically strictly more than t and also, lexicographically minimum.
Input
The first line contains a non-empty string s (1 ≤ |s| ≤ 5000), where |s| is its length. The second line contains a non-empty string t (1 ≤ |t| ≤ 5000), where |t| is its length. Both strings consist of lowercase Latin letters.
Output
Print the sought name or -1 if it doesn't exist.
Examples
Input
aad
aac
Output
aad
Input
abad
bob
Output
daab
Input
abc
defg
Output
-1
Input
czaaab
abcdef
Output
abczaa
Note
In the first sample the given string s is the sought one, consequently, we do not need to change the letter order there. | def findmin(lcopy, toexceed):
toex = ord(toexceed) - 97
for each in lcopy[(toex+1):]:
if each > 0:
return True
return False
def arrange(lcopy, toexceed = None):
if toexceed is None:
ans = ""
for i in range(26):
ans += chr(i+97)*lcopy[i]
return ans
ans = ""
for i in range(ord(toexceed)-97+1, 26):
if lcopy[i] > 0:
ans += chr(i+97)
lcopy[i] -= 1
break
return ans + arrange(lcopy)
def operation(s1, s2):
first_count = [0]*26
for letter in s1:
first_count[ord(letter)-97] += 1
common = 0
lcopy = list(first_count)
for i in range(len(s2)):
letter = s2[i]
num = ord(letter) - 97
if lcopy[num] > 0:
lcopy[num] -= 1
common += 1
else:
break
found = False
ans = ""
#print(common)
for cval in range(common, -1, -1):
#print(cval)
if cval >= len(s1):
lcopy[ord(s2[cval-1])-97] += 1
continue
else:
if cval == len(s2):
found = True
ans = s2[:cval] + arrange(lcopy)
break
else:
#print("yo", s2[cval])
if findmin(lcopy, s2[cval]):
found = True
ans = s2[:cval] + arrange(lcopy, s2[cval])
break
else:
lcopy[ord(s2[cval-1])-97] += 1
if not found:
return -1
else:
return ans
s1 = input()
s2 = input()
print(operation(s1, s2))
| {
"input": [
"abc\ndefg\n",
"czaaab\nabcdef\n",
"aad\naac\n",
"abad\nbob\n",
"z\na\n",
"abc\naaac\n",
"bcbcdddbbd\nbcbcdbdbbd\n",
"aaabccadac\nacabbbabaa\n",
"a\nb\n",
"acaccaaadz\ncaadccaaaa\n",
"aa\nab\n",
"abacaba\naba\n",
"aabbaa\naaaaaaaaaaaaaaaaaaaa\n",
"ac\na\n",
"a\na\n",
"aabbaa\ncaaaaaaaaa\n",
"aaaaaaaaa\na\n",
"ccc\ncc\n",
"acbdcbacbb\ncbcddabcbdaccdd\n",
"zaaa\naaaw\n",
"bbbaabbaab\nbbbaabbaab\n",
"z\nww\n",
"acaccaaadd\nacaccaaadd\n",
"aabbaa\na\n",
"ccabcaabcc\nbcca\n",
"adbddbccdacbaab\nadaddcbddb\n",
"abc\ncaa\n",
"ab\nb\n",
"aa\naa\n",
"zzzzzzzzzzzz\na\n",
"aa\na\n",
"abc\ncac\n",
"aaaaaaaaz\nwwwwwwwwwwwwwwwwwwww\n",
"ab\naa\n",
"aaa\naa\n",
"aab\naa\n",
"zzzzzzzzzz\naaaaaaaaa\n",
"bbbaabbaaz\nabaabbbbaa\n",
"bbbaabbaab\nababbaaabb\n",
"bcbcdddbbd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababba\n",
"abab\naaba\n",
"abcabc\naaccba\n",
"bcbcdddbbz\ndbbccbddba\n",
"bbbbaacacb\ncbacbaabb\n",
"adbddbccdacbaab\nadcddbdcda\n",
"abc\nbbb\n",
"z\nanana\n",
"adbddbccdacbaaz\ndacdcaddbb\n",
"abc\naca\n",
"babbaccbab\nb\n",
"abc\nabbc\n",
"aaaaaaaaaaaaaaa\naaaaaaaaaaaaaa\n",
"acaccaaadd\nbabcacbadd\n",
"abacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbaa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\naabbccbdac\n",
"bbbcaabcaa\ncacbababab\n",
"aaabccadaz\nacabcaadaa\n",
"qwertyz\nqwertyuiop\n",
"ab\na\n",
"abc\naabb\n",
"abcabc\nabccaa\n",
"z\nzz\n",
"cba\naaac\n",
"bcbcdddbbd\ndbbdbdcbcb\n",
"cadaccbaaa\nacabbbabaa\n",
"b\nb\n",
"acaccaaadz\naaaaccdaac\n",
"abadaba\naba\n",
"abbbaa\naaaaaaaaaaaaaaaaaaaa\n",
"bc\na\n",
"b\na\n",
"cbc\ncc\n",
"zaaa\nwaaa\n",
"bbbaabbaab\nabbaabbaab\n",
"y\nww\n",
"acaccaaadd\nacaccaaadc\n",
"aabbaa\nb\n",
"ccabcaaccc\nbcca\n",
"adbddaccdacbaab\nadaddcbddb\n",
"zzzzzzzzzzzz\nb\n",
"cba\ncac\n",
"bb\naa\n",
"aab\nab\n",
"zzzzzzzzzz\naaaaa`aaa\n",
"bbbaabbaaz\naabbbbaaba\n",
"bbbaabbaab\nbbaaabbaba\n",
"bcbcdddbcd\nabbbcbdcdc\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaz\nabbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaaba\n",
"bcbcdddbbz\ndbbcdbdcba\n",
"bbbbaaaccb\ncbacbaabb\n",
"adbddbccdacbaab\nadcdbddcda\n",
"acc\nbbb\n",
"z\nanan`\n",
"adbddbccdacbaaz\ndacdcbddbb\n",
"babbaccabb\nb\n",
"abc\nbbac\n",
"acaccaaadd\nddabcacbab\n",
"aaacaba\nabababa\n",
"abbabaaabaaabbbbabbbbbababababaaaabbabbbbabbbbbabbbbababbaaaaabbbabbbbabbbbbbabaabababaabbbabababbaa\nabbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbaa\n",
"aabbabababbbaabababaababbbbbbabbbbabbbaaaaabbababbbbabbbbbabbbbabbaaaabababababbbbbabbbbaaabaaababba\nbbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabababbaabbaaabbbaaaaaaabaabbbb\n",
"aaabccadac\nbabaccbdac\n",
"bbbcaabcaa\ncacbabbbaa\n",
"aaabcbadaz\nacabcaadaa\n",
"qwertyz\npoiuytrewq\n",
"aac\naabb\n",
"czaaab\ndbcaef\n",
"aad\ncaa\n",
"adab\nbob\n",
"aaaaaaaaa\nb\n",
"abc\ndaa\n",
"ab\nc\n",
"aa\nb\n",
"z\nzy\n",
"cba\ndefg\n"
],
"output": [
"-1\n",
"abczaa\n",
"aad\n",
"daab\n",
"z\n",
"abc\n",
"bcbcdbdbdd\n",
"acabcaaacd\n",
"-1\n",
"caadccaaaz\n",
"-1\n",
"abaaabc\n",
"aaaabb\n",
"ac\n",
"-1\n",
"-1\n",
"aaaaaaaaa\n",
"ccc\n",
"cbdaabbbcc\n",
"aaaz\n",
"bbbaabbaba\n",
"z\n",
"acaccaadad\n",
"aaaabb\n",
"bccaaabccc\n",
"adaddccaabbbbcd\n",
"cab\n",
"ba\n",
"-1\n",
"zzzzzzzzzzzz\n",
"aa\n",
"cba\n",
"zaaaaaaaa\n",
"ab\n",
"aaa\n",
"aab\n",
"zzzzzzzzzz\n",
"abaabbbbaz\n",
"ababbaabbb\n",
"bbbbccdddd\n",
"abaaabaabbbbaabbbbaabababbaabaabababbbaabbbaaabbabbabbbbbbbbaabbbbbabababbbbaaabaaaabbbbbbbbabababbz\n",
"aabb\n",
"aaccbb\n",
"dbbccbddbz\n",
"cbacbaabbb\n",
"adcddcaaabbbbcd\n",
"bca\n",
"z\n",
"dacdcaddbbaabcz\n",
"acb\n",
"baaabbbbcc\n",
"abc\n",
"aaaaaaaaaaaaaaa\n",
"caaaaaccdd\n",
"ababaca\n",
"abbabaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaabbbabababbbb\n",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"aabcaaaccd\n",
"cacbababba\n",
"acabcaadaz\n",
"qwertyz\n",
"ab\n",
"abc\n",
"abccab\n",
"-1\n",
"abc",
"dbbdbdcbcd",
"acabcaaacd",
"-1",
"aaaaccdacz",
"abaaabd",
"aaabbb",
"bc",
"b",
"ccb",
"zaaa",
"abbaabbabb",
"y",
"acaccaaadd",
"baaaab",
"bccaaacccc",
"adaddccaaabbbcd",
"zzzzzzzzzzzz",
"cba",
"bb",
"aba",
"zzzzzzzzzz",
"aabbbbaabz",
"bbaaabbabb",
"bbbcccdddd",
"abbabababbbbbbbbaaaabaaabbbbabababbbbbaabbbbbbbbabbabbaaabbbaabbbababaabaabbababaabbbbaabbbbaabaaabz",
"dbbcdbdcbz",
"cbacbaabbb",
"adcdcaaabbbbcdd",
"cac",
"z",
"dacdcbddbbaaacz",
"baaabbbbcc",
"bca",
"ddacaaaacc",
"abacaaa",
"abbbbaaabaaabbbbabbbabababababaaaabbabbbbabbbbbabbbbababbaaaaabbaabbbbabbbbbbabaabababaaabbabababbbb",
"bbaabaabaaaabbabaaaababababaabaabaaaabbaabbbbabbbaabaabaababbaababaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",
"bacaaaaccd",
"cacbbaaabb",
"acabdaaabz",
"qertwyz",
"aac",
"zaaabc",
"daa",
"daab",
"-1",
"-1",
"-1",
"-1",
"-1",
"-1"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Everything got unclear to us in a far away constellation Tau Ceti. Specifically, the Taucetians choose names to their children in a very peculiar manner.
Two young parents abac and bbad think what name to give to their first-born child. They decided that the name will be the permutation of letters of string s. To keep up with the neighbours, they decided to call the baby so that the name was lexicographically strictly larger than the neighbour's son's name t.
On the other hand, they suspect that a name tax will be introduced shortly. According to it, the Taucetians with lexicographically larger names will pay larger taxes. That's the reason abac and bbad want to call the newborn so that the name was lexicographically strictly larger than name t and lexicographically minimum at that.
The lexicographical order of strings is the order we are all used to, the "dictionary" order. Such comparison is used in all modern programming languages to compare strings. Formally, a string p of length n is lexicographically less than string q of length m, if one of the two statements is correct:
* n < m, and p is the beginning (prefix) of string q (for example, "aba" is less than string "abaa"),
* p1 = q1, p2 = q2, ..., pk - 1 = qk - 1, pk < qk for some k (1 ≤ k ≤ min(n, m)), here characters in strings are numbered starting from 1.
Write a program that, given string s and the heighbours' child's name t determines the string that is the result of permutation of letters in s. The string should be lexicographically strictly more than t and also, lexicographically minimum.
Input
The first line contains a non-empty string s (1 ≤ |s| ≤ 5000), where |s| is its length. The second line contains a non-empty string t (1 ≤ |t| ≤ 5000), where |t| is its length. Both strings consist of lowercase Latin letters.
Output
Print the sought name or -1 if it doesn't exist.
Examples
Input
aad
aac
Output
aad
Input
abad
bob
Output
daab
Input
abc
defg
Output
-1
Input
czaaab
abcdef
Output
abczaa
Note
In the first sample the given string s is the sought one, consequently, we do not need to change the letter order there.
### Input:
abc
defg
### Output:
-1
### Input:
czaaab
abcdef
### Output:
abczaa
### Code:
def findmin(lcopy, toexceed):
toex = ord(toexceed) - 97
for each in lcopy[(toex+1):]:
if each > 0:
return True
return False
def arrange(lcopy, toexceed = None):
if toexceed is None:
ans = ""
for i in range(26):
ans += chr(i+97)*lcopy[i]
return ans
ans = ""
for i in range(ord(toexceed)-97+1, 26):
if lcopy[i] > 0:
ans += chr(i+97)
lcopy[i] -= 1
break
return ans + arrange(lcopy)
def operation(s1, s2):
first_count = [0]*26
for letter in s1:
first_count[ord(letter)-97] += 1
common = 0
lcopy = list(first_count)
for i in range(len(s2)):
letter = s2[i]
num = ord(letter) - 97
if lcopy[num] > 0:
lcopy[num] -= 1
common += 1
else:
break
found = False
ans = ""
#print(common)
for cval in range(common, -1, -1):
#print(cval)
if cval >= len(s1):
lcopy[ord(s2[cval-1])-97] += 1
continue
else:
if cval == len(s2):
found = True
ans = s2[:cval] + arrange(lcopy)
break
else:
#print("yo", s2[cval])
if findmin(lcopy, s2[cval]):
found = True
ans = s2[:cval] + arrange(lcopy, s2[cval])
break
else:
lcopy[ord(s2[cval-1])-97] += 1
if not found:
return -1
else:
return ans
s1 = input()
s2 = input()
print(operation(s1, s2))
|
252_B. Unsorting Array_969 | Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of n elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements.
Array a (the array elements are indexed from 1) consisting of n elements is called sorted if it meets at least one of the following two conditions:
1. a1 ≤ a2 ≤ ... ≤ an;
2. a1 ≥ a2 ≥ ... ≥ an.
Help Petya find the two required positions to swap or else say that they do not exist.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n non-negative space-separated integers a1, a2, ..., an — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
Output
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to n.
Examples
Input
1
1
Output
-1
Input
2
1 2
Output
-1
Input
4
1 2 3 4
Output
1 2
Input
3
1 1 1
Output
-1
Note
In the first two samples the required pairs obviously don't exist.
In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted. | n=int(input())
a=[int(i) for i in input().split()]
b=len(set(a))
c=sorted(a,reverse=True)
if n==1 or n==2 or b==1:
print("-1")
elif n==3:
if b==2:
if a[0]==a[2]:
print("-1")
elif a[0]==a[1]:
print("2 3")
else:
print("1 2")
elif a[1]!=max(a[0],a[1],a[2]):
print(a.index(c[0])+1,"2")
else:
print(a.index(c[2])+1,"2")
elif n==4:
if b==2:
if a[0]==a[3]:
if a[0]==a[1] or a[0]==a[2]:
print("2 3")
else:
print("1 2")
elif a[0]==a[1]:
if a[0]==a[2]:
print("4 3")
else:
print("2 3")
elif a[0]==a[2]:
print("1 2")
elif a[1]==a[2]:
print("1 2")
elif a[1]==a[3]:
print("1 2")
else:
print("2 3")
elif b==3:
if c[0]==c[1]:
if a.index(c[3])!=2:
print(a.index(c[3])+1,"3")
elif a.index(c[3])!=1:
print(a.index(c[3])+1,"2")
else:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif b==4:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif n>4:
i=0
while(a[i]==a[0]):
i+=1
if i>3:
print(i+1,"2")
else:
d=list(a)
for i in range (n-4):
a.pop()
c=sorted(a,reverse=True)
b=len(set(c))
if b==2:
if a[0]==a[3]:
if a[0]==a[1] or a[0]==a[2]:
print("2 3")
else:
print("1 2")
elif a[0]==a[1]:
if a[0]==a[2]:
print("4 3")
else:
print("2 3")
elif a[0]==a[2]:
print("1 2")
elif a[1]==a[2]:
print("1 2")
elif a[1]==a[3]:
print("1 2")
else:
print("2 3")
elif b==3:
if c[0]==c[1]:
if a.index(c[3])!=2:
print(a.index(c[3])+1,"3")
elif a.index(c[3])!=1:
print(a.index(c[3])+1,"2")
else:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif b==4:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2") | {
"input": [
"3\n1 1 1\n",
"1\n1\n",
"2\n1 2\n",
"4\n1 2 3 4\n",
"3\n3 2 3\n",
"3\n1 3 1\n",
"5\n1 1 2 1 1\n",
"5\n1 1 1 1 2\n",
"4\n562617869 562617869 562617869 562617869\n",
"6\n1 2 3 3 2 1\n",
"4\n562617869 961148050 961148050 961148050\n",
"4\n961148050 951133776 596819899 0\n",
"4\n961148050 961148050 562617869 961148050\n",
"3\n1 2 2\n",
"4\n562617869 562617869 961148050 562617869\n",
"3\n2 1 3\n",
"4\n596819899 562617869 951133776 961148050\n",
"4\n951133776 961148050 596819899 562617869\n",
"7\n6 5 4 3 2 1 0\n",
"10\n1 2 1 2 1 2 1 2 1 2\n",
"4\n562617869 596819899 951133776 961148050\n",
"4\n961148050 961148050 961148050 562617869\n",
"4\n961148050 562617869 562617869 562617869\n",
"4\n562617869 562617869 562617869 961148050\n",
"4\n2 1 3 4\n",
"4\n961148050 951133776 596819899 562617869\n",
"4\n562617869 961148050 562617869 562617869\n",
"4\n961148050 562617869 961148050 961148050\n",
"3\n1 3 2\n",
"4\n562617869 961148050 596819899 951133776\n",
"3\n2 1 2\n",
"11\n1 1 1 1 1 2 2 2 2 2 1\n",
"4\n562617869 596819899 951133776 0\n",
"3\n1 2 1\n",
"3\n3 2 0\n",
"3\n1 2 0\n",
"3\n2 0 2\n",
"11\n1 1 1 1 1 2 4 2 2 2 1\n",
"5\n1 1 2 1 2\n",
"5\n1 2 1 1 2\n",
"4\n51494667 562617869 562617869 562617869\n",
"6\n1 2 3 4 2 1\n",
"4\n562617869 961148050 466952598 961148050\n",
"4\n961148050 951133776 596819899 -1\n",
"4\n961148050 961148050 846344935 961148050\n",
"3\n1 1 2\n",
"4\n562617869 562617869 961148050 948615588\n",
"3\n2 0 3\n",
"4\n596819899 562617869 951133776 1194323154\n",
"4\n951133776 961148050 596819899 851347656\n",
"7\n6 5 4 3 2 2 0\n",
"10\n1 2 1 2 1 2 1 2 1 4\n",
"4\n533365788 596819899 951133776 961148050\n",
"4\n961148050 961148050 533895588 562617869\n",
"4\n961148050 562617869 752859342 562617869\n",
"4\n562617869 931474507 562617869 961148050\n",
"4\n3 1 3 4\n",
"4\n961148050 323990683 596819899 562617869\n",
"4\n1074778641 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 961148050\n",
"3\n1 3 0\n",
"4\n562617869 961148050 365668276 951133776\n",
"4\n562617869 934529793 951133776 0\n",
"3\n1 0 1\n",
"3\n1 0 2\n",
"1\n2\n",
"2\n1 0\n",
"4\n1 2 3 8\n",
"3\n0 2 0\n",
"3\n2 2 1\n",
"5\n1 1 4 1 2\n",
"5\n1 2 1 2 2\n",
"4\n51494667 562617869 430653872 562617869\n",
"6\n1 0 3 4 2 1\n",
"4\n721711859 961148050 466952598 961148050\n",
"4\n1368582447 951133776 596819899 -1\n",
"4\n961148050 961148050 1051256782 961148050\n",
"3\n1 4 1\n",
"4\n562617869 258145437 961148050 948615588\n",
"4\n596819899 45016748 951133776 1194323154\n",
"4\n951133776 1700261825 596819899 851347656\n",
"7\n6 5 4 3 4 2 0\n",
"10\n1 2 1 2 1 1 1 2 1 4\n",
"4\n533365788 1160839207 951133776 961148050\n",
"4\n961148050 961148050 533895588 696554579\n",
"4\n961148050 562617869 1099356787 562617869\n",
"4\n562617869 48823784 562617869 961148050\n",
"4\n6 1 3 4\n",
"4\n961148050 58491082 596819899 562617869\n",
"4\n1357020387 961148050 562617869 562617869\n",
"4\n961148050 486387685 961148050 1179498630\n",
"3\n2 2 0\n",
"4\n562617869 961148050 365668276 401570620\n",
"3\n2 0 1\n",
"11\n1 1 1 1 1 2 4 2 2 1 1\n",
"4\n562617869 934529793 951133776 -1\n",
"3\n1 0 0\n",
"1\n4\n"
],
"output": [
"-1\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"-1\n",
"2 3\n",
"4 5\n",
"-1\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"3 4\n",
"1 2\n",
"3 4\n",
"2 3\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"5 6\n",
"1 2\n",
"-1\n",
"1 2\n",
"2 3\n",
"-1\n",
"5 6\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"-1\n",
"2 3\n",
"-1\n",
"-1\n",
"1 2\n",
"-1\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"-1\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"1 2\n",
"2 3\n",
"1 2\n",
"1 2\n",
"1 2\n",
"2 3\n",
"2 3\n",
"1 2\n",
"1 2\n",
"5 6\n",
"1 2\n",
"1 2\n",
"-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Little Petya likes arrays of integers a lot. Recently his mother has presented him one such array consisting of n elements. Petya is now wondering whether he can swap any two distinct integers in the array so that the array got unsorted. Please note that Petya can not swap equal integers even if they are in distinct positions in the array. Also note that Petya must swap some two integers even if the original array meets all requirements.
Array a (the array elements are indexed from 1) consisting of n elements is called sorted if it meets at least one of the following two conditions:
1. a1 ≤ a2 ≤ ... ≤ an;
2. a1 ≥ a2 ≥ ... ≥ an.
Help Petya find the two required positions to swap or else say that they do not exist.
Input
The first line contains a single integer n (1 ≤ n ≤ 105). The second line contains n non-negative space-separated integers a1, a2, ..., an — the elements of the array that Petya's mother presented him. All integers in the input do not exceed 109.
Output
If there is a pair of positions that make the array unsorted if swapped, then print the numbers of these positions separated by a space. If there are several pairs of positions, print any of them. If such pair does not exist, print -1. The positions in the array are numbered with integers from 1 to n.
Examples
Input
1
1
Output
-1
Input
2
1 2
Output
-1
Input
4
1 2 3 4
Output
1 2
Input
3
1 1 1
Output
-1
Note
In the first two samples the required pairs obviously don't exist.
In the third sample you can swap the first two elements. After that the array will look like this: 2 1 3 4. This array is unsorted.
### Input:
3
1 1 1
### Output:
-1
### Input:
1
1
### Output:
-1
### Code:
n=int(input())
a=[int(i) for i in input().split()]
b=len(set(a))
c=sorted(a,reverse=True)
if n==1 or n==2 or b==1:
print("-1")
elif n==3:
if b==2:
if a[0]==a[2]:
print("-1")
elif a[0]==a[1]:
print("2 3")
else:
print("1 2")
elif a[1]!=max(a[0],a[1],a[2]):
print(a.index(c[0])+1,"2")
else:
print(a.index(c[2])+1,"2")
elif n==4:
if b==2:
if a[0]==a[3]:
if a[0]==a[1] or a[0]==a[2]:
print("2 3")
else:
print("1 2")
elif a[0]==a[1]:
if a[0]==a[2]:
print("4 3")
else:
print("2 3")
elif a[0]==a[2]:
print("1 2")
elif a[1]==a[2]:
print("1 2")
elif a[1]==a[3]:
print("1 2")
else:
print("2 3")
elif b==3:
if c[0]==c[1]:
if a.index(c[3])!=2:
print(a.index(c[3])+1,"3")
elif a.index(c[3])!=1:
print(a.index(c[3])+1,"2")
else:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif b==4:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif n>4:
i=0
while(a[i]==a[0]):
i+=1
if i>3:
print(i+1,"2")
else:
d=list(a)
for i in range (n-4):
a.pop()
c=sorted(a,reverse=True)
b=len(set(c))
if b==2:
if a[0]==a[3]:
if a[0]==a[1] or a[0]==a[2]:
print("2 3")
else:
print("1 2")
elif a[0]==a[1]:
if a[0]==a[2]:
print("4 3")
else:
print("2 3")
elif a[0]==a[2]:
print("1 2")
elif a[1]==a[2]:
print("1 2")
elif a[1]==a[3]:
print("1 2")
else:
print("2 3")
elif b==3:
if c[0]==c[1]:
if a.index(c[3])!=2:
print(a.index(c[3])+1,"3")
elif a.index(c[3])!=1:
print(a.index(c[3])+1,"2")
else:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2")
elif b==4:
if a.index(c[0])!=2:
print(a.index(c[0])+1,"3")
elif a.index(c[0])!=1:
print(a.index(c[0])+1,"2") |
348_A. Mafia_980 | One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
Input
The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.
Output
In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
3 2 2
Output
4
Input
4
2 2 2 2
Output
3
Note
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game). | # mafia
N=int(input())
a=list(map(int,input().split()))
def isok(X):
sums=0
for num in a:
if X<num:
return False
sums+=max(0,X-num)
if sums>=X:
return True
return False
l=0
r=10**12
#l -- case_impossible
#r --case_possible
while r-l>1:
m=(l+r)//2
if isok(m):
r=m
else:
l=m
print(r)
| {
"input": [
"3\n3 2 2\n",
"4\n2 2 2 2\n",
"3\n1000000000 1000000000 10000000\n",
"3\n1 2 1\n",
"3\n4 10 11\n",
"5\n1000000000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000000000 1000000000\n",
"10\n94 96 91 95 99 94 96 92 95 99\n",
"7\n9 7 7 8 8 7 8\n",
"3\n1 1 1\n",
"3\n677876423 834056477 553175531\n",
"10\n13 12 10 13 13 14 10 10 12 12\n",
"5\n1000000000 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 102 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 3 4\n",
"3\n2 1 1\n",
"4\n1000000000 1000000000 1000000000 1000000000\n",
"30\n94 93 90 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000000 11000000\n",
"3\n2 2 1\n",
"3\n2 10 11\n",
"5\n1000010000 5 5 4 4\n",
"5\n1000000000 1000000000 1000000000 1000010000 1000000000\n",
"10\n94 96 91 95 2 94 96 92 95 99\n",
"7\n9 7 7 11 8 7 8\n",
"3\n677876423 1252386450 553175531\n",
"5\n1000000100 1 1 1 1\n",
"100\n1 555 876 444 262 234 231 598 416 261 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 1 4\n",
"4\n1000000001 1000000000 1000000000 1000000000\n",
"30\n94 93 77 94 90 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"4\n2 2 2 0\n",
"3\n1000000000 1000000000 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000000\n",
"3\n677876423 1252386450 854741007\n",
"4\n1000000001 1100000000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 97 95 97 91 91 95 98 96\n",
"3\n1000000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000000100\n",
"5\n1010000100 1 1 1 0\n",
"4\n1000000001 1100100000 1000000000 1000000000\n",
"30\n94 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n5 2 0\n",
"3\n1100000000 1000000010 01000000\n",
"5\n1010000000 1000000000 1000000000 1000010000 1000010100\n",
"10\n145 96 91 95 1 94 2 92 95 99\n",
"4\n0000000001 1100100000 1000000000 1000000000\n",
"3\n8 2 0\n",
"5\n1010000000 1000000000 1000000000 1000010010 1000010100\n",
"3\n198491773 1966171011 220670744\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 91 95 98 96\n",
"3\n1100000001 1000000000 01000000\n",
"5\n1001010000 5 3 7 0\n",
"5\n1010000000 1000000000 1000000000 1100010010 1000010100\n",
"4\n0000000001 1100100100 1000000000 1001000000\n",
"3\n7 2 0\n",
"3\n1100010001 1000000000 01000000\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010100\n",
"10\n145 96 91 95 0 94 2 147 95 73\n",
"5\n1010100000 1000000000 1000000000 1100010010 1000010000\n",
"3\n1100110001 1000100000 01000000\n",
"5\n1010100000 1000000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1001000010 1000000000 1100010010 1000010000\n",
"5\n1010100000 1101000010 1000000000 1100010010 1000010000\n",
"10\n145 96 74 95 1 157 2 147 25 73\n",
"3\n2 1 2\n",
"3\n3 2 3\n",
"3\n0 2 1\n",
"3\n3 10 11\n",
"5\n1000010000 5 5 4 1\n",
"10\n94 96 91 95 1 94 96 92 95 99\n",
"7\n9 7 3 11 8 7 8\n",
"3\n2 0 2\n",
"5\n1000000100 1 1 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 12 23 429 640 995 342 305\n",
"4\n1 2 0 4\n",
"3\n3 2 0\n",
"3\n0 2 2\n",
"5\n1000010000 5 5 7 1\n",
"10\n94 96 91 95 1 94 2 92 95 99\n",
"7\n9 8 3 11 8 7 8\n",
"3\n198491773 1252386450 854741007\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 580 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"3\n0 2 3\n",
"5\n1000010000 5 3 7 1\n",
"7\n9 8 5 11 8 7 8\n",
"3\n198491773 1252386450 220670744\n",
"5\n1010000100 1 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 472 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 164 95 97 91 91 95 98 96\n",
"3\n1100000000 1000000000 01000000\n",
"3\n0 4 3\n",
"5\n1000010000 5 3 7 0\n",
"10\n145 96 91 95 1 94 2 92 95 73\n",
"7\n9 8 5 11 8 7 5\n",
"5\n1010000100 0 0 1 0\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 156 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100000 1000000000 1001000000\n",
"3\n8 1 0\n",
"3\n0 4 0\n",
"10\n145 96 91 95 0 94 2 92 95 73\n",
"7\n9 12 5 11 8 7 5\n",
"3\n172905557 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 532 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"30\n1 93 77 94 115 91 93 91 93 94 93 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n0 5 0\n",
"5\n1001010000 5 3 3 0\n",
"7\n9 12 5 10 8 7 5\n",
"3\n27098762 1966171011 220670744\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 602 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n",
"4\n0000000001 1100100100 1000000000 0001000000\n",
"30\n1 93 77 94 115 91 93 91 93 94 23 90 100 94 97 94 94 95 94 96 94 98 223 95 97 91 160 95 98 96\n",
"3\n1100010001 1000100000 01000000\n",
"5\n1001010000 5 3 6 0\n",
"10\n145 96 74 95 0 94 2 147 95 73\n",
"7\n9 12 5 10 8 7 3\n",
"3\n27098762 1966171011 358335902\n",
"100\n1 555 876 444 262 234 231 598 416 400 206 165 181 988 469 123 754 592 533 97 864 716 831 155 962 341 207 377 892 51 866 96 757 317 832 476 549 40 770 1000 887 145 956 515 992 653 972 677 973 527 984 559 280 346 654 30 372 547 209 929 492 520 446 726 47 170 699 560 814 206 688 955 308 287 26 17 77 430 262 71 415 586 453 562 419 615 732 658 108 315 268 574 86 2 23 429 640 995 342 305\n"
],
"output": [
"4\n",
"3\n",
"1005000000\n",
"2\n",
"13\n",
"1000000000\n",
"1250000000\n",
"106\n",
"9\n",
"2\n",
"1032554216\n",
"14\n",
"1000000000\n",
"1000\n",
"4\n",
"2\n",
"1333333334\n",
"100\n",
"1005500000\n",
"3\n",
"12\n",
"1000010000\n",
"1250002500\n",
"99\n",
"11\n",
"1252386450\n",
"1000000100\n",
"1000\n",
"4\n",
"1333333334\n",
"100\n",
"2\n",
"1000500000\n",
"1252502500\n",
"1392501940\n",
"1366666667\n",
"115\n",
"1000500005\n",
"1252502525\n",
"1010000100\n",
"1366700001\n",
"164\n",
"5\n",
"1100000000\n",
"1252505025\n",
"145\n",
"1100100000\n",
"8\n",
"1252505028\n",
"1966171011\n",
"223\n",
"1100000001\n",
"1001010000\n",
"1277505028\n",
"1100100100\n",
"7\n",
"1100010001\n",
"1277530028\n",
"147\n",
"1277530003\n",
"1100110001\n",
"1277530005\n",
"1277780005\n",
"1302780005\n",
"157\n",
"3\n",
"4\n",
"2\n",
"12\n",
"1000010000\n",
"99\n",
"11\n",
"2\n",
"1000000100\n",
"1000\n",
"4\n",
"3\n",
"2\n",
"1000010000\n",
"99\n",
"11\n",
"1252386450\n",
"1000\n",
"3\n",
"1000010000\n",
"11\n",
"1252386450\n",
"1010000100\n",
"1000\n",
"164\n",
"1100000000\n",
"4\n",
"1000010000\n",
"145\n",
"11\n",
"1010000100\n",
"1000\n",
"1100100000\n",
"8\n",
"4\n",
"145\n",
"12\n",
"1966171011\n",
"1000\n",
"223\n",
"5\n",
"1001010000\n",
"12\n",
"1966171011\n",
"1000\n",
"1100100100\n",
"223\n",
"1100010001\n",
"1001010000\n",
"147\n",
"12\n",
"1966171011\n",
"1000\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
One day n friends gathered together to play "Mafia". During each round of the game some player must be the supervisor and other n - 1 people take part in the game. For each person we know in how many rounds he wants to be a player, not the supervisor: the i-th person wants to play ai rounds. What is the minimum number of rounds of the "Mafia" game they need to play to let each person play at least as many rounds as they want?
Input
The first line contains integer n (3 ≤ n ≤ 105). The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the i-th number in the list is the number of rounds the i-th person wants to play.
Output
In a single line print a single integer — the minimum number of game rounds the friends need to let the i-th person play at least ai rounds.
Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
3 2 2
Output
4
Input
4
2 2 2 2
Output
3
Note
You don't need to know the rules of "Mafia" to solve this problem. If you're curious, it's a game Russia got from the Soviet times: http://en.wikipedia.org/wiki/Mafia_(party_game).
### Input:
3
3 2 2
### Output:
4
### Input:
4
2 2 2 2
### Output:
3
### Code:
# mafia
N=int(input())
a=list(map(int,input().split()))
def isok(X):
sums=0
for num in a:
if X<num:
return False
sums+=max(0,X-num)
if sums>=X:
return True
return False
l=0
r=10**12
#l -- case_impossible
#r --case_possible
while r-l>1:
m=(l+r)//2
if isok(m):
r=m
else:
l=m
print(r)
|
371_B. Fox Dividing Cheese_984 | Two little greedy bears have found two pieces of cheese in the forest of weight a and b grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal".
The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
Input
The first line contains two space-separated integers a and b (1 ≤ a, b ≤ 109).
Output
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
Examples
Input
15 20
Output
3
Input
14 8
Output
-1
Input
6 6
Output
0 | from math import pow
def take_input(s): #for integer inputs
if s == 1: return int(input())
return map(int, input().split())
def factor(n,k):
i = 0
while(n%k==0):
i += 1
n //= k
return i
a, b = take_input(2)
count = 0
if a == b:
print(0)
exit()
a_fac_2 = factor(a,2); a_fac_3 = factor(a,3); a_fac_5 = factor(a,5)
b_fac_2 = factor(b,2); b_fac_3 = factor(b,3); b_fac_5 = factor(b,5)
x = a
if a_fac_2>0: x //= pow(2,a_fac_2)
if a_fac_3>0: x //= pow(3,a_fac_3)
if a_fac_5>0: x //= pow(5,a_fac_5)
y = b
if b_fac_2>0: y //= pow(2,b_fac_2)
if b_fac_3>0: y //= pow(3,b_fac_3)
if b_fac_5>0: y //= pow(5,b_fac_5)
if x != y:
print(-1)
else:
print(abs(a_fac_2 - b_fac_2) + abs(a_fac_3 - b_fac_3) + abs(a_fac_5 - b_fac_5))
| {
"input": [
"15 20\n",
"14 8\n",
"6 6\n",
"919536000 993098880\n",
"691200 583200\n",
"5 1000000000\n",
"100 10\n",
"537814642 537814642\n",
"21 35\n",
"800000 729000\n",
"881280 765000\n",
"864000000 607500000\n",
"648293430 540244525\n",
"445906944 528482304\n",
"820125000 874800000\n",
"509607936 306110016\n",
"792000 792000\n",
"513600 513600\n",
"1000000000 1\n",
"673067520 807681024\n",
"1 1\n",
"7920 9900\n",
"689147136 861433920\n",
"1024 1048576\n",
"36 30\n",
"119144448 423624704\n",
"576000 972000\n",
"1000000000 7\n",
"1 22\n",
"609120000 913680000\n",
"720212000 864254400\n",
"21751200 43502400\n",
"900000011 800000011\n",
"607500 506250\n",
"1024 729\n",
"3303936 3097440\n",
"1 1000000000\n",
"19500000 140400000\n",
"847500 610200\n",
"536870912 387420489\n",
"100000007 800000011\n",
"1000000000 3\n",
"900000011 999900017\n",
"2208870 122715\n",
"1000000000 2\n",
"1000000000 5\n",
"10332160 476643528\n",
"1 1024\n",
"3 1000000000\n",
"9900 7128\n",
"4812500 7577955\n",
"55404 147744\n",
"522784320 784176480\n",
"2 1000000000\n",
"924896439 993098880\n",
"1 2\n",
"1 24\n",
"1000000000 4\n",
"396 7128\n",
"9 6\n",
"32 30\n",
"691200 438115\n",
"5 1100000000\n",
"110 10\n",
"708145209 537814642\n",
"5 35\n",
"800000 1215134\n",
"881280 752759\n",
"1488496828 607500000\n",
"1183431925 540244525\n",
"371318978 528482304\n",
"908784 792000\n",
"513600 248319\n",
"1000000001 2\n",
"897945222 807681024\n",
"7920 16691\n",
"513923703 861433920\n",
"1024 2051344\n",
"31 30\n",
"103288268 423624704\n",
"657401 972000\n",
"1000010000 7\n",
"232561154 913680000\n",
"25731138 43502400\n",
"671771637 800000011\n",
"533201 506250\n",
"1024 666\n",
"3303936 2817250\n",
"1 1000001000\n",
"847500 533407\n",
"935924067 387420489\n",
"195518386 800000011\n",
"1000010000 3\n",
"900000011 991865743\n",
"1491963 122715\n",
"1100000000 2\n",
"10332160 84989538\n",
"3 1100000000\n",
"5678790 7577955\n",
"67651 147744\n",
"2 1000100000\n",
"17 20\n",
"17 8\n",
"924896439 998299650\n",
"691200 179926\n",
"5 1100000001\n",
"111 10\n",
"897033693 537814642\n",
"5 34\n",
"846029 1215134\n",
"711976880 607500000\n",
"371318978 121822012\n",
"908784 1175872\n",
"995783 248319\n",
"1000000001 1\n",
"5222 16691\n",
"463351059 861433920\n",
"1031 2051344\n",
"103288268 705866301\n",
"1182172 972000\n",
"1000010000 4\n",
"2 22\n",
"232561154 689605800\n",
"25731138 45565213\n",
"471384248 800000011\n",
"533201 831372\n",
"1024 1324\n",
"43729 2817250\n",
"847500 563553\n",
"1270836736 387420489\n",
"195518386 251572851\n",
"1000010000 5\n",
"1491963 130132\n",
"1100000010 2\n",
"1000000000 13\n",
"10332160 112355773\n",
"3 1100000100\n",
"680 7128\n",
"9151662 7577955\n",
"67651 178107\n",
"1 1000100000\n",
"31 20\n",
"17 11\n",
"10 6\n",
"924896439 839890701\n"
],
"output": [
"3\n",
"-1\n",
"0\n",
"5\n",
"8\n",
"17\n",
"2\n",
"0\n",
"2\n",
"13\n",
"9\n",
"9\n",
"3\n",
"8\n",
"6\n",
"24\n",
"0\n",
"0\n",
"18\n",
"3\n",
"0\n",
"3\n",
"3\n",
"10\n",
"3\n",
"7\n",
"7\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"1\n",
"-1\n",
"3\n",
"16\n",
"6\n",
"18\n",
"5\n",
"5\n",
"47\n",
"-1\n",
"19\n",
"-1\n",
"3\n",
"17\n",
"17\n",
"19\n",
"10\n",
"19\n",
"5\n",
"16\n",
"4\n",
"2\n",
"17\n",
"-1\n",
"1\n",
"4\n",
"16\n",
"3\n",
"2\n",
"6\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Two little greedy bears have found two pieces of cheese in the forest of weight a and b grams, correspondingly. The bears are so greedy that they are ready to fight for the larger piece. That's where the fox comes in and starts the dialog: "Little bears, wait a little, I want to make your pieces equal" "Come off it fox, how are you going to do that?", the curious bears asked. "It's easy", said the fox. "If the mass of a certain piece is divisible by two, then I can eat exactly a half of the piece. If the mass of a certain piece is divisible by three, then I can eat exactly two-thirds, and if the mass is divisible by five, then I can eat four-fifths. I'll eat a little here and there and make the pieces equal".
The little bears realize that the fox's proposal contains a catch. But at the same time they realize that they can not make the two pieces equal themselves. So they agreed to her proposal, but on one condition: the fox should make the pieces equal as quickly as possible. Find the minimum number of operations the fox needs to make pieces equal.
Input
The first line contains two space-separated integers a and b (1 ≤ a, b ≤ 109).
Output
If the fox is lying to the little bears and it is impossible to make the pieces equal, print -1. Otherwise, print the required minimum number of operations. If the pieces of the cheese are initially equal, the required number is 0.
Examples
Input
15 20
Output
3
Input
14 8
Output
-1
Input
6 6
Output
0
### Input:
15 20
### Output:
3
### Input:
14 8
### Output:
-1
### Code:
from math import pow
def take_input(s): #for integer inputs
if s == 1: return int(input())
return map(int, input().split())
def factor(n,k):
i = 0
while(n%k==0):
i += 1
n //= k
return i
a, b = take_input(2)
count = 0
if a == b:
print(0)
exit()
a_fac_2 = factor(a,2); a_fac_3 = factor(a,3); a_fac_5 = factor(a,5)
b_fac_2 = factor(b,2); b_fac_3 = factor(b,3); b_fac_5 = factor(b,5)
x = a
if a_fac_2>0: x //= pow(2,a_fac_2)
if a_fac_3>0: x //= pow(3,a_fac_3)
if a_fac_5>0: x //= pow(5,a_fac_5)
y = b
if b_fac_2>0: y //= pow(2,b_fac_2)
if b_fac_3>0: y //= pow(3,b_fac_3)
if b_fac_5>0: y //= pow(5,b_fac_5)
if x != y:
print(-1)
else:
print(abs(a_fac_2 - b_fac_2) + abs(a_fac_3 - b_fac_3) + abs(a_fac_5 - b_fac_5))
|
442_C. Artem and Array _991 | Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a, b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points.
After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.
Input
The first line contains a single integer n (1 ≤ n ≤ 5·105) — the number of elements in the array. The next line contains n integers ai (1 ≤ ai ≤ 106) — the values of the array elements.
Output
In a single line print a single integer — the maximum number of points Artem can get.
Examples
Input
5
3 1 5 2 6
Output
11
Input
5
1 2 3 4 5
Output
6
Input
5
1 100 101 100 1
Output
102 |
MAXN = 5 * 10**5 + 100
a = []
ans = 0
n = int(input())
a = list( map ( int, input().split() ) )
a.append(0)
a = [0] + a
n = n + 2
arr = []
arr.append( a[0] )
arr.append( a[1] )
i = 2
while i < n :
ln = a[i]
l1 = arr[-1]
l0 = arr[-2]
while l1 <= l0 and l1 <= ln :
ans = ans + min ( l0 , ln )
arr.pop()
l1 = arr[-1]
l0 = arr[-2]
arr.append(ln)
i = i + 1
for i in range ( 1 , len(arr) - 1 ) :
ans += min ( arr[i - 1] , arr[i + 1] )
print (ans)
| {
"input": [
"5\n1 2 3 4 5\n",
"5\n1 100 101 100 1\n",
"5\n3 1 5 2 6\n",
"9\n72 49 39 50 68 35 75 94 56\n",
"4\n2 3 1 2\n",
"8\n3 4 3 1 1 3 4 1\n",
"1\n4\n",
"7\n2 1 2 2 2 2 2\n",
"6\n1 7 3 1 6 2\n",
"8\n77 84 26 34 17 56 76 3\n",
"2\n93 51\n",
"1\n87\n",
"4\n86 21 58 60\n",
"10\n96 66 8 18 30 48 34 11 37 42\n",
"6\n46 30 38 9 65 23\n",
"5\n21 6 54 69 32\n",
"3\n1 2 1\n",
"3\n31 19 5\n",
"10\n4 2 2 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 15\n",
"9\n4 5 2 2 3 1 3 3 5\n",
"5\n2 6 2 1 2\n",
"2\n3 1\n",
"9\n72 49 39 50 68 35 75 158 56\n",
"4\n2 4 1 2\n",
"8\n3 4 3 1 1 3 6 1\n",
"1\n1\n",
"7\n2 1 2 4 2 2 2\n",
"8\n77 84 26 34 6 56 76 3\n",
"4\n101 21 58 60\n",
"10\n96 66 8 18 58 48 34 11 37 42\n",
"6\n46 30 38 4 65 23\n",
"5\n29 6 54 69 32\n",
"3\n20 19 5\n",
"10\n4 2 1 4 1 2 2 4 2 1\n",
"7\n82 60 92 4 2 13 30\n",
"9\n4 5 2 2 3 1 3 6 5\n",
"5\n4 6 2 1 2\n",
"9\n64 49 39 50 68 35 75 158 56\n",
"8\n77 84 26 34 6 56 23 3\n",
"6\n46 30 3 4 65 23\n",
"5\n29 6 54 69 38\n",
"3\n20 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 1\n",
"7\n63 60 92 4 2 13 30\n",
"9\n4 9 2 2 3 1 3 6 5\n",
"9\n64 49 39 8 68 35 75 158 56\n",
"8\n6 4 3 0 1 3 6 1\n",
"4\n101 15 68 60\n",
"10\n96 106 8 18 36 48 34 11 37 42\n",
"5\n41 6 54 69 38\n",
"7\n89 60 92 4 2 13 30\n",
"2\n93 100\n",
"1\n79\n",
"5\n1 1 3 4 5\n",
"8\n3 4 3 0 1 3 6 1\n",
"7\n2 0 2 4 2 2 2\n",
"1\n41\n",
"4\n101 15 58 60\n",
"10\n96 106 8 18 58 48 34 11 37 42\n",
"5\n4 12 2 1 2\n",
"5\n1 0 3 4 5\n",
"8\n77 108 26 34 6 56 23 3\n",
"1\n52\n",
"6\n46 45 3 4 65 23\n",
"3\n39 19 2\n",
"10\n2 2 1 4 1 2 2 4 2 2\n",
"9\n3 9 2 2 3 1 3 6 5\n",
"5\n4 14 2 1 2\n"
],
"output": [
"6",
"102",
"11",
"435",
"4",
"15",
"0",
"10",
"12",
"279",
"0",
"0",
"118",
"299",
"145",
"74",
"1",
"5",
"21",
"129",
"23",
"6",
"0",
"435\n",
"4\n",
"15\n",
"0\n",
"10\n",
"279\n",
"118\n",
"337\n",
"145\n",
"90\n",
"5\n",
"21\n",
"159\n",
"25\n",
"6\n",
"419\n",
"206\n",
"103\n",
"96\n",
"2\n",
"17\n",
"140\n",
"26\n",
"408\n",
"18\n",
"128\n",
"305\n",
"120\n",
"166\n",
"0\n",
"0\n",
"5\n",
"15\n",
"10\n",
"0\n",
"118\n",
"337\n",
"6\n",
"5\n",
"206\n",
"0\n",
"118\n",
"2\n",
"18\n",
"25\n",
"6\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Artem has an array of n positive integers. Artem decided to play with it. The game consists of n moves. Each move goes like this. Artem chooses some element of the array and removes it. For that, he gets min(a, b) points, where a and b are numbers that were adjacent with the removed number. If the number doesn't have an adjacent number to the left or right, Artem doesn't get any points.
After the element is removed, the two parts of the array glue together resulting in the new array that Artem continues playing with. Borya wondered what maximum total number of points Artem can get as he plays this game.
Input
The first line contains a single integer n (1 ≤ n ≤ 5·105) — the number of elements in the array. The next line contains n integers ai (1 ≤ ai ≤ 106) — the values of the array elements.
Output
In a single line print a single integer — the maximum number of points Artem can get.
Examples
Input
5
3 1 5 2 6
Output
11
Input
5
1 2 3 4 5
Output
6
Input
5
1 100 101 100 1
Output
102
### Input:
5
1 2 3 4 5
### Output:
6
### Input:
5
1 100 101 100 1
### Output:
102
### Code:
MAXN = 5 * 10**5 + 100
a = []
ans = 0
n = int(input())
a = list( map ( int, input().split() ) )
a.append(0)
a = [0] + a
n = n + 2
arr = []
arr.append( a[0] )
arr.append( a[1] )
i = 2
while i < n :
ln = a[i]
l1 = arr[-1]
l0 = arr[-2]
while l1 <= l0 and l1 <= ln :
ans = ans + min ( l0 , ln )
arr.pop()
l1 = arr[-1]
l0 = arr[-2]
arr.append(ln)
i = i + 1
for i in range ( 1 , len(arr) - 1 ) :
ans += min ( arr[i - 1] , arr[i + 1] )
print (ans)
|
488_C. Fight the Monster_997 | A monster is attacking the Cyberland!
Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).
During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.
Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.
Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input
The first line contains three integers HPY, ATKY, DEFY, separated by a space, denoting the initial HP, ATK and DEF of Master Yang.
The second line contains three integers HPM, ATKM, DEFM, separated by a space, denoting the HP, ATK and DEF of the monster.
The third line contains three integers h, a, d, separated by a space, denoting the price of 1 HP, 1 ATK and 1 DEF.
All numbers in input are integer and lie between 1 and 100 inclusively.
Output
The only output line should contain an integer, denoting the minimum bitcoins Master Yang should spend in order to win.
Examples
Input
1 2 1
1 100 1
1 100 100
Output
99
Input
100 100 100
1 1 1
1 1 1
Output
0
Note
For the first sample, prices for ATK and DEF are extremely high. Master Yang can buy 99 HP, then he can beat the monster with 1 HP left.
For the second sample, Master Yang is strong enough to beat the monster, so he doesn't need to buy anything. | # HEY STALKER
hp_y, at_y, df_y = map(int, input().split())
hp_m, at_m, df_m = map(int, input().split())
cst_hp, cst_at, cst_df = map(int, input().split())
ans = 2e18
for ati in range(201):
for dfi in range(201):
if ati + at_y > df_m:
k = hp_m // ((at_y + ati) - df_m)
if hp_m % ((at_y + ati) - df_m) != 0:
k += 1
t = max(0, k*(at_m-df_y-dfi) - hp_y+1)
cost = cst_hp*t + cst_df*dfi + cst_at*ati
ans = min(ans, cost)
print(ans) | {
"input": [
"1 2 1\n1 100 1\n1 100 100\n",
"100 100 100\n1 1 1\n1 1 1\n",
"51 89 97\n18 25 63\n22 91 74\n",
"1 100 1\n100 100 100\n1 100 100\n",
"20 1 1\n100 100 100\n1 100 100\n",
"1 10 29\n1 1 43\n1 1 100\n",
"25 38 49\n84 96 42\n3 51 92\n",
"2 1 1\n100 2 100\n100 1 100\n",
"1 1 1\n100 100 100\n1 100 100\n",
"99 32 20\n89 72 74\n1 100 39\n",
"100 1 1\n100 100 100\n1 100 100\n",
"10 100 55\n100 100 1\n1 1 1\n",
"1 1 1\n1 1 1\n100 100 100\n",
"1 1 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n1 51 52\n",
"50 80 92\n41 51 56\n75 93 12\n",
"100 1 1\n100 100 100\n100 1 100\n",
"11 1 1\n100 1 1\n100 1 1\n",
"1 1 1\n100 100 100\n100 100 100\n",
"1 28 47\n31 60 38\n14 51 77\n",
"1 1 1\n100 100 100\n1 2 3\n",
"1 100 100\n1 1 1\n87 100 43\n",
"1 1 1\n100 100 100\n1 1 100\n",
"14 61 87\n11 78 14\n5 84 92\n",
"65 6 5\n70 78 51\n88 55 78\n",
"1 100 1\n100 100 99\n1 100 100\n",
"39 49 78\n14 70 41\n3 33 23\n",
"11 1 1\n10 1 10\n100 50 1\n",
"1 100 1\n1 1 1\n1 1 1\n",
"79 1 1\n1 1 10\n1 1 100\n",
"100 100 100\n100 100 100\n100 100 100\n",
"11 82 51\n90 84 72\n98 98 43\n",
"50 100 51\n100 100 100\n1 100 100\n",
"10 100 1\n100 1 1\n1 100 1\n",
"74 89 5\n32 76 99\n62 95 36\n",
"72 16 49\n5 21 84\n48 51 88\n",
"100 100 1\n100 100 100\n1 100 100\n",
"76 63 14\n89 87 35\n20 15 56\n",
"1 1 1\n1 1 100\n100 100 1\n",
"1 10 10\n1 10 100\n1 1 61\n",
"10 10 100\n1 10 1\n1 1 100\n",
"1 1 100\n1 1 1\n100 1 100\n",
"12 59 66\n43 15 16\n12 18 66\n",
"10 10 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n100 1 9\n",
"51 89 97\n18 25 63\n41 91 74\n",
"1 100 1\n100 100 000\n1 100 100\n",
"2 10 29\n1 1 43\n1 1 100\n",
"25 38 84\n84 96 42\n3 51 92\n",
"99 32 20\n89 72 74\n1 100 38\n",
"1 1 1\n1 1 1\n101 100 100\n",
"1 0 1\n1 1 1\n1 1 1\n",
"1 97 1\n100 99 98\n2 51 52\n",
"100 1 1\n100 100 100\n100 1 101\n",
"1 1 1\n100 100 100\n100 100 101\n",
"1 28 47\n31 9 38\n14 51 77\n",
"1 1 1\n100 100 101\n1 2 3\n",
"65 6 7\n70 78 51\n88 55 78\n",
"11 2 1\n10 1 10\n100 50 1\n",
"79 1 1\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 98 43\n",
"50 100 80\n100 100 100\n1 100 100\n",
"74 89 5\n37 76 99\n62 95 36\n",
"72 16 49\n2 21 84\n48 51 88\n",
"76 63 14\n89 157 35\n20 15 56\n",
"1 10 10\n1 10 101\n1 1 61\n",
"10 5 100\n1 100 100\n10 100 90\n",
"10 100 1\n1 100 100\n101 1 9\n",
"99 32 20\n89 72 48\n1 100 38\n",
"1 178 1\n100 99 98\n2 51 52\n",
"19 1 1\n100 1 1\n100 1 1\n",
"1 28 47\n31 9 66\n14 51 77\n",
"1 1 1\n100 100 101\n1 3 3\n",
"65 6 7\n70 78 51\n88 23 78\n",
"74 89 5\n37 76 53\n62 95 36\n",
"81 63 14\n89 157 35\n20 15 56\n",
"10 100 1\n1 100 110\n101 1 9\n",
"50 80 98\n41 51 56\n75 93 12\n",
"11 1 1\n100 1 1\n100 2 1\n",
"1 100 100\n1 1 1\n102 100 43\n",
"39 49 78\n14 70 41\n3 33 36\n",
"10 10 100\n1 10 1\n1 2 100\n",
"12 59 66\n43 15 16\n21 18 66\n",
"110 100 100\n1 1 1\n1 1 1\n",
"2 89 97\n18 25 63\n41 91 74\n",
"2 10 29\n1 1 43\n1 1 101\n",
"1 2 1\n1 1 1\n101 100 100\n",
"1 0 2\n1 1 1\n1 1 1\n",
"50 80 98\n41 51 56\n23 93 12\n",
"1 100 100\n1 1 1\n102 100 79\n",
"39 49 78\n14 70 41\n3 9 36\n",
"7 2 1\n10 1 10\n100 50 1\n",
"79 1 0\n2 1 10\n1 1 100\n",
"11 82 51\n20 84 72\n98 89 43\n",
"72 16 3\n2 21 84\n48 51 88\n",
"1 10 10\n2 10 101\n1 1 61\n",
"12 59 66\n43 15 16\n41 18 66\n",
"10 5 100\n1 000 100\n10 100 90\n",
"110 101 100\n1 1 1\n1 1 1\n",
"2 68 97\n18 25 63\n41 91 74\n"
],
"output": [
"99",
"0",
"0",
"1990",
"11871",
"34",
"1692",
"199",
"11890",
"5478",
"11791",
"37",
"100",
"1",
"1498",
"0",
"199",
"1",
"19900",
"1562",
"496",
"0",
"298",
"0",
"7027",
"1890",
"0",
"500",
"0",
"10",
"100",
"1376",
"1384",
"0",
"3529",
"3519",
"1891",
"915",
"10000",
"91",
"0",
"1",
"0",
"9100",
"811",
"0\n",
"99\n",
"34\n",
"921\n",
"5478\n",
"100\n",
"2\n",
"2051\n",
"199\n",
"19999\n",
"561\n",
"498\n",
"6871\n",
"450\n",
"10\n",
"1204\n",
"851\n",
"3565\n",
"3519\n",
"2275\n",
"92\n",
"9600\n",
"811\n",
"2878\n",
"392\n",
"1\n",
"1989\n",
"600\n",
"3191\n",
"95\n",
"2175\n",
"821\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"34\n",
"0\n",
"2\n",
"0\n",
"0\n",
"0\n",
"450\n",
"10\n",
"1204\n",
"3519\n",
"92\n",
"0\n",
"9600\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
A monster is attacking the Cyberland!
Master Yang, a braver, is going to beat the monster. Yang and the monster each have 3 attributes: hitpoints (HP), offensive power (ATK) and defensive power (DEF).
During the battle, every second the monster's HP decrease by max(0, ATKY - DEFM), while Yang's HP decreases by max(0, ATKM - DEFY), where index Y denotes Master Yang and index M denotes monster. Both decreases happen simultaneously Once monster's HP ≤ 0 and the same time Master Yang's HP > 0, Master Yang wins.
Master Yang can buy attributes from the magic shop of Cyberland: h bitcoins per HP, a bitcoins per ATK, and d bitcoins per DEF.
Now Master Yang wants to know the minimum number of bitcoins he can spend in order to win.
Input
The first line contains three integers HPY, ATKY, DEFY, separated by a space, denoting the initial HP, ATK and DEF of Master Yang.
The second line contains three integers HPM, ATKM, DEFM, separated by a space, denoting the HP, ATK and DEF of the monster.
The third line contains three integers h, a, d, separated by a space, denoting the price of 1 HP, 1 ATK and 1 DEF.
All numbers in input are integer and lie between 1 and 100 inclusively.
Output
The only output line should contain an integer, denoting the minimum bitcoins Master Yang should spend in order to win.
Examples
Input
1 2 1
1 100 1
1 100 100
Output
99
Input
100 100 100
1 1 1
1 1 1
Output
0
Note
For the first sample, prices for ATK and DEF are extremely high. Master Yang can buy 99 HP, then he can beat the monster with 1 HP left.
For the second sample, Master Yang is strong enough to beat the monster, so he doesn't need to buy anything.
### Input:
1 2 1
1 100 1
1 100 100
### Output:
99
### Input:
100 100 100
1 1 1
1 1 1
### Output:
0
### Code:
# HEY STALKER
hp_y, at_y, df_y = map(int, input().split())
hp_m, at_m, df_m = map(int, input().split())
cst_hp, cst_at, cst_df = map(int, input().split())
ans = 2e18
for ati in range(201):
for dfi in range(201):
if ati + at_y > df_m:
k = hp_m // ((at_y + ati) - df_m)
if hp_m % ((at_y + ati) - df_m) != 0:
k += 1
t = max(0, k*(at_m-df_y-dfi) - hp_y+1)
cost = cst_hp*t + cst_df*dfi + cst_at*ati
ans = min(ans, cost)
print(ans) |
512_B. Fox And Jumping_1001 | Fox Ciel is playing a game. In this game there is an infinite long tape with cells indexed by integers (positive, negative and zero). At the beginning she is standing at the cell 0.
There are also n cards, each card has 2 attributes: length li and cost ci. If she pays ci dollars then she can apply i-th card. After applying i-th card she becomes able to make jumps of length li, i. e. from cell x to cell (x - li) or cell (x + li).
She wants to be able to jump to any cell on the tape (possibly, visiting some intermediate cells). For achieving this goal, she wants to buy some cards, paying as little money as possible.
If this is possible, calculate the minimal cost.
Input
The first line contains an integer n (1 ≤ n ≤ 300), number of cards.
The second line contains n numbers li (1 ≤ li ≤ 109), the jump lengths of cards.
The third line contains n numbers ci (1 ≤ ci ≤ 105), the costs of cards.
Output
If it is impossible to buy some cards and become able to jump to any cell, output -1. Otherwise output the minimal cost of buying such set of cards.
Examples
Input
3
100 99 9900
1 1 1
Output
2
Input
5
10 20 30 40 50
1 1 1 1 1
Output
-1
Input
7
15015 10010 6006 4290 2730 2310 1
1 1 1 1 1 1 10
Output
6
Input
8
4264 4921 6321 6984 2316 8432 6120 1026
4264 4921 6321 6984 2316 8432 6120 1026
Output
7237
Note
In first sample test, buying one card is not enough: for example, if you buy a card with length 100, you can't jump to any cell whose index is not a multiple of 100. The best way is to buy first and second card, that will make you be able to jump to any cell.
In the second sample test, even if you buy all cards, you can't jump to any cell whose index is not a multiple of 10, so you should output -1. | def gcd(x,y):
while x % y > 0:
x, y = y, x % y
return y
n = int(input())
a, b, c = [int(x) for x in input().split()], [int(x) for x in input().split()], [{} for i in range(n)]
def f(i,g):
if g == 1:
return 0
if i == n:
return 100000000000
if g in c[i]:
return c[i][g]
A = f(i+1,g)
A = min(A, f(i+1, gcd(g,a[i])) + b[i])
c[i][g] = A
return A
if f(0,0) < 100000000000:
print(f(0,0))
else:
print(-1) | {
"input": [
"5\n10 20 30 40 50\n1 1 1 1 1\n",
"8\n4264 4921 6321 6984 2316 8432 6120 1026\n4264 4921 6321 6984 2316 8432 6120 1026\n",
"3\n100 99 9900\n1 1 1\n",
"7\n15015 10010 6006 4290 2730 2310 1\n1 1 1 1 1 1 10\n",
"8\n2 3 5 7 11 13 17 19\n4 8 7 1 5 2 6 3\n",
"1\n2\n2\n",
"1\n1000000000\n100000\n",
"1\n1\n1\n",
"6\n1 2 4 8 16 32\n32 16 8 4 2 1\n",
"2\n1000000000 999999999\n100000 100000\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 1365 1155 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 62478 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"35\n512 268435456 8 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 12683 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 28986 25365 98581 11195 43674 75769 22053\n",
"8\n2 4 5 7 11 13 17 19\n4 8 7 1 5 2 6 3\n",
"1\n4\n2\n",
"6\n1 2 6 8 16 32\n32 16 8 4 2 1\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 1155 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 62478 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"8\n1843 4921 6321 6984 2316 8432 6120 1026\n4264 4921 6321 6984 2316 8432 6120 1026\n",
"3\n100 99 12690\n1 1 1\n",
"8\n1843 4921 6321 6984 4370 8432 6120 1026\n4264 4921 6321 6984 2316 8432 6120 1026\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 4916 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"8\n1843 4921 6321 6984 4370 8432 6120 1026\n4264 4921 6321 6984 2316 3194 6120 1026\n",
"35\n512 172290165 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 13319 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"3\n100 99 22739\n0 1 2\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 9 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 4916 6180 26977 12112 9975 72933 119150 65856 98253 18875 55266 55867 36397 40743 47977\n",
"1\n1010000000\n100000\n",
"1\n2\n1\n",
"2\n1000000000 112654816\n100000 100000\n",
"35\n512 268435456 8 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 12683 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n10 20 30 40 50\n0 1 1 1 1\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 1 1 10\n",
"8\n4 4 5 7 11 13 17 19\n4 8 7 1 5 2 6 3\n",
"1\n1010000000\n000000\n",
"1\n3\n1\n",
"6\n1 2 6 8 16 32\n32 16 8 0 2 1\n",
"2\n1000000000 112654816\n100001 100000\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 62478 6180 26977 12112 9975 72933 73239 65856 98253 18875 55266 55867 36397 40743 47977\n",
"35\n512 268435456 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 12683 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n15 20 30 40 50\n0 1 1 1 1\n",
"3\n100 99 22739\n1 1 1\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 1 1 5\n",
"8\n4 4 5 7 11 13 5 19\n4 8 7 1 5 2 6 3\n",
"1\n1000000000\n000000\n",
"1\n5\n1\n",
"2\n1100000000 112654816\n100001 100000\n",
"35\n512 268435456 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 13319 36255 61053 83828 93590 74236 5281 28143 7350 45953 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n4 20 30 40 50\n0 1 1 1 1\n",
"3\n100 99 22739\n1 1 2\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 1 1 3\n",
"8\n7 4 5 7 11 13 5 19\n4 8 7 1 5 2 6 3\n",
"1\n1100000000\n000000\n",
"1\n5\n2\n",
"2\n1100000000 112654816\n100001 100010\n",
"39\n692835 4849845 22610 1995 19019 114 6270 15 85085 27170 2486 732 7410 238 3135 546 373065 715 110 969 15 10374 2730 19019 85 65 5187 26 3233230 1122 399 1122 53295 910 110 12597 16302 125970 67830\n4197 6490 2652 99457 65400 96257 33631 23456 14319 22288 16179 74656 89713 31503 45895 31777 64534 27989 60861 69846 44586 87185 96589 62279 4916 6180 26977 12112 9975 72933 119150 65856 98253 18875 55266 55867 36397 40743 47977\n",
"5\n4 20 30 40 50\n1 1 1 1 1\n",
"8\n1843 4921 6321 6984 4370 13270 6120 1026\n4264 4921 6321 6984 2316 3194 6120 1026\n",
"7\n15015 10010 6006 4290 2335 2310 1\n1 1 1 1 0 1 3\n",
"8\n14 4 5 7 11 13 5 19\n4 8 7 1 5 2 6 3\n",
"1\n1100010000\n000000\n",
"1\n5\n0\n",
"2\n1100000000 112654816\n110001 100010\n",
"35\n512 172290165 12 128 134217728 8192 33554432 33554432 536870912 512 65536 1048576 32768 512 524288 1024 536870912 536870912 16 32 33554432 134217728 2 16 16777216 8192 262144 65536 33554432 128 4096 2097152 33554432 2097152 2\n36157 67877 79710 63062 13319 36255 61053 83828 93590 74236 5281 28143 7350 82281 96803 15998 11240 45207 63010 74076 85227 83498 68320 77288 48100 51373 87843 70054 30591 25365 98581 11195 43674 75769 22053\n",
"5\n4 20 30 40 50\n1 0 1 1 1\n",
"8\n1843 4921 6321 6984 4370 13270 6120 1026\n4264 4921 6321 6984 2316 3194 6120 901\n",
"3\n100 99 22739\n0 2 2\n",
"7\n15015 10010 6006 4290 242 2310 1\n1 1 1 1 0 1 3\n",
"8\n14 4 5 7 11 13 5 19\n4 8 7 1 5 2 8 3\n",
"1\n1100010000\n100000\n",
"2\n1110000000 112654816\n110001 100010\n"
],
"output": [
"-1",
"7237\n",
"2\n",
"6\n",
"3\n",
"-1",
"-1",
"1\n",
"32\n",
"200000\n",
"18961\n",
"-1\n",
"3\n",
"-1\n",
"32\n",
"18961\n",
"6580\n",
"2\n",
"8637\n",
"17028\n",
"7458\n",
"73158\n",
"1\n",
"7568\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"32\n",
"-1\n",
"18961\n",
"-1\n",
"-1\n",
"2\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n",
"2\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"17028\n",
"-1\n",
"7458\n",
"1\n",
"3\n",
"-1\n",
"-1\n",
"-1\n",
"73158\n",
"-1\n",
"7458\n",
"2\n",
"3\n",
"3\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Fox Ciel is playing a game. In this game there is an infinite long tape with cells indexed by integers (positive, negative and zero). At the beginning she is standing at the cell 0.
There are also n cards, each card has 2 attributes: length li and cost ci. If she pays ci dollars then she can apply i-th card. After applying i-th card she becomes able to make jumps of length li, i. e. from cell x to cell (x - li) or cell (x + li).
She wants to be able to jump to any cell on the tape (possibly, visiting some intermediate cells). For achieving this goal, she wants to buy some cards, paying as little money as possible.
If this is possible, calculate the minimal cost.
Input
The first line contains an integer n (1 ≤ n ≤ 300), number of cards.
The second line contains n numbers li (1 ≤ li ≤ 109), the jump lengths of cards.
The third line contains n numbers ci (1 ≤ ci ≤ 105), the costs of cards.
Output
If it is impossible to buy some cards and become able to jump to any cell, output -1. Otherwise output the minimal cost of buying such set of cards.
Examples
Input
3
100 99 9900
1 1 1
Output
2
Input
5
10 20 30 40 50
1 1 1 1 1
Output
-1
Input
7
15015 10010 6006 4290 2730 2310 1
1 1 1 1 1 1 10
Output
6
Input
8
4264 4921 6321 6984 2316 8432 6120 1026
4264 4921 6321 6984 2316 8432 6120 1026
Output
7237
Note
In first sample test, buying one card is not enough: for example, if you buy a card with length 100, you can't jump to any cell whose index is not a multiple of 100. The best way is to buy first and second card, that will make you be able to jump to any cell.
In the second sample test, even if you buy all cards, you can't jump to any cell whose index is not a multiple of 10, so you should output -1.
### Input:
5
10 20 30 40 50
1 1 1 1 1
### Output:
-1
### Input:
8
4264 4921 6321 6984 2316 8432 6120 1026
4264 4921 6321 6984 2316 8432 6120 1026
### Output:
7237
### Code:
def gcd(x,y):
while x % y > 0:
x, y = y, x % y
return y
n = int(input())
a, b, c = [int(x) for x in input().split()], [int(x) for x in input().split()], [{} for i in range(n)]
def f(i,g):
if g == 1:
return 0
if i == n:
return 100000000000
if g in c[i]:
return c[i][g]
A = f(i+1,g)
A = min(A, f(i+1, gcd(g,a[i])) + b[i])
c[i][g] = A
return A
if f(0,0) < 100000000000:
print(f(0,0))
else:
print(-1) |
560_D. Equivalent Strings_1008 | Today on a lecture about strings Gerald learned a new definition of string equivalency. Two strings a and b of equal length are called equivalent in one of the two cases:
1. They are equal.
2. If we split string a into two halves of the same size a1 and a2, and string b into two halves of the same size b1 and b2, then one of the following is correct:
1. a1 is equivalent to b1, and a2 is equivalent to b2
2. a1 is equivalent to b2, and a2 is equivalent to b1
As a home task, the teacher gave two strings to his students and asked to determine if they are equivalent.
Gerald has already completed this home task. Now it's your turn!
Input
The first two lines of the input contain two strings given by the teacher. Each of them has the length from 1 to 200 000 and consists of lowercase English letters. The strings have the same length.
Output
Print "YES" (without the quotes), if these two strings are equivalent, and "NO" (without the quotes) otherwise.
Examples
Input
aaba
abaa
Output
YES
Input
aabb
abab
Output
NO
Note
In the first sample you should split the first string into strings "aa" and "ba", the second one — into strings "ab" and "aa". "aa" is equivalent to "aa"; "ab" is equivalent to "ba" as "ab" = "a" + "b", "ba" = "b" + "a".
In the second sample the first string can be splitted into strings "aa" and "bb", that are equivalent only to themselves. That's why string "aabb" is equivalent only to itself and to string "bbaa". | def equals(a, b):
if (a == b):
return True
len_a, len_b = len(a), len(b)
if (len_a & 1 or len_b & 1):
return False
if (len_a == 1):
return False
as1 = a[0:len_a//2]
as2 = a[len_a//2:(len_a//2)*2]
bs1 = b[:len_b//2]
bs2 = b[len_b//2:(len_b//2)*2]
return (equals(as1, bs2) and equals(as2, bs1)) or (equals(as1, bs1) and equals(as2, bs2))
s1 = input()
s2 = input()
if (equals(s1, s2)):
print("YES")
else:
print("NO") | {
"input": [
"aaba\nabaa\n",
"aabb\nabab\n",
"aabbaaaa\naaaaabab\n",
"qgiufelsfhanx\naaaaaaaaaaaaa\n",
"abcddd\nbacddd\n",
"azzz\nzzaz\n",
"zzaa\naazz\n",
"yhwepqwyhwepqwyhwepqweahnqtueahnqtueahnqtuyhwepqwyhwepqwyhwepqwyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtueahnqtueahnqtueahnqtueahnqtu\neahnqtueahnqtueahnqtuyhwepqweahnqtuyhwepqwyhwepqweahnqtuyhwepqweahnqtuyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtuyhwepqwyhwepqwyhwepqw\n",
"hagnzomowtledfdotnll\nledfdotnllomowthagnz\n",
"abc\nabc\n",
"abcd\ndcab\n",
"ottceez\npcstdvz\n",
"abcd\nacbd\n",
"bbbabbabaaab\naaaabbabbbbb\n",
"snyaydaeobufdg\nsnyaydaeobufdg\n",
"ab\nba\n",
"uwzwdxfmosmqatyv\ndxfmzwwusomqvyta\n",
"nocdqzdriyyil\naaaaaaaaaaaaa\n",
"a\nb\n",
"baaaaa\nabaaaa\n",
"abc\nacb\n",
"aab\naba\n",
"a\na\n",
"ab\nab\n",
"zdmctxl\nkojqhgw\n",
"ab\nbb\n",
"bbaaab\naababb\n",
"abcd\ndcba\n",
"oloaxgddgujq\noloaxgujqddg\n",
"azza\nzaaz\n",
"abcd\ncdab\n",
"hhiisug\nmzdjwju\n",
"aabaababaaba\naababaaababa\n",
"abc\nbac\n",
"aabbaaaa\nbaaaaaab\n",
"cba\ncba\n",
"xnahfslefuigq\naaaaaaaaaaaaa\n",
"abcddd\ndddcab\n",
"ayzz\nzzaz\n",
"zzaa\nabzz\n",
"yhwepqwyhwepqwyhwepqweahnqtueahnqtueahnqtuyhwepqwyhwepqwyhwepqwyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtueahnqtueahnqtueahnqtueahnqtu\neahnqtueahnqtueahnqtuyhwepqweahnqtuyhwepqwyhwepqweainqtuyhwepqweahnqtuyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtuyhwepqwyhwepqwyhwepqw\n",
"hagnzomowtledgdotnll\nledfdotnllomowthagnz\n",
"cba\nabc\n",
"accd\ndcab\n",
"ottceez\nzvdtscp\n",
"abcd\ndbca\n",
"bbbabbabaaab\nbbbbbabbaaaa\n",
"snybydaeobufdg\nsnyaydaeobufdg\n",
"aa\nba\n",
"uwzwdxfmosmqauyv\ndxfmzwwusomqvyta\n",
"nlcdqzdriyyio\naaaaaaaaaaaaa\n",
"a\nc\n",
"baaaaa\nabaa`a\n",
"cba\nacb\n",
"aab\naaa\n",
"ab\n`b\n",
"zdmctxl\nlojqhgw\n",
"aa\nab\n",
"bbaaab\nbbabaa\n",
"abcd\ndcb`\n",
"oloawgddgujq\noloaxgujqddg\n",
"abcd\nadcb\n",
"hhiisug\nmzdjxju\n",
"abaababaabaa\naababaaababa\n",
"acc\nbac\n",
"aaba\nacaa\n",
"aabb\nbaba\n",
"aabbaaaa\nbaaa`aab\n",
"xnahfslefgiuq\naaaaaaaaaaaaa\n",
"dddcba\ndddcab\n",
"ayzz\nzzbz\n",
"azza\nabzz\n",
"yhwepqwyhwepqwyhxepqweahnqtueahnqtueahnqtuyhwepqwyhwepqwyhwepqwyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtueahnqtueahnqtueahnqtueahnqtu\neahnqtueahnqtueahnqtuyhwepqweahnqtuyhwepqwyhwepqweainqtuyhwepqweahnqtuyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtuyhwepqwyhwepqwyhwepqw\n",
"hagnzomowtledgdolntl\nledfdotnllomowthagnz\n",
"bccd\ndcab\n",
"ottdeez\nzvdtscp\n",
"dcba\ndbca\n",
"bbbabbababab\nbbbbbabbaaaa\n",
"snybydaeobufdg\nsnyaydaeoubfdg\n",
"aa\nbb\n",
"uwzwdxfmosmqauxv\ndxfmzwwusomqvyta\n",
"ndcdqzlriyyio\naaaaaaaaaaaaa\n",
"b\nc\n",
"cba\nbca\n",
"aac\naaa\n",
"ab\nb`\n",
"lxtcmdz\nlojqhgw\n",
"baaabb\naababb\n",
"accd\ndcb`\n",
"olouxgddgajq\noloaxgujqddg\n",
"ghiisug\nmzdjxju\n",
"aaabbabaabaa\naababaaababa\n",
"acc\nb`c\n",
"aaba\naaac\n",
"aabb\nabaa\n",
"aaaabbaa\nbaaa`aab\n",
"quigfelsfhanx\naaaaaaaaaaaaa\n",
"dddcba\nddddab\n",
"azza\nabzy\n",
"yhwepqwyhwepqwhhxepqweahnqtueahnqtueahnqtuyhwepqwyhwepqwyhwepqwyywepqweahnqtueahnqtuyhwepqweahnqtueahnqtueahnqtueahnqtueahnqtueahnqtu\neahnqtueahnqtueahnqtuyhwepqweahnqtuyhwepqwyhwepqweainqtuyhwepqweahnqtuyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtuyhwepqwyhwepqwyhwepqw\n",
"hagnzomowtledgdolntl\nledfdotnllomowuhagnz\n",
"cab\nabc\n",
"bcdc\ndcab\n",
"ecba\ndbca\n",
"babababbabbb\nbbbbbabbaaaa\n",
"snybydaeobufdg\nsnyaydaedubfog\n",
"uwzwdxfmosmpauxv\ndxfmzwwusomqvyta\n",
"ndcdqzlriyyio\naaaaaaa`aaaaa\n",
"a\nd\n",
"bca\nbca\n",
"aac\na`a\n",
"ab\nb_\n",
"lxtcmdz\nwghqjol\n",
"baaabb\nbbabaa\n",
"dcca\ndcb`\n",
"qjagddgxuolo\noloaxgujqddg\n",
"ihigsug\nmzdjxju\n",
"aabbbabaabaa\naababaaababa\n",
"acc\nc`b\n",
"aaca\naaac\n",
"babb\nabaa\n",
"aaaabbaa\ncaaa`aab\n",
"qvigfelsfhanx\naaaaaaaaaaaaa\n",
"abcddd\nddddab\n",
"azza\naazy\n",
"yhwepqwyhwepqwhhxepqweahnqtueahnqtueahnqtuyhwepqwyhwepqwyhwepqwyywepqweahnqtueahnqtuyhwepqweahnqtueahnqtueahnqtueahnqtueahnqtueahnqtu\neahnqtueahnquueahnqtuyhwepqweahnqtuyhwepqwyhwepqweainqtuyhwepqweahnqttyhwepqweahnqtueahnqtuyhwepqweahnqtueahnqtuyhwepqwyhwepqwyhwepqw\n",
"ltnlodgdeltwomozngah\nledfdotnllomowuhagnz\n",
"cab\nacc\n",
"ccdc\ndcab\n",
"dcba\nacbd\n",
"cabababbabbb\nbbbbbabbaaaa\n",
"gdfuboeadybyns\nsnyaydaedubfog\n",
"vxuapmsomfxdwzwu\ndxfmzwwusomqvyta\n",
"ndcdqzlriyyio\naaaaa`aaaaaaa\n"
],
"output": [
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Today on a lecture about strings Gerald learned a new definition of string equivalency. Two strings a and b of equal length are called equivalent in one of the two cases:
1. They are equal.
2. If we split string a into two halves of the same size a1 and a2, and string b into two halves of the same size b1 and b2, then one of the following is correct:
1. a1 is equivalent to b1, and a2 is equivalent to b2
2. a1 is equivalent to b2, and a2 is equivalent to b1
As a home task, the teacher gave two strings to his students and asked to determine if they are equivalent.
Gerald has already completed this home task. Now it's your turn!
Input
The first two lines of the input contain two strings given by the teacher. Each of them has the length from 1 to 200 000 and consists of lowercase English letters. The strings have the same length.
Output
Print "YES" (without the quotes), if these two strings are equivalent, and "NO" (without the quotes) otherwise.
Examples
Input
aaba
abaa
Output
YES
Input
aabb
abab
Output
NO
Note
In the first sample you should split the first string into strings "aa" and "ba", the second one — into strings "ab" and "aa". "aa" is equivalent to "aa"; "ab" is equivalent to "ba" as "ab" = "a" + "b", "ba" = "b" + "a".
In the second sample the first string can be splitted into strings "aa" and "bb", that are equivalent only to themselves. That's why string "aabb" is equivalent only to itself and to string "bbaa".
### Input:
aaba
abaa
### Output:
YES
### Input:
aabb
abab
### Output:
NO
### Code:
def equals(a, b):
if (a == b):
return True
len_a, len_b = len(a), len(b)
if (len_a & 1 or len_b & 1):
return False
if (len_a == 1):
return False
as1 = a[0:len_a//2]
as2 = a[len_a//2:(len_a//2)*2]
bs1 = b[:len_b//2]
bs2 = b[len_b//2:(len_b//2)*2]
return (equals(as1, bs2) and equals(as2, bs1)) or (equals(as1, bs1) and equals(as2, bs2))
s1 = input()
s2 = input()
if (equals(s1, s2)):
print("YES")
else:
print("NO") |
586_F. Lizard Era: Beginning_1012 | In the game Lizard Era: Beginning the protagonist will travel with three companions: Lynn, Meliana and Worrigan. Overall the game has n mandatory quests. To perform each of them, you need to take exactly two companions.
The attitude of each of the companions to the hero is an integer. Initially, the attitude of each of them to the hero of neutral and equal to 0. As the hero completes quests, he makes actions that change the attitude of the companions, whom he took to perform this task, in positive or negative direction.
Tell us what companions the hero needs to choose to make their attitude equal after completing all the quests. If this can be done in several ways, choose the one in which the value of resulting attitude is greatest possible.
Input
The first line contains positive integer n (1 ≤ n ≤ 25) — the number of important tasks.
Next n lines contain the descriptions of the tasks — the i-th line contains three integers li, mi, wi — the values by which the attitude of Lynn, Meliana and Worrigan respectively will change towards the hero if the hero takes them on the i-th task. All the numbers in the input are integers and do not exceed 107 in absolute value.
Output
If there is no solution, print in the first line "Impossible".
Otherwise, print n lines, two characters is each line — in the i-th line print the first letters of the companions' names that hero should take to complete the i-th task ('L' for Lynn, 'M' for Meliana, 'W' for Worrigan). Print the letters in any order, if there are multiple solutions, print any of them.
Examples
Input
3
1 0 0
0 1 0
0 0 1
Output
LM
MW
MW
Input
7
0 8 9
5 9 -2
6 -8 -7
9 4 5
-4 -9 9
-4 5 2
-6 8 -7
Output
LM
MW
LM
LW
MW
LM
LW
Input
2
1 0 0
1 1 0
Output
Impossible | #!/usr/bin/env python3
n = int(input())
a = [0] * n
b = [0] * n
c = [0] * n
for i in range(n):
a[i], b[i], c[i] = map(int, input().split())
middle = { }
stack = [ ]
result = (-1e10, ())
phase = 1
def search(pos, l, m, w):
global result
if (pos == n >> 1) if phase == 1 else (pos < n >> 1):
if phase == 1:
middle[(m - l, w - l)] = (stack[:], l)
else:
seq, first_l = middle.get((l - m, l - w), (None, None))
if seq is not None and l + first_l > result[0]:
result = (l + first_l, seq + stack[::-1])
else:
stack.append("LM")
search(pos + phase, l + a[pos], m + b[pos], w)
stack[-1] = "LW"
search(pos + phase, l + a[pos], m, w + c[pos])
stack[-1] = "MW"
search(pos + phase, l, m + b[pos], w + c[pos])
stack.pop()
search(0, 0, 0, 0)
phase = -1
search(n - 1, 0, 0, 0)
if result[1]:
print('\n'.join(result[1]))
else:
print("Impossible")
| {
"input": [
"7\n0 8 9\n5 9 -2\n6 -8 -7\n9 4 5\n-4 -9 9\n-4 5 2\n-6 8 -7\n",
"2\n1 0 0\n1 1 0\n",
"3\n1 0 0\n0 1 0\n0 0 1\n",
"3\n7089544 9134148 -5332724\n368810 1638695 7889905\n-3866235 -4257263 5802154\n",
"16\n-3253484 -6513322 5617669\n-8870526 9976385 -7313669\n5682511 -1202928 -7057533\n4747064 475782 7416790\n-4387656 3965849 9530503\n-8224426 4339650 181725\n1012598 -8651198 -222828\n-1012251 -9099337 719019\n-903577 -1340167 -8701346\n-4502739 736866 -5741036\n-6125650 9410041 948124\n-8344882 3820318 3738053\n5202105 524964 2938536\n752123 2136713 -3095341\n545090 -6807501 -5000825\n5921735 5822186 4106753\n",
"11\n-368 775 -959\n-281 483 -979\n685 902 211\n-336 63 458\n116 -957 -802\n-856 751 -608\n956 -636 -17\n561 186 228\n-301 -807 304\n-103 -476 18\n-579 116 850\n",
"15\n-3682462 -194732 9446852\n-4405738 6933459 -9496709\n9422280 7851074 -9960800\n1002721 -4735302 -6724485\n-9025771 7592049 106547\n2508567 -9291847 8728657\n-558387 1839538 -8263150\n9066346 1788798 -111846\n3033903 -7178126 -2777630\n9282416 2652252 -8446308\n-7520805 -9819190 -9526851\n6504744 3375811 8450106\n-9694972 5307787 622433\n1364366 -7259170 5463805\n8696617 5410821 5813911\n",
"1\n0 0 1\n",
"14\n167 -30 -195\n-8 604 701\n592 -402 168\n-982 12 592\n929 999 -200\n-37 645 615\n512 -553 515\n-830 743 -574\n436 -815 180\n-787 420 906\n733 226 -650\n295 -571 7\n-879 739 369\n-124 801 -253\n",
"17\n5145283 -2753062 -2936514\n-2127587 9440797 -4470168\n4109762 -1351398 1013844\n-5272277 -916706 -402190\n-7510148 -8867866 -2714993\n2254647 7293040 7375284\n-3027010 -8436598 -585941\n9910514 4179567 -7552626\n4295472 -8584445 -5072169\n6661724 9675368 7315049\n-3327283 -7829466 -4900987\n-6243053 -2828295 -6456626\n7489319 -7983760 -3082241\n-8134992 -6899104 -2317283\n9790680 -3222471 2050981\n-8211631 2874090 544657\n-4219486 848554 -287544\n",
"17\n881 984 -560\n-272 527 537\n944 135 782\n265 652 73\n340 995 -116\n-625 -197 -859\n-515 584 416\n709 -144 -5\n-187 -95 228\n646 -711 -647\n892 -824 -177\n442 -258 622\n-527 -715 155\n-110 -417 857\n-72 -547 531\n86 597 454\n-332 57 -731\n",
"9\n-477 504 222\n30 698 346\n-142 168 -322\n162 371 219\n-470 417 -102\n-104 -236 785\n131 -686 870\n420 -289 -333\n743 -611 111\n",
"16\n6742718 -9848759 -3874332\n-8128485 -6617274 1575011\n-1740148 623444 9963227\n3629451 -2414107 -9704466\n7753671 7021614 7248025\n-5420494 6909667 5118838\n4090028 3512092 -6413023\n282544 8907950 5863326\n-9977956 -7405023 8905548\n-7480107 6149899 3468303\n-5494025 2101036 8801937\n-5351537 7051449 69239\n137681 -9994993 -2053076\n-4251695 8203962 -4620459\n8897087 -7891039 5515252\n916961 2371338 -6986487\n",
"1\n0 0 0\n",
"16\n4642484 -2788746 9992951\n5803062 8109045 72477\n6993256 5860518 -5298508\n2983494 5924807 9075779\n9616987 -7580870 -2342882\n2620968 -2619488 2599421\n1318060 -7292211 3454517\n-7018501 -2464950 9497459\n2254377 -2500546 -1888489\n-20354 -7510645 173023\n619811 -861516 -6346093\n38813 3848272 -8558276\n6409071 4528454 -9768150\n-9344900 3107745 4779111\n5984141 2896281 2888362\n-9097994 -8937736 -419949\n",
"8\n697 78 -270\n17 240 64\n615 6 967\n565 486 -862\n517 -17 -852\n958 949 505\n199 -866 711\n251 -177 549\n",
"17\n-9095076 8052666 -1032018\n2681359 -9998418 -3163796\n5865270 -1926467 -6480441\n-2780849 5921425 -7844112\n2813688 -9288645 -8474670\n8145658 -5741326 9011572\n9364418 -8442485 -8888763\n3473152 -1301704 -2502205\n4201907 8497194 9692725\n8874792 537379 8954057\n2083242 -3975356 -62337\n-3654609 2243771 8422585\n7822816 9702585 -3007717\n-6801114 -3025102 -6129158\n7033485 7157201 -6012950\n-7895796 -6052792 9119000\n-932955 4934837 -873726\n",
"17\n8003952 1945229 -824287\n-2548751 860618 589233\n4195712 -3840408 7878690\n-3178201 -1509129 6136806\n-1406078 3402700 -3298516\n-2639343 -7312210 -7052356\n5744330 -228480 5806356\n-7992147 -9663118 6294695\n-4197990 8982179 4355332\n-406724 -362338 -3609437\n-6459171 -4710527 6551785\n4054102 -9505148 2215175\n-2286309 728140 -2206363\n7183109 -8393962 -5369491\n-7303376 328150 5437901\n8549874 8031324 -4716139\n-5998559 -3896390 2664375\n",
"7\n-925 88 -550\n205 406 -957\n-596 259 -448\n857 635 719\n-149 -487 -85\n245 -59 78\n-870 -959 -733\n",
"10\n-134 5 -71\n-615 -591 -548\n626 -787 -682\n-392 -689 900\n-93 789 194\n-657 438 806\n308 219 129\n-247 -220 -358\n-720 -841 -974\n833 -845 -268\n",
"16\n-885 -621 -319\n500 705 -709\n-376 -884 -102\n346 176 448\n611 954 -23\n-372 -993 177\n-288 -977 -777\n-966 -644 867\n834 -561 984\n-868 545 789\n340 0 782\n754 -263 518\n112 -747 -944\n-760 -624 383\n353 -654 -341\n-451 477 -819\n",
"1\n0 1 0\n",
"1\n1 0 0\n",
"16\n2033906 6164819 -3535254\n-7271523 -1386302 -5832930\n7664268 -7927384 -8316758\n-5929014 6352246 8535844\n-5992054 -3159960 5973202\n8477561 5763594 7527604\n-1611804 3925028 -9320743\n-3732863 -7513881 7445368\n7044279 6186756 -87415\n6810089 -9828741 -8531792\n2105994 -4192310 -1962547\n4522049 5717418 -2009682\n-5638994 7361890 -2071446\n-6518199 -670199 3519089\n-5881880 3506792 -7813715\n3774507 -5501152 2112631\n",
"25\n26668 10412 12658\n25216 11939 10247\n28514 22515 5833\n4955 19029 22405\n12552 6903 19634\n12315 1671 505\n20848 9175 6060\n12990 5827 16433\n9184 30621 25596\n31818 7826 11221\n18090 4476 30078\n30915 11014 16950\n3119 29529 21390\n775 4290 11723\n29679 14840 3566\n4491 29480 2079\n24129 5496 6381\n20849 25772 9299\n10825 30424 11842\n18290 14728 30342\n24893 27064 11604\n26248 7490 18116\n17182 32158 12518\n23145 4288 7754\n18544 25694 18784\n",
"15\n74 716 -568\n-958 -441 167\n-716 -554 -403\n-364 934 395\n-673 36 945\n-102 -227 69\n979 -721 -132\n790 -494 292\n-781 -478 -545\n-591 -274 965\n-46 -983 -835\n37 -540 -375\n-417 139 -761\n772 969 -197\n-74 -975 -662\n",
"6\n1 0 1\n1 1 0\n0 1 1\n0 1 1\n1 1 0\n1 0 1\n",
"17\n3461788 -7190737 790707\n-3979181 -7527409 1464659\n3368847 -7475254 -7377314\n-2469024 9316013 6583991\n8223943 9596309 7549117\n1525938 3840013 -9805857\n2489326 7215738 -5874041\n-6183012 596945 5059562\n3412087 6788437 939017\n9690067 -2007875 -1424714\n834164 5247338 -6872328\n3860491 8096731 -2390366\n8174160 7465170 4040376\n-5138898 -2348036 -9154464\n1527659 -4375219 -2725794\n-5350381 -8411693 214736\n-5832848 -6704847 4997762\n",
"3\n1 0 0\n0 1 0\n0 0 1\n",
"13\n-495 262 21\n148 188 374\n935 67 567\n-853 -862 -164\n-878 990 -80\n824 536 934\n254 -436 -310\n355 803 -627\n30 409 -624\n-212 -950 182\n582 96 738\n316 221 -341\n-178 691 3\n",
"12\n-749 66 -780\n293 440 891\n-404 -787 -159\n454 68 -675\n105 116 -121\n516 849 470\n603 208 -583\n333 110 17\n-591 818 252\n-313 -131 -370\n-865 61 309\n583 306 536\n",
"18\n59 502 341\n-464 -595 655\n161 617 569\n179 284 -667\n418 430 239\n803 105 385\n770 -807 -223\n-154 47 560\n-886 -907 -533\n-723 -728 -584\n676 715 460\n779 26 -894\n26 989 -364\n-390 738 241\n246 683 220\n-716 -752 722\n913 528 926\n229 -813 485\n",
"3\n7089544 9134148 -5332724\n368810 1638695 13258988\n-3866235 -4257263 5802154\n",
"16\n-3253484 -6513322 5617669\n-8870526 9976385 -7313669\n5682511 -1202928 -7057533\n4747064 475782 7416790\n-4387656 3965849 9530503\n-8224426 4339650 181725\n1012598 -8651198 -222828\n-1012251 -9099337 719019\n-903577 -1340167 -8701346\n-4502739 736866 -5741036\n-6125650 9410041 948124\n-8344882 3820318 3738053\n5202105 524964 2938536\n752123 2136713 -3095341\n545090 -6807501 -5000825\n5921735 5822186 5710797\n",
"1\n0 0 2\n",
"14\n167 -30 -195\n-8 604 701\n592 -402 168\n-982 12 592\n1537 999 -200\n-37 645 615\n512 -553 515\n-830 743 -574\n436 -815 180\n-787 420 906\n733 226 -650\n295 -571 7\n-879 739 369\n-124 801 -253\n",
"17\n881 984 -560\n-272 527 0\n944 135 782\n265 652 73\n340 995 -116\n-625 -197 -859\n-515 584 416\n709 -144 -5\n-187 -95 228\n646 -711 -647\n892 -824 -177\n442 -258 622\n-527 -715 155\n-110 -417 857\n-72 -547 531\n86 597 454\n-332 57 -731\n",
"9\n-477 504 222\n30 178 346\n-142 168 -322\n162 371 219\n-470 417 -102\n-104 -236 785\n131 -686 870\n420 -289 -333\n743 -611 111\n",
"8\n697 78 -270\n17 240 64\n74 6 967\n565 486 -862\n517 -17 -852\n958 949 505\n199 -866 711\n251 -177 549\n",
"16\n-885 -621 -319\n500 705 -709\n-376 -884 -102\n346 176 448\n611 954 -23\n-372 -993 177\n-288 -977 -777\n-966 -644 867\n834 -561 984\n-868 545 789\n340 0 235\n754 -263 518\n112 -747 -944\n-760 -624 383\n353 -654 -341\n-451 477 -819\n",
"1\n2 0 0\n",
"25\n26668 10412 12658\n25216 11939 10247\n28514 22515 5833\n4955 19029 22405\n12552 6903 19634\n12315 1671 505\n20848 9175 6060\n12990 5827 16433\n9184 30621 25596\n31818 7826 11221\n18090 4476 30078\n30915 11014 16950\n3119 29529 21390\n775 4290 11723\n29679 14840 3566\n4491 29480 2079\n24129 5496 6381\n20849 25772 9299\n10825 30424 1531\n18290 14728 30342\n24893 27064 11604\n26248 7490 18116\n17182 32158 12518\n23145 4288 7754\n18544 25694 18784\n",
"15\n74 716 -568\n-958 -441 167\n-716 -554 -403\n-364 934 395\n-673 36 945\n-102 -227 69\n979 -721 -132\n790 -494 292\n-781 -478 -545\n-244 -274 965\n-46 -983 -835\n37 -540 -375\n-417 139 -761\n772 969 -197\n-74 -975 -662\n",
"3\n1 0 0\n-1 1 0\n0 0 1\n",
"18\n59 76 341\n-464 -595 655\n161 617 569\n179 284 -667\n418 430 239\n803 105 385\n770 -807 -223\n-154 47 560\n-886 -907 -533\n-723 -728 -584\n676 715 460\n779 26 -894\n26 989 -364\n-390 738 241\n246 683 220\n-716 -752 722\n913 528 926\n229 -813 485\n",
"7\n0 8 9\n5 9 -2\n6 -8 -7\n9 4 6\n-4 -9 9\n-4 5 2\n-6 8 -7\n",
"3\n1 0 0\n0 1 0\n-1 0 1\n",
"14\n167 -30 -195\n-8 604 701\n592 -402 154\n-982 12 592\n1537 999 -200\n-37 645 615\n512 -553 515\n-830 743 -574\n436 -815 180\n-787 420 906\n733 226 -650\n295 -571 7\n-879 739 369\n-124 801 -253\n",
"17\n881 702 -560\n-272 527 0\n944 135 782\n265 652 73\n340 995 -116\n-625 -197 -859\n-515 584 416\n709 -144 -5\n-187 -95 228\n646 -711 -647\n892 -824 -177\n442 -258 622\n-527 -715 155\n-110 -417 857\n-72 -547 531\n86 597 454\n-332 57 -731\n",
"11\n-368 775 -959\n-281 483 -979\n685 902 211\n-336 63 458\n116 -207 -802\n-856 751 -608\n956 -636 -17\n561 186 228\n-301 -807 304\n-103 -476 18\n-579 116 850\n",
"15\n-3682462 -194732 9446852\n-4405738 6933459 -9496709\n9422280 7851074 -9960800\n1002721 -4735302 -6724485\n-9025771 7592049 106547\n2508567 -9291847 8728657\n-558387 1839538 -8263150\n9066346 1788798 -111846\n3033903 -7178126 -2777630\n9282416 2652252 -8446308\n-7520805 -9819190 -9526851\n6504744 3375811 8450106\n-9694972 5307787 622433\n1364366 -7259170 10744207\n8696617 5410821 5813911\n",
"17\n5145283 -2753062 -2936514\n-2127587 9440797 -4470168\n4109762 -1351398 1013844\n-5272277 -916706 -402190\n-7510148 -8867866 -2714993\n2254647 7293040 7375284\n-3027010 -8436598 -585941\n9910514 4179567 -7552626\n4295472 -8584445 -5072169\n6661724 9675368 7315049\n-3327283 -7829466 -4900987\n-6243053 -2828295 -6456626\n7489319 -7983760 -3082241\n-8134992 -6899104 -2317283\n9790680 -3222471 2050981\n-8211631 3758339 544657\n-4219486 848554 -287544\n",
"16\n6742718 -9848759 -3874332\n-8128485 -6617274 1575011\n-1740148 623444 9963227\n3629451 -2414107 -9704466\n7753671 7021614 7248025\n-5420494 6909667 5118838\n4090028 3512092 -6413023\n282544 8907950 5863326\n-9977956 -7405023 8905548\n-7480107 6149899 1993863\n-5494025 2101036 8801937\n-5351537 7051449 69239\n137681 -9994993 -2053076\n-4251695 8203962 -4620459\n8897087 -7891039 5515252\n916961 2371338 -6986487\n",
"1\n0 1 -1\n",
"16\n4642484 -2788746 9992951\n5803062 8109045 72477\n6993256 5860518 -5298508\n2983494 5924807 9075779\n9616987 -7580870 -2342882\n2620968 -2619488 2599421\n1318060 -7292211 3454517\n-7018501 -2464950 9497459\n2254377 -2500546 -1888489\n-28639 -7510645 173023\n619811 -861516 -6346093\n38813 3848272 -8558276\n6409071 4528454 -9768150\n-9344900 3107745 4779111\n5984141 2896281 2888362\n-9097994 -8937736 -419949\n",
"17\n-9095076 8052666 -1032018\n2681359 -9998418 -3163796\n5865270 -1926467 -6480441\n-2780849 5921425 -7844112\n2813688 -9288645 -8474670\n8145658 -5741326 9011572\n9364418 -8442485 -8888763\n3473152 -1301704 -2502205\n4201907 8497194 9692725\n8874792 537379 8954057\n2083242 -3975356 -62337\n-3065151 2243771 8422585\n7822816 9702585 -3007717\n-6801114 -3025102 -6129158\n7033485 7157201 -6012950\n-7895796 -6052792 9119000\n-932955 4934837 -873726\n",
"17\n8003952 1945229 -824287\n-2548751 860618 589233\n4195712 -3840408 7878690\n-3178201 -1509129 6136806\n-1406078 3402700 -3298516\n-2639343 -7312210 -7052356\n5744330 -228480 5806356\n-7992147 -9663118 6294695\n-4197990 8982179 4355332\n-406724 -362338 -3609437\n-6459171 -4710527 6551785\n4054102 -9505148 2215175\n-2286309 728140 -2206363\n7183109 -8393962 -5369491\n-7303376 446197 5437901\n8549874 8031324 -4716139\n-5998559 -3896390 2664375\n",
"7\n-925 88 -550\n205 406 -957\n-596 259 -448\n857 635 719\n-149 -487 -85\n143 -59 78\n-870 -959 -733\n",
"10\n-134 5 -71\n-615 -591 -548\n626 -787 -682\n-392 -689 900\n-93 789 194\n-657 438 806\n308 219 98\n-247 -220 -358\n-720 -841 -974\n833 -845 -268\n",
"1\n1 1 0\n",
"16\n2033906 6164819 -3535254\n-7271523 -1386302 -5832930\n7664268 -7927384 -8316758\n-5929014 6352246 8535844\n-5992054 -3159960 5973202\n8477561 5763594 7527604\n-1611804 3925028 -9320743\n-3732863 -7513881 7445368\n7044279 6186756 -87415\n6810089 -9828741 -8531792\n2105994 -4192310 -1962547\n4522049 2738928 -2009682\n-5638994 7361890 -2071446\n-6518199 -670199 3519089\n-5881880 3506792 -7813715\n3774507 -5501152 2112631\n",
"17\n3461788 -7190737 790707\n-3979181 -7527409 1464659\n3368847 -7475254 -7377314\n-2118465 9316013 6583991\n8223943 9596309 7549117\n1525938 3840013 -9805857\n2489326 7215738 -5874041\n-6183012 596945 5059562\n3412087 6788437 939017\n9690067 -2007875 -1424714\n834164 5247338 -6872328\n3860491 8096731 -2390366\n8174160 7465170 4040376\n-5138898 -2348036 -9154464\n1527659 -4375219 -2725794\n-5350381 -8411693 214736\n-5832848 -6704847 4997762\n",
"13\n-495 262 21\n148 188 374\n935 67 707\n-853 -862 -164\n-878 990 -80\n824 536 934\n254 -436 -310\n355 803 -627\n30 409 -624\n-212 -950 182\n582 96 738\n316 221 -341\n-178 691 3\n",
"12\n-749 66 -780\n293 440 891\n-404 -787 -159\n454 68 -675\n105 116 -121\n516 849 470\n603 208 -583\n333 110 17\n-591 818 252\n-313 -131 -370\n-94 61 309\n583 306 536\n",
"2\n1 0 0\n1 2 0\n",
"3\n7089544 9134148 -5332724\n368810 1638695 13258988\n-3866235 -4257263 6364109\n",
"16\n-3253484 -6513322 10203645\n-8870526 9976385 -7313669\n5682511 -1202928 -7057533\n4747064 475782 7416790\n-4387656 3965849 9530503\n-8224426 4339650 181725\n1012598 -8651198 -222828\n-1012251 -9099337 719019\n-903577 -1340167 -8701346\n-4502739 736866 -5741036\n-6125650 9410041 948124\n-8344882 3820318 3738053\n5202105 524964 2938536\n752123 2136713 -3095341\n545090 -6807501 -5000825\n5921735 5822186 5710797\n",
"11\n-368 775 -959\n-281 483 -979\n685 902 89\n-336 63 458\n116 -207 -802\n-856 751 -608\n956 -636 -17\n561 186 228\n-301 -807 304\n-103 -476 18\n-579 116 850\n",
"15\n-3682462 -194732 9446852\n-4405738 6933459 -9496709\n9422280 7851074 -9960800\n1002721 -4735302 -6724485\n-9025771 7592049 106547\n2508567 -9291847 8728657\n-558387 1839538 -8263150\n9066346 1788798 -111846\n3033903 -7178126 -2777630\n9282416 2652252 -8446308\n-7520805 -9819190 -9526851\n6504744 3375811 8450106\n-9694972 5307787 622433\n1364366 -7259170 10744207\n8696617 5410821 4954440\n",
"1\n0 -1 2\n",
"17\n5145283 -2753062 -2936514\n-2127587 9440797 -4470168\n4109762 -1351398 1013844\n-5272277 -916706 -402190\n-7510148 -1953552 -2714993\n2254647 7293040 7375284\n-3027010 -8436598 -585941\n9910514 4179567 -7552626\n4295472 -8584445 -5072169\n6661724 9675368 7315049\n-3327283 -7829466 -4900987\n-6243053 -2828295 -6456626\n7489319 -7983760 -3082241\n-8134992 -6899104 -2317283\n9790680 -3222471 2050981\n-8211631 3758339 544657\n-4219486 848554 -287544\n",
"9\n-477 504 222\n30 178 346\n-142 168 -322\n162 371 219\n-470 417 -102\n-104 -236 785\n131 -686 870\n420 -289 -333\n434 -611 111\n",
"16\n6742718 -9848759 -3874332\n-8128485 -6617274 1575011\n-1740148 623444 9963227\n3629451 -2414107 -9704466\n7753671 7021614 7248025\n-5420494 6909667 5118838\n4090028 3512092 -6413023\n282544 8907950 5863326\n-9977956 -7405023 8905548\n-7480107 6149899 1993863\n-5494025 2101036 8154694\n-5351537 7051449 69239\n137681 -9994993 -2053076\n-4251695 8203962 -4620459\n8897087 -7891039 5515252\n916961 2371338 -6986487\n",
"1\n0 2 -1\n",
"16\n4642484 -2788746 9992951\n5803062 8109045 72477\n5907293 5860518 -5298508\n2983494 5924807 9075779\n9616987 -7580870 -2342882\n2620968 -2619488 2599421\n1318060 -7292211 3454517\n-7018501 -2464950 9497459\n2254377 -2500546 -1888489\n-28639 -7510645 173023\n619811 -861516 -6346093\n38813 3848272 -8558276\n6409071 4528454 -9768150\n-9344900 3107745 4779111\n5984141 2896281 2888362\n-9097994 -8937736 -419949\n",
"8\n697 78 -270\n17 240 64\n74 6 967\n565 486 -862\n517 -17 -852\n958 949 505\n199 -866 711\n359 -177 549\n",
"17\n-9095076 8052666 -1032018\n2681359 -9998418 -3163796\n5865270 -1926467 -6480441\n-2780849 5921425 -7844112\n2813688 -9288645 -8474670\n8145658 -5741326 9011572\n9364418 -9417046 -8888763\n3473152 -1301704 -2502205\n4201907 8497194 9692725\n8874792 537379 8954057\n2083242 -3975356 -62337\n-3065151 2243771 8422585\n7822816 9702585 -3007717\n-6801114 -3025102 -6129158\n7033485 7157201 -6012950\n-7895796 -6052792 9119000\n-932955 4934837 -873726\n",
"17\n8003952 1945229 -824287\n-2548751 860618 589233\n4195712 -3840408 7878690\n-3178201 -1509129 6136806\n-1406078 3402700 -3298516\n-2639343 -7312210 -7052356\n5744330 -228480 5806356\n-7992147 -9663118 6294695\n-4197990 8982179 4355332\n-580453 -362338 -3609437\n-6459171 -4710527 6551785\n4054102 -9505148 2215175\n-2286309 728140 -2206363\n7183109 -8393962 -5369491\n-7303376 446197 5437901\n8549874 8031324 -4716139\n-5998559 -3896390 2664375\n",
"7\n-925 88 -550\n205 372 -957\n-596 259 -448\n857 635 719\n-149 -487 -85\n143 -59 78\n-870 -959 -733\n",
"10\n-134 5 -71\n-615 -591 -548\n626 -787 -682\n-392 -689 900\n-93 789 344\n-657 438 806\n308 219 98\n-247 -220 -358\n-720 -841 -974\n833 -845 -268\n",
"16\n-885 -621 -319\n500 705 -709\n-376 -884 -102\n346 176 448\n611 954 -23\n-372 -993 177\n-288 -977 -777\n-966 -644 867\n834 -561 984\n-868 879 789\n340 0 235\n754 -263 518\n112 -747 -944\n-760 -624 383\n353 -654 -341\n-451 477 -819\n",
"1\n1 0 -1\n"
],
"output": [
"LM\nMW\nLM\nLW\nMW\nLM\nLW\n",
"Impossible\n",
"LM\nLM\nLW\n",
"Impossible\n",
"LW\nMW\nLW\nMW\nMW\nMW\nLM\nMW\nLM\nMW\nLW\nLW\nLM\nLW\nMW\nLM\n",
"LW\nLM\nLM\nMW\nLM\nLW\nMW\nLM\nLM\nLM\nLM\n",
"Impossible\n",
"LM\n",
"MW\nLM\nLM\nMW\nLW\nLM\nLM\nLM\nMW\nLW\nLM\nLM\nMW\nMW\n",
"LM\nLM\nMW\nLW\nLM\nLW\nLM\nLW\nLW\nLW\nLW\nLW\nLW\nLW\nMW\nLM\nLW\n",
"MW\nMW\nMW\nLW\nMW\nMW\nMW\nLW\nLM\nLW\nLW\nLW\nLM\nMW\nMW\nMW\nLM\n",
"LM\nLW\nMW\nLM\nMW\nLW\nLM\nMW\nLW\n",
"MW\nLM\nLM\nMW\nLM\nLW\nLW\nLM\nMW\nLW\nLM\nMW\nMW\nLW\nLW\nLW\n",
"LM\n",
"LW\nMW\nLM\nMW\nLW\nMW\nMW\nLM\nLW\nLM\nMW\nMW\nLM\nLW\nLM\nLW\n",
"LW\nMW\nMW\nMW\nLM\nMW\nLW\nLW\n",
"LM\nLM\nLM\nMW\nLM\nLM\nMW\nLW\nMW\nMW\nLM\nLM\nMW\nLM\nLM\nLW\nMW\n",
"MW\nLM\nMW\nLM\nMW\nMW\nLM\nLW\nLM\nLW\nLM\nLW\nMW\nLW\nMW\nLW\nLM\n",
"LM\nMW\nMW\nLW\nMW\nLW\nLM\n",
"LW\nLM\nMW\nLM\nLM\nMW\nLW\nLM\nLW\nLW\n",
"LW\nLM\nLW\nLM\nLM\nLM\nLW\nMW\nLW\nLM\nMW\nLW\nMW\nLM\nLW\nMW\n",
"LW\n",
"MW\n",
"MW\nLW\nLW\nLW\nMW\nLW\nMW\nMW\nMW\nMW\nLM\nLM\nLW\nLW\nLM\nLM\n",
"LW\nLM\nLW\nMW\nMW\nLW\nMW\nLW\nMW\nLW\nLW\nLW\nLM\nMW\nMW\nMW\nLW\nLM\nLM\nMW\nMW\nLW\nMW\nMW\nLW\n",
"LM\nLW\nMW\nLW\nMW\nLW\nLM\nLM\nLW\nMW\nLW\nLM\nLW\nMW\nLW\n",
"LW\nLM\nMW\nMW\nLM\nLW\n",
"MW\nLW\nLW\nLW\nMW\nLM\nMW\nLW\nLW\nLM\nLW\nLM\nLW\nLM\nLW\nMW\nLW\n",
"LM\nLM\nLW\n",
"LW\nLM\nMW\nMW\nMW\nLW\nMW\nMW\nLW\nLM\nMW\nMW\nLW\n",
"LM\nLM\nMW\nLM\nLW\nLW\nLM\nLW\nLM\nMW\nLW\nLW\n",
"LW\nMW\nMW\nMW\nLW\nLM\nLW\nLW\nLM\nLW\nLM\nLM\nLW\nMW\nMW\nLW\nLM\nLW\n",
"Impossible",
"LW\nMW\nLW\nMW\nMW\nMW\nLM\nMW\nLM\nMW\nLW\nLW\nLM\nLW\nMW\nLM\n",
"LM\n",
"LW\nLW\nLW\nMW\nLM\nLW\nLM\nLM\nLM\nLM\nLW\nLW\nLW\nLM\n",
"LM\nLM\nMW\nMW\nMW\nLM\nMW\nLW\nLM\nLM\nLW\nLW\nLM\nLM\nMW\nMW\nMW\n",
"LM\nLW\nMW\nLM\nMW\nLW\nLM\nMW\nLW\n",
"LW\nMW\nMW\nMW\nLM\nMW\nLW\nLW\n",
"MW\nLM\nLM\nLM\nLM\nLW\nLW\nLW\nLM\nLW\nLW\nLW\nLW\nLW\nLW\nLW\n",
"MW\n",
"LW\nLM\nLW\nMW\nMW\nLW\nMW\nLW\nMW\nLW\nLW\nLW\nLM\nMW\nMW\nMW\nLW\nLM\nLM\nMW\nMW\nLW\nMW\nMW\nLW\n",
"LM\nLW\nMW\nLW\nMW\nLW\nLM\nLM\nLW\nMW\nLW\nLM\nLW\nMW\nLW\n",
"LM\nMW\nLW\n",
"LW\nMW\nMW\nMW\nLW\nLM\nLW\nLW\nLM\nLW\nLM\nLM\nLW\nMW\nMW\nLW\nLM\nLW\n",
"LW\nLW\nMW\nLM\nLM\nLM\nLM\n",
"LM\nLM\nMW\n",
"LM\nLM\nMW\nMW\nLM\nLW\nLM\nLW\nLW\nLW\nLW\nMW\nMW\nLM\n",
"MW\nMW\nLW\nMW\nLW\nLW\nLM\nLW\nLW\nLM\nMW\nLM\nLW\nMW\nLW\nLM\nLM\n",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"Impossible",
"MW\nLM\nLM\nLM\nLM\nLW\nLW\nLW\nLM\nLW\nLW\nLW\nLW\nLW\nLW\nLW\n",
"Impossible"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
In the game Lizard Era: Beginning the protagonist will travel with three companions: Lynn, Meliana and Worrigan. Overall the game has n mandatory quests. To perform each of them, you need to take exactly two companions.
The attitude of each of the companions to the hero is an integer. Initially, the attitude of each of them to the hero of neutral and equal to 0. As the hero completes quests, he makes actions that change the attitude of the companions, whom he took to perform this task, in positive or negative direction.
Tell us what companions the hero needs to choose to make their attitude equal after completing all the quests. If this can be done in several ways, choose the one in which the value of resulting attitude is greatest possible.
Input
The first line contains positive integer n (1 ≤ n ≤ 25) — the number of important tasks.
Next n lines contain the descriptions of the tasks — the i-th line contains three integers li, mi, wi — the values by which the attitude of Lynn, Meliana and Worrigan respectively will change towards the hero if the hero takes them on the i-th task. All the numbers in the input are integers and do not exceed 107 in absolute value.
Output
If there is no solution, print in the first line "Impossible".
Otherwise, print n lines, two characters is each line — in the i-th line print the first letters of the companions' names that hero should take to complete the i-th task ('L' for Lynn, 'M' for Meliana, 'W' for Worrigan). Print the letters in any order, if there are multiple solutions, print any of them.
Examples
Input
3
1 0 0
0 1 0
0 0 1
Output
LM
MW
MW
Input
7
0 8 9
5 9 -2
6 -8 -7
9 4 5
-4 -9 9
-4 5 2
-6 8 -7
Output
LM
MW
LM
LW
MW
LM
LW
Input
2
1 0 0
1 1 0
Output
Impossible
### Input:
7
0 8 9
5 9 -2
6 -8 -7
9 4 5
-4 -9 9
-4 5 2
-6 8 -7
### Output:
LM
MW
LM
LW
MW
LM
LW
### Input:
2
1 0 0
1 1 0
### Output:
Impossible
### Code:
#!/usr/bin/env python3
n = int(input())
a = [0] * n
b = [0] * n
c = [0] * n
for i in range(n):
a[i], b[i], c[i] = map(int, input().split())
middle = { }
stack = [ ]
result = (-1e10, ())
phase = 1
def search(pos, l, m, w):
global result
if (pos == n >> 1) if phase == 1 else (pos < n >> 1):
if phase == 1:
middle[(m - l, w - l)] = (stack[:], l)
else:
seq, first_l = middle.get((l - m, l - w), (None, None))
if seq is not None and l + first_l > result[0]:
result = (l + first_l, seq + stack[::-1])
else:
stack.append("LM")
search(pos + phase, l + a[pos], m + b[pos], w)
stack[-1] = "LW"
search(pos + phase, l + a[pos], m, w + c[pos])
stack[-1] = "MW"
search(pos + phase, l, m + b[pos], w + c[pos])
stack.pop()
search(0, 0, 0, 0)
phase = -1
search(n - 1, 0, 0, 0)
if result[1]:
print('\n'.join(result[1]))
else:
print("Impossible")
|
609_B. The Best Gift_1016 | Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are n books on sale from one of m genres.
In the bookshop, Jack decides to buy two books of different genres.
Based on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book.
The books are given by indices of their genres. The genres are numbered from 1 to m.
Input
The first line contains two positive integers n and m (2 ≤ n ≤ 2·105, 2 ≤ m ≤ 10) — the number of books in the bookstore and the number of genres.
The second line contains a sequence a1, a2, ..., an, where ai (1 ≤ ai ≤ m) equals the genre of the i-th book.
It is guaranteed that for each genre there is at least one book of that genre.
Output
Print the only integer — the number of ways in which Jack can choose books.
It is guaranteed that the answer doesn't exceed the value 2·109.
Examples
Input
4 3
2 1 3 1
Output
5
Input
7 4
4 2 3 1 2 4 3
Output
18
Note
The answer to the first test sample equals 5 as Sasha can choose:
1. the first and second books,
2. the first and third books,
3. the first and fourth books,
4. the second and third books,
5. the third and fourth books. | n, m = list(map(int, input().split()))
a = list(map(int, input().split()))
t = 0
for i in range(m):
cnt = a.count(i + 1)
t += cnt * (n - cnt)
n -= cnt
print(t)
| {
"input": [
"7 4\n4 2 3 1 2 4 3\n",
"4 3\n2 1 3 1\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"3 2\n1 2 2\n",
"12 3\n1 2 3 1 2 3 1 2 3 1 2 3\n",
"100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"9 2\n1 1 1 1 2 1 1 1 1\n",
"10 10\n1 2 3 4 5 6 7 8 9 10\n",
"2 2\n1 2\n",
"100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 2 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"3 2\n1 1 2\n",
"12 3\n1 2 3 1 2 3 1 2 3 1 2 2\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 1 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 3 5 1 5 3 4 1 1 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 2 3 1 2 2 1 2 3 2 3 2 2 2 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 4 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 3 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 2 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 3 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 3 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 1 2 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 4 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 1 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 1 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"9 2\n1 1 2 1 2 1 1 1 1\n",
"7 4\n4 4 3 1 2 4 3\n",
"100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 2 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 1 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"12 3\n2 2 3 1 2 3 1 2 3 1 2 2\n",
"100 5\n5 5 2 4 5 4 4 3 4 2 5 3 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 2 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 3 5 1 5 3 4 1 1 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 7 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 4 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 1 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 3 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 1 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 4 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 8 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 1 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 1 1 1 2 3 2 3 3 2 2 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 1 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 1 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 3 5 1 5 3 4 1 1 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 3 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 7 6 2 6\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 1 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 3 2 2 5 1 5 3 1 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 5 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 4 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n5 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 3 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 1 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 4 2 4 1 3 5 4 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"7 4\n3 4 3 1 2 3 3\n",
"100 5\n5 5 2 4 5 4 4 3 4 2 5 3 4 2 4 4 2 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 4 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 3 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 1 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 3 5 1 5 3 4 1 1 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 3 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 6 6 2 6\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 1 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 3 2 2 3 1 5 3 1 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 5 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 3 4 2 4 2 2 4 1 3 5 2 4 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 1 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 4 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 4 2 4 1 3 5 4 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 3 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 4 2 4 9 8 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 1 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 4 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 3 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 1 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 3 5 1 5 3 4 1 1 1 2 2 3 5 1 3 2 4 2 4 1 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 3 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 2 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 6 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 5 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 2 5 3 4 1 5 1 2 2 3 5 1 3 3 4 2 4 2 2 4 1 3 5 2 4 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 1 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 4 5 2 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 4 2 4 1 3 5 4 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 4 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 3 4 2 5 3 4 2 4 4 2 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 1 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 4 3 4 3 2 2 5 2 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 2 4 3 1 5 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 2 5 3 4 1 5 1 2 2 3 5 1 3 3 4 2 4 2 2 4 1 3 5 2 4 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 1 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 4 5 2 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 4 5 1 3 2 4 2 4 4 2 4 1 3 5 4 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 8 6 8 8 3 6 3 3 10 7 10 8 6 2 7 3 9 7 9 2 4 4 2 4 9 8 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 1 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 4 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 2 4 3 1 5 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 2 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 4 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 9 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 1 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 9 5 10 7 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 1 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 9 5 10 7 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 1 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 3 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 9 5 10 7 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 1 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 3 3 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 9 5 10 7 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 1 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 4 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 6 4 10 5 5 3 3 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 9 5 10 7 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 1 3 8 6 2 5 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 8 1 3 1 2 6 9 9 10 10 6 2 5 6 1 9 10 4 10 6 4 10 5 5 3 3 4 5 3 7 10 4 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 3\n2 1 1 1 3 2 3 3 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 2 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 3 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 5 2 2 1 3 3 2 5 3 4 5 1 5 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 3 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 3 5 5 4 2 5\n",
"100 3\n2 1 1 1 3 2 3 2 2 3 3 1 3 3 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 4 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 2 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 4 4 4 3 1 4 4 3 4 5 3 5 4 2 1 3 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 2 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 2 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 4 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 4 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 4 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 3 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 3\n2 1 1 1 3 2 3 2 2 3 3 1 3 1 1 3 3 1 1 1 2 3 1 2 3 1 2 3 3 1 3 1 1 2 3 2 3 3 2 3 3 1 2 2 1 2 3 2 3 2 2 1 1 3 1 3 2 1 3 1 3 1 3 1 1 3 3 3 2 3 2 2 2 2 1 3 3 3 1 2 1 2 3 2 1 3 1 3 2 1 3 1 2 1 2 3 1 3 2 3\n",
"7 4\n3 4 3 1 2 4 3\n",
"100 5\n5 5 2 4 5 4 4 3 4 2 5 3 4 2 4 4 2 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 4 4 4 2 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 3 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 4 5 3 4 4 4 2 5 3 4 2 4 4 1 1 5 3 2 2 1 3 3 2 5 3 4 5 1 5 5 4 4 2 3 1 4 4 3 4 5 3 5 4 2 1 3 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 2 3 2 2 5 5 4 2 5\n",
"100 5\n5 5 2 3 5 4 4 4 4 2 5 4 4 2 4 4 1 1 5 3 2 3 1 3 3 2 5 4 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 4 2 4 9 8 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 1 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 3 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 9 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 2 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100 5\n5 5 2 4 5 4 4 4 2 2 5 2 4 2 4 4 1 1 5 3 4 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 3 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 1 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 3 3 4 3 2 2 5 5 4 2 5\n",
"7 4\n3 4 3 1 2 2 3\n",
"100 5\n5 5 2 4 5 4 4 3 4 2 5 3 4 2 4 4 2 1 5 3 2 3 1 3 3 2 5 3 4 5 1 3 5 4 4 4 3 1 4 4 3 4 5 2 5 4 2 1 2 2 3 5 5 5 1 4 5 3 1 4 2 2 5 1 5 3 4 1 5 1 2 2 3 5 1 3 2 4 2 4 2 2 4 1 3 5 2 2 2 4 3 4 3 2 2 5 2 4 2 5\n",
"100 10\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 3 6 3 3 10 7 10 8 6 2 7 3 9 7 9 2 4 4 2 4 9 8 10 1 10 5 10 4 1 3 4 3 6 9 9 9 6 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 1 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 8 6 2 6\n",
"100 10\n7 4 5 5 3 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 2 8 10 4 10 3 7 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 2 5 1 6 6 6 8 6 6 2 6\n"
],
"output": [
"18\n",
"5\n",
"4428\n",
"2\n",
"48\n",
"3296\n",
"3953\n",
"8\n",
"45\n",
"1\n",
"3307\n",
"3959\n",
"3963\n",
"2\n",
"47\n",
"3967\n",
"3953\n",
"3972\n",
"3952\n",
"4425\n",
"3309\n",
"3957\n",
"3945\n",
"3949\n",
"4421\n",
"3962\n",
"3942\n",
"3939\n",
"4422\n",
"3966\n",
"3944\n",
"3933\n",
"4430\n",
"4435\n",
"3961\n",
"14\n",
"17\n",
"3313\n",
"45\n",
"3964\n",
"3941\n",
"3971\n",
"4423\n",
"3943\n",
"3969\n",
"3947\n",
"4437\n",
"4440\n",
"3317\n",
"3980\n",
"4428\n",
"3974\n",
"3926\n",
"4413\n",
"3940\n",
"15\n",
"3948\n",
"3981\n",
"4420\n",
"3977\n",
"3931\n",
"3927\n",
"4436\n",
"4433\n",
"3987\n",
"4415\n",
"3923\n",
"3928\n",
"4427\n",
"3950\n",
"3917\n",
"3913\n",
"4442\n",
"4432\n",
"3909\n",
"4439\n",
"4434\n",
"4441\n",
"4447\n",
"4449\n",
"4452\n",
"4446\n",
"4451\n",
"3299\n",
"3959\n",
"3959\n",
"3959\n",
"3959\n",
"3962\n",
"3307\n",
"3953\n",
"3953\n",
"3964\n",
"3939\n",
"4425\n",
"3933\n",
"4421\n",
"3313\n",
"17\n",
"3953\n",
"3959\n",
"3962\n",
"3952\n",
"4437\n",
"4440\n",
"3969\n",
"17\n",
"3945\n",
"4437\n",
"4420\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Emily's birthday is next week and Jack has decided to buy a present for her. He knows she loves books so he goes to the local bookshop, where there are n books on sale from one of m genres.
In the bookshop, Jack decides to buy two books of different genres.
Based on the genre of books on sale in the shop, find the number of options available to Jack for choosing two books of different genres for Emily. Options are considered different if they differ in at least one book.
The books are given by indices of their genres. The genres are numbered from 1 to m.
Input
The first line contains two positive integers n and m (2 ≤ n ≤ 2·105, 2 ≤ m ≤ 10) — the number of books in the bookstore and the number of genres.
The second line contains a sequence a1, a2, ..., an, where ai (1 ≤ ai ≤ m) equals the genre of the i-th book.
It is guaranteed that for each genre there is at least one book of that genre.
Output
Print the only integer — the number of ways in which Jack can choose books.
It is guaranteed that the answer doesn't exceed the value 2·109.
Examples
Input
4 3
2 1 3 1
Output
5
Input
7 4
4 2 3 1 2 4 3
Output
18
Note
The answer to the first test sample equals 5 as Sasha can choose:
1. the first and second books,
2. the first and third books,
3. the first and fourth books,
4. the second and third books,
5. the third and fourth books.
### Input:
7 4
4 2 3 1 2 4 3
### Output:
18
### Input:
4 3
2 1 3 1
### Output:
5
### Code:
n, m = list(map(int, input().split()))
a = list(map(int, input().split()))
t = 0
for i in range(m):
cnt = a.count(i + 1)
t += cnt * (n - cnt)
n -= cnt
print(t)
|
630_A. Again Twenty Five!_1020 | The HR manager was disappointed again. The last applicant failed the interview the same way as 24 previous ones. "Do I give such a hard task?" — the HR manager thought. "Just raise number 5 to the power of n and get last two digits of the number. Yes, of course, n can be rather big, and one cannot find the power using a calculator, but we need people who are able to think, not just follow the instructions."
Could you pass the interview in the machine vision company in IT City?
Input
The only line of the input contains a single integer n (2 ≤ n ≤ 2·1018) — the power in which you need to raise number 5.
Output
Output the last two digits of 5n without spaces between them.
Examples
Input
2
Output
25 | n=int(input())
if(n==0):
print(1)
elif(n==1):
print(5)
else:
print(25) | {
"input": [
"2\n",
"7\n",
"2000000000000000000\n",
"1000000000000000000\n",
"987654321012345678\n",
"3\n",
"316240294332142860\n",
"1000001000000000000\n",
"1440563777463828705\n",
"5\n",
"8\n",
"178760633629979647\n",
"1000001000000010000\n",
"10\n",
"6\n",
"101131215760156237\n",
"1000001000000000100\n",
"18\n",
"9\n",
"115631035550827711\n",
"1000001010000000100\n",
"33\n",
"208492154828585304\n",
"1000011010000000100\n",
"57\n",
"122986216305981036\n",
"1000011010000100100\n",
"90\n",
"242545391777893960\n",
"1010011010000100100\n",
"64\n",
"277915831619916216\n",
"1010011010010100100\n",
"41\n",
"204957136679838668\n",
"1010011000010100100\n",
"82\n",
"16906391294606845\n",
"1110011000010100100\n",
"146\n",
"16272203958983429\n",
"1110111000010100100\n",
"6404882684977909\n",
"1100111000010100100\n",
"7993046607942222\n",
"1100111000011100100\n",
"10924519343897441\n",
"1100111000011100110\n",
"4140225739342806\n",
"1123692776373001\n",
"1078295389378358\n",
"2005562596809545\n",
"3340568590192112\n",
"1930588064301710\n",
"274073316904627\n",
"532603875986932\n",
"807896194643877\n",
"998451907545430\n",
"1355100368776771\n",
"113045252921504\n",
"43556898424119\n",
"48702342882486\n",
"43312947909403\n",
"28189991001913\n",
"20495203525626\n",
"28962547497280\n",
"47382648137128\n",
"10269081288944\n",
"16174154778481\n",
"19349321733527\n",
"1597210248518\n",
"2993947243328\n",
"1560580111689\n",
"2018205163781\n",
"1033352957837\n",
"411513302649\n",
"806742598437\n",
"423407857532\n",
"677664993914\n",
"36786903113\n",
"12668072341\n",
"21931968917\n",
"22088752508\n",
"4965962827\n",
"2778795130\n",
"5483042378\n",
"9815481127\n",
"11023030786\n",
"2159167647\n",
"803391935\n",
"1377443622\n",
"2330410721\n",
"2932668651\n",
"2801235708\n",
"446719786\n",
"343888722\n",
"609369359\n",
"411390916\n",
"794820116\n",
"1118841666\n",
"884882592\n",
"796027058\n",
"928261702\n",
"217806500\n"
],
"output": [
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n",
"25\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
The HR manager was disappointed again. The last applicant failed the interview the same way as 24 previous ones. "Do I give such a hard task?" — the HR manager thought. "Just raise number 5 to the power of n and get last two digits of the number. Yes, of course, n can be rather big, and one cannot find the power using a calculator, but we need people who are able to think, not just follow the instructions."
Could you pass the interview in the machine vision company in IT City?
Input
The only line of the input contains a single integer n (2 ≤ n ≤ 2·1018) — the power in which you need to raise number 5.
Output
Output the last two digits of 5n without spaces between them.
Examples
Input
2
Output
25
### Input:
2
### Output:
25
### Input:
7
### Output:
25
### Code:
n=int(input())
if(n==0):
print(1)
elif(n==1):
print(5)
else:
print(25) |
656_E. Out of Controls_1024 | You are given a complete undirected graph. For each pair of vertices you are given the length of the edge that connects them. Find the shortest paths between each pair of vertices in the graph and return the length of the longest of them.
Input
The first line of the input contains a single integer N (3 ≤ N ≤ 10).
The following N lines each contain N space-separated integers. jth integer in ith line aij is the length of the edge that connects vertices i and j. aij = aji, aii = 0, 1 ≤ aij ≤ 100 for i ≠ j.
Output
Output the maximum length of the shortest path between any pair of vertices in the graph.
Examples
Input
3
0 1 1
1 0 4
1 4 0
Output
2
Input
4
0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0
Output
5
Note
You're running short of keywords, so you can't use some of them:
define
do
for
foreach
while
repeat
until
if
then
else
elif
elsif
elseif
case
switch
| #!/usr/bin/python3
import sys
sys.setrecursionlimit(10000)
n = int(input())
a = []
def read(i):
try:
1 / (n - i)
a.append(list(map(int, input().split())))
read(i + 1);
except:
pass
def f(i, j, k):
try:
1 / (n - i)
1 / (n - j)
1 / (n - k)
a[j][k] = min(a[j][k], a[j][i] + a[i][k])
f(i, j, k + 1)
except:
try:
1 / (n - i)
1 / (n - j)
f(i, j + 1, 0)
except:
try:
1 / (n - i)
f(i + 1, 0, 0)
except:
pass
def m(i):
try:
1 / (n - i)
return max(max(a[i]), m(i + 1))
except:
return 0
read(0)
f(0, 0, 0)
print(m(0))
| {
"input": [
"3\n0 1 1\n1 0 4\n1 4 0\n",
"4\n0 1 2 3\n1 0 4 5\n2 4 0 6\n3 5 6 0\n",
"6\n0 41 48 86 94 14\n41 0 1 30 59 39\n48 1 0 9 31 49\n86 30 9 0 48 30\n94 59 31 48 0 33\n14 39 49 30 33 0\n",
"6\n0 92 9 24 50 94\n92 0 70 73 57 87\n9 70 0 31 14 100\n24 73 31 0 66 25\n50 57 14 66 0 81\n94 87 100 25 81 0\n",
"3\n0 86 45\n86 0 54\n45 54 0\n",
"6\n0 41 81 77 80 79\n41 0 64 36 15 77\n81 64 0 36 89 40\n77 36 36 0 59 70\n80 15 89 59 0 90\n79 77 40 70 90 0\n",
"4\n0 59 70 47\n59 0 63 78\n70 63 0 93\n47 78 93 0\n",
"3\n0 1 1\n1 0 1\n1 1 0\n",
"9\n0 89 47 24 63 68 12 27 61\n89 0 48 62 96 82 74 99 47\n47 48 0 72 63 47 25 95 72\n24 62 72 0 54 93 10 95 88\n63 96 63 54 0 19 6 18 3\n68 82 47 93 19 0 68 98 30\n12 74 25 10 6 68 0 21 88\n27 99 95 95 18 98 21 0 3\n61 47 72 88 3 30 88 3 0\n",
"8\n0 12 11 41 75 73 22 1\n12 0 84 11 48 5 68 87\n11 84 0 85 87 64 14 5\n41 11 85 0 75 13 36 11\n75 48 87 75 0 41 15 14\n73 5 64 13 41 0 63 50\n22 68 14 36 15 63 0 90\n1 87 5 11 14 50 90 0\n",
"10\n0 62 27 62 65 11 82 74 46 40\n62 0 8 11 15 28 83 3 14 26\n27 8 0 21 14 12 69 52 26 41\n62 11 21 0 34 35 9 71 100 15\n65 15 14 34 0 95 13 69 20 65\n11 28 12 35 95 0 35 19 57 40\n82 83 69 9 13 35 0 21 97 12\n74 3 52 71 69 19 21 0 82 62\n46 14 26 100 20 57 97 82 0 96\n40 26 41 15 65 40 12 62 96 0\n",
"10\n0 1 1 1 1 1 1 1 1 100\n1 0 1 1 1 1 1 1 1 1\n1 1 0 1 1 1 1 1 1 1\n1 1 1 0 1 1 1 1 1 1\n1 1 1 1 0 1 1 1 1 1\n1 1 1 1 1 0 1 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 1 0 1 1\n1 1 1 1 1 1 1 1 0 1\n100 1 1 1 1 1 1 1 1 0\n",
"8\n0 6 39 40 67 19 77 93\n6 0 25 9 67 48 26 65\n39 25 0 72 62 45 26 88\n40 9 72 0 69 19 88 4\n67 67 62 69 0 2 51 1\n19 48 45 19 2 0 60 14\n77 26 26 88 51 60 0 1\n93 65 88 4 1 14 1 0\n",
"9\n0 29 71 8 12 39 50 26 21\n29 0 76 87 29 91 99 94 57\n71 76 0 74 12 38 24 46 49\n8 87 74 0 62 22 23 44 25\n12 29 12 62 0 97 38 47 39\n39 91 38 22 97 0 69 62 50\n50 99 24 23 38 69 0 4 75\n26 94 46 44 47 62 4 0 100\n21 57 49 25 39 50 75 100 0\n",
"3\n0 99 73\n99 0 8\n73 8 0\n",
"5\n0 92 34 49 44\n92 0 5 54 57\n34 5 0 8 24\n49 54 8 0 76\n44 57 24 76 0\n",
"8\n0 24 87 58 2 2 69 62\n24 0 58 43 98 29 18 33\n87 58 0 71 43 37 4 31\n58 43 71 0 30 77 19 46\n2 98 43 30 0 48 18 64\n2 29 37 77 48 0 57 77\n69 18 4 19 18 57 0 52\n62 33 31 46 64 77 52 0\n",
"6\n0 74 60 92 18 86\n74 0 96 55 30 81\n60 96 0 6 28 30\n92 55 6 0 5 89\n18 30 28 5 0 11\n86 81 30 89 11 0\n",
"10\n0 1 100 100 100 100 100 100 100 100\n1 0 1 100 100 100 100 100 100 100\n100 1 0 1 100 100 100 100 100 100\n100 100 1 0 1 100 100 100 100 100\n100 100 100 1 0 1 100 100 100 100\n100 100 100 100 1 0 1 100 100 100\n100 100 100 100 100 1 0 1 100 100\n100 100 100 100 100 100 1 0 1 100\n100 100 100 100 100 100 100 1 0 1\n100 100 100 100 100 100 100 100 1 0\n",
"10\n0 65 97 17 34 86 3 22 92 98\n65 0 71 14 76 35 22 69 82 89\n97 71 0 58 6 62 45 100 76 14\n17 14 58 0 100 42 83 3 1 21\n34 76 6 100 0 15 90 77 69 32\n86 35 62 42 15 0 3 96 40 6\n3 22 45 83 90 3 0 65 28 87\n22 69 100 3 77 96 65 0 70 73\n92 82 76 1 69 40 28 70 0 39\n98 89 14 21 32 6 87 73 39 0\n",
"9\n0 83 88 2 30 55 89 28 96\n83 0 46 27 71 81 81 37 86\n88 46 0 11 28 55 7 71 31\n2 27 11 0 27 65 24 94 23\n30 71 28 27 0 16 57 18 88\n55 81 55 65 16 0 68 92 71\n89 81 7 24 57 68 0 29 70\n28 37 71 94 18 92 29 0 21\n96 86 31 23 88 71 70 21 0\n",
"6\n0 45 91 95 34 82\n45 0 73 77 9 38\n91 73 0 61 74 71\n95 77 61 0 93 17\n34 9 74 93 0 73\n82 38 71 17 73 0\n",
"7\n0 50 95 10 100 75 71\n50 0 53 70 70 26 91\n95 53 0 16 33 90 98\n10 70 16 0 43 48 87\n100 70 33 43 0 63 34\n75 26 90 48 63 0 17\n71 91 98 87 34 17 0\n",
"3\n0 35 50\n35 0 28\n50 28 0\n",
"10\n0 16 67 7 82 44 25 13 25 42\n16 0 24 37 63 20 19 87 55 99\n67 24 0 81 19 71 35 6 20 91\n7 37 81 0 82 89 34 80 7 32\n82 63 19 82 0 42 66 96 42 99\n44 20 71 89 42 0 65 94 24 45\n25 19 35 34 66 65 0 97 100 22\n13 87 6 80 96 94 97 0 10 58\n25 55 20 7 42 24 100 10 0 29\n42 99 91 32 99 45 22 58 29 0\n",
"8\n0 73 45 10 61 98 24 80\n73 0 47 29 65 96 46 36\n45 47 0 63 48 19 57 99\n10 29 63 0 11 13 79 84\n61 65 48 11 0 60 71 27\n98 96 19 13 60 0 41 44\n24 46 57 79 71 41 0 13\n80 36 99 84 27 44 13 0\n",
"7\n0 41 2 49 25 23 43\n41 0 21 3 1 35 74\n2 21 0 63 45 6 55\n49 3 63 0 90 92 9\n25 1 45 90 0 11 11\n23 35 6 92 11 0 77\n43 74 55 9 11 77 0\n",
"8\n0 25 9 7 32 10 42 77\n25 0 18 90 53 83 1 50\n9 18 0 21 12 83 68 79\n7 90 21 0 97 67 51 16\n32 53 12 97 0 83 29 6\n10 83 83 67 83 0 50 69\n42 1 68 51 29 50 0 70\n77 50 79 16 6 69 70 0\n",
"10\n0 27 56 32 37 99 71 93 98 50\n27 0 21 57 7 77 88 40 90 81\n56 21 0 20 45 98 82 69 15 23\n32 57 20 0 15 74 72 95 49 56\n37 7 45 15 0 25 17 60 7 80\n99 77 98 74 25 0 80 62 31 63\n71 88 82 72 17 80 0 38 43 9\n93 40 69 95 60 62 38 0 7 53\n98 90 15 49 7 31 43 7 0 48\n50 81 23 56 80 63 9 53 48 0\n",
"6\n0 67 17 21 20 86\n67 0 32 80 24 36\n17 32 0 20 37 90\n21 80 20 0 58 98\n20 24 37 58 0 22\n86 36 90 98 22 0\n",
"9\n0 76 66 78 46 55 92 18 81\n76 0 99 62 23 53 45 41 10\n66 99 0 18 3 37 34 26 91\n78 62 18 0 98 36 59 5 27\n46 23 3 98 0 79 92 9 39\n55 53 37 36 79 0 89 60 25\n92 45 34 59 92 89 0 26 94\n18 41 26 5 9 60 26 0 19\n81 10 91 27 39 25 94 19 0\n",
"3\n0 72 17\n72 0 8\n17 8 0\n",
"9\n0 62 15 44 79 3 30 46 49\n62 0 79 42 86 71 78 68 98\n15 79 0 2 34 34 97 71 76\n44 42 2 0 11 76 4 64 25\n79 86 34 11 0 45 48 75 81\n3 71 34 76 45 0 73 5 40\n30 78 97 4 48 73 0 50 16\n46 68 71 64 75 5 50 0 14\n49 98 76 25 81 40 16 14 0\n",
"7\n0 67 86 9 33 16 99\n67 0 77 68 97 59 33\n86 77 0 37 11 83 99\n9 68 37 0 51 27 70\n33 97 11 51 0 32 91\n16 59 83 27 32 0 71\n99 33 99 70 91 71 0\n",
"5\n0 1 6 73 37\n1 0 4 29 76\n6 4 0 74 77\n73 29 74 0 45\n37 76 77 45 0\n",
"6\n0 44 27 40 72 96\n44 0 87 1 83 45\n27 87 0 43 81 64\n40 1 43 0 89 90\n72 83 81 89 0 37\n96 45 64 90 37 0\n",
"4\n0 98 25 16\n98 0 89 1\n25 89 0 2\n16 1 2 0\n",
"6\n0 41 48 86 94 14\n41 0 1 30 59 39\n48 1 0 9 31 49\n86 30 9 0 48 30\n94 59 31 48 0 33\n14 39 4 30 33 0\n",
"6\n0 92 16 24 50 94\n92 0 70 73 57 87\n9 70 0 31 14 100\n24 73 31 0 66 25\n50 57 14 66 0 81\n94 87 100 25 81 0\n",
"3\n0 86 70\n86 0 54\n45 54 0\n",
"6\n0 41 81 77 80 79\n73 0 64 36 15 77\n81 64 0 36 89 40\n77 36 36 0 59 70\n80 15 89 59 0 90\n79 77 40 70 90 0\n",
"9\n0 89 47 24 63 68 12 27 61\n89 0 48 57 96 82 74 99 47\n47 48 0 72 63 47 25 95 72\n24 62 72 0 54 93 10 95 88\n63 96 63 54 0 19 6 18 3\n68 82 47 93 19 0 68 98 30\n12 74 25 10 6 68 0 21 88\n27 99 95 95 18 98 21 0 3\n61 47 72 88 3 30 88 3 0\n",
"10\n0 62 27 62 65 11 82 74 46 40\n62 0 8 11 15 28 83 3 14 26\n27 8 0 21 14 12 69 52 26 41\n62 11 21 0 34 35 9 71 100 15\n65 15 14 34 0 95 13 69 20 112\n11 28 12 35 95 0 35 19 57 40\n82 83 69 9 13 35 0 21 97 12\n74 3 52 71 69 19 21 0 82 62\n46 14 26 100 20 57 97 82 0 96\n40 26 41 15 65 40 12 62 96 0\n",
"10\n0 1 1 1 1 1 1 1 1 100\n1 0 1 1 1 1 1 1 1 1\n1 1 0 1 1 1 1 1 1 1\n1 1 1 0 1 1 1 1 1 1\n1 1 1 1 0 1 1 1 1 1\n1 1 1 1 1 0 1 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 1 1 0 1 1\n2 1 1 1 1 1 1 1 0 1\n100 1 1 1 1 1 1 1 1 0\n",
"9\n0 29 71 8 12 39 50 26 21\n29 0 76 87 29 91 99 94 57\n71 76 0 74 12 38 39 46 49\n8 87 74 0 62 22 23 44 25\n12 29 12 62 0 97 38 47 39\n39 91 38 22 97 0 69 62 50\n50 99 24 23 38 69 0 4 75\n26 94 46 44 47 62 4 0 100\n21 57 49 25 39 50 75 100 0\n",
"3\n0 105 73\n99 0 8\n73 8 0\n",
"5\n0 92 34 49 44\n92 0 8 54 57\n34 5 0 8 24\n49 54 8 0 76\n44 57 24 76 0\n",
"8\n0 24 87 58 2 2 69 62\n24 0 58 43 98 29 18 33\n87 58 0 71 43 37 4 31\n58 43 71 0 30 77 19 46\n2 98 43 30 0 48 18 64\n2 29 37 77 48 0 43 77\n69 18 4 19 18 57 0 52\n62 33 31 46 64 77 52 0\n",
"10\n0 1 100 100 100 100 100 100 100 100\n1 0 1 100 100 100 100 100 100 100\n100 1 0 1 100 100 100 100 100 100\n100 100 1 0 1 100 100 100 100 100\n100 100 100 1 1 1 100 100 100 100\n100 100 100 100 1 0 1 100 100 100\n100 100 100 100 100 1 0 1 100 100\n100 100 100 100 100 100 1 0 1 100\n100 100 100 100 100 100 100 1 0 1\n100 100 100 100 100 100 100 100 1 0\n",
"10\n0 65 97 17 34 86 3 22 92 98\n65 0 71 14 76 35 22 69 82 89\n97 71 0 58 6 62 45 100 76 14\n17 14 58 0 100 42 83 3 1 21\n34 76 6 100 0 15 90 77 69 32\n86 41 62 42 15 0 3 96 40 6\n3 22 45 83 90 3 0 65 28 87\n22 69 100 3 77 96 65 0 70 73\n92 82 76 1 69 40 28 70 0 39\n98 89 14 21 32 6 87 73 39 0\n",
"9\n0 83 88 2 30 55 89 28 96\n83 0 46 27 71 81 81 37 86\n88 46 0 11 28 55 7 71 31\n2 27 11 0 27 65 24 94 23\n30 71 28 27 0 16 33 18 88\n55 81 55 65 16 0 68 92 71\n89 81 7 24 57 68 0 29 70\n28 37 71 94 18 92 29 0 21\n96 86 31 23 88 71 70 21 0\n",
"6\n0 45 91 95 34 82\n45 0 73 77 9 38\n91 105 0 61 74 71\n95 77 61 0 93 17\n34 9 74 93 0 73\n82 38 71 17 73 0\n",
"8\n0 73 45 10 61 98 24 80\n73 0 47 29 65 96 46 36\n45 47 0 63 48 19 57 99\n10 29 63 0 11 13 79 84\n61 65 48 11 0 60 71 27\n98 96 19 13 70 0 41 44\n24 46 57 79 71 41 0 13\n80 36 99 84 27 44 13 0\n",
"7\n0 41 2 49 25 23 43\n41 0 21 3 1 35 74\n2 21 0 63 45 6 55\n49 3 63 0 90 92 9\n25 1 45 90 0 11 11\n23 35 6 92 11 0 77\n43 74 55 9 11 77 1\n",
"8\n0 25 9 7 32 10 42 77\n25 0 18 90 53 83 1 50\n9 18 0 21 12 83 68 79\n7 90 21 0 97 67 51 16\n32 53 12 97 0 83 29 6\n10 83 83 67 83 0 50 69\n42 1 68 51 29 15 0 70\n77 50 79 16 6 69 70 0\n",
"9\n0 76 66 78 46 26 92 18 81\n76 0 99 62 23 53 45 41 10\n66 99 0 18 3 37 34 26 91\n78 62 18 0 98 36 59 5 27\n46 23 3 98 0 79 92 9 39\n55 53 37 36 79 0 89 60 25\n92 45 34 59 92 89 0 26 94\n18 41 26 5 9 60 26 0 19\n81 10 91 27 39 25 94 19 0\n",
"3\n0 72 17\n72 0 8\n17 8 1\n",
"7\n0 67 86 9 33 16 99\n67 0 77 68 97 59 65\n86 77 0 37 11 83 99\n9 68 37 0 51 27 70\n33 97 11 51 0 32 91\n16 59 83 27 32 0 71\n99 33 99 70 91 71 0\n",
"10\n0 27 56 32 37 99 71 93 98 50\n27 0 21 57 7 77 88 40 90 81\n56 21 0 20 45 98 71 69 15 23\n32 57 20 0 15 74 72 95 49 56\n37 7 45 15 0 25 17 60 7 80\n99 77 98 74 25 0 80 62 31 63\n71 88 82 72 17 80 0 38 43 9\n93 40 69 95 60 62 38 0 7 53\n98 90 15 49 7 31 43 7 0 48\n50 81 23 56 80 63 9 53 48 0\n",
"3\n0 1 1\n1 0 8\n1 4 0\n",
"6\n0 92 16 24 50 94\n92 0 70 73 57 87\n9 70 0 31 14 100\n24 73 31 0 66 25\n50 57 14 66 0 32\n94 87 100 25 81 0\n",
"6\n0 41 81 77 80 79\n73 1 64 36 15 77\n81 64 0 36 89 40\n77 36 36 0 59 70\n80 15 89 59 0 90\n79 77 40 70 90 0\n",
"9\n0 89 47 24 63 68 12 27 61\n89 0 48 57 96 82 74 99 47\n47 48 0 72 63 47 25 95 72\n24 62 72 0 54 93 10 95 88\n63 96 63 54 0 19 6 18 3\n68 82 47 93 19 0 68 98 30\n12 74 25 10 6 68 0 21 88\n27 99 95 95 18 98 21 0 3\n12 47 72 88 3 30 88 3 0\n",
"10\n0 62 27 62 65 11 82 74 46 40\n62 0 8 11 15 28 83 3 14 26\n27 8 0 21 14 12 69 52 26 41\n62 11 21 0 34 35 9 71 100 15\n65 15 14 34 0 95 13 69 20 112\n11 28 12 35 95 0 35 19 57 40\n82 83 69 9 13 35 0 21 97 12\n74 3 52 71 69 19 21 0 82 62\n46 14 26 100 20 57 97 82 0 96\n40 38 41 15 65 40 12 62 96 0\n",
"10\n0 1 1 1 1 1 1 1 1 100\n1 0 1 1 1 1 1 1 1 1\n1 1 0 1 1 1 1 1 1 1\n1 1 1 0 1 1 1 1 1 1\n1 1 1 1 0 1 1 1 1 1\n1 1 1 1 1 0 1 1 1 1\n1 1 1 1 1 1 0 1 1 1\n1 1 1 1 1 0 1 0 1 1\n2 1 1 1 1 1 1 1 0 1\n100 1 1 1 1 1 1 1 1 0\n",
"9\n0 29 71 8 12 39 50 26 14\n29 0 76 87 29 91 99 94 57\n71 76 0 74 12 38 39 46 49\n8 87 74 0 62 22 23 44 25\n12 29 12 62 0 97 38 47 39\n39 91 38 22 97 0 69 62 50\n50 99 24 23 38 69 0 4 75\n26 94 46 44 47 62 4 0 100\n21 57 49 25 39 50 75 100 0\n",
"5\n0 92 34 49 44\n92 0 8 54 57\n34 5 0 8 24\n49 54 8 0 76\n44 75 24 76 0\n",
"8\n0 24 87 58 2 2 69 62\n24 0 58 43 98 29 18 33\n87 58 0 71 43 37 4 31\n58 43 71 0 30 77 19 46\n2 98 43 30 0 48 18 64\n2 29 37 77 48 0 43 77\n95 18 4 19 18 57 0 52\n62 33 31 46 64 77 52 0\n",
"10\n0 1 100 100 100 100 100 100 100 100\n1 0 1 100 100 100 100 100 100 100\n100 1 0 1 100 100 100 100 100 100\n100 100 1 0 1 100 100 100 100 100\n100 100 100 1 1 1 100 100 100 100\n100 100 100 100 1 0 1 100 100 100\n100 100 100 110 100 1 0 1 100 100\n100 100 100 100 100 100 1 0 1 100\n100 100 100 100 100 100 100 1 0 1\n100 100 100 100 100 100 100 100 1 0\n",
"10\n0 65 97 17 34 86 3 22 92 98\n65 0 71 14 76 35 22 69 82 89\n97 71 0 58 6 62 45 100 37 14\n17 14 58 0 100 42 83 3 1 21\n34 76 6 100 0 15 90 77 69 32\n86 41 62 42 15 0 3 96 40 6\n3 22 45 83 90 3 0 65 28 87\n22 69 100 3 77 96 65 0 70 73\n92 82 76 1 69 40 28 70 0 39\n98 89 14 21 32 6 87 73 39 0\n",
"9\n0 83 88 2 30 55 89 28 96\n83 0 46 27 71 81 81 37 86\n88 46 0 11 28 55 7 71 31\n2 27 11 0 27 65 24 94 23\n30 71 28 27 0 16 33 18 88\n55 81 55 65 16 0 68 92 71\n89 81 7 24 57 68 0 56 70\n28 37 71 94 18 92 29 0 21\n96 86 31 23 88 71 70 21 0\n",
"6\n0 45 91 95 34 82\n45 0 73 77 9 38\n91 105 0 61 74 71\n95 77 61 0 146 17\n34 9 74 93 0 73\n82 38 71 17 73 0\n",
"8\n0 73 45 10 61 98 24 80\n73 0 47 29 65 96 46 36\n45 47 0 63 48 19 57 99\n10 29 63 0 11 13 79 84\n61 65 48 11 0 60 71 27\n98 96 19 13 70 0 41 44\n24 46 57 79 31 41 0 13\n80 36 99 84 27 44 13 0\n",
"7\n0 41 2 49 25 23 43\n41 0 21 3 0 35 74\n2 21 0 63 45 6 55\n49 3 63 0 90 92 9\n25 1 45 90 0 11 11\n23 35 6 92 11 0 77\n43 74 55 9 11 77 1\n",
"8\n0 25 9 7 32 10 42 143\n25 0 18 90 53 83 1 50\n9 18 0 21 12 83 68 79\n7 90 21 0 97 67 51 16\n32 53 12 97 0 83 29 6\n10 83 83 67 83 0 50 69\n42 1 68 51 29 15 0 70\n77 50 79 16 6 69 70 0\n",
"10\n0 27 56 32 37 99 71 93 98 50\n27 0 21 57 7 77 88 40 90 81\n56 21 0 20 45 98 71 69 15 23\n32 57 20 0 15 74 72 95 49 56\n37 7 45 15 0 25 17 60 7 80\n99 77 98 74 25 0 80 62 31 63\n71 88 82 72 17 80 0 38 43 9\n93 40 69 95 60 62 38 0 7 53\n98 90 15 49 7 31 77 7 0 48\n50 81 23 56 80 63 9 53 48 0\n",
"9\n0 76 66 78 46 26 92 18 81\n76 0 99 62 23 53 45 41 10\n66 99 0 18 3 37 34 26 91\n78 62 18 0 98 36 59 5 27\n46 23 3 98 0 79 92 9 39\n89 53 37 36 79 0 89 60 25\n92 45 34 59 92 89 0 26 94\n18 41 26 5 9 60 26 0 19\n81 10 91 27 39 25 94 19 0\n",
"3\n0 72 17\n59 0 8\n17 8 1\n",
"6\n0 41 81 77 80 79\n73 1 64 36 15 77\n81 64 0 36 89 40\n77 5 36 0 59 70\n80 15 89 59 0 90\n79 77 40 70 90 0\n",
"9\n0 89 47 24 63 68 12 27 61\n89 0 48 57 96 82 74 99 47\n47 48 0 72 63 47 25 95 72\n24 62 72 0 54 93 10 95 88\n63 96 63 54 0 19 6 18 3\n68 82 47 93 19 0 68 98 30\n12 74 25 10 6 68 0 21 88\n27 99 95 95 27 98 21 0 3\n12 47 72 88 3 30 88 3 0\n",
"10\n0 62 27 62 65 11 82 74 46 40\n62 0 8 11 15 28 83 3 14 26\n27 8 0 21 14 12 69 52 26 41\n62 11 21 0 34 35 9 71 100 15\n65 15 14 34 0 95 13 69 20 112\n11 28 12 35 95 0 35 19 57 38\n82 83 69 9 13 35 0 21 97 12\n74 3 52 71 69 19 21 0 82 62\n46 14 26 100 20 57 97 82 0 96\n40 38 41 15 65 40 12 62 96 0\n",
"9\n0 29 71 8 12 39 50 26 14\n29 0 76 87 29 91 99 94 57\n71 76 0 74 12 38 39 46 49\n8 87 74 0 62 22 23 44 25\n12 29 12 62 0 97 38 47 39\n39 91 38 22 97 0 69 62 50\n50 99 24 23 38 69 0 4 75\n26 151 46 44 47 62 4 0 100\n21 57 49 25 39 50 75 100 0\n",
"8\n0 24 87 58 2 2 69 62\n24 0 58 43 98 29 18 33\n87 58 0 71 43 37 4 31\n94 43 71 0 30 77 19 46\n2 98 43 30 0 48 18 64\n2 29 37 77 48 0 43 77\n95 18 4 19 18 57 0 52\n62 33 31 46 64 77 52 0\n"
],
"output": [
"2",
"5",
"47",
"87",
"86",
"90",
"93",
"1",
"69",
"37",
"46",
"2",
"31",
"59",
"81",
"44",
"57",
"48",
"9",
"45",
"70",
"95",
"71",
"50",
"64",
"63",
"30",
"36",
"59",
"63",
"67",
"25",
"67",
"99",
"45",
"86",
"18",
"47\n",
"87\n",
"86\n",
"90\n",
"69\n",
"46\n",
"2\n",
"59\n",
"81\n",
"44\n",
"57\n",
"9\n",
"45\n",
"70\n",
"95\n",
"63\n",
"30\n",
"36\n",
"67\n",
"25\n",
"99\n",
"59\n",
"2\n",
"87\n",
"90\n",
"69\n",
"46\n",
"2\n",
"59\n",
"44\n",
"57\n",
"9\n",
"45\n",
"70\n",
"95\n",
"63\n",
"30\n",
"36\n",
"59\n",
"67\n",
"25\n",
"90\n",
"69\n",
"46\n",
"59\n",
"57\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a complete undirected graph. For each pair of vertices you are given the length of the edge that connects them. Find the shortest paths between each pair of vertices in the graph and return the length of the longest of them.
Input
The first line of the input contains a single integer N (3 ≤ N ≤ 10).
The following N lines each contain N space-separated integers. jth integer in ith line aij is the length of the edge that connects vertices i and j. aij = aji, aii = 0, 1 ≤ aij ≤ 100 for i ≠ j.
Output
Output the maximum length of the shortest path between any pair of vertices in the graph.
Examples
Input
3
0 1 1
1 0 4
1 4 0
Output
2
Input
4
0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0
Output
5
Note
You're running short of keywords, so you can't use some of them:
define
do
for
foreach
while
repeat
until
if
then
else
elif
elsif
elseif
case
switch
### Input:
3
0 1 1
1 0 4
1 4 0
### Output:
2
### Input:
4
0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0
### Output:
5
### Code:
#!/usr/bin/python3
import sys
sys.setrecursionlimit(10000)
n = int(input())
a = []
def read(i):
try:
1 / (n - i)
a.append(list(map(int, input().split())))
read(i + 1);
except:
pass
def f(i, j, k):
try:
1 / (n - i)
1 / (n - j)
1 / (n - k)
a[j][k] = min(a[j][k], a[j][i] + a[i][k])
f(i, j, k + 1)
except:
try:
1 / (n - i)
1 / (n - j)
f(i, j + 1, 0)
except:
try:
1 / (n - i)
f(i + 1, 0, 0)
except:
pass
def m(i):
try:
1 / (n - i)
return max(max(a[i]), m(i + 1))
except:
return 0
read(0)
f(0, 0, 0)
print(m(0))
|
702_E. Analysis of Pathes in Functional Graph_1030 | You are given a functional graph. It is a directed graph, in which from each vertex goes exactly one arc. The vertices are numerated from 0 to n - 1.
Graph is given as the array f0, f1, ..., fn - 1, where fi — the number of vertex to which goes the only arc from the vertex i. Besides you are given array with weights of the arcs w0, w1, ..., wn - 1, where wi — the arc weight from i to fi.
<image> The graph from the first sample test.
Also you are given the integer k (the length of the path) and you need to find for each vertex two numbers si and mi, where:
* si — the sum of the weights of all arcs of the path with length equals to k which starts from the vertex i;
* mi — the minimal weight from all arcs on the path with length k which starts from the vertex i.
The length of the path is the number of arcs on this path.
Input
The first line contains two integers n, k (1 ≤ n ≤ 105, 1 ≤ k ≤ 1010). The second line contains the sequence f0, f1, ..., fn - 1 (0 ≤ fi < n) and the third — the sequence w0, w1, ..., wn - 1 (0 ≤ wi ≤ 108).
Output
Print n lines, the pair of integers si, mi in each line.
Examples
Input
7 3
1 2 3 4 3 2 6
6 3 1 4 2 2 3
Output
10 1
8 1
7 1
10 2
8 2
7 1
9 3
Input
4 4
0 1 2 3
0 1 2 3
Output
0 0
4 1
8 2
12 3
Input
5 3
1 2 3 4 0
4 1 2 14 3
Output
7 1
17 1
19 2
21 3
8 1 | import sys
n, k = map(int, sys.stdin.buffer.readline().decode('utf-8').split())
a = list(map(int, sys.stdin.buffer.readline().decode('utf-8').split()))
b = list(map(int, sys.stdin.buffer.readline().decode('utf-8').split()))
logk = len(bin(k)) - 2
sum_w, sum_w_p = b[:], b[:]
min_w, min_w_p = b[:], b[:]
dest, dest_p = a[:], a[:]
ans_sum, ans_min, pos = [0]*n, b[:], list(range(n))
if k & 1:
ans_sum = b[:]
pos = [a[i] for i in range(n)]
k >>= 1
for j in range(1, logk):
for i in range(n):
d = dest[i]
p = 0 if d > i else 1
dest_p[i] = d
dest[i] = (dest_p if p else dest)[d]
sum_w_p[i] = sum_w[i]
sum_w[i] += (sum_w_p if p else sum_w)[d]
min_w_p[i] = min_w[i]
if min_w[i] > (min_w_p if p else min_w)[d]:
min_w[i] = (min_w_p if p else min_w)[d]
if k & 1:
for i in range(n):
ans_sum[i] += sum_w[pos[i]]
if ans_min[i] > min_w[pos[i]]:
ans_min[i] = min_w[pos[i]]
pos[i] = dest[pos[i]]
k >>= 1
sys.stdout.buffer.write('\n'.join(
(str(ans_sum[i]) + ' ' + str(ans_min[i]) for i in range(n))).encode('utf-8'))
| {
"input": [
"5 3\n1 2 3 4 0\n4 1 2 14 3\n",
"7 3\n1 2 3 4 3 2 6\n6 3 1 4 2 2 3\n",
"4 4\n0 1 2 3\n0 1 2 3\n",
"1 1\n0\n10000\n",
"2 3\n1 0\n4 7\n",
"1 2\n0\n10000\n",
"3 10\n0 1 2\n9240 5331 6721\n",
"4 10\n2 1 2 1\n960 2596 3752 8303\n",
"6 10\n0 3 3 5 3 5\n4845 6494 579 5025 2998 4787\n",
"1 10000000000\n0\n10000\n",
"2 3\n0 1\n4 7\n",
"2 3\n1 1\n4 7\n",
"8 10\n7 5 0 0 2 3 6 3\n2948 525 5789 4809 3961 6111 5209 8128\n",
"2 3\n0 0\n4 7\n",
"5 10\n0 2 2 0 2\n8473 9299 7399 4396 7275\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 9 16 7 9 7 11 9 13\n2634 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 1737 7586 6461 228\n",
"7 10\n4 6 4 6 4 2 0\n5590 6764 2775 3854 4798 348 3954\n",
"2 3\n1 0\n4 9\n",
"4 10\n2 2 2 1\n960 2596 3752 8303\n",
"6 10\n0 3 3 5 4 5\n4845 6494 579 5025 2998 4787\n",
"2 3\n0 1\n4 2\n",
"2 3\n1 1\n6 7\n",
"8 10\n7 5 0 0 2 3 6 3\n2948 525 5789 4809 3961 2696 5209 8128\n",
"2 3\n1 0\n4 6\n",
"5 10\n0 2 3 0 2\n8473 9299 7399 4396 7275\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 11 9 13\n2634 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 1737 7586 6461 228\n",
"7 10\n4 6 4 6 4 2 0\n5590 6764 292 3854 4798 348 3954\n",
"5 3\n1 0 3 4 0\n4 1 2 14 3\n",
"7 3\n1 2 3 4 3 2 6\n6 2 1 4 2 2 3\n",
"2 3\n0 0\n4 9\n",
"4 10\n2 2 3 1\n960 2596 3752 8303\n",
"6 10\n0 3 3 5 4 5\n6703 6494 579 5025 2998 4787\n",
"2 1\n1 1\n6 7\n",
"8 10\n7 5 0 0 2 3 0 3\n2948 525 5789 4809 3961 2696 5209 8128\n",
"2 3\n1 0\n0 6\n",
"5 3\n0 2 3 0 2\n8473 9299 7399 4396 7275\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 11 9 13\n2634 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 6461 228\n",
"7 10\n5 6 4 6 4 2 0\n5590 6764 292 3854 4798 348 3954\n",
"5 3\n1 0 3 4 0\n4 1 3 14 3\n",
"7 3\n1 2 0 4 3 2 6\n6 2 1 4 2 2 3\n",
"2 3\n0 0\n4 6\n",
"4 10\n2 2 1 1\n960 2596 3752 8303\n",
"8 10\n7 5 0 0 2 3 0 3\n2948 158 5789 4809 3961 2696 5209 8128\n",
"2 3\n1 0\n0 2\n",
"5 3\n0 2 3 0 2\n8473 9299 7399 4396 2862\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 16 9 13\n2634 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 6461 228\n",
"7 3\n1 2 0 4 3 2 6\n6 2 2 4 2 2 3\n",
"2 6\n0 0\n4 6\n",
"4 10\n2 2 0 1\n960 2596 3752 8303\n",
"8 10\n7 5 0 0 2 3 0 3\n2948 245 5789 4809 3961 2696 5209 8128\n",
"2 3\n1 0\n1 2\n",
"5 3\n0 2 3 0 2\n8473 9299 7399 4219 2862\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 16 9 13\n2634 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n",
"4 10\n2 2 0 1\n960 2136 3752 8303\n",
"8 10\n7 5 0 0 2 0 0 3\n2948 245 5789 4809 3961 2696 5209 8128\n",
"5 3\n0 2 3 0 2\n8473 12297 7399 4219 2862\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 16 9 13\n2462 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n",
"4 10\n2 3 0 1\n960 2136 3752 8303\n",
"8 10\n7 5 0 0 2 0 0 3\n2948 245 5789 4809 3961 2696 7109 8128\n",
"5 3\n0 2 3 0 2\n8473 12297 270 4219 2862\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 16 9 13\n1391 7980 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n",
"4 10\n2 3 0 1\n960 2136 3752 8257\n",
"8 10\n7 5 0 0 2 0 0 3\n2948 245 5789 4809 3961 2696 1855 8128\n",
"5 3\n0 2 2 0 2\n8473 12297 270 4219 2862\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 15 16 7 9 7 16 9 13\n1391 1321 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n",
"5 3\n0 2 2 1 2\n8473 12297 270 4219 2862\n",
"20 10\n13 10 5 6 18 5 12 13 15 1 10 3 5 16 7 9 7 16 9 13\n1391 1321 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n",
"5 3\n0 2 4 1 2\n8473 12297 270 4219 2862\n",
"20 10\n13 5 5 6 18 5 12 13 15 1 10 3 5 16 7 9 7 16 9 13\n1391 1321 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n",
"5 3\n0 2 4 1 2\n8473 12297 438 4219 2862\n",
"20 10\n13 5 5 6 18 5 12 13 15 1 10 3 5 16 3 9 7 16 9 13\n1391 1321 171 3503 6601 9378 4618 8243 9343 1979 4172 7441 9722 9863 6041 4790 858 7586 9052 228\n"
],
"output": [
" 7 1\n 17 1\n 19 2\n 21 3\n 8 1\n",
" 10 1\n 8 1\n 7 1\n 10 2\n 8 2\n 7 1\n 9 3\n",
" 0 0\n 4 1\n 8 2\n 12 3\n",
" 10000 10000\n",
" 15 4\n 18 4\n",
" 20000 10000\n",
" 92400 9240\n 53310 5331\n 67210 6721\n",
" 34728 960\n 25960 2596\n 37520 3752\n 31667 2596\n",
" 48450 4845\n 49815 4787\n 43900 579\n 48108 4787\n 46319 2998\n 47870 4787\n",
"100000000000000 10000\n",
" 12 4\n 21 7\n",
" 18 4\n 21 7\n",
" 50603 2948\n 46163 525\n 53444 2948\n 52464 2948\n 52596 2948\n 53766 2948\n 52090 5209\n 55783 2948\n",
" 12 4\n 15 4\n",
" 84730 8473\n 75890 7399\n 73990 7399\n 80653 4396\n 73866 7275\n",
" 62163 1737\n 45528 4172\n 84573 171\n 48662 1979\n 48053 1979\n 93780 9378\n 49331 1979\n 67772 1737\n 49124 1979\n 43335 1979\n 41720 4172\n 51931 1979\n 48885 1979\n 69392 1737\n 65570 1737\n 43953 1979\n 61266 1737\n 55345 1979\n 45624 1979\n 59757 228\n",
" 48772 4798\n 49894 3954\n 45957 2775\n 46984 3854\n 47980 4798\n 41507 348\n 47928 3954\n",
"17 4\n22 4\n",
"34728 960\n36364 2596\n37520 3752\n40915 2596\n",
"48450 4845\n49815 4787\n43900 579\n48108 4787\n29980 2998\n47870 4787\n",
"12 4\n6 2\n",
"20 6\n21 7\n",
"50603 2948\n42748 525\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n52090 5209\n55783 2948\n",
"14 4\n16 4\n",
"84730 8473\n80405 4396\n79579 4396\n80653 4396\n78381 4396\n",
"62163 1737\n45528 4172\n84573 171\n49280 1979\n48053 1979\n93780 9378\n49949 1979\n67772 1737\n49124 1979\n43335 1979\n41720 4172\n52549 1979\n49503 1979\n69392 1737\n65570 1737\n43953 1979\n61266 1737\n55963 1979\n45624 1979\n59757 228\n",
"48772 4798\n49894 3954\n43474 292\n46984 3854\n47980 4798\n39024 292\n47928 3954\n",
"9 1\n6 1\n19 2\n21 3\n8 1\n",
"9 1\n7 1\n7 1\n10 2\n8 2\n7 1\n9 3\n",
"12 4\n17 4\n",
"44913 960\n46549 2596\n47705 2596\n52256 2596\n",
"67030 6703\n49815 4787\n43900 579\n48108 4787\n29980 2998\n47870 4787\n",
"6 6\n7 7\n",
"50603 2948\n42748 525\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n52864 2948\n55783 2948\n",
"6 0\n12 0\n",
"25419 8473\n21094 4396\n20268 4396\n21342 4396\n19070 4396\n",
"59526 858\n45528 4172\n84573 171\n49280 1979\n48053 1979\n93780 9378\n49949 1979\n65135 858\n49124 1979\n43335 1979\n41720 4172\n52549 1979\n49503 1979\n66755 858\n62933 858\n43953 1979\n57750 858\n55963 1979\n45624 1979\n57120 228\n",
"39816 292\n40938 292\n43474 292\n38028 292\n47980 4798\n39024 292\n38972 292\n",
"9 1\n6 1\n20 3\n21 3\n8 1\n",
"9 1\n9 1\n9 1\n10 2\n8 2\n9 1\n9 3\n",
"12 4\n14 4\n",
"30104 960\n31740 2596\n31740 2596\n36291 2596\n",
"50603 2948\n42381 158\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n52864 2948\n55783 2948\n",
"2 0\n4 0\n",
"25419 8473\n21094 4396\n20268 4396\n21342 4396\n14657 2862\n",
"59526 858\n45528 4172\n84573 171\n49280 1979\n48053 1979\n93780 9378\n49949 1979\n65135 858\n49124 1979\n43335 1979\n41720 4172\n52549 1979\n49503 1979\n66755 858\n62933 858\n43953 1979\n57750 858\n64478 858\n45624 1979\n57120 228\n",
"10 2\n10 2\n10 2\n10 2\n8 2\n10 2\n9 3\n",
"24 4\n26 4\n",
"23560 960\n25196 960\n23560 960\n29747 960\n",
"50603 2948\n42468 245\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n52864 2948\n55783 2948\n",
"4 1\n5 1\n",
"25419 8473\n20917 4219\n20091 4219\n21165 4219\n14480 2862\n",
"59526 858\n45528 4172\n84573 171\n49280 1979\n50644 1979\n93780 9378\n49949 1979\n65135 858\n49124 1979\n43335 1979\n41720 4172\n52549 1979\n49503 1979\n66755 858\n62933 858\n43953 1979\n57750 858\n64478 858\n48215 1979\n57120 228\n",
"23560 960\n24736 960\n23560 960\n29287 960\n",
"50603 2948\n45787 245\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n52864 2948\n55783 2948\n",
"25419 8473\n23915 4219\n20091 4219\n21165 4219\n14480 2862\n",
"59354 858\n45528 4172\n84573 171\n49280 1979\n50644 1979\n93780 9378\n49949 1979\n65135 858\n49124 1979\n43335 1979\n41720 4172\n52549 1979\n49503 1979\n66755 858\n62933 858\n43953 1979\n57750 858\n64478 858\n48215 1979\n57120 228\n",
"23560 960\n52195 2136\n23560 960\n52195 2136\n",
"50603 2948\n45787 245\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n54764 2948\n55783 2948\n",
"25419 8473\n16786 270\n12962 270\n21165 4219\n7351 270\n",
"58283 858\n45528 4172\n84573 171\n49280 1979\n50644 1979\n93780 9378\n49949 1979\n65135 858\n49124 1979\n43335 1979\n41720 4172\n52549 1979\n49503 1979\n66755 858\n62933 858\n43953 1979\n57750 858\n64478 858\n48215 1979\n57120 228\n",
"23560 960\n51965 2136\n23560 960\n51965 2136\n",
"50603 2948\n45787 245\n53444 2948\n52464 2948\n52596 2948\n50351 2696\n49510 1855\n55783 2948\n",
"25419 8473\n12837 270\n810 270\n21165 4219\n3402 270\n",
"58283 858\n38869 1321\n84573 171\n42621 1321\n43985 1321\n93780 9378\n43290 1321\n65135 858\n42465 1321\n36676 1321\n41720 4172\n45890 1321\n42844 1321\n66755 858\n62933 858\n37294 1321\n57750 858\n64478 858\n41556 1321\n57120 228\n",
"25419 8473\n12837 270\n810 270\n16786 270\n3402 270\n",
"58283 858\n38869 1321\n84573 171\n83489 3503\n43985 1321\n93780 9378\n89364 4618\n65135 858\n42465 1321\n36676 1321\n41720 4172\n81552 3503\n94124 9378\n66755 858\n62933 858\n37294 1321\n57750 858\n64478 858\n41556 1321\n57120 228\n",
"25419 8473\n15429 270\n3402 270\n16786 270\n5994 270\n",
"58283 858\n85723 1321\n84573 171\n83489 3503\n75221 1321\n93780 9378\n89364 4618\n65135 858\n73701 1321\n78324 1321\n41720 4172\n81552 3503\n94124 9378\n66755 858\n62933 858\n73736 1321\n57750 858\n64478 858\n77998 1321\n57120 228\n",
"25419 8473\n15597 438\n3738 438\n16954 438\n6162 438\n",
"58283 858\n85723 1321\n84573 171\n83489 3503\n75221 1321\n93780 9378\n89364 4618\n65135 858\n73701 1321\n78324 1321\n41720 4172\n81552 3503\n94124 9378\n66755 858\n80152 3503\n73736 1321\n57750 858\n64478 858\n77998 1321\n57120 228\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a functional graph. It is a directed graph, in which from each vertex goes exactly one arc. The vertices are numerated from 0 to n - 1.
Graph is given as the array f0, f1, ..., fn - 1, where fi — the number of vertex to which goes the only arc from the vertex i. Besides you are given array with weights of the arcs w0, w1, ..., wn - 1, where wi — the arc weight from i to fi.
<image> The graph from the first sample test.
Also you are given the integer k (the length of the path) and you need to find for each vertex two numbers si and mi, where:
* si — the sum of the weights of all arcs of the path with length equals to k which starts from the vertex i;
* mi — the minimal weight from all arcs on the path with length k which starts from the vertex i.
The length of the path is the number of arcs on this path.
Input
The first line contains two integers n, k (1 ≤ n ≤ 105, 1 ≤ k ≤ 1010). The second line contains the sequence f0, f1, ..., fn - 1 (0 ≤ fi < n) and the third — the sequence w0, w1, ..., wn - 1 (0 ≤ wi ≤ 108).
Output
Print n lines, the pair of integers si, mi in each line.
Examples
Input
7 3
1 2 3 4 3 2 6
6 3 1 4 2 2 3
Output
10 1
8 1
7 1
10 2
8 2
7 1
9 3
Input
4 4
0 1 2 3
0 1 2 3
Output
0 0
4 1
8 2
12 3
Input
5 3
1 2 3 4 0
4 1 2 14 3
Output
7 1
17 1
19 2
21 3
8 1
### Input:
5 3
1 2 3 4 0
4 1 2 14 3
### Output:
7 1
17 1
19 2
21 3
8 1
### Input:
7 3
1 2 3 4 3 2 6
6 3 1 4 2 2 3
### Output:
10 1
8 1
7 1
10 2
8 2
7 1
9 3
### Code:
import sys
n, k = map(int, sys.stdin.buffer.readline().decode('utf-8').split())
a = list(map(int, sys.stdin.buffer.readline().decode('utf-8').split()))
b = list(map(int, sys.stdin.buffer.readline().decode('utf-8').split()))
logk = len(bin(k)) - 2
sum_w, sum_w_p = b[:], b[:]
min_w, min_w_p = b[:], b[:]
dest, dest_p = a[:], a[:]
ans_sum, ans_min, pos = [0]*n, b[:], list(range(n))
if k & 1:
ans_sum = b[:]
pos = [a[i] for i in range(n)]
k >>= 1
for j in range(1, logk):
for i in range(n):
d = dest[i]
p = 0 if d > i else 1
dest_p[i] = d
dest[i] = (dest_p if p else dest)[d]
sum_w_p[i] = sum_w[i]
sum_w[i] += (sum_w_p if p else sum_w)[d]
min_w_p[i] = min_w[i]
if min_w[i] > (min_w_p if p else min_w)[d]:
min_w[i] = (min_w_p if p else min_w)[d]
if k & 1:
for i in range(n):
ans_sum[i] += sum_w[pos[i]]
if ans_min[i] > min_w[pos[i]]:
ans_min[i] = min_w[pos[i]]
pos[i] = dest[pos[i]]
k >>= 1
sys.stdout.buffer.write('\n'.join(
(str(ans_sum[i]) + ' ' + str(ans_min[i]) for i in range(n))).encode('utf-8'))
|
814_C. An impassioned circulation of affection_1043 | Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it!
Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has n pieces numbered from 1 to n from left to right, and the i-th piece has a colour si, denoted by a lowercase English letter. Nadeko will repaint at most m of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour c — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland.
For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3.
But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has q plans on this, each of which can be expressed as a pair of an integer mi and a lowercase letter ci, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.
Input
The first line of input contains a positive integer n (1 ≤ n ≤ 1 500) — the length of the garland.
The second line contains n lowercase English letters s1s2... sn as a string — the initial colours of paper pieces on the garland.
The third line contains a positive integer q (1 ≤ q ≤ 200 000) — the number of plans Nadeko has.
The next q lines describe one plan each: the i-th among them contains an integer mi (1 ≤ mi ≤ n) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter ci — Koyomi's possible favourite colour.
Output
Output q lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.
Examples
Input
6
koyomi
3
1 o
4 o
4 m
Output
3
6
5
Input
15
yamatonadeshiko
10
1 a
2 a
3 a
4 a
5 a
1 b
2 b
3 b
4 b
5 b
Output
3
4
5
7
8
1
2
3
4
5
Input
10
aaaaaaaaaa
2
10 b
10 z
Output
10
10
Note
In the first sample, there are three plans:
* In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable;
* In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6;
* In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5. | """ Python 3 compatibility tools. """
from __future__ import division, print_function
import itertools
import sys
import os
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
input = raw_input
range = xrange
filter = itertools.ifilter
map = itertools.imap
zip = itertools.izip
def is_it_local():
script_dir = str(os.getcwd()).split('/')
username = "dipta007"
return username in script_dir
def READ(fileName):
if is_it_local():
sys.stdin = open(f'./{fileName}', 'r')
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
if not is_it_local():
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
def input1(type=int):
return type(input())
def input2(type=int):
[a, b] = list(map(type, input().split()))
return a, b
def input3(type=int):
[a, b, c] = list(map(type, input().split()))
return a, b, c
def input_array(type=int):
return list(map(type, input().split()))
def input_string():
s = input()
return list(s)
if is_it_local():
def debug(*args):
st = ""
for arg in args:
st += f"{arg} "
print(st)
else:
def debug(*args):
pass
##############################################################
ltr = [[] for _ in range(26)]
memo = {}
def main():
n = input1()
st = input_string()
for l in range(97, 97+26):
ltr[l-97].append(0)
ch = chr(l)
cum = 0
for i in range(n):
if st[i] == ch:
cum += 1
ltr[l-97].append(cum)
q = input1()
for i in range(q):
[m, c] = list(input().split())
m = int(m)
if c in memo and m in memo[c]:
print(memo[c][m])
continue
res = m
low = 1
z = 0
l = ord(c) - 97
for high in range(0, n+1):
tot = high - low + 1
now = ltr[l][high] - ltr[l][low-1]
need = tot - now
debug(high, low, tot, now, need)
while need > m:
low += 1
tot = high - low + 1
now = ltr[l][high] - ltr[l][low-1]
need = tot - now
res = max(res, high - low + 1)
if c not in memo:
memo[c] = {}
memo[c][m] = res
print(res)
pass
if __name__ == '__main__':
# READ('in.txt')
main() | {
"input": [
"15\nyamatonadeshiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n",
"6\nkoyomi\n3\n1 o\n4 o\n4 m\n",
"10\naaaaaaaaaa\n2\n10 b\n10 z\n",
"20\naaaaaaaaaaaaaaaaaaaa\n1\n11 a\n",
"4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 c\n3 c\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n48 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 c\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"5\naaaaa\n1\n1 b\n",
"4\nddbb\n16\n3 c\n3 b\n1 a\n1 b\n4 d\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"4\nabcc\n24\n1 c\n4 d\n3 c\n1 d\n1 c\n1 b\n3 b\n2 c\n3 d\n3 d\n4 c\n2 a\n4 d\n1 a\n1 b\n4 a\n4 d\n3 b\n4 b\n3 c\n3 a\n2 d\n1 a\n2 b\n",
"1\nc\n4\n1 x\n1 a\n1 e\n1 t\n",
"40\ncbbcbcccccacccccbbacbaabccbbabbaaaaacccc\n10\n40 a\n28 c\n25 c\n21 a\n18 c\n27 a\n9 c\n37 c\n15 a\n18 b\n",
"200\nddeecdbbbeeeeebbbbbaaaaaaaaaaaaaaaaaaaaaaabbcaacccbeeeeddddddddddddccccccdffeeeeecccccbbbbaaaaedfffffaadeeeeeeeedddddaaaaaaaaaaaaaabbbbbcaadddeefffbbbbcccccccccccbbbbbbeeeeeeeffffffdffffffffffffaaaaab\n10\n43 f\n118 d\n165 f\n72 f\n48 f\n2 a\n61 e\n94 d\n109 f\n16 a\n",
"4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 b\n3 c\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 c\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"5\naaaaa\n1\n1 a\n",
"4\nddbb\n16\n3 c\n3 b\n1 a\n1 c\n4 d\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"4\nabcc\n24\n1 c\n4 d\n3 c\n1 d\n1 c\n1 b\n3 b\n2 c\n3 d\n3 d\n4 c\n2 a\n4 d\n1 a\n1 b\n4 a\n4 d\n3 b\n4 b\n3 c\n3 a\n2 d\n1 a\n4 b\n",
"15\nyamatonadesiiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n",
"6\nkoyomi\n3\n1 o\n4 o\n4 n\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 b\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n4 b\n",
"6\nkoyomi\n3\n1 p\n4 o\n4 n\n",
"4\nbbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 b\n2 c\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"4\nddbb\n16\n3 c\n3 b\n2 a\n1 c\n4 e\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n4 b\n",
"6\nkoyomi\n3\n1 p\n3 o\n4 n\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n39 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n6 b\n4 b\n",
"6\nkoyomi\n3\n2 p\n3 o\n4 n\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n33 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"6\nkoyomi\n3\n2 p\n1 o\n4 n\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n33 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n3 a\n4 a\n5 a\n2 b\n2 b\n3 b\n6 b\n4 c\n",
"6\nkoyomi\n3\n2 p\n2 o\n4 n\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n33 d\n30 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 c\n49 a\n33 d\n30 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n3 a\n4 a\n5 a\n2 b\n2 b\n3 c\n6 b\n4 d\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 c\n49 a\n33 d\n30 a\n46 c\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n3 a\n3 a\n4 a\n5 a\n2 b\n2 b\n3 c\n6 b\n4 d\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 c\n49 a\n33 d\n30 a\n48 c\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n5 a\n3 a\n4 a\n5 a\n2 b\n2 b\n3 c\n6 b\n4 d\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 c\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 c\n49 a\n33 d\n30 a\n48 c\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"15\nyamatonadesiiko\n10\n1 a\n5 a\n3 a\n4 a\n5 a\n2 b\n2 b\n4 c\n6 b\n4 d\n",
"15\nyamatonadesiiko\n10\n1 a\n5 a\n4 a\n4 a\n5 a\n2 b\n2 b\n4 c\n6 b\n4 d\n",
"15\nyamatonadesiiko\n10\n1 b\n5 a\n4 a\n4 a\n5 a\n2 c\n2 b\n4 c\n6 b\n4 d\n",
"15\nyamatonadesiiko\n10\n1 b\n5 a\n6 a\n4 a\n5 a\n2 c\n2 b\n4 c\n6 b\n4 d\n",
"15\nyamatonadesiiko\n10\n1 b\n5 a\n6 a\n4 a\n5 a\n3 c\n2 b\n4 c\n6 b\n4 d\n",
"15\nyamatonadesiiko\n10\n1 b\n5 a\n6 a\n2 a\n5 a\n3 c\n2 b\n4 c\n6 b\n4 d\n",
"20\naaaaaaaaaaaaaaaaaaaa\n1\n4 a\n",
"4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n3 b\n3 a\n1 c\n3 c\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n48 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n99 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 c\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"4\nddbb\n16\n3 c\n3 b\n1 a\n1 b\n4 d\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 b\n4 b\n1 c\n2 b\n1 d\n",
"1\nc\n4\n1 w\n1 a\n1 e\n1 t\n",
"40\ncbbcbcccccacccccbbacbaabccbbabbaaaaacccc\n10\n40 a\n28 c\n25 c\n23 a\n18 c\n27 a\n9 c\n37 c\n15 a\n18 b\n",
"200\nddeecdbbbeeeeebbbbbaaaaaaaaaaaaaaaaaaaaaaabbcaacccbeeeeddddddddddddccccccdffeeeeecccccbbbbaaaaedfffffaadeeeeeeeedddddaaaaaaaaaaaaaabbbbbcaadddeefffbbbbcccccccccccbbbbbbeeeeeeeffffffdffffffffffffaaaaab\n10\n43 g\n118 d\n165 f\n72 f\n48 f\n2 a\n61 e\n94 d\n109 f\n16 a\n",
"15\nyamatonadeshiko\n10\n1 a\n2 a\n4 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n5 b\n",
"10\naaaaaaaaaa\n2\n10 c\n10 z\n",
"4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n2 a\n2 b\n3 a\n1 b\n2 c\n",
"15\nyamatonadesiiko\n10\n1 a\n2 a\n3 b\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n4 b\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n11 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n53 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"4\nddbb\n16\n3 c\n3 b\n2 a\n1 c\n4 e\n3 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"15\nyamatonadesiiko\n10\n2 a\n4 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n4 b\n4 b\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n6 a\n4 a\n5 a\n1 b\n2 b\n3 b\n6 b\n4 b\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaaccacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n54 a\n45 b\n35 c\n55 c\n51 c\n46 d\n70 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n33 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"100\ndddddccccdddddaaaaabbbbbbbbbbbbbaaacdcabbacccacccccbdbbadddbbddddbdaabcacdddbbbaddddbbbbdcbbbdddddda\n50\n54 b\n60 d\n45 b\n52 c\n52 a\n48 a\n54 b\n45 a\n47 d\n50 d\n53 a\n34 a\n51 b\n48 d\n47 d\n47 a\n48 d\n53 b\n52 d\n54 d\n46 a\n38 a\n52 b\n49 a\n49 b\n46 c\n71 a\n45 b\n35 c\n55 c\n51 c\n46 d\n54 d\n50 a\n33 c\n46 a\n50 b\n50 a\n54 a\n32 b\n55 b\n49 a\n33 d\n49 a\n46 b\n48 c\n47 b\n47 b\n47 a\n46 b\n",
"6\nkoyomi\n3\n2 p\n4 o\n4 n\n",
"4\ncbcc\n12\n4 b\n4 c\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 b\n2 c\n",
"5\naaaaa\n1\n2 a\n",
"4\nddbb\n16\n3 c\n3 b\n1 a\n1 c\n4 e\n4 a\n3 d\n2 a\n2 d\n4 c\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 b\n6 b\n4 c\n",
"15\nyamatonadesiiko\n10\n1 a\n4 a\n3 a\n4 a\n5 a\n2 b\n2 b\n3 c\n6 b\n4 c\n",
"15\nyamatonadesiiko\n10\n1 a\n5 a\n4 a\n4 a\n5 a\n2 c\n2 b\n4 c\n6 b\n4 d\n",
"5\naabaa\n1\n1 a\n",
"4\nddbb\n16\n3 c\n3 b\n1 a\n1 c\n4 d\n4 a\n3 d\n2 a\n2 d\n4 b\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"4\nabcc\n24\n1 c\n4 d\n3 c\n1 d\n1 c\n1 b\n3 b\n2 c\n3 d\n3 d\n4 c\n2 a\n4 d\n1 a\n1 b\n4 a\n4 d\n3 a\n4 b\n3 c\n3 a\n2 d\n1 a\n4 b\n",
"15\nyamatonadesiiko\n10\n1 a\n2 a\n3 a\n4 a\n5 a\n1 b\n2 b\n3 c\n4 b\n5 b\n",
"6\nloyomi\n3\n1 o\n4 o\n4 n\n",
"5\naaaaa\n1\n3 a\n",
"4\nddbb\n16\n3 c\n3 b\n1 a\n1 c\n4 e\n4 a\n3 d\n2 a\n2 d\n4 d\n3 a\n2 c\n4 b\n1 c\n2 b\n1 d\n",
"4\nbbcc\n12\n4 b\n4 d\n1 b\n2 a\n3 b\n2 c\n4 a\n1 a\n2 b\n3 a\n1 b\n2 c\n"
],
"output": [
"3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n",
"3\n6\n5\n",
"10\n10\n",
"20\n",
"4\n4\n2\n2\n4\n4\n4\n1\n3\n3\n4\n4\n",
"85\n72\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n63\n77\n64\n77\n62\n78\n78\n62\n77\n",
"1\n",
"3\n4\n1\n3\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"3\n4\n4\n1\n3\n2\n4\n4\n3\n3\n4\n3\n4\n2\n2\n4\n4\n4\n4\n4\n4\n2\n2\n3\n",
"1\n1\n1\n1\n",
"40\n40\n40\n31\n35\n37\n23\n40\n24\n27\n",
"64\n144\n193\n98\n69\n25\n79\n117\n137\n41\n",
"4\n4\n2\n2\n4\n4\n4\n1\n3\n3\n2\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n63\n77\n64\n77\n62\n78\n78\n62\n77\n",
"5\n",
"3\n4\n1\n1\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"3\n4\n4\n1\n3\n2\n4\n4\n3\n3\n4\n3\n4\n2\n2\n4\n4\n4\n4\n4\n4\n2\n2\n4\n",
"3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n",
"3\n6\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n80\n77\n64\n77\n62\n78\n78\n62\n77\n",
"3\n4\n5\n7\n8\n1\n2\n3\n4\n4\n",
"1\n6\n4\n",
"4\n4\n3\n2\n4\n4\n4\n1\n4\n3\n3\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n64\n77\n64\n77\n62\n78\n78\n62\n77\n",
"3\n4\n2\n1\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"3\n7\n5\n7\n8\n1\n2\n3\n4\n4\n",
"1\n5\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n64\n63\n64\n77\n62\n78\n78\n62\n77\n",
"3\n7\n5\n7\n8\n1\n2\n3\n6\n4\n",
"2\n5\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n64\n56\n64\n77\n62\n78\n78\n62\n77\n",
"2\n3\n4\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n72\n85\n76\n78\n61\n50\n84\n64\n81\n60\n70\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n87\n64\n56\n64\n78\n62\n79\n79\n62\n78\n",
"3\n7\n5\n7\n8\n2\n2\n3\n6\n4\n",
"2\n4\n4\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n72\n85\n76\n78\n61\n50\n84\n64\n81\n60\n70\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n87\n64\n56\n42\n78\n62\n79\n79\n62\n78\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n72\n85\n76\n78\n61\n50\n84\n64\n81\n60\n70\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n71\n64\n56\n42\n78\n62\n79\n79\n62\n78\n",
"3\n7\n5\n7\n8\n2\n2\n3\n6\n5\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n72\n85\n76\n78\n61\n50\n84\n64\n81\n60\n70\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n71\n64\n56\n42\n60\n62\n79\n79\n62\n78\n",
"3\n5\n5\n7\n8\n2\n2\n3\n6\n5\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n72\n85\n76\n78\n61\n50\n84\n64\n81\n60\n70\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n71\n64\n56\n42\n62\n62\n79\n79\n62\n78\n",
"3\n8\n5\n7\n8\n2\n2\n3\n6\n5\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n62\n85\n76\n78\n61\n50\n84\n64\n81\n60\n70\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n71\n64\n56\n42\n62\n62\n79\n79\n62\n78\n",
"3\n8\n5\n7\n8\n2\n2\n4\n6\n5\n",
"3\n8\n7\n7\n8\n2\n2\n4\n6\n5\n",
"1\n8\n7\n7\n8\n2\n2\n4\n6\n5\n",
"1\n8\n9\n7\n8\n2\n2\n4\n6\n5\n",
"1\n8\n9\n7\n8\n3\n2\n4\n6\n5\n",
"1\n8\n9\n4\n8\n3\n2\n4\n6\n5\n",
"20\n",
"4\n4\n2\n2\n4\n4\n4\n1\n4\n3\n4\n4\n",
"85\n72\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n100\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n63\n77\n64\n77\n62\n78\n78\n62\n77\n",
"3\n4\n1\n3\n4\n4\n4\n2\n4\n4\n3\n4\n4\n1\n4\n3\n",
"1\n1\n1\n1\n",
"40\n40\n40\n33\n35\n37\n23\n40\n24\n27\n",
"43\n144\n193\n98\n69\n25\n79\n117\n137\n41\n",
"3\n4\n7\n7\n8\n1\n2\n3\n4\n5\n",
"10\n10\n",
"4\n4\n2\n2\n4\n4\n4\n2\n3\n3\n2\n4\n",
"3\n4\n3\n7\n8\n1\n2\n3\n4\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n23\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n78\n66\n47\n61\n81\n66\n70\n53\n86\n64\n77\n64\n77\n62\n78\n78\n62\n77\n",
"3\n4\n2\n1\n4\n3\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"4\n7\n5\n7\n8\n1\n2\n3\n4\n4\n",
"3\n7\n9\n7\n8\n1\n2\n3\n6\n4\n",
"85\n87\n76\n69\n68\n63\n85\n60\n71\n74\n69\n46\n82\n72\n71\n62\n72\n84\n76\n78\n61\n50\n83\n64\n80\n60\n70\n76\n49\n72\n68\n70\n100\n66\n47\n61\n81\n66\n70\n53\n86\n64\n56\n64\n77\n62\n78\n78\n62\n77\n",
"86\n87\n77\n68\n68\n63\n86\n60\n71\n74\n69\n46\n83\n72\n71\n62\n72\n85\n76\n78\n61\n50\n84\n64\n81\n60\n88\n77\n49\n71\n66\n70\n78\n66\n47\n61\n82\n66\n70\n54\n87\n64\n56\n64\n78\n62\n79\n79\n62\n78\n",
"2\n6\n4\n",
"4\n4\n2\n2\n4\n4\n4\n1\n3\n3\n2\n4\n",
"5\n",
"3\n4\n1\n1\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"3\n7\n5\n7\n8\n1\n2\n3\n6\n4\n",
"3\n7\n5\n7\n8\n2\n2\n3\n6\n4\n",
"3\n8\n7\n7\n8\n2\n2\n4\n6\n5\n",
"5\n",
"3\n4\n1\n1\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"3\n4\n4\n1\n3\n2\n4\n4\n3\n3\n4\n3\n4\n2\n2\n4\n4\n4\n4\n4\n4\n2\n2\n4\n",
"3\n4\n5\n7\n8\n1\n2\n3\n4\n5\n",
"3\n6\n4\n",
"5\n",
"3\n4\n1\n1\n4\n4\n4\n2\n4\n4\n3\n2\n4\n1\n4\n3\n",
"4\n4\n3\n2\n4\n4\n4\n1\n4\n3\n3\n4\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Nadeko's birthday is approaching! As she decorated the room for the party, a long garland of Dianthus-shaped paper pieces was placed on a prominent part of the wall. Brother Koyomi will like it!
Still unsatisfied with the garland, Nadeko decided to polish it again. The garland has n pieces numbered from 1 to n from left to right, and the i-th piece has a colour si, denoted by a lowercase English letter. Nadeko will repaint at most m of the pieces to give each of them an arbitrary new colour (still denoted by a lowercase English letter). After this work, she finds out all subsegments of the garland containing pieces of only colour c — Brother Koyomi's favourite one, and takes the length of the longest among them to be the Koyomity of the garland.
For instance, let's say the garland is represented by "kooomo", and Brother Koyomi's favourite colour is "o". Among all subsegments containing pieces of "o" only, "ooo" is the longest, with a length of 3. Thus the Koyomity of this garland equals 3.
But problem arises as Nadeko is unsure about Brother Koyomi's favourite colour, and has swaying ideas on the amount of work to do. She has q plans on this, each of which can be expressed as a pair of an integer mi and a lowercase letter ci, meanings of which are explained above. You are to find out the maximum Koyomity achievable after repainting the garland according to each plan.
Input
The first line of input contains a positive integer n (1 ≤ n ≤ 1 500) — the length of the garland.
The second line contains n lowercase English letters s1s2... sn as a string — the initial colours of paper pieces on the garland.
The third line contains a positive integer q (1 ≤ q ≤ 200 000) — the number of plans Nadeko has.
The next q lines describe one plan each: the i-th among them contains an integer mi (1 ≤ mi ≤ n) — the maximum amount of pieces to repaint, followed by a space, then by a lowercase English letter ci — Koyomi's possible favourite colour.
Output
Output q lines: for each work plan, output one line containing an integer — the largest Koyomity achievable after repainting the garland according to it.
Examples
Input
6
koyomi
3
1 o
4 o
4 m
Output
3
6
5
Input
15
yamatonadeshiko
10
1 a
2 a
3 a
4 a
5 a
1 b
2 b
3 b
4 b
5 b
Output
3
4
5
7
8
1
2
3
4
5
Input
10
aaaaaaaaaa
2
10 b
10 z
Output
10
10
Note
In the first sample, there are three plans:
* In the first plan, at most 1 piece can be repainted. Repainting the "y" piece to become "o" results in "kooomi", whose Koyomity of 3 is the best achievable;
* In the second plan, at most 4 pieces can be repainted, and "oooooo" results in a Koyomity of 6;
* In the third plan, at most 4 pieces can be repainted, and "mmmmmi" and "kmmmmm" both result in a Koyomity of 5.
### Input:
15
yamatonadeshiko
10
1 a
2 a
3 a
4 a
5 a
1 b
2 b
3 b
4 b
5 b
### Output:
3
4
5
7
8
1
2
3
4
5
### Input:
6
koyomi
3
1 o
4 o
4 m
### Output:
3
6
5
### Code:
""" Python 3 compatibility tools. """
from __future__ import division, print_function
import itertools
import sys
import os
from io import BytesIO, IOBase
if sys.version_info[0] < 3:
input = raw_input
range = xrange
filter = itertools.ifilter
map = itertools.imap
zip = itertools.izip
def is_it_local():
script_dir = str(os.getcwd()).split('/')
username = "dipta007"
return username in script_dir
def READ(fileName):
if is_it_local():
sys.stdin = open(f'./{fileName}', 'r')
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
if not is_it_local():
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# endregion
def input1(type=int):
return type(input())
def input2(type=int):
[a, b] = list(map(type, input().split()))
return a, b
def input3(type=int):
[a, b, c] = list(map(type, input().split()))
return a, b, c
def input_array(type=int):
return list(map(type, input().split()))
def input_string():
s = input()
return list(s)
if is_it_local():
def debug(*args):
st = ""
for arg in args:
st += f"{arg} "
print(st)
else:
def debug(*args):
pass
##############################################################
ltr = [[] for _ in range(26)]
memo = {}
def main():
n = input1()
st = input_string()
for l in range(97, 97+26):
ltr[l-97].append(0)
ch = chr(l)
cum = 0
for i in range(n):
if st[i] == ch:
cum += 1
ltr[l-97].append(cum)
q = input1()
for i in range(q):
[m, c] = list(input().split())
m = int(m)
if c in memo and m in memo[c]:
print(memo[c][m])
continue
res = m
low = 1
z = 0
l = ord(c) - 97
for high in range(0, n+1):
tot = high - low + 1
now = ltr[l][high] - ltr[l][low-1]
need = tot - now
debug(high, low, tot, now, need)
while need > m:
low += 1
tot = high - low + 1
now = ltr[l][high] - ltr[l][low-1]
need = tot - now
res = max(res, high - low + 1)
if c not in memo:
memo[c] = {}
memo[c][m] = res
print(res)
pass
if __name__ == '__main__':
# READ('in.txt')
main() |
83_C. Track_1046 | You already know that Valery's favorite sport is biathlon. Due to your help, he learned to shoot without missing, and his skills are unmatched at the shooting range. But now a smaller task is to be performed, he should learn to complete the path fastest.
The track's map is represented by a rectangle n × m in size divided into squares. Each square is marked with a lowercase Latin letter (which means the type of the plot), with the exception of the starting square (it is marked with a capital Latin letters S) and the terminating square (it is marked with a capital Latin letter T). The time of movement from one square to another is equal to 1 minute. The time of movement within the cell can be neglected. We can move from the cell only to side-adjacent ones, but it is forbidden to go beyond the map edges. Also the following restriction is imposed on the path: it is not allowed to visit more than k different types of squares (squares of one type can be visited an infinite number of times). Squares marked with S and T have no type, so they are not counted. But S must be visited exactly once — at the very beginning, and T must be visited exactly once — at the very end.
Your task is to find the path from the square S to the square T that takes minimum time. Among all shortest paths you should choose the lexicographically minimal one. When comparing paths you should lexicographically represent them as a sequence of characters, that is, of plot types.
Input
The first input line contains three integers n, m and k (1 ≤ n, m ≤ 50, n·m ≥ 2, 1 ≤ k ≤ 4). Then n lines contain the map. Each line has the length of exactly m characters and consists of lowercase Latin letters and characters S and T. It is guaranteed that the map contains exactly one character S and exactly one character T.
Pretest 12 is one of the maximal tests for this problem.
Output
If there is a path that satisfies the condition, print it as a sequence of letters — the plot types. Otherwise, print "-1" (without quotes). You shouldn't print the character S in the beginning and T in the end.
Note that this sequence may be empty. This case is present in pretests. You can just print nothing or print one "End of line"-character. Both will be accepted.
Examples
Input
5 3 2
Sba
ccc
aac
ccc
abT
Output
bcccc
Input
3 4 1
Sxyy
yxxx
yyyT
Output
xxxx
Input
1 3 3
TyS
Output
y
Input
1 4 1
SxyT
Output
-1 | import sys
from array import array # noqa: F401
from itertools import combinations
from collections import deque
def input():
return sys.stdin.buffer.readline().decode('utf-8')
n, m, k = map(int, input().split())
chars = (
['}' * (m + 2)]
+ ['}' + ''.join('{' if c == 'S' else '|' if c == 'T' else c for c in input().rstrip()) + '}' for _ in range(n)]
+ ['}' * (m + 2)]
)
cbit = [[1 << (ord(c) - 97) for c in chars[i]] for i in range(n + 2)]
si, sj, ti, tj = 0, 0, 0, 0
for i in range(1, n + 1):
for j in range(1, m + 1):
if chars[i][j] == '{':
si, sj = i, j
cbit[i][j] = 0
if chars[i][j] == '|':
ti, tj = i, j
ans = inf = '*' * (n * m)
for comb in combinations([1 << i for i in range(26)], r=k):
enabled = sum(comb)
dp = [[inf] * (m + 2) for _ in range(n + 2)]
dp[ti][tj] = ''
dq = deque([(ti, tj, '')])
while dq:
i, j, s = dq.popleft()
if dp[i][j] < s:
continue
for di, dj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)):
if (cbit[di][dj] & enabled) != cbit[di][dj]:
continue
pre = chars[di][dj] if cbit[di][dj] else ''
l = 1 if cbit[di][dj] else 0
if (len(dp[di][dj]) > len(s) + l or len(dp[di][dj]) == len(s) + l and dp[di][dj] > pre + s):
dp[di][dj] = pre + s
if l:
dq.append((di, dj, pre + s))
if len(ans) > len(dp[si][sj]) or len(ans) == len(dp[si][sj]) and ans > dp[si][sj]:
ans = dp[si][sj]
print(ans if ans != inf else -1)
| {
"input": [
"5 3 2\nSba\nccc\naac\nccc\nabT\n",
"3 4 1\nSxyy\nyxxx\nyyyT\n",
"1 3 3\nTyS\n",
"1 4 1\nSxyT\n",
"20 10 3\nebebccacdb\neeebccddeT\neadebecaac\nadeeeaccbc\nbaccccdaed\ndeabceabba\ndadbecbaaa\neacbbcedcb\naeeScdbbab\nbabaecaead\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaeaeed\nbccbaacadd\ndccccbabdc\necdaebeccc\n",
"1 30 2\nbmjcfldkloleiqqiTnmdjpaSckkijf\n",
"15 15 3\ncbbdccabdcbacbd\nbcabdcacadacdbc\ncbcddbbcdbddcad\nddcabdbbdcabbdc\naabadcccTcabdbb\ncbacaaacaabdbbd\ndbdcbSdabaadbdb\ndbbaddcdddaadbb\nbbddcdcbaccbbaa\nadadadbdbbddccc\ncddbbdaddcbbdcc\nbbaadcdbbcaacca\nadbdcdbbcbddbcd\ncdadbcccddcdbda\ncbcdaabdcabccbc\n",
"10 8 2\nbdcdcbfa\ndecffcce\ndTffdacb\neeedcdbb\nfdbbbcba\nddabfcda\nabdbSeed\nbdcdcffa\ncadbaffa\nfcccddad\n",
"20 20 2\nddadfcdeTaeccbedeaec\nacafdfdeaffdeabdcefe\nabbcbefcdbbbcdebafef\nfdafdcccbcdeeaedeffc\ndfdaabdefdafabaabcef\nfebdcabacaaaabfacbbe\nabfcaacadfdbfdbaaefd\ndacceeccddccaccdbbce\ncacebecabedbddfbfdad\ndacbfcabbebfddcedffd\ncfcdfacfadcfbcebebaa\nddfbebafaccbebeefbac\nebfaebacbbebdfcbcbea\ndfbaebcfccacfeaccaad\nedeedeceebcbfdbcdbbe\nafaacccfbdecebfdabed\nddbdcedacedadeccaeec\necbSeacbdcccbcedafef\ncfdbeeffbeeafccfdddb\ncefdbdfbabccfdaaadbf\n",
"2 1 4\nS\nT\n",
"3 5 2\nSbcaT\nacbab\nacccb\n",
"3 4 1\nSbbT\naaaa\nabba\n",
"5 3 4\naaT\nacc\nbbb\nbbc\ncSb\n",
"1 50 3\nSaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaTaaaaaaaaaaa\n",
"3 3 1\naaa\naaa\nTSa\n",
"6 6 3\npkhipk\nmlfmak\naqmbae\ndlbfSj\ndpbjcr\naTbqbm\n",
"3 4 1\nSbbb\naaaT\nabbc\n",
"5 5 1\ncaTbc\ndccac\ndacda\naacaS\ncdcab\n",
"1 40 1\nfaSfgfTcfadcdfagfbccbffbeaaebagbfcfcgdfd\n",
"1 3 3\nSaT\n",
"1 10 2\nbaaSaaTacb\n",
"20 20 2\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbhhhhhhhaccchhhhhhha\nbiiiiiiiacccciiiiiia\nbjjjjjjjacccccjjjjja\nbkkkkkkkacccccckkkka\nblllllllacccccccllla\nbbbbbbbbSccccccccmma\nbddddddddddcccccccna\nbodddddddcccccccccca\nbppddddddddTaaaaaaaa\nbqqqdddddddbqqqqqqqa\nbrrrrddddddbrrrrrrra\nbsssssdddddbsssssssa\nbttttttddddbttttttta\nbuuuuuuudddbuuuuuuua\nbvvvvvvvvddbvvvvvvva\nbwwwwwwwwwdbwwwwwwwa\nbbbbbbbbbbbbbbbbbbbb\n",
"10 10 2\nbaaaaaaaaa\nbffacffffa\nbggaccggga\nbbbSccchha\nbdddddccia\nbjddccccca\nbkkdddTaaa\nblllddblla\nbmmmmdbmma\nbbbbbbbbbb\n",
"15 3 4\nllv\nttT\nhbo\nogc\nkfe\ngli\nfbx\nkfp\nspm\ncxc\nndw\nSoa\npfh\nedr\nxmv\n",
"3 4 2\nSbbb\naabT\nabbc\n",
"5 10 4\naaaaaaaaaa\naaaaaTaaaa\naaaaaaaSaa\naaaaaaaaaa\naaaaaaaaaa\n",
"10 20 3\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbbbbbbbbSccchhhhhhha\nbiiiiidddddcciiiiiia\nbjjjjjjddcccccjjjjja\nbkkkkkkkdddTaaaaaaaa\nbllllllllddbllllllla\nbmmmmmmmmmdbmmmmmmma\nbbbbbbbbbbbbbbbbbbbb\n",
"1 2 4\nST\n",
"20 10 4\nbaaaaaaaaa\nbffacffffa\nbggaccggga\nbhhaccchha\nbiiaccccia\nbjjaccccca\nbkkakkkkka\nbllallllla\nbbbSmmmmma\nbnnnnnnnna\nbooooooooa\nbpppppTaaa\nbqqqqqbqqa\nbrrrrrbrra\nbdddddbssa\nbtddddbtta\nbuudddbuua\nbvvvddbvva\nbwwwwdbwwa\nbbbbbbbbbb\n",
"15 10 4\nsejwprqjku\npnjsiopxft\nrsplgvwixq\nendglkchxl\nftihbbexgh\nsxtxbbavge\njcdkusfnmr\nskgsqvflia\nkcxmcxjpae\namaiwcfile\nnjgjSunmwd\nldxvahgreu\necmrajbjuT\nnaioqigols\npbwrmxkltj\n",
"4 5 3\nabaaa\nbabaT\nSabba\naaaaa\n",
"1 2 1\nST\n",
"2 1 1\nS\nT\n",
"1 20 3\nacbccbbddbffScTadffd\n",
"20 10 3\nebebccacdb\neeebccddeT\neadebecaac\nadeeeaccbc\nbaccccdaed\nabbaecbaed\ndadbecbaaa\neacbbcedcb\naeeScdbbab\nbabaecaead\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaeaeed\nbccbaacadd\ndccccbabdc\necdaebeccc\n",
"15 15 3\ncbbdccabdcbacbd\nbcabdcacadacdbc\ncbcddbbcdbddcad\nddcabdbbdcabbdc\naabadcccTcabdbb\ndbbdbaacaaacabc\ndbdcbSdabaadbdb\ndbbaddcdddaadbb\nbbddcdcbaccbbaa\nadadadbdbbddccc\ncddbbdaddcbbdcc\nbbaadcdbbcaacca\nadbdcdbbcbddbcd\ncdadbcccddcdbda\ncbcdaabdcabccbc\n",
"20 20 2\nddadfcdeTaeccbedeaec\nacafdfdeaffdeabdcefe\nabbcbefcdbbbddebafef\nfdafdcccbcdeeaedeffc\ndfdaabdefdafabaabcef\nfebdcabacaaaabfacbbe\nabfcaacadfdbfdbaaefd\ndacceeccddccaccdbbce\ncacebecabedbddfbfdad\ndacbfcabbebfddcedffd\ncfcdfacfadcfbcebebaa\nddfbebafaccbebeefbac\nebfaebacbbebdfcbcbea\ndfbaebcfccacfeaccaad\nedeedeceebcbfdbcdbbe\nafaacccfbdecebfdabed\nddbdcedacedadeccaeec\necbSeacbdcccbcedafef\ncfdbeeffbeeafccfdddb\ncefdbdfbabccfdaaadbf\n",
"3 5 2\nSbcaT\nacbab\nbcccb\n",
"3 4 2\nSbbb\naaaT\nabbc\n",
"20 20 2\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbhhhhhhhaccchhhhhhha\nbiiiiiiiacccciiiiiia\nbjjjjjjjacccccjjjjja\nbkkkkkkkacccccckkkka\nblllllllacccccccllla\nbbbbbbbbSccccccccmma\nbddddddddddcccccccna\nbodddddddcccccccccca\nbppddddddddTaaaaaaaa\nbqqqdddddddbqqqqqqqa\nbrrrrddddddbsrrrrrra\nbsssssdddddbsssssssa\nbttttttddddbttttttta\nbuuuuuuudddbuuuuuuua\nbvvvvvvvvddbvvvvvvva\nbwwwwwwwwwdbwwwwwwwa\nbbbbbbbbbbbbbbbbbbbb\n",
"3 4 2\nSbbb\naabT\nbbbc\n",
"5 10 4\naaaaaaaaaa\naaaaaTaaaa\naaaaaaaSaa\naaaaaaaaab\naaaaaaaaaa\n",
"20 10 4\nbaaaaaaaaa\nbffacffffa\nbggaccggga\nbhhaccchha\nbiiaccccia\nbjjaccccca\nbkkakkkkka\nbllallllla\nbbbSmmmmma\nbnnnnnnnna\nbooonooooa\nbpppppTaaa\nbqqqqqbqqa\nbrrrrrbrra\nbdddddbssa\nbtddddbtta\nbuudddbuua\nbvvvddbvva\nbwwwwdbwwa\nbbbbbbbbbb\n",
"15 10 4\nsejwprqjku\npnjsiopxft\nrsplfvwixq\nendglkchxl\nftihbbexgh\nsxtxbbavge\njcdkusfnmr\nskgsqvflia\nkcxmcxjpae\namaiwcfile\nnjgjSunmwd\nldxvahgreu\necmrajbjuT\nnaioqigols\npbwrmxkltj\n",
"3 4 1\nSxyy\nyxxw\nyyyT\n",
"3 5 3\nSbcaT\nacbab\nbcccb\n",
"3 4 2\nbSbb\naabT\ncbbb\n",
"3 5 3\nSbbaT\nacbab\nbccbb\n",
"20 20 2\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbhhhhhhhaccchhhhhhha\nbiiiiiiiacccciiiiiia\nbjjjjjjjacccccjjjjja\nbkkkkkkkacccccckkkka\nblllllllacccccccllla\nammccccccccSbbbbbbbb\nbddddddddddcccccccna\nbodddddddcccccccccca\nbppddddddddTaaaaaaaa\nbqqqdddddddbqqqqqqqa\nbrrrrddddddbsrrrrrra\nbssstrdddddbsssssssa\nbttttttddddbttttttta\nbuuuuuuudddbuuuuuuua\nbvvvvvvvvddbvvvvvvva\nbwwwwwwwwwdbwwwwwwwa\nbbbbbbbbbbbbbbbbbbbb\n",
"20 10 3\nebebccacdb\neeebcccdeT\neadebecaac\nadeeeaccbc\nbaccccdaed\nabbaecbaed\ndadbecbaaa\nbcdecbbcae\naeeScdbbab\ndaeaceabab\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaebeed\nbccbaacadd\ndccccbabdc\ncccebeadce\n",
"5 5 1\ncaTbc\ndccac\ndacda\naacbS\ncdcab\n",
"1 35 1\nfaSfgfTcfadcdfagfbccbffbeaaebagbfcfcgdfd\n",
"20 10 3\nebebccacdb\neeebcccdeT\neadebecaac\nadeeeaccbc\nbaccccdaed\nabbaecbaed\ndadbecbaaa\neacbbcedcb\naeeScdbbab\nbabaecaead\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaeaeed\nbccbaacadd\ndccccbabdc\necdaebeccc\n",
"15 15 3\ncbbdccabdcbacbd\nbcabdcacadacdbc\ncbcddbbcdbddcad\nddcabdbbdcabbdc\naabadcccTcabdbb\ndbbdbaacaaacabc\ndbdcbSdabaadbdb\ndbbaddcdddaadbb\nbbddcdcbaccbbaa\nadadadbdbbddccc\ncddbbdaddcbbdcc\naccaacbbdcdaabb\nadbdcdbbcbddbcd\ncdadbcccddcdbda\ncbcdaabdcabccbc\n",
"20 20 2\nddadfcdeTaeccbedeaec\nacafdfdeaffdeabdcefe\nabbcbefcdbbbddebafef\nfdafdcccbcdeeaedeefc\ndfdaabdefdafabaabcef\nfebdcabacaaaabfacbbe\nabfcaacadfdbfdbaaefd\ndacceeccddccaccdbbce\ncacebecabedbddfbfdad\ndacbfcabbebfddcedffd\ncfcdfacfadcfbcebebaa\nddfbebafaccbebeefbac\nebfaebacbbebdfcbcbea\ndfbaebcfccacfeaccaad\nedeedeceebcbfdbcdbbe\nafaacccfbdecebfdabed\nddbdcedacedadeccaeec\necbSeacbdcccbcedafef\ncfdbeeffbeeafccfdddb\ncefdbdfbabccfdaaadbf\n",
"20 20 2\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbhhhhhhhaccchhhhhhha\nbiiiiiiiacccciiiiiia\nbjjjjjjjacccccjjjjja\nbkkkkkkkacccccckkkka\nblllllllacccccccllla\nbbbbbbbbSccccccccmma\nbddddddddddcccccccna\nbodddddddcccccccccca\nbppddddddddTaaaaaaaa\nbqqqdddddddbqqqqqqqa\nbrrrrddddddbsrrrrrra\nbssstsdddddbsssssssa\nbttttttddddbttttttta\nbuuuuuuudddbuuuuuuua\nbvvvvvvvvddbvvvvvvva\nbwwwwwwwwwdbwwwwwwwa\nbbbbbbbbbbbbbbbbbbbb\n",
"3 4 2\nSbbb\naabT\ncbbb\n",
"15 10 4\nsejwprqjku\npnjsiopxft\nrsplfvwixq\nendglkchxl\nftihbbexgh\nsxtxbbavge\njcdkusfnmr\nskgsqvflia\nkcxmcxjpae\namaiwcfile\nnjgjSunmwd\nldxvahgreu\necmrajbjuT\nslogiqoian\npbwrmxkltj\n",
"20 10 3\nebebccacdb\neeebcccdeT\neadebecaac\nadeeeaccbc\nbaccccdaed\nabbaecbaed\ndadbecbaaa\neacbbcedcb\naeeScdbbab\nbabaecaead\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaebeed\nbccbaacadd\ndccccbabdc\necdaebeccc\n",
"15 15 3\ncbbdccabdcbacbd\nbcabdcacadacdbc\ncbcddbbcdbddcad\nddcabdbbdcabbdc\naabadcccTcabdbb\ndbbdbaacaaacabc\ndbdcbSdabaadbdb\ndbbaddcdddaadbb\nbbddcdcbaccbbaa\nadadadbdbbddccc\nccdbbcddadbbddc\naccaacbbdcdaabb\nadbdcdbbcbddbcd\ncdadbcccddcdbda\ncbcdaabdcabccbc\n",
"20 20 2\nddadfcdeTaeccbedeaec\nacafdfdeaffdeabdcefe\nabbcbefcdbbbddebafef\nfdafdcccbcdeeaedeefc\ndfdaabdefdafabaabcef\nfebdcabacaaaabfacbbe\nabfcaacadfdbfdbaaefd\ndacceeccddccaccdbbce\ncacebecabedbddfbfdad\ndacbfcabbebfddcedffd\ncfcdfacfadcfbcebebaa\nddfbebafaccbebeefbac\nebfaebacabebdfcbcbea\ndfbaebcfccacfeaccaad\nedeedeceebcbfdbcdbbe\nafaacccfbdecebfdabed\nddbdcedacedadeccaeec\necbSeacbdcccbcedafef\ncfdbeeffbeeafccfdddb\ncefdbdfbabccfdaaadbf\n",
"3 5 3\nSbcaT\nacbab\nbccbb\n",
"20 20 2\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbhhhhhhhaccchhhhhhha\nbiiiiiiiacccciiiiiia\nbjjjjjjjacccccjjjjja\nbkkkkkkkacccccckkkka\nblllllllacccccccllla\nbbbbbbbbSccccccccmma\nbddddddddddcccccccna\nbodddddddcccccccccca\nbppddddddddTaaaaaaaa\nbqqqdddddddbqqqqqqqa\nbrrrrddddddbsrrrrrra\nbssstrdddddbsssssssa\nbttttttddddbttttttta\nbuuuuuuudddbuuuuuuua\nbvvvvvvvvddbvvvvvvva\nbwwwwwwwwwdbwwwwwwwa\nbbbbbbbbbbbbbbbbbbbb\n",
"15 10 4\nsejwprqjku\npnjsiopxft\nrsplfvwixq\nendglkchxl\nftihbbexgh\nsxtxbbavge\njcdkusfnmr\nskgsqvflia\nkcxmcxjpae\namaiwcfile\nnjgjSuomwd\nldxvahgreu\necmrajbjuT\nslogiqoian\npbwrmxkltj\n",
"20 10 3\nebebccacdb\neeebcccdeT\neadebecaac\nadeeeaccbc\nbaccccdaed\nabbaecbaed\ndadbecbaaa\neacbbcedcb\naeeScdbbab\ndaeaceabab\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaebeed\nbccbaacadd\ndccccbabdc\necdaebeccc\n",
"15 15 3\ncbbdccabdcbacbd\nbcabdcacadacdbc\ncbcddbbcdbddcad\nddcabdabdcabbdc\naabadcccTcabdbb\ndbbdbaacaaacabc\ndbdcbSdabaadbdb\ndbbaddcdddaadbb\nbbddcdcbaccbbaa\nadadadbdbbddccc\nccdbbcddadbbddc\naccaacbbdcdaabb\nadbdcdbbcbddbcd\ncdadbcccddcdbda\ncbcdaabdcabccbc\n",
"20 20 2\ndddafcdeTaeccbedeaec\nacafdfdeaffdeabdcefe\nabbcbefcdbbbddebafef\nfdafdcccbcdeeaedeefc\ndfdaabdefdafabaabcef\nfebdcabacaaaabfacbbe\nabfcaacadfdbfdbaaefd\ndacceeccddccaccdbbce\ncacebecabedbddfbfdad\ndacbfcabbebfddcedffd\ncfcdfacfadcfbcebebaa\nddfbebafaccbebeefbac\nebfaebacabebdfcbcbea\ndfbaebcfccacfeaccaad\nedeedeceebcbfdbcdbbe\nafaacccfbdecebfdabed\nddbdcedacedadeccaeec\necbSeacbdcccbcedafef\ncfdbeeffbeeafccfdddb\ncefdbdfbabccfdaaadbf\n",
"3 4 2\nbSbc\naabT\ncbbb\n",
"15 10 4\nsejwprqjku\npnjsiopxft\nrsplfvwixq\nendglkchxl\nftihbbexgh\nsxtxbbavge\njcdkusfnmr\nskgsqvelia\nkcxmcxjpae\namaiwcfile\nnjgjSuomwd\nldxvahgreu\necmrajbjuT\nslogiqoian\npbwrmxkltj\n",
"20 10 3\nebebccacdb\neeebcccdeT\neadebecaac\nadeeeaccbc\nbaccccdaed\nabbaecbaed\ndadbecbaaa\neacbbcedcb\naeeScdbbab\ndaeaceabab\nbacdbebeae\naacbadbeec\nacddceecca\nacaeaebaba\ncdddeaaeae\neabddadade\nddddaebeed\nbccbaacadd\ndccccbabdc\ncccebeadce\n",
"15 15 3\ncbbdccabdcbacbd\nbcabdcacadacdbc\ncbcddbbcdbddcad\nddcabdabdcabbdc\naabadcccTcabdbb\ndbbdbaacaaacabc\ndbdcbSdabaadbdb\ndbbaddcdddaadbb\nbbddcdcbaccbbaa\nadadadbdbbddccc\nccdbbcddadbbddc\nbbaadcdbbcaacca\nadbdcdbbcbddbcd\ncdadbcccddcdbda\ncbcdaabdcabccbc\n",
"20 20 2\ndddafcdeTaeccbedeaec\nacafdfdeaffdeabdcefe\nabbcbefcdbbbddebafef\nfdafdcccbcdeeaedeefc\ndfdaabdefdafabaabcef\nfebdcabacaaaabfacbbe\nabfcaacadadbfdbfaefd\ndacceeccddccaccdbbce\ncacebecabedbddfbfdad\ndacbfcabbebfddcedffd\ncfcdfacfadcfbcebebaa\nddfbebafaccbebeefbac\nebfaebacabebdfcbcbea\ndfbaebcfccacfeaccaad\nedeedeceebcbfdbcdbbe\nafaacccfbdecebfdabed\nddbdcedacedadeccaeec\necbSeacbdcccbcedafef\ncfdbeeffbeeafccfdddb\ncefdbdfbabccfdaaadbf\n",
"20 20 2\nbaaaaaaaaaaaaaaaaaaa\nbfffffffacfffffffffa\nbgggggggaccgggggggga\nbhhhhhhhaccchhhhhhha\nbiiiiiiiacccciiiiiia\nbjjjjjjjacccccjjjjja\nbkkkkkkkacccccckkkka\nblllllllacccccccllla\nammccccccccSbbbbbbbb\nbddddddddddcccccccna\nbodddddddcccccccccca\nbppddddddddTaaaaaaaa\nbqqqdddddddbqqqqqqqa\nbrrrrddddddbsrrrrrra\nbssstrddddcbsssssssa\nbttttttddddbttttttta\nbuuuuuuudddbuuuuuuua\nbvvvvvvvvddbvvvvvvva\nbwwwwwwwwwdbwwwwwwwa\nbbbbbbbbbbbbbbbbbbbb\n",
"3 4 2\nbSbc\naabT\nbbbc\n"
],
"output": [
"bcccc\n",
"xxxx\n",
"y\n",
"-1\n",
"bbbcccaccaac\n",
"-1\n",
"aaca\n",
"bbbbee\n",
"-1\n",
"\n",
"aacccaa\n",
"bb\n",
"bbbc\n",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n",
"\n",
"cbqb\n",
"aaa\n",
"-1\n",
"-1\n",
"a\n",
"aa\n",
"ccccc\n",
"ccccc\n",
"-1\n",
"aab\n",
"aa\n",
"ccccc\n",
"\n",
"mmmno\n",
"aajbju\n",
"aaba\n",
"\n",
"\n",
"c\n",
"bbacccaccaac\n",
"aaca\n",
"-1\n",
"accccaa\n",
"aaa\n",
"ccccc\n",
"aab\n",
"aa\n",
"mmmno\n",
"aajbju\n",
"yyyy\n",
"bca\n",
"ab\n",
"bba\n",
"cc\n",
"ccbbbaaacaac\n",
"-1\n",
"-1\n",
"bbacccaccaac\n",
"aaca\n",
"-1\n",
"ccccc\n",
"aab\n",
"aajbju\n",
"bbacccaccaac\n",
"aaca\n",
"-1\n",
"bca\n",
"ccccc\n",
"aajbju\n",
"bbacccaccaac\n",
"aaca\n",
"-1\n",
"ab\n",
"aajbju\n",
"bbacccaccaac\n",
"aaca\n",
"-1\n",
"cc\n",
"ab\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You already know that Valery's favorite sport is biathlon. Due to your help, he learned to shoot without missing, and his skills are unmatched at the shooting range. But now a smaller task is to be performed, he should learn to complete the path fastest.
The track's map is represented by a rectangle n × m in size divided into squares. Each square is marked with a lowercase Latin letter (which means the type of the plot), with the exception of the starting square (it is marked with a capital Latin letters S) and the terminating square (it is marked with a capital Latin letter T). The time of movement from one square to another is equal to 1 minute. The time of movement within the cell can be neglected. We can move from the cell only to side-adjacent ones, but it is forbidden to go beyond the map edges. Also the following restriction is imposed on the path: it is not allowed to visit more than k different types of squares (squares of one type can be visited an infinite number of times). Squares marked with S and T have no type, so they are not counted. But S must be visited exactly once — at the very beginning, and T must be visited exactly once — at the very end.
Your task is to find the path from the square S to the square T that takes minimum time. Among all shortest paths you should choose the lexicographically minimal one. When comparing paths you should lexicographically represent them as a sequence of characters, that is, of plot types.
Input
The first input line contains three integers n, m and k (1 ≤ n, m ≤ 50, n·m ≥ 2, 1 ≤ k ≤ 4). Then n lines contain the map. Each line has the length of exactly m characters and consists of lowercase Latin letters and characters S and T. It is guaranteed that the map contains exactly one character S and exactly one character T.
Pretest 12 is one of the maximal tests for this problem.
Output
If there is a path that satisfies the condition, print it as a sequence of letters — the plot types. Otherwise, print "-1" (without quotes). You shouldn't print the character S in the beginning and T in the end.
Note that this sequence may be empty. This case is present in pretests. You can just print nothing or print one "End of line"-character. Both will be accepted.
Examples
Input
5 3 2
Sba
ccc
aac
ccc
abT
Output
bcccc
Input
3 4 1
Sxyy
yxxx
yyyT
Output
xxxx
Input
1 3 3
TyS
Output
y
Input
1 4 1
SxyT
Output
-1
### Input:
5 3 2
Sba
ccc
aac
ccc
abT
### Output:
bcccc
### Input:
3 4 1
Sxyy
yxxx
yyyT
### Output:
xxxx
### Code:
import sys
from array import array # noqa: F401
from itertools import combinations
from collections import deque
def input():
return sys.stdin.buffer.readline().decode('utf-8')
n, m, k = map(int, input().split())
chars = (
['}' * (m + 2)]
+ ['}' + ''.join('{' if c == 'S' else '|' if c == 'T' else c for c in input().rstrip()) + '}' for _ in range(n)]
+ ['}' * (m + 2)]
)
cbit = [[1 << (ord(c) - 97) for c in chars[i]] for i in range(n + 2)]
si, sj, ti, tj = 0, 0, 0, 0
for i in range(1, n + 1):
for j in range(1, m + 1):
if chars[i][j] == '{':
si, sj = i, j
cbit[i][j] = 0
if chars[i][j] == '|':
ti, tj = i, j
ans = inf = '*' * (n * m)
for comb in combinations([1 << i for i in range(26)], r=k):
enabled = sum(comb)
dp = [[inf] * (m + 2) for _ in range(n + 2)]
dp[ti][tj] = ''
dq = deque([(ti, tj, '')])
while dq:
i, j, s = dq.popleft()
if dp[i][j] < s:
continue
for di, dj in ((i + 1, j), (i - 1, j), (i, j + 1), (i, j - 1)):
if (cbit[di][dj] & enabled) != cbit[di][dj]:
continue
pre = chars[di][dj] if cbit[di][dj] else ''
l = 1 if cbit[di][dj] else 0
if (len(dp[di][dj]) > len(s) + l or len(dp[di][dj]) == len(s) + l and dp[di][dj] > pre + s):
dp[di][dj] = pre + s
if l:
dq.append((di, dj, pre + s))
if len(ans) > len(dp[si][sj]) or len(ans) == len(dp[si][sj]) and ans > dp[si][sj]:
ans = dp[si][sj]
print(ans if ans != inf else -1)
|
886_D. Restoration of string_1052 | A substring of some string is called the most frequent, if the number of its occurrences is not less than number of occurrences of any other substring.
You are given a set of strings. A string (not necessarily from this set) is called good if all elements of the set are the most frequent substrings of this string. Restore the non-empty good string with minimum length. If several such strings exist, restore lexicographically minimum string. If there are no good strings, print "NO" (without quotes).
A substring of a string is a contiguous subsequence of letters in the string. For example, "ab", "c", "abc" are substrings of string "abc", while "ac" is not a substring of that string.
The number of occurrences of a substring in a string is the number of starting positions in the string where the substring occurs. These occurrences could overlap.
String a is lexicographically smaller than string b, if a is a prefix of b, or a has a smaller letter at the first position where a and b differ.
Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of strings in the set.
Each of the next n lines contains a non-empty string consisting of lowercase English letters. It is guaranteed that the strings are distinct.
The total length of the strings doesn't exceed 105.
Output
Print the non-empty good string with minimum length. If several good strings exist, print lexicographically minimum among them. Print "NO" (without quotes) if there are no good strings.
Examples
Input
4
mail
ai
lru
cf
Output
cfmailru
Input
3
kek
preceq
cheburek
Output
NO
Note
One can show that in the first sample only two good strings with minimum length exist: "cfmailru" and "mailrucf". The first string is lexicographically minimum. | StringsNumber = int(input())
FinalStrings = []
Strings = []
for i in range(StringsNumber):
Strings.append(input())
LetterGraph = {}
# Генерим граф
for i in range(len(Strings)):
if len(Strings[i]) == 1:
if Strings[i] not in LetterGraph:
LetterGraph[Strings[i]] = ""
#print("заапедил", i)
continue
for e in range(len(Strings[i]) - 1):
if Strings[i][e] not in LetterGraph:
Elements = []
for j in list(LetterGraph):
if j != Strings[i][e + 1]:
Elements.append(LetterGraph[j])
if Strings[i][e + 1] in Elements:
print("NO")
exit(0)
LetterGraph[Strings[i][e]] = Strings[i][e + 1]
continue
if LetterGraph[Strings[i][e]] == Strings[i][e + 1] or LetterGraph[Strings[i][e]] == "":
LetterGraph[Strings[i][e]] = Strings[i][e + 1]
continue
#print("Граф:", LetterGraph)
print("NO")
exit(0)
#print("Я сгенерил граф, получилось:", LetterGraph)
# Проверяем, что нету цикла
if LetterGraph:
Cycle = False
for i in LetterGraph:
Letter = LetterGraph[i]
while True:
if Letter in LetterGraph:
if LetterGraph[Letter] == i:
print("NO")
exit(0)
Letter = LetterGraph[Letter]
else:
break
# Находим возможные первые символы
if LetterGraph:
IsIFirstSymbol = False
FirstSymbols = []
for i in LetterGraph:
IsIFirstSymbol = True
for e in LetterGraph:
if LetterGraph[e] == i:
#print(i, "не подходит, потому что", e, "указывает на него.")
IsIFirstSymbol = False
if IsIFirstSymbol:
FirstSymbols.append(i)
if not FirstSymbols:
print("NO")
exit(0)
#print("Варианты первого символа:", *FirstSymbols)
# Создаем варианты финальной строки
if LetterGraph:
Letter = ""
for i in FirstSymbols:
FinalString = i
Letter = i
for e in range(len(LetterGraph)):
if Letter in LetterGraph:
if not (LetterGraph[Letter] == ""):
FinalString += LetterGraph[Letter]
#print(Letter, "есть в графе, так что добавляем", LetterGraph[Letter], ", на которое оно указывает.")
Letter = LetterGraph[Letter]
else:
break
else:
break
FinalStrings.append(FinalString)
#print("Отдельные строки", *FinalStrings)
FinalStrings.sort()
RESULT = ""
for i in FinalStrings:
RESULT += i
print(RESULT)
| {
"input": [
"3\nkek\npreceq\ncheburek\n",
"4\nmail\nai\nlru\ncf\n",
"2\nab\nac\n",
"2\nca\ncb\n",
"2\ndc\nec\n",
"2\naz\nzb\n",
"2\naa\nb\n",
"25\nsw\nwt\nc\nl\nyo\nag\nz\nof\np\nmz\nnm\nui\nzs\nj\nq\nk\ngd\nb\nen\nx\ndv\nty\nh\nr\nvu\n",
"51\np\nsu\nbpxh\nx\nxhvacdy\nqosuf\ncdy\nbpxhvacd\nxh\nbpxhv\nf\npxh\nhva\nhvac\nxhva\nos\ns\ndy\nqo\nv\nq\na\nbpxhvacdy\nxhv\nqosu\nyb\nacdy\nu\npxhvacd\nc\nvacdy\no\nuf\nxhvacd\nvac\nbpx\nacd\nbp\nhvacdy\nsuf\nbpxhvac\ncd\nh\npxhva\nhv\npxhv\nosu\nd\ny\nxhvac\npxhvacdy\n",
"25\nzdcba\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nr\ns\nt\nu\nv\nw\nx\ny\nz\n",
"13\naz\nby\ncx\ndw\nev\nfu\ngt\nhs\nir\njq\nkp\nlo\nmn\n",
"13\nza\nyb\nxc\nwd\nve\nuf\ntg\nsh\nri\nqj\npk\nol\nnm\n",
"3\nabc\ncb\ndd\n",
"2\ncd\nce\n",
"2\nab\nba\n",
"3\nab\nba\nc\n",
"20\nckdza\nw\ntvylck\nbqtv\ntvylckd\nos\nbqtvy\nrpx\nzaj\nrpxebqtvylckdzajfmi\nbqtvylckdzajf\nvylc\ntvyl\npxebq\nf\npxebqtv\nlckdza\nwnh\ns\npxe\n",
"25\nza\nb\nc\nd\ne\nf\ng\nh\ni\nj\nk\nl\nm\nn\no\np\nr\ns\nt\nu\nv\nw\nx\ny\nz\n",
"3\nab\nba\ncd\n",
"76\namnctposz\nmnctpos\nos\nu\ne\nam\namnc\neamnctpo\nl\nx\nq\nposzq\neamnc\nctposzq\nctpos\nmnc\ntpos\namnctposzql\ntposzq\nmnctposz\nnctpos\nctposzql\namnctpos\nmnct\np\nux\nposzql\ntpo\nmnctposzql\nmnctp\neamnctpos\namnct\ntposzql\nposz\nz\nct\namnctpo\noszq\neamnct\ntposz\ns\nmn\nn\nc\noszql\npo\no\nmnctposzq\nt\namnctposzq\nnctposzql\nnct\namn\neam\nctp\nosz\npos\nmnctpo\nzq\neamnctposzql\namnctp\nszql\neamn\ntp\nzql\na\nea\nql\nsz\neamnctposz\nnctpo\nctposz\nm\nnctposz\nnctp\nnc\n",
"33\naqzwlyfjcuktsr\ngidpnvaqzwlyfj\nvaqzwlyf\npnvaqzwlyfjcuktsrbx\njcuktsrbxme\nuktsrb\nhgidpnvaqzw\nvaqzwlyfjcu\nhgid\nvaqzwlyfjcukts\npnvaqzwl\npnvaqzwlyfj\ngidpnvaqzwlyfjcukt\naqzwlyfjcuktsrbxme\ngidpnvaqzwlyfjcuktsrb\naqzw\nlyfjcuktsrbxme\nrbxm\nwlyfjcukt\npnvaqzwlyfjcuktsr\nnvaqzwly\nd\nzwlyf\nhgidpnva\ngidpnvaqzwlyfjcuktsrbxm\ngidpn\nfjcuktsrbxmeo\nfjcuktsrbx\ngidpnva\nzwlyfjc\nrb\ntsrbxm\ndpnvaqzwlyfjcuktsrbxm\n",
"1\nlol\n",
"75\nqsicaj\nd\nnkmd\ndb\ntqsicaj\nm\naje\nftqsicaj\ncaj\nftqsic\ntqsicajeh\nic\npv\ny\nho\nicajeho\nc\ns\nb\nftqsi\nmdb\ntqsic\ntqs\nsi\nnkmdb\njeh\najeho\nqs\ntqsicajeho\nje\nwp\njeho\neh\nwpv\nh\no\nyw\nj\nv\ntqsicaje\nftqsicajeho\nsica\ncajeho\nqsic\nqsica\na\nftqsicajeh\nn\ntqsi\nicajeh\nsic\ne\nqsicaje\ncajeh\nca\nft\nsicajeho\najeh\ncaje\nqsicajeho\nsicaje\nftqsicaje\nsicajeh\nftqsica\nica\nkm\nqsicajeh\naj\ni\ntq\nmd\nkmdb\nkmd\ntqsica\nnk\n",
"1\nz\n",
"2\nabc\ncb\n",
"2\nac\nbc\n",
"26\nl\nq\nb\nk\nh\nf\nx\ny\nj\na\ni\nu\ns\nd\nc\ng\nv\nw\np\no\nm\nt\nr\nz\nn\ne\n",
"15\nipxh\nipx\nr\nxh\ncjr\njr\np\nip\ncj\ni\nx\nhi\nc\nh\npx\n",
"6\na\nb\nc\nde\nef\nfd\n",
"26\nhw\nwb\nba\nax\nxl\nle\neo\nod\ndj\njt\ntm\nmq\nqf\nfk\nkn\nny\nyz\nzr\nrg\ngv\nvc\ncs\nsi\niu\nup\nph\n",
"4\nab\nbc\nca\nd\n",
"3\nb\nd\nc\n",
"16\nngv\nng\njngvu\ng\ngv\nvu\ni\nn\njngv\nu\nngvu\njng\njn\nl\nj\ngvu\n",
"2\nba\nca\n",
"2\nab\nbb\n",
"3\nabcd\nefg\ncdefg\n",
"4\naz\nzy\ncx\nxd\n",
"2\nca\nbc\n",
"2\ndc\nce\n",
"2\nza\nzb\n",
"2\nab\nb\n",
"25\nsw\nwt\nc\nl\nyo\nag\nz\nof\np\nmz\nnm\nui\nzs\nj\nq\nk\ngd\nb\nen\nw\ndv\nty\nh\nr\nvu\n",
"2\ncd\ncd\n",
"3\nab\nab\ncd\n",
"1\ny\n",
"2\ncba\ncb\n",
"3\na\nd\nc\n",
"2\nab\nca\n",
"2\nza\nbz\n",
"2\nba\nb\n",
"25\nsw\nwt\nc\nl\nyo\nag\nz\nof\np\nmz\nnm\nui\nzs\nj\nq\nk\nfd\nb\nen\nw\ndv\nty\nh\nr\nvu\n",
"2\ncd\nec\n",
"1\nx\n",
"2\ncb\nbd\n",
"51\np\nsu\nbpxh\nx\nxhvacdy\nqosuf\ncdy\nbpxhvacd\nxh\nbpxhv\ne\npxh\nhva\nhvac\nxhva\nos\ns\ndy\nqo\nv\nq\na\nbpxhvacdy\nxhv\nqosu\nyb\nacdy\nu\npxhvacd\nc\nvacdy\no\nuf\nxhvacd\nvac\nbpx\nacd\nbp\nhvacdy\nsuf\nbpxhvac\ncd\nh\npxhva\nhv\npxhv\nosu\nd\ny\nxhvac\npxhvacdy\n",
"13\naz\nby\ncw\ndw\nev\nfu\ngt\nhs\nir\njq\nkp\nlo\nmn\n",
"13\nza\nyb\nxc\nwd\nve\nue\ntg\nsh\nri\nqj\npk\nol\nnm\n",
"3\nacb\ncb\ndd\n",
"2\nab\nab\n",
"20\nckdza\nw\ntvylck\nbqtv\ntvylckd\nos\nbqtvy\nrpx\nzaj\nrpxebqtvylckdzajfmi\nbqtvylckdzajf\nvylc\nsvyl\npxebq\nf\npxebqtv\nlckdza\nwnh\ns\npxe\n",
"76\namnctposz\nmtcnpos\nos\nu\ne\nam\namnc\neamnctpo\nl\nx\nq\nposzq\neamnc\nctposzq\nctpos\nmnc\ntpos\namnctposzql\ntposzq\nmnctposz\nnctpos\nctposzql\namnctpos\nmnct\np\nux\nposzql\ntpo\nmnctposzql\nmnctp\neamnctpos\namnct\ntposzql\nposz\nz\nct\namnctpo\noszq\neamnct\ntposz\ns\nmn\nn\nc\noszql\npo\no\nmnctposzq\nt\namnctposzq\nnctposzql\nnct\namn\neam\nctp\nosz\npos\nmnctpo\nzq\neamnctposzql\namnctp\nszql\neamn\ntp\nzql\na\nea\nql\nsz\neamnctposz\nnctpo\nctposz\nm\nnctposz\nnctp\nnc\n",
"33\naqzwlyfjcuktsr\ngidpnvaqzwlyfj\nvaqzwlyf\npnvaqzwlyfjcuktsrbx\njcuktsrbxme\nuktsrb\nhgidpnvaqzw\nvaqzwlyfjcu\nhgid\nvaqzwlyfjcukts\npnvaqzwl\npnvaqzwlyfj\ngidpnvaqzwlyfjcukt\naqzwlyfjcuktsrbxme\ngidpnvaqzwlyfjcuktsrb\naqzw\nlyfjcuktsrbxme\nrbxm\nwlyfjcukt\npnvaqzwlyfjcuktsr\nnvaqzwly\nd\nzwlyf\nhgidpnva\ngidpnvaqzwlyfjcuktsrbxm\ngidpn\nfjcuktsrbxmeo\nfjcuktsrbx\ngidpnva\nzwlyfjc\nrb\nmxbrst\ndpnvaqzwlyfjcuktsrbxm\n",
"1\nlnl\n",
"75\nqsicaj\nd\nnkmd\ndb\ntqsicaj\nm\naje\nftqsicaj\ncaj\nftqsic\ntqsicajeh\nic\npv\ny\nho\nicajeho\nc\ns\nb\nftqsi\nmdb\ntqsic\ntqs\nsi\nnkmdb\njeh\najeho\nqs\ntqsicajeho\nje\nwp\njeho\neh\nwpv\nh\no\nyw\nj\nv\ntqsicaje\nftqsicajeho\nsica\ncajeho\nqsic\nqsica\na\nftqsicajeh\nn\ntqsi\nicajeh\nsic\ne\nqsicaje\ncajeh\nda\nft\nsicajeho\najeh\ncaje\nqsicajeho\nsicaje\nftqsicaje\nsicajeh\nftqsica\nica\nkm\nqsicajeh\naj\ni\ntq\nmd\nkmdb\nkmd\ntqsica\nnk\n",
"2\ncb\nbc\n",
"15\nipxh\nipx\nr\nxh\ncjr\njr\np\nip\njc\ni\nx\nhi\nc\nh\npx\n",
"6\na\nb\nc\nde\nfe\nfd\n",
"26\nhw\nwb\nba\nxa\nxl\nle\neo\nod\ndj\njt\ntm\nmq\nqf\nfk\nkn\nny\nyz\nzr\nrg\ngv\nvc\ncs\nsi\niu\nup\nph\n",
"4\nab\nbc\nca\ne\n",
"16\nngv\nng\njngvu\ng\ngv\nvu\ni\nn\njngv\nu\nngvu\njng\njm\nl\nj\ngvu\n",
"2\nba\nbb\n",
"4\naz\nzx\ncx\nxd\n",
"3\nkek\nqecerp\ncheburek\n",
"4\nlaim\nai\nlru\ncf\n",
"2\nca\ncc\n",
"2\nec\nce\n",
"51\np\nsu\nbpxh\nx\nxhvacdy\nqosuf\ncdy\nbpxhvacd\nxh\nbpxhv\ne\npxh\nhva\nhvac\nxhva\nos\ns\ndy\nqo\nv\nq\na\nbpxhvacdy\nxhv\nqosu\nyb\nacdy\nu\npxhvacd\nc\nvacdy\no\nuf\nxhvacd\nuac\nbpx\nacd\nbp\nhvacdy\nsuf\nbpxhvac\ncd\nh\npxhva\nhv\npxhv\nosu\nd\ny\nxhvac\npxhvacdy\n",
"13\naz\nby\ncw\ndw\nev\nuf\ngt\nhs\nir\njq\nkp\nlo\nmn\n",
"13\nya\nyb\nxc\nwd\nve\nue\ntg\nsh\nri\nqj\npk\nol\nnm\n",
"3\nacb\ndb\ndd\n",
"2\nba\nba\n",
"20\nckdza\nw\ntvylck\nbqtv\ntvylckd\nos\nbqtvy\nrpx\nzaj\nrpxebqtvylckdzajfmi\nbqtvylckdzajf\nvylc\nvsyl\npxebq\nf\npxebqtv\nlckdza\nwnh\ns\npxe\n",
"3\nab\nba\nbd\n",
"76\namnctposz\nmtcnpos\nos\nu\ne\nam\namnc\neamnctpo\nl\nx\nq\nposzq\neamnc\nctposzq\nctpos\nmnc\ntpos\namnctposzql\ntposzq\nmnctposz\nnctpos\nctposzql\namnctpos\nmnct\np\nux\nposzql\ntpo\nmnctposzql\nmnctp\neamnctpos\namnct\ntposzql\nposz\nz\nct\namnctpo\noszq\neamnct\ntposz\ns\nmn\nn\nc\noszql\npo\no\nqzsoptcnm\nt\namnctposzq\nnctposzql\nnct\namn\neam\nctp\nosz\npos\nmnctpo\nzq\neamnctposzql\namnctp\nszql\neamn\ntp\nzql\na\nea\nql\nsz\neamnctposz\nnctpo\nctposz\nm\nnctposz\nnctp\nnc\n",
"33\naqzwlyfjcuktsr\ngidpnvaqzwlyfj\nvaqzwlyf\npnvaqzwlyfjcuktsrbx\njcuktsrbxme\nuktsrb\nhgidpnvaqzw\nvaqzwlyfjcu\nhgid\nvaqzwlyfjcukts\npnvaqzwl\npnvaqzwlyfj\ngidpnvaqzwlyfjcukt\naqzwlyfjcuktsrbxme\ngidpnvaqzwlyfjcuktsrb\naqzw\nlyfjcuktsrbxme\nrbxm\nwlyfjcukt\npnvaqzwlyfjcuktsr\nnvaqzwly\nd\nzwlyf\nhgidpnva\ngidpnvaqzwlyfjcuktsrbxm\ngidpn\noemxbrstkucjf\nfjcuktsrbx\ngidpnva\nzwlyfjc\nrb\nmxbrst\ndpnvaqzwlyfjcuktsrbxm\n",
"1\nlln\n",
"75\nqsicaj\nd\nnkmd\ndb\ntqsicaj\nm\naje\nftqsicaj\ncaj\nftqsic\ntqsicajeh\nic\npv\ny\nho\nicajehn\nc\ns\nb\nftqsi\nmdb\ntqsic\ntqs\nsi\nnkmdb\njeh\najeho\nqs\ntqsicajeho\nje\nwp\njeho\neh\nwpv\nh\no\nyw\nj\nv\ntqsicaje\nftqsicajeho\nsica\ncajeho\nqsic\nqsica\na\nftqsicajeh\nn\ntqsi\nicajeh\nsic\ne\nqsicaje\ncajeh\nda\nft\nsicajeho\najeh\ncaje\nqsicajeho\nsicaje\nftqsicaje\nsicajeh\nftqsica\nica\nkm\nqsicajeh\naj\ni\ntq\nmd\nkmdb\nkmd\ntqsica\nnk\n",
"2\ncca\ncb\n",
"15\nipxh\nipx\nr\nxh\ncjr\njr\np\nip\njc\ni\nx\nhi\nb\nh\npx\n",
"26\nhw\nwb\nba\nxa\nxl\nle\neo\nod\ndj\njt\ntm\nmq\nqf\nfk\nkn\nny\nyz\nzr\nrg\ngv\nvc\ncs\nsi\niu\nup\npi\n"
],
"output": [
"NO\n",
"cfmailru\n",
"NO\n",
"NO\n",
"NO\n",
"azb\n",
"NO\n",
"agdvuibcenmzswtyofhjklpqrx\n",
"NO\n",
"efghijklmnoprstuvwxyzdcba\n",
"azbycxdwevfugthsirjqkplomn\n",
"nmolpkqjrishtgufvewdxcybza\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"osrpxebqtvylckdzajfmiwnh\n",
"bcdefghijklmnoprstuvwxyza\n",
"NO\n",
"eamnctposzqlux\n",
"hgidpnvaqzwlyfjcuktsrbxmeo\n",
"NO\n",
"ftqsicajehonkmdbywpv\n",
"z\n",
"NO\n",
"NO\n",
"abcdefghijklmnopqrstuvwxyz\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"bcd\n",
"ijngvul\n",
"NO\n",
"NO\n",
"abcdefg\n",
"azycxd",
"bca\n",
"dce\n",
"NO\n",
"ab\n",
"agdvuibcenmzswtyofhjklpqr\n",
"cd\n",
"abcd\n",
"y\n",
"cba\n",
"acd\n",
"cab\n",
"bza\n",
"ba\n",
"agbcenmzswtyofdvuihjklpqr\n",
"ecd\n",
"x\n",
"cbd\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"ab\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"ba\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
A substring of some string is called the most frequent, if the number of its occurrences is not less than number of occurrences of any other substring.
You are given a set of strings. A string (not necessarily from this set) is called good if all elements of the set are the most frequent substrings of this string. Restore the non-empty good string with minimum length. If several such strings exist, restore lexicographically minimum string. If there are no good strings, print "NO" (without quotes).
A substring of a string is a contiguous subsequence of letters in the string. For example, "ab", "c", "abc" are substrings of string "abc", while "ac" is not a substring of that string.
The number of occurrences of a substring in a string is the number of starting positions in the string where the substring occurs. These occurrences could overlap.
String a is lexicographically smaller than string b, if a is a prefix of b, or a has a smaller letter at the first position where a and b differ.
Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of strings in the set.
Each of the next n lines contains a non-empty string consisting of lowercase English letters. It is guaranteed that the strings are distinct.
The total length of the strings doesn't exceed 105.
Output
Print the non-empty good string with minimum length. If several good strings exist, print lexicographically minimum among them. Print "NO" (without quotes) if there are no good strings.
Examples
Input
4
mail
ai
lru
cf
Output
cfmailru
Input
3
kek
preceq
cheburek
Output
NO
Note
One can show that in the first sample only two good strings with minimum length exist: "cfmailru" and "mailrucf". The first string is lexicographically minimum.
### Input:
3
kek
preceq
cheburek
### Output:
NO
### Input:
4
mail
ai
lru
cf
### Output:
cfmailru
### Code:
StringsNumber = int(input())
FinalStrings = []
Strings = []
for i in range(StringsNumber):
Strings.append(input())
LetterGraph = {}
# Генерим граф
for i in range(len(Strings)):
if len(Strings[i]) == 1:
if Strings[i] not in LetterGraph:
LetterGraph[Strings[i]] = ""
#print("заапедил", i)
continue
for e in range(len(Strings[i]) - 1):
if Strings[i][e] not in LetterGraph:
Elements = []
for j in list(LetterGraph):
if j != Strings[i][e + 1]:
Elements.append(LetterGraph[j])
if Strings[i][e + 1] in Elements:
print("NO")
exit(0)
LetterGraph[Strings[i][e]] = Strings[i][e + 1]
continue
if LetterGraph[Strings[i][e]] == Strings[i][e + 1] or LetterGraph[Strings[i][e]] == "":
LetterGraph[Strings[i][e]] = Strings[i][e + 1]
continue
#print("Граф:", LetterGraph)
print("NO")
exit(0)
#print("Я сгенерил граф, получилось:", LetterGraph)
# Проверяем, что нету цикла
if LetterGraph:
Cycle = False
for i in LetterGraph:
Letter = LetterGraph[i]
while True:
if Letter in LetterGraph:
if LetterGraph[Letter] == i:
print("NO")
exit(0)
Letter = LetterGraph[Letter]
else:
break
# Находим возможные первые символы
if LetterGraph:
IsIFirstSymbol = False
FirstSymbols = []
for i in LetterGraph:
IsIFirstSymbol = True
for e in LetterGraph:
if LetterGraph[e] == i:
#print(i, "не подходит, потому что", e, "указывает на него.")
IsIFirstSymbol = False
if IsIFirstSymbol:
FirstSymbols.append(i)
if not FirstSymbols:
print("NO")
exit(0)
#print("Варианты первого символа:", *FirstSymbols)
# Создаем варианты финальной строки
if LetterGraph:
Letter = ""
for i in FirstSymbols:
FinalString = i
Letter = i
for e in range(len(LetterGraph)):
if Letter in LetterGraph:
if not (LetterGraph[Letter] == ""):
FinalString += LetterGraph[Letter]
#print(Letter, "есть в графе, так что добавляем", LetterGraph[Letter], ", на которое оно указывает.")
Letter = LetterGraph[Letter]
else:
break
else:
break
FinalStrings.append(FinalString)
#print("Отдельные строки", *FinalStrings)
FinalStrings.sort()
RESULT = ""
for i in FinalStrings:
RESULT += i
print(RESULT)
|
909_D. Colorful Points_1056 | You are given a set of points on a straight line. Each point has a color assigned to it. For point a, its neighbors are the points which don't have any other points between them and a. Each point has at most two neighbors - one from the left and one from the right.
You perform a sequence of operations on this set of points. In one operation, you delete all points which have a neighbor point of a different color than the point itself. Points are deleted simultaneously, i.e. first you decide which points have to be deleted and then delete them. After that you can perform the next operation etc. If an operation would not delete any points, you can't perform it.
How many operations will you need to perform until the next operation does not have any points to delete?
Input
Input contains a single string of lowercase English letters 'a'-'z'. The letters give the points' colors in the order in which they are arranged on the line: the first letter gives the color of the leftmost point, the second gives the color of the second point from the left etc.
The number of the points is between 1 and 106.
Output
Output one line containing an integer - the number of operations which can be performed on the given set of points until there are no more points to delete.
Examples
Input
aabb
Output
2
Input
aabcaa
Output
1
Note
In the first test case, the first operation will delete two middle points and leave points "ab", which will be deleted with the second operation. There will be no points left to apply the third operation to.
In the second test case, the first operation will delete the four points in the middle, leaving points "aa". None of them have neighbors of other colors, so the second operation can't be applied. | name = input()
blocks = []
now = name[0]
counter = 1
for x in range(1, len(name)):
if name[x] != now:
blocks.append((now, counter))
now = name[x]
counter = 1
else:
counter += 1
blocks.append((now, counter))
counter = 0
temp = []
while len(blocks) > 1:
counter += 1
temp = []
(x, y) = blocks[0]
if y > 1:
temp.append((x, y - 1))
for s in range(1, len(blocks) - 1):
(x, y) = blocks[s]
if len(temp) > 0:
(tempx, tempy) = temp[-1]
if y > 2:
if x != tempx:
temp.append((x, y - 2))
else:
temp[-1] = (x, tempy + y - 2)
else:
if y > 2:
temp.append((x, y - 2))
(x, y) = blocks[-1]
if len(temp) > 0:
(tempx, tempy) = temp[-1]
if y > 1:
if x != tempx:
temp.append((x, y - 1))
else:
temp[-1] = (x, tempy + y - 1)
else:
if y > 1:
temp.append((x, y - 1))
blocks = temp
print(counter)
| {
"input": [
"aabb\n",
"aabcaa\n",
"bbbbbbbbaaaaaaaaaaaccccccaaaaaaaaaaaaaaccccccccaaaaaaaaabbbbbbccbbbaaaaaabccccccaaaacaaacccccccccccb\n",
"ccccccccccccccccccccccccccccccccaaaaaaaaaaaaaacccccccccccccccccccccccccccccccccccccccccccccccccccccc\n",
"aaaaabbbbbaaaaabbbbaaabbbbbbbaaabbbbbabbbbbbbaabbbbbbbbbbbbaaaaabbbbbbbbbbbbbbbbbbbbbbbbaaaaaabbbbbb\n",
"bddbeddebbeaccdeeeceaebbdaabecbcaeaaddbbeadebbbbebaddbdcdecaeebaceaeeabbbccccaaebbadcaaaebcedccecced\n",
"dbcbacdcacacdccddbbbabbcdcccacbaccbadacdbdbccdccacbcddcbcdbacdccddcdadaadabcdabcbddddcbaaacccacacbbc\n",
"abaabaaaabaabbaabaabaabbaabbaabaaaabbaabbaabaabaabaabbabaabbababbababbabaababbaaabbbbaabbabbaabbaaba\n",
"cccbcccabcaaaacabcacacccabbacccaccabbbcaaccaaabcccaabcbbcbcabccbccbbacbacabccabcbbbaaaccaaaaccaaccaa\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaabbbbbbbbaaaaaaaaabbbbbaaaaaaaaaaabbbbbbaaabbbbaaabbbbbbaaa\n",
"a\n",
"bbbbbbbbbbbbbbbbbbbbbbddddddddddddddddaaaaaaaaaaaaaccccccccbbbbbbbaaaaaaaaaabbbbbbbbaaaaaaaaaacccccc\n",
"cccccccccccccccccccccccccccaaaaaccccaaabbbbbbbbbbbbbbbbbbbbbbbbcbbbbbbbbbbbbbbbbbaaaaaaabbbbbbbbbaaa\n",
"aaabbb\n",
"abcaccabbacbcabaabaacabbbaabcbbbbacccaaabaacabbababbbbbcbcbbaaaabcaacbcccbabcaacaabbcbbcbbbcaabccacc\n",
"ddddddbdddddcccccccbbccccccddcccccccccbbbbbbbbbbddddddddddddddaaaeeeeedddddddddddddddcccccccbbbbbbbb\n",
"aaaaaaccccccccccccccaaaacccccccccccaaaaaacaaaaaaaabbbbaacccccccccccccccaaaaaaaaccccccbbbbbbbbccccccc\n",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaa\n",
"bbeeeeaaaaccccbbbbeeeeeeeeeeaaaaddddddddddddddddddbbbbbbbdddeeeeeeeeeeaaaaaaaaeeeeeaaaaadbbbbbbbeadd\n",
"ccbacccbcbabcbbcaacbcacccaabbababacbaabacababcaacbaacbaccccacccaababbbccacacacacababbabbbbbbbcbabaaa\n",
"aaaaaaacccccccccdddddaaaaaaaaccaaaaaaaaaaaccccccccceebbbbbbbbbdddddddddcccccccbbbbbbbbbeeeedddddeeee\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbddddddaaaaaaaaaaaaaaaaaaaaaaaaaaaaaccccccccccccccccc\n",
"eeeeeeeeebbbbbbbbbbbbbbeeeeeeeeddcccccccccbbbbbbbbbbbbeeeeeddbbbbbbbbbbeeeeeebbaaaaddeeebbbbbbbacccc\n",
"aaaaaaaaabbbbbaaaabaaaaaaaaaaaaaaaaabaaaaaabbbbbbbaaabbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaa\n",
"abababababab\n",
"ba\n",
"bcddbbdaebbaeaceaaebaacacbeecdbaeccaccbddedaceeeeecccabcabcbddbadaebcecdeaddcccacaeacddadbbeabeecadc\n",
"abc\n",
"abbcccbba\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaccccccccccccccddddddddddd\n",
"bbbbbbcccccccccccccccccccbbbbaaaaaaaaaccccccbbbbaaaaaaaaaaabbbbbaccccccccccccccccccccbbbbaaaaaabbbbb\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbbeeeeeeeeeeeeeeeeeeeeeeeeeeeebbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaaaaaaa\n",
"ebbcadacbaacdedeaaaaccbaceccbbbcbaceadcbdeaebcbbbacaebaaaceebcaaaeabdeaaddabcccceecaebdbacdadccaedce\n",
"aabbabbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaccccaaaabbbbbbaaaaacccccccccccccbbbbbbbbbbcccccccccbbaaaaaaaaaaa\n",
"abaaababbbbbbabababbaabbabbbaababaaabaabbbaaaabaabaaabababbaaaabbbbbbaaabbbbababbaababaabaaaabbabbab\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbddddddddddddddddddddddddddddddddddddddcccccccccccccccccccccccccccccccccccc\n",
"acaaacaaacaacabcaaabbbabcbccbccbcccbbacbcccababccabcbbcbcbbabccabacccabccbbbbbabcbbccacaacbbbccbbcab\n",
"cbbabaacccacaaacacbabcbbacacbbbcaccacbcbbbabbaccaaacbbccbaaaabbcbcccacbababbbbcaabcbacacbbccaabbaaac\n",
"ddaaaaaaaaaaccccddddddddddeeeeaaaeedddddaaaaaaeebedddddeeeeeeeeeebbbbbbbbbbbbbbaaaaaabbbbbbbeeeeeebb\n",
"bbbbbbddddddddddddddddddddcccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc\n",
"aaaaaaabbbbbbbbbddddddddddeeeeeeeebbbbbeeebbbbccccccceeeeeeeaaaaaaaaabbbbbbdddddbbbbbbeeeeeeaaeeeaaa\n",
"abbabbaaabababaababaaaabababbbbaabaaaaaaaaaabbbbababababababababbabaaabbaaaaabaaaabaaaaababaabaabaab\n",
"aaabbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaabbbaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbaaaaaabbbbbbbbbbbbbaaaaa\n",
"aaaaaaacccccccccccccccccccbbaaaaaaaaabcccaaaaaaaaaabbccccaaaaaaaaaaccccaabbcccbbbbbbbbbbaaaaaaaaaaaa\n",
"aaaaaaaaaaa\n",
"ab\n",
"aaabbbbbbaaa\n",
"bcccccccccccaaacaaaaccccccbaaaaaabbbccbbbbbbaaaaaaaaaccccccccaaaaaaaaaaaaaaccccccaaaaaaaaaaabbbbbbbb\n",
"ccccccccccccccccccccccccccccccdcaaaaaaaaaaaaaacccccccccccccccccccccccccccccccccccccccccccccccccccccc\n",
"aaaaabbbbbaaaaabbbbaaabbbbbbbaaabbbbcabbbbbbbaabbbbbbbbbbbbaaaaabbbbbbbbbbbbbbbbbbbbbbbbaaaaaabbbbbb\n",
"decceccdecbeaaacdabbeaaccccbbbaeeaecabeeacedcdbddabebbbbedaebbddaaeacbcebaadbbeaeceeedccaebbeddebddb\n",
"abaabaaaabaabbaabaabaabbaabbaabaaaabbaabbaabaabaabaabbabaabbaaabbababbabaababbaaabbbbbabbabbaabbaaba\n",
"aaabbbbbbaaabbbbaaabbbbbbaaaaaaaaaaabbbbbaaaaaaaaabbbbbbbbaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"`\n",
"bbbbbbbbbbbbbbbbbbbbbbdaddddddddddddddaaaaaaaaaadaaccccccccbbbbbbbaaaaaaaaaabbbbbbbbaaaaaaaaaacccccc\n",
"cccccccccccccccccccccccccccaaaaaccccaaabbbbbbbbbbbbbbbbbbbbbbbbcbbbbbbbbbabbbbbbbaaaaaaabbbbbbbbbaaa\n",
"baabba\n",
"bbbbbbbbcccccccdddddddddddddddeeeeeaaaddddddddddddddbbbbbbbbbbcccccccccddccccccbbcccccccdddddbdddddd\n",
"aaaaaaccccccccdcccccaaaacccccccccccaaaaaacaaaaaaaabbbbaacccccccccccccccaaaaaaaaccccccbbbbbbbbccccccc\n",
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaabbeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaa\n",
"cccccccccccccccccaaaaaaaaaaaaaaaaaaaaaaaaaaaaaddddddbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"bcddbbdaebbaeaceaaebaacacaeecdbaeccaccbddedaceeeeecccabcabcbddbadaebcecdeaddcccacaeacddadbbeabeecadc\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaa`aaaaaaaaaaaaaaaaaaaaaaaaaccccccccccccccddddddddddd\n",
"bbbbbbbbbbbbbbbbbbbbbbbbbbbeeeeeeeeeeeeeeeeeeeeeeeeeeeebbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaa`aaaaaaa\n",
"bbbbbbddddddddddddddddddddccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccbccccccc\n",
"dbcbacdcacaccccddbbbabbcdcccacbaccbadacdbdbccdccacbcddcbcdbacdccddcdadaadabcdabcbddddcbaaacccacacbbc\n",
"aaccaaccaaaaccaaabbbcbaccbacabcabbccbccbacbcbbcbaacccbaaaccaacbbbaccacccabbacccacacbacaaaacbacccbccc\n",
"abcaccabbacbcabaabaacabbbaabcbbbbacccaaabaacabbababbbbbcbcbbaaaabcaacbcccbabcaacaabbcbbcbbbcaabccacb\n",
"ddaebbbbbbbdaaaaaeeeeeaaaaaaaaeeeeeeeeeedddbbbbbbbddddddddddddddddddaaaaeeeeeeeeeebbbbccccaaaaeeeebb\n",
"ccbacccbcbabcbbcaacbcacccaabbababacbaabacababcaacbaacbbccccacccaababbbccacacacacababbabbbbbbbcbabaaa\n",
"aaaaaaacccccccccdddddaaaaaaaaccaaaaaaaaaaaccccccccceebbbbbbbbbdddddedddcccccccbbbbbbbbbeeeedddddeeee\n",
"eeeeeeeeebbbbbbbbbbbbbbeeeeeeeeddbccccccccbbbbbbbbbbbbeeeeeddbbbbbbbbbbeeeeeebbaaaaddeeebbbbbbbacccc\n",
"aaaaaaaaabbbbbaaaabaaaaaaaaaaaaaaaaabaaaaaabbbbbbbaaabbbbbbbbbbbbbbbbbbbbbaaaaaaaaaaaaaaaaaaaaa`aaaa\n",
"babababababa\n",
"bb\n",
"aac\n",
"aabcccbba\n",
"bbbbbaaaaaabbbbccccccccccccccccccccabbbbbaaaaaaaaaaabbbbccccccaaaaaaaaabbbbcccccccccccccccccccbbbbbb\n",
"ebbcadacbaacdedeaaaaccbaceccbbbcbaceadcbdeaebcbbbacaebaaaceebcaaafabdeaaddabcccceecaebdbacdadccaedce\n",
"aabbabbbbbbbbaaaaaaaaaaaaaaaaaaaaaaaccccaaaabbbbbbaaaaacccccccccccccbbcbbbbbbbcccccccccbbaaaaaaaaaaa\n",
"abaaababbbbbbabababbaabbabbbaababaaaaaabbbaaaabaabaaabbbabbaaaabbbbbbaaabbbbababbaababaabaaaabbabbab\n",
"ccccccccccccccccccccccccccccccccccccddddddddddddddddddddddddddddddddddddddbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"bacbbccbbbcaacaccbbcbabbbbbccbacccabaccbabbcbcbbcbaccbabacccbcabbcccbccbccbcbabbbaaacbacaacaaacaaaca\n",
"caaabbaaccbbcacabcbaacbbbbababcacccbcbbaaaabccbbcaaaccabbabbbcbcaccacbbbcacabbcbabcacaaacacccaababbc\n",
"bbeeeeeebbbbbbbaaaaaabbbbbbbbbbbbbbeeeeeeeeeedddddebeeaaaaaadddddeeaaaeeeeddddddddddccccaaaaaaaaaadd\n",
"aaaaaaabbbbbbbbbdcddddddddeeeeeeeebbbbbeeebbbbccccccceeeeeeeaaaaaaaaabbbbbbdddddbbbbbbeeeeeeaaeeeaaa\n",
"abbabbaaabababaaaabaaaabababbbbaabaabaaaaaaabbbbababababababababbabaaabbaaaaabaaaabaaaaababaabaabaab\n",
"aaabbbbbbbbbbbbbbbbbbbbbbbbbbbbaaaaaaaabbbaaaaaaaaabbbbbbbbbbbbbbbbabbbbbbbbaaaaaabbbbbbbbbbbbbaaaaa\n",
"aaaaaaacccccccccccccccccccbbaaaaaaaaabcccaaaaabaaaabbccccaaaaaaaaaaccccaabbcccbbbbbbbbbbaaaaaaaaaaaa\n",
"aaaa`aaaaaa\n",
"cb\n",
"aaabbbbbbbaa\n",
"aacb\n",
"aabcba\n",
"bbbbbbbcaaaaaaaaaaaccccccaaaaaaaaaaaaaaccccccccaaaaaaaaabbbbbbccbbbaaaaaabccccccaaaacaaacccccccccccb\n",
"ccccccccccccccccccccccccccccccdcaaaaaaaaaaaaaaccccccccccccccccccdccccccccccccccccccccccccccccccccccc\n",
"bbbbbbaaaaaabbbbbbbbbbbbbbbbbbbbbbbbaaaaabbbbbbbbbbbbaabbbbbbbacbbbbaaabbbbbbbaaabbbbaaaaabbbbbaaaaa\n",
"bddbeddebbeaccdeeeceaebbdaabecbcaeaaddbbeadebbbbebaddcdcdecaeebaceaeeabbbccccaaebbadcaaaebcedccecced\n",
"cbbcacacccaaabcddddbcbadcbadaadadcddccdcabdcbcddcbcaccdccbdbdcadabccabcacccdcbbabbbddccccacacdcabcbd\n",
"abaabbaabbabbabbbbbaaabbabaababbababbaaabbaababbaabaabaabaabbaabbaaaabaabbaabbaabaabaabbaabaaaabaaba\n",
"aaccaaccaaaaccaaabbbcbaccbacabcabbccbccbacbcbbcbaacccbaaaccaacbbbaccacccabbacccacacbacaabacbacccbccc\n",
"aaabbbbbbaaabbbbaaabbbbbbaaaaaaaaaaababbbaaaaaaaaabbbbbbbbaaaaaaaaaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb\n",
"_\n",
"ccccccaaaaaaaaaabbbbbbbbaaaaaaaaaabbbbbbbccccccccaadaaaaaaaaaaddddddddddddddadbbbbbbbbbbbbbbbbbbbbbb\n",
"cccccccccccccccccccccccccccaaaaaccccaaabbbbbbbbbbbbbbbbbbbbbbbbcbbbbbbbbbabbbbbbbabaaaaabbbbbbbbbaaa\n",
"baabaa\n",
"abcaccabbacbcabaabaacabbbaabcbbbbacccaaabaacabbababbbbbcbcbbaaaabcaacbcccbabcaacaaabcbbcbbbcaabccacb\n",
"bbbbbbbbcccccccdddcdddddddddddeeeeeaaaddddddddddddddbbbbbbbbbbcccccccccddccccccbbcccccccdddddbdddddd\n",
"aaabaaccccccccdcccccaaaacccccccccccaaaaaacaaaaaaaabbbbaacccccccccccccccaaaaaaaaccccccbbbbbbbbccccccc\n"
],
"output": [
"2\n",
"1\n",
"10\n",
"7\n",
"5\n",
"2\n",
"2\n",
"3\n",
"4\n",
"12\n",
"0\n",
"11\n",
"27\n",
"3\n",
"2\n",
"9\n",
"6\n",
"15\n",
"8\n",
"5\n",
"5\n",
"17\n",
"9\n",
"12\n",
"1\n",
"1\n",
"3\n",
"1\n",
"1\n",
"28\n",
"7\n",
"27\n",
"3\n",
"7\n",
"4\n",
"26\n",
"4\n",
"2\n",
"8\n",
"14\n",
"5\n",
"2\n",
"7\n",
"12\n",
"0\n",
"1\n",
"3\n",
"10\n",
"7\n",
"5\n",
"2\n",
"4\n",
"12\n",
"0\n",
"8\n",
"27\n",
"1\n",
"9\n",
"6\n",
"15\n",
"17\n",
"3\n",
"25\n",
"26\n",
"14\n",
"2\n",
"4\n",
"2\n",
"8\n",
"5\n",
"6\n",
"9\n",
"12\n",
"1\n",
"0\n",
"1\n",
"2\n",
"7\n",
"3\n",
"7\n",
"4\n",
"26\n",
"4\n",
"2\n",
"8\n",
"5\n",
"2\n",
"7\n",
"12\n",
"1\n",
"1\n",
"3\n",
"1\n",
"1\n",
"10\n",
"7\n",
"5\n",
"2\n",
"2\n",
"4\n",
"5\n",
"14\n",
"0\n",
"8\n",
"27\n",
"1\n",
"2\n",
"9\n",
"6\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a set of points on a straight line. Each point has a color assigned to it. For point a, its neighbors are the points which don't have any other points between them and a. Each point has at most two neighbors - one from the left and one from the right.
You perform a sequence of operations on this set of points. In one operation, you delete all points which have a neighbor point of a different color than the point itself. Points are deleted simultaneously, i.e. first you decide which points have to be deleted and then delete them. After that you can perform the next operation etc. If an operation would not delete any points, you can't perform it.
How many operations will you need to perform until the next operation does not have any points to delete?
Input
Input contains a single string of lowercase English letters 'a'-'z'. The letters give the points' colors in the order in which they are arranged on the line: the first letter gives the color of the leftmost point, the second gives the color of the second point from the left etc.
The number of the points is between 1 and 106.
Output
Output one line containing an integer - the number of operations which can be performed on the given set of points until there are no more points to delete.
Examples
Input
aabb
Output
2
Input
aabcaa
Output
1
Note
In the first test case, the first operation will delete two middle points and leave points "ab", which will be deleted with the second operation. There will be no points left to apply the third operation to.
In the second test case, the first operation will delete the four points in the middle, leaving points "aa". None of them have neighbors of other colors, so the second operation can't be applied.
### Input:
aabb
### Output:
2
### Input:
aabcaa
### Output:
1
### Code:
name = input()
blocks = []
now = name[0]
counter = 1
for x in range(1, len(name)):
if name[x] != now:
blocks.append((now, counter))
now = name[x]
counter = 1
else:
counter += 1
blocks.append((now, counter))
counter = 0
temp = []
while len(blocks) > 1:
counter += 1
temp = []
(x, y) = blocks[0]
if y > 1:
temp.append((x, y - 1))
for s in range(1, len(blocks) - 1):
(x, y) = blocks[s]
if len(temp) > 0:
(tempx, tempy) = temp[-1]
if y > 2:
if x != tempx:
temp.append((x, y - 2))
else:
temp[-1] = (x, tempy + y - 2)
else:
if y > 2:
temp.append((x, y - 2))
(x, y) = blocks[-1]
if len(temp) > 0:
(tempx, tempy) = temp[-1]
if y > 1:
if x != tempx:
temp.append((x, y - 1))
else:
temp[-1] = (x, tempy + y - 1)
else:
if y > 1:
temp.append((x, y - 1))
blocks = temp
print(counter)
|
931_A. Friends Meeting_1060 | Two friends are on the coordinate axis Ox in points with integer coordinates. One of them is in the point x1 = a, another one is in the point x2 = b.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1 + 2 + 3 = 6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
Input
The first line contains a single integer a (1 ≤ a ≤ 1000) — the initial position of the first friend.
The second line contains a single integer b (1 ≤ b ≤ 1000) — the initial position of the second friend.
It is guaranteed that a ≠ b.
Output
Print the minimum possible total tiredness if the friends meet in the same point.
Examples
Input
3
4
Output
1
Input
101
99
Output
2
Input
5
10
Output
9
Note
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9. | a=int(input())
b=int(input())
def fact(a):
ans=0
for i in range(a,0,-1):
ans=ans+i
return ans
d=abs(a-b)
if d==1:
print("1")
elif d%2==0:
a=fact(d//2)
a=a*2
print(a)
else:
a=fact(d//2)
b=fact((d+1)//2)
print(a+b)
| {
"input": [
"3\n4\n",
"5\n10\n",
"101\n99\n",
"188\n762\n",
"352\n445\n",
"596\n777\n",
"1000\n999\n",
"1000\n2\n",
"773\n70\n",
"1\n1000\n",
"285\n153\n",
"892\n520\n",
"1000\n1\n",
"2\n1000\n",
"138\n370\n",
"1\n999\n",
"967\n487\n",
"999\n2\n",
"2\n1\n",
"2\n999\n",
"944\n348\n",
"999\n1000\n",
"529\n656\n",
"2\n998\n",
"999\n1\n",
"1\n2\n",
"675\n541\n",
"285\n242\n",
"546\n593\n",
"479\n470\n",
"773\n901\n",
"58\n765\n",
"235\n56\n",
"19\n315\n",
"825\n729\n",
"648\n106\n",
"998\n2\n",
"4\n912\n",
"943\n13\n",
"864\n179\n",
"188\n99\n",
"352\n139\n",
"596\n845\n",
"285\n2\n",
"892\n319\n",
"138\n293\n",
"967\n102\n",
"999\n3\n",
"2\n381\n",
"944\n498\n",
"2\n11\n",
"1\n4\n",
"675\n312\n",
"285\n66\n",
"546\n755\n",
"479\n642\n",
"773\n876\n",
"58\n684\n",
"235\n9\n",
"19\n250\n",
"825\n375\n",
"648\n204\n",
"998\n1\n",
"4\n512\n",
"943\n12\n",
"864\n297\n",
"3\n7\n",
"101\n144\n",
"188\n72\n",
"352\n75\n",
"596\n761\n",
"285\n1\n",
"892\n340\n",
"138\n215\n",
"967\n142\n",
"999\n4\n",
"2\n247\n",
"944\n486\n",
"2\n22\n",
"675\n117\n",
"285\n32\n",
"546\n180\n",
"479\n268\n",
"773\n559\n",
"58\n405\n",
"235\n17\n",
"19\n140\n",
"825\n563\n",
"648\n58\n",
"4\n589\n",
"943\n11\n",
"864\n83\n",
"3\n13\n",
"101\n47\n",
"188\n78\n",
"352\n8\n",
"596\n830\n",
"285\n4\n",
"892\n31\n",
"138\n376\n",
"967\n282\n",
"2\n301\n",
"944\n193\n",
"2\n30\n",
"675\n81\n",
"285\n27\n",
"546\n68\n",
"773\n80\n",
"58\n19\n",
"235\n6\n",
"19\n252\n",
"648\n105\n",
"943\n19\n",
"864\n70\n",
"101\n54\n",
"188\n97\n",
"352\n14\n",
"596\n707\n",
"285\n7\n",
"479\n314\n",
"3\n12\n"
],
"output": [
"1",
"9",
"2",
"82656",
"2209",
"8281",
"1",
"249500",
"123904",
"250000",
"4422",
"34782",
"250000",
"249500",
"13572",
"249500",
"57840",
"249001",
"1",
"249001",
"89102",
"1",
"4096",
"248502",
"249500",
"1",
"4556",
"484",
"576",
"25",
"4160",
"125316",
"8100",
"22052",
"2352",
"73712",
"248502",
"206570",
"216690",
"117649",
"2025\n",
"11449\n",
"15625\n",
"20164\n",
"82369\n",
"6084\n",
"187489\n",
"248502\n",
"36100\n",
"49952\n",
"25\n",
"4\n",
"33124\n",
"12100\n",
"11025\n",
"6724\n",
"2704\n",
"98282\n",
"12882\n",
"13456\n",
"50850\n",
"49506\n",
"249001\n",
"64770\n",
"217156\n",
"80656\n",
"6\n",
"484\n",
"3422\n",
"19321\n",
"6889\n",
"20306\n",
"76452\n",
"1521\n",
"170569\n",
"248004\n",
"15129\n",
"52670\n",
"110\n",
"78120\n",
"16129\n",
"33672\n",
"11236\n",
"11556\n",
"30276\n",
"11990\n",
"3721\n",
"17292\n",
"87320\n",
"85849\n",
"217622\n",
"152881\n",
"30\n",
"756\n",
"3080\n",
"29756\n",
"13806\n",
"19881\n",
"185761\n",
"14280\n",
"117649\n",
"22500\n",
"141376\n",
"210\n",
"88506\n",
"16770\n",
"57360\n",
"120409\n",
"400\n",
"13225\n",
"13689\n",
"73984\n",
"213906\n",
"158006\n",
"576\n",
"2116\n",
"28730\n",
"3136\n",
"19460\n",
"6889\n",
"25\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Two friends are on the coordinate axis Ox in points with integer coordinates. One of them is in the point x1 = a, another one is in the point x2 = b.
Each of the friends can move by one along the line in any direction unlimited number of times. When a friend moves, the tiredness of a friend changes according to the following rules: the first move increases the tiredness by 1, the second move increases the tiredness by 2, the third — by 3 and so on. For example, if a friend moves first to the left, then to the right (returning to the same point), and then again to the left his tiredness becomes equal to 1 + 2 + 3 = 6.
The friends want to meet in a integer point. Determine the minimum total tiredness they should gain, if they meet in the same point.
Input
The first line contains a single integer a (1 ≤ a ≤ 1000) — the initial position of the first friend.
The second line contains a single integer b (1 ≤ b ≤ 1000) — the initial position of the second friend.
It is guaranteed that a ≠ b.
Output
Print the minimum possible total tiredness if the friends meet in the same point.
Examples
Input
3
4
Output
1
Input
101
99
Output
2
Input
5
10
Output
9
Note
In the first example the first friend should move by one to the right (then the meeting happens at point 4), or the second friend should move by one to the left (then the meeting happens at point 3). In both cases, the total tiredness becomes 1.
In the second example the first friend should move by one to the left, and the second friend should move by one to the right. Then they meet in the point 100, and the total tiredness becomes 1 + 1 = 2.
In the third example one of the optimal ways is the following. The first friend should move three times to the right, and the second friend — two times to the left. Thus the friends meet in the point 8, and the total tiredness becomes 1 + 2 + 3 + 1 + 2 = 9.
### Input:
3
4
### Output:
1
### Input:
5
10
### Output:
9
### Code:
a=int(input())
b=int(input())
def fact(a):
ans=0
for i in range(a,0,-1):
ans=ans+i
return ans
d=abs(a-b)
if d==1:
print("1")
elif d%2==0:
a=fact(d//2)
a=a*2
print(a)
else:
a=fact(d//2)
b=fact((d+1)//2)
print(a+b)
|
985_A. Chess Placing_1066 | You are given a chessboard of size 1 × n. It is guaranteed that n is even. The chessboard is painted like this: "BWBW...BW".
Some cells of the board are occupied by the chess pieces. Each cell contains no more than one chess piece. It is known that the total number of pieces equals to <image>.
In one step you can move one of the pieces one cell to the left or to the right. You cannot move pieces beyond the borders of the board. You also cannot move pieces to the cells that are already occupied.
Your task is to place all the pieces in the cells of the same color using the minimum number of moves (all the pieces must occupy only the black cells or only the white cells after all the moves are made).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 100, n is even) — the size of the chessboard.
The second line of the input contains <image> integer numbers <image> (1 ≤ pi ≤ n) — initial positions of the pieces. It is guaranteed that all the positions are distinct.
Output
Print one integer — the minimum number of moves you have to make to place all the pieces in the cells of the same color.
Examples
Input
6
1 2 6
Output
2
Input
10
1 2 3 4 5
Output
10
Note
In the first example the only possible strategy is to move the piece at the position 6 to the position 5 and move the piece at the position 2 to the position 3. Notice that if you decide to place the pieces in the white cells the minimum number of moves will be 3.
In the second example the possible strategy is to move <image> in 4 moves, then <image> in 3 moves, <image> in 2 moves and <image> in 1 move. | import re
import math
import decimal
import bisect
def read():
return input().strip()
n = int(read())
ps = [0 for i in range(1, n+1)]
nadd = 10
for x in sorted([int(_) for _ in read().split()]):
ps[x-1] = nadd
nadd += 10
nadd = 15
for i, p in enumerate(ps):
if p == 0:
ps[i] = nadd
nadd += 10
# print(ps)
swapped = True
swapsA = 0
workps = ps[:]
while swapped:
swapped = False
for i in range(n-1):
if workps[i] > workps[i+1]:
tmp = workps[i]
workps[i] = workps[i+1]
workps[i+1] = tmp
swapsA += 1
swapped = True
# print(ps, swapsA)
for i, p in enumerate(ps):
if p % 10 == 5:
ps[i] -= 10
swapped = True
swapsB = 0
workps = ps[:]
while swapped:
swapped = False
for i in range(n-1):
if workps[i] > workps[i+1]:
tmp = workps[i]
workps[i] = workps[i+1]
workps[i+1] = tmp
swapsB += 1
swapped = True
# print(ps, swapsB)
print(min(swapsA, swapsB))
| {
"input": [
"10\n1 2 3 4 5\n",
"6\n1 2 6\n",
"10\n9 8 7 6 5\n",
"100\n41 13 29 11 25 15 6 23 28 50 48 17 3 9 44 24 5 19 34 22 33 32 20 16 35 37 4 10 46 2 39 40 47 49 36 42 1 30 43 21 14 7 18 45 31 8 12 26 27 38\n",
"10\n10 9 8 1 5\n",
"6\n3 5 6\n",
"6\n1 4 5\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 15 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"10\n5 6 7 8 9\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 49 55 81 35 22 25 79 86 59\n",
"2\n2\n",
"10\n1 7 8 9 10\n",
"12\n1 7 8 9 10 12\n",
"24\n10 21 15 3 11 4 18 24 16 22 14 9\n",
"10\n6 7 8 9 10\n",
"50\n27 42 41 4 10 45 44 26 49 50 17 28 2 36 18 39 23 12 21 24 19 29 22 40 37\n",
"20\n1 2 3 4 5 6 7 8 9 10\n",
"6\n3 4 5\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 19 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 6 72\n",
"100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"10\n1 4 6 8 10\n",
"10\n2 3 4 5 6\n",
"100\n9 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 6 18 40 59 83 76 86 8 55 90 89 45 42 28 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24\n",
"100\n93 54 57 61 68 66 70 96 64 82 80 75 69 77 76 94 67 86 90 73 74 58 100 83 92 89 56 99 88 59 95 72 81 51 85 71 97 60 91 63 65 98 79 84 53 62 87 55 52 78\n",
"6\n1 5 6\n",
"10\n1 6 7 8 9\n",
"20\n3 4 6 7 8 10 11 13 14 17\n",
"10\n9 8 7 6 1\n",
"100\n41 13 29 11 25 15 6 23 28 50 48 17 3 9 44 24 5 19 34 22 33 32 20 16 35 37 4 10 46 2 55 40 47 49 36 42 1 30 43 21 14 7 18 45 31 8 12 26 27 38\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 23 69 28 88 89 49 55 81 35 22 25 79 86 59\n",
"24\n10 21 15 3 11 4 18 24 16 22 23 9\n",
"50\n27 42 41 4 10 45 44 26 49 50 11 28 2 36 18 39 23 12 21 24 19 29 22 40 37\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 31 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 6 72\n",
"100\n2 4 6 8 10 12 14 16 18 13 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 6 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"10\n5 6 10 8 9\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 11 55 81 35 22 25 79 86 59\n",
"2\n1\n",
"6\n3 2 5\n",
"100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"10\n1 2 6 8 10\n",
"100\n9 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 6 15 40 59 83 76 86 8 55 90 89 45 42 28 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24\n",
"10\n1 2 3 8 5\n",
"10\n5 6 7 2 3\n",
"96\n12 58 70 4 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 23 69 28 88 89 49 55 81 35 22 25 79 86 59\n",
"10\n1 4 6 9 10\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 73 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 6 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 11 55 4 35 22 25 79 86 59\n",
"100\n41 13 29 11 25 15 6 23 28 50 48 17 3 9 44 24 5 19 34 22 33 32 20 16 35 37 4 10 46 2 39 40 47 49 36 42 1 30 43 21 14 7 18 45 31 8 12 26 27 59\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 91 25 76 40 15 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 30 96 47 78 7 57 5 6 23 69 28 88 89 49 55 81 35 22 25 79 86 59\n",
"24\n10 21 15 3 11 4 18 24 16 22 14 5\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 19 58 38 76 66 52 17 22 13 2 80 43 3 42 33 36 6 72\n",
"100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 35 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"100\n42 54 57 61 68 66 70 96 64 82 80 75 69 77 76 94 67 86 90 73 74 58 100 83 92 89 56 99 88 59 95 72 81 51 85 71 97 60 91 63 65 98 79 84 53 62 87 55 52 78\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 29 14 25 64 9 31 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 6 72\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 23 76 40 6 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 87 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"100\n11 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 6 15 40 59 83 76 86 8 55 90 89 45 42 28 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 73 45 75 22 32 82 65 53 63 49 42 52 12 38 86 46 25 76 40 6 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"100\n41 13 29 11 25 15 6 23 28 50 48 17 3 9 44 24 5 19 34 22 33 32 20 16 35 37 4 10 46 2 64 40 47 49 36 42 1 30 43 21 14 7 18 45 31 8 12 26 27 59\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 10 40 14 25 64 9 19 58 38 76 66 52 17 22 13 2 80 43 3 42 33 36 6 72\n",
"100\n2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 31 48 50 52 54 56 58 60 62 35 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"100\n2 4 6 8 10 15 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 87 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 5 73 45 75 22 32 82 65 53 63 49 42 52 12 38 86 46 25 76 40 6 13 78 8 81 62 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"80\n41 70 18 53 32 79 51 37 21 27 47 65 50 15 62 60 10 40 14 25 64 9 19 58 38 76 66 52 17 22 13 2 80 43 3 42 33 36 6 72\n",
"100\n2 4 6 8 10 15 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 87 68 70 72 74 76 78 80 82 84 86 88 90 55 94 96 98 100\n",
"100\n2 4 6 8 10 15 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 87 68 70 72 74 76 78 80 91 84 86 88 90 55 94 96 98 100\n",
"100\n2 4 6 8 10 15 3 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 87 68 70 72 74 76 78 80 91 84 86 88 90 55 94 96 98 100\n",
"100\n2 4 6 8 10 15 3 16 18 20 22 24 26 28 30 32 34 36 43 40 42 44 46 48 50 52 54 56 58 60 47 64 87 68 70 72 74 76 78 80 91 84 86 88 90 55 94 96 98 100\n",
"80\n41 70 18 53 32 79 57 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 19 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 6 72\n",
"100\n93 54 57 61 68 66 70 96 64 82 80 75 69 77 76 94 67 86 90 73 74 58 100 83 92 89 56 99 88 59 95 72 81 51 85 71 97 60 22 63 65 98 79 84 53 62 87 55 52 78\n",
"20\n3 5 6 7 8 10 11 13 14 17\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 24 78 7 57 5 6 23 69 28 88 89 49 55 81 35 22 25 79 86 59\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 23 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 11 55 81 35 22 25 79 86 59\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 31 58 38 76 66 52 17 34 20 2 80 43 3 42 33 36 10 72\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 73 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 6 13 78 8 81 5 28 60 21 27 80 98 56 3 36 54 16 50 43\n",
"96\n12 58 70 19 65 61 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 36 96 47 78 7 57 5 6 17 69 28 88 89 11 84 4 35 22 25 79 86 59\n",
"96\n12 58 70 19 65 29 41 46 15 92 64 72 9 26 53 37 2 3 1 40 10 8 94 66 50 34 30 96 47 78 7 57 5 6 23 69 28 88 89 49 55 81 35 22 25 79 86 59\n",
"100\n11 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 4 15 40 59 83 76 86 8 55 90 89 45 42 2 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24\n",
"10\n5 6 7 8 3\n",
"10\n1 7 6 9 10\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 31 58 38 76 66 52 17 34 13 2 80 43 3 42 33 36 10 72\n",
"10\n3 6 10 8 9\n",
"6\n1 2 5\n",
"10\n3 6 10 7 9\n",
"6\n1 6 5\n",
"10\n1 4 5 8 10\n",
"10\n2 3 4 7 6\n",
"10\n1 5 7 8 9\n",
"6\n1 3 6\n",
"10\n2 7 6 9 10\n",
"24\n10 21 15 3 6 4 18 24 16 22 23 9\n",
"10\n1 2 3 8 4\n",
"6\n1 2 4\n",
"10\n1 4 5 9 10\n",
"10\n2 5 4 7 6\n",
"10\n1 4 7 8 9\n",
"100\n11 63 62 88 3 67 54 33 79 51 71 80 37 46 43 57 69 17 34 4 15 40 59 83 76 86 8 55 90 89 45 42 28 98 30 38 77 91 73 58 23 61 41 65 64 93 14 44 16 24\n",
"10\n1 2 3 6 4\n",
"10\n1 4 7 3 9\n",
"10\n1 2 3 6 7\n",
"10\n2 4 7 3 9\n",
"10\n1 2 3 6 5\n",
"10\n2 4 1 3 9\n",
"10\n9 8 7 6 2\n",
"12\n1 7 8 4 10 12\n",
"10\n2 3 7 5 6\n",
"10\n1 2 6 4 5\n",
"10\n5 9 7 8 3\n",
"10\n1 2 6 9 10\n",
"80\n41 70 18 53 32 79 51 49 21 27 47 65 50 15 62 60 5 40 14 25 64 9 31 58 38 76 66 52 17 34 13 2 74 43 3 42 33 36 6 72\n",
"100\n2 4 6 8 10 12 14 16 18 13 22 24 26 28 30 32 34 36 29 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"100\n84 10 26 79 58 93 67 85 7 2 99 4 47 45 75 22 32 82 65 53 63 49 42 52 12 69 86 46 25 76 40 6 13 78 8 81 62 28 60 21 39 80 98 56 3 36 54 16 50 43\n",
"10\n1 6 10 8 9\n",
"6\n4 2 5\n",
"100\n3 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 47 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100\n",
"10\n1 4 7 9 10\n",
"10\n1 3 4 7 6\n",
"10\n1 2 5 9 10\n",
"10\n2 10 4 7 6\n"
],
"output": [
"10\n",
"2\n",
"7\n",
"1225\n",
"5\n",
"2\n",
"1\n",
"104\n",
"7\n",
"152\n",
"0\n",
"7\n",
"7\n",
"11\n",
"10\n",
"59\n",
"45\n",
"2\n",
"47\n",
"0\n",
"1\n",
"7\n",
"160\n",
"1225\n",
"2\n",
"5\n",
"15\n",
"5\n",
"1209\n",
"146\n",
"20\n",
"53\n",
"51\n",
"7\n",
"113\n",
"8\n",
"190\n",
"0\n",
"1\n",
"15\n",
"3\n",
"157\n",
"6\n",
"4\n",
"161\n",
"2\n",
"95\n",
"267\n",
"1204\n",
"77\n",
"152\n",
"9\n",
"49\n",
"29\n",
"1174\n",
"46\n",
"115\n",
"36\n",
"159\n",
"102\n",
"1179\n",
"52\n",
"44\n",
"39\n",
"101\n",
"60\n",
"34\n",
"35\n",
"42\n",
"47\n",
"41\n",
"1156\n",
"16\n",
"169\n",
"193\n",
"58\n",
"124\n",
"240\n",
"184\n",
"139\n",
"5\n",
"5\n",
"53\n",
"6\n",
"1\n",
"5\n",
"2\n",
"2\n",
"5\n",
"4\n",
"1\n",
"4\n",
"15\n",
"7\n",
"2\n",
"3\n",
"5\n",
"3\n",
"157\n",
"9\n",
"1\n",
"6\n",
"2\n",
"8\n",
"6\n",
"4\n",
"2\n",
"4\n",
"7\n",
"4\n",
"4\n",
"49\n",
"16\n",
"115\n",
"6\n",
"1\n",
"16\n",
"3\n",
"4\n",
"4\n",
"1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a chessboard of size 1 × n. It is guaranteed that n is even. The chessboard is painted like this: "BWBW...BW".
Some cells of the board are occupied by the chess pieces. Each cell contains no more than one chess piece. It is known that the total number of pieces equals to <image>.
In one step you can move one of the pieces one cell to the left or to the right. You cannot move pieces beyond the borders of the board. You also cannot move pieces to the cells that are already occupied.
Your task is to place all the pieces in the cells of the same color using the minimum number of moves (all the pieces must occupy only the black cells or only the white cells after all the moves are made).
Input
The first line of the input contains one integer n (2 ≤ n ≤ 100, n is even) — the size of the chessboard.
The second line of the input contains <image> integer numbers <image> (1 ≤ pi ≤ n) — initial positions of the pieces. It is guaranteed that all the positions are distinct.
Output
Print one integer — the minimum number of moves you have to make to place all the pieces in the cells of the same color.
Examples
Input
6
1 2 6
Output
2
Input
10
1 2 3 4 5
Output
10
Note
In the first example the only possible strategy is to move the piece at the position 6 to the position 5 and move the piece at the position 2 to the position 3. Notice that if you decide to place the pieces in the white cells the minimum number of moves will be 3.
In the second example the possible strategy is to move <image> in 4 moves, then <image> in 3 moves, <image> in 2 moves and <image> in 1 move.
### Input:
10
1 2 3 4 5
### Output:
10
### Input:
6
1 2 6
### Output:
2
### Code:
import re
import math
import decimal
import bisect
def read():
return input().strip()
n = int(read())
ps = [0 for i in range(1, n+1)]
nadd = 10
for x in sorted([int(_) for _ in read().split()]):
ps[x-1] = nadd
nadd += 10
nadd = 15
for i, p in enumerate(ps):
if p == 0:
ps[i] = nadd
nadd += 10
# print(ps)
swapped = True
swapsA = 0
workps = ps[:]
while swapped:
swapped = False
for i in range(n-1):
if workps[i] > workps[i+1]:
tmp = workps[i]
workps[i] = workps[i+1]
workps[i+1] = tmp
swapsA += 1
swapped = True
# print(ps, swapsA)
for i, p in enumerate(ps):
if p % 10 == 5:
ps[i] -= 10
swapped = True
swapsB = 0
workps = ps[:]
while swapped:
swapped = False
for i in range(n-1):
if workps[i] > workps[i+1]:
tmp = workps[i]
workps[i] = workps[i+1]
workps[i+1] = tmp
swapsB += 1
swapped = True
# print(ps, swapsB)
print(min(swapsA, swapsB))
|
p02574 AtCoder Beginner Contest 177 - Coprime_1080 | We have N integers. The i-th number is A_i.
\\{A_i\\} is said to be pairwise coprime when GCD(A_i,A_j)=1 holds for every pair (i, j) such that 1\leq i < j \leq N.
\\{A_i\\} is said to be setwise coprime when \\{A_i\\} is not pairwise coprime but GCD(A_1,\ldots,A_N)=1.
Determine if \\{A_i\\} is pairwise coprime, setwise coprime, or neither.
Here, GCD(\ldots) denotes greatest common divisor.
Constraints
* 2 \leq N \leq 10^6
* 1 \leq A_i\leq 10^6
Input
Input is given from Standard Input in the following format:
N
A_1 \ldots A_N
Output
If \\{A_i\\} is pairwise coprime, print `pairwise coprime`; if \\{A_i\\} is setwise coprime, print `setwise coprime`; if neither, print `not coprime`.
Examples
Input
3
3 4 5
Output
pairwise coprime
Input
3
6 10 15
Output
setwise coprime
Input
3
6 10 16
Output
not coprime | N = int(input())
A = list(map(int,input().split()))
A = sorted(A,reverse = True)
prime = [0] * (10**6+1)
eratos = [True] * (A[0] + 1)
D = [0] * (A[0]+1)
D[1] = 1
for i in range(2,A[0] + 1):
if not eratos[i]:
continue
else:
for j in range(i,A[0] + 1,i):
if not D[j]:
D[j] = i
if j!=i:
eratos[j] = False
for a in A:
while a!=1:
x = D[a]
while a%x==0:
a//=x
prime[x] += 1
if max(prime)<=1:
print('pairwise coprime')
elif max(prime)!=N:
print('setwise coprime')
else:
print('not coprime') | {
"input": [
"3\n6 10 16",
"3\n6 10 15",
"3\n3 4 5",
"3\n6 5 15",
"3\n4 4 2",
"3\n4 3 1",
"3\n4 4 5",
"3\n4 8 2",
"3\n8 8 2",
"3\n4 4 1",
"3\n4 4 4",
"3\n6 8 2",
"3\n7 4 4",
"3\n6 8 3",
"3\n2 4 4",
"3\n1 4 4",
"3\n2 8 4",
"3\n4 8 4",
"3\n6 10 3",
"3\n4 4 7",
"3\n3 5 15",
"3\n4 4 8",
"3\n8 16 2",
"3\n4 2 4",
"3\n6 10 2",
"3\n12 4 4",
"3\n6 9 3",
"3\n2 8 2",
"3\n4 10 4",
"3\n6 15 3",
"3\n4 4 12",
"3\n4 3 4",
"3\n6 10 4",
"3\n4 19 4",
"3\n12 10 4",
"3\n7 19 4",
"3\n7 19 2",
"3\n10 10 15",
"3\n3 5 5",
"3\n10 5 15",
"3\n4 1 5",
"3\n4 14 2",
"3\n8 8 4",
"3\n4 5 1",
"3\n1 4 7",
"3\n7 3 4",
"3\n6 8 6",
"3\n4 6 4",
"3\n6 10 6",
"3\n3 4 7",
"3\n5 5 15",
"3\n4 4 11",
"3\n16 16 2",
"3\n1 3 1",
"3\n12 8 4",
"3\n4 1 4",
"3\n3 15 3",
"3\n1 4 1",
"3\n4 3 7",
"3\n6 6 4",
"3\n3 19 4",
"3\n12 10 6",
"3\n2 19 2",
"3\n17 10 15",
"3\n3 5 8",
"3\n10 5 24",
"3\n8 1 5",
"3\n4 6 2",
"3\n3 5 1",
"3\n1 5 7",
"3\n7 5 4",
"3\n6 12 6",
"3\n3 4 4",
"3\n8 5 15",
"3\n4 4 9",
"3\n18 16 2",
"3\n1 3 2",
"3\n5 1 4",
"3\n3 3 7",
"3\n3 25 4",
"3\n12 1 6",
"3\n26 10 15",
"3\n8 6 2",
"3\n3 5 2",
"3\n1 6 7",
"3\n11 5 4",
"3\n6 2 6",
"3\n2 3 2",
"3\n5 3 7",
"3\n3 1 6",
"3\n26 10 20",
"3\n6 1 6",
"3\n1 3 7",
"3\n7 10 20",
"3\n1 3 12",
"3\n7 10 31",
"3\n1 5 12",
"3\n1 1 12",
"3\n1 1 24",
"3\n6 10 22",
"3\n8 7 15",
"3\n13 8 1",
"3\n5 4 1"
],
"output": [
"not coprime",
"setwise coprime",
"pairwise coprime",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"setwise coprime\n",
"not coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"not coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"not coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"not coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"not coprime\n",
"not coprime\n",
"pairwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"pairwise coprime\n",
"setwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"setwise coprime\n",
"pairwise coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"pairwise coprime\n",
"setwise coprime\n",
"not coprime\n",
"setwise coprime\n",
"pairwise coprime\n",
"setwise coprime\n",
"setwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"not coprime\n",
"pairwise coprime\n",
"pairwise coprime\n",
"pairwise coprime\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
We have N integers. The i-th number is A_i.
\\{A_i\\} is said to be pairwise coprime when GCD(A_i,A_j)=1 holds for every pair (i, j) such that 1\leq i < j \leq N.
\\{A_i\\} is said to be setwise coprime when \\{A_i\\} is not pairwise coprime but GCD(A_1,\ldots,A_N)=1.
Determine if \\{A_i\\} is pairwise coprime, setwise coprime, or neither.
Here, GCD(\ldots) denotes greatest common divisor.
Constraints
* 2 \leq N \leq 10^6
* 1 \leq A_i\leq 10^6
Input
Input is given from Standard Input in the following format:
N
A_1 \ldots A_N
Output
If \\{A_i\\} is pairwise coprime, print `pairwise coprime`; if \\{A_i\\} is setwise coprime, print `setwise coprime`; if neither, print `not coprime`.
Examples
Input
3
3 4 5
Output
pairwise coprime
Input
3
6 10 15
Output
setwise coprime
Input
3
6 10 16
Output
not coprime
### Input:
3
6 10 16
### Output:
not coprime
### Input:
3
6 10 15
### Output:
setwise coprime
### Code:
N = int(input())
A = list(map(int,input().split()))
A = sorted(A,reverse = True)
prime = [0] * (10**6+1)
eratos = [True] * (A[0] + 1)
D = [0] * (A[0]+1)
D[1] = 1
for i in range(2,A[0] + 1):
if not eratos[i]:
continue
else:
for j in range(i,A[0] + 1,i):
if not D[j]:
D[j] = i
if j!=i:
eratos[j] = False
for a in A:
while a!=1:
x = D[a]
while a%x==0:
a//=x
prime[x] += 1
if max(prime)<=1:
print('pairwise coprime')
elif max(prime)!=N:
print('setwise coprime')
else:
print('not coprime') |
p02705 AtCoder Beginner Contest 163 - Circle Pond_1084 | Print the circumference of a circle of radius R.
Constraints
* 1 \leq R \leq 100
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
R
Output
Print the circumference of the circle. Your output is considered correct if and only if its absolute or relative error from our answer is at most 10^{-2}.
Examples
Input
1
Output
6.28318530717958623200
Input
73
Output
458.67252742410977361942 | R=int(input())
print(R*6.2831853)
| {
"input": [
"73",
"1",
"8",
"0",
"4",
"-1",
"2",
"-2",
"3",
"-4",
"6",
"-3",
"-6",
"-9",
"-8",
"-12",
"-5",
"7",
"-10",
"10",
"-17",
"9",
"-7",
"15",
"-11",
"17",
"-18",
"33",
"-31",
"66",
"-16",
"71",
"-13",
"55",
"-19",
"82",
"5",
"13",
"11",
"12",
"19",
"28",
"29",
"24",
"26",
"22",
"-14",
"44",
"-24",
"38",
"14",
"61",
"41",
"58",
"80",
"27",
"87",
"46",
"117",
"18",
"130",
"-20",
"192",
"-36",
"159",
"-53",
"119",
"-59",
"171",
"-105",
"270",
"-143",
"447",
"-241",
"443",
"-470",
"75",
"-50",
"105",
"-84",
"64",
"-26",
"123",
"-22",
"-15",
"-34",
"-21",
"36",
"-23",
"30",
"-32",
"52",
"25",
"132",
"20",
"126",
"39",
"229",
"40",
"402",
"45",
"478"
],
"output": [
"458.67252742410977361942",
"6.28318530717958623200",
"50.2654824574\n",
"0.0\n",
"25.1327412287\n",
"-6.28318530718\n",
"12.5663706144\n",
"-12.5663706144\n",
"18.8495559215\n",
"-25.1327412287\n",
"37.6991118431\n",
"-18.8495559215\n",
"-37.6991118431\n",
"-56.5486677646\n",
"-50.2654824574\n",
"-75.3982236862\n",
"-31.4159265359\n",
"43.9822971503\n",
"-62.8318530718\n",
"62.8318530718\n",
"-106.814150222\n",
"56.5486677646\n",
"-43.9822971503\n",
"94.2477796077\n",
"-69.115038379\n",
"106.814150222\n",
"-113.097335529\n",
"207.345115137\n",
"-194.778744523\n",
"414.690230274\n",
"-100.530964915\n",
"446.10615681\n",
"-81.6814089933\n",
"345.575191895\n",
"-119.380520836\n",
"515.221195189\n",
"31.4159265359\n",
"81.6814089933\n",
"69.115038379\n",
"75.3982236862\n",
"119.380520836\n",
"175.929188601\n",
"182.212373908\n",
"150.796447372\n",
"163.362817987\n",
"138.230076758\n",
"-87.9645943005\n",
"276.460153516\n",
"-150.796447372\n",
"238.761041673\n",
"87.9645943005\n",
"383.274303738\n",
"257.610597594\n",
"364.424747816\n",
"502.654824574\n",
"169.646003294\n",
"546.637121725\n",
"289.02652413\n",
"735.13268094\n",
"113.097335529\n",
"816.814089933\n",
"-125.663706144\n",
"1206.37157898\n",
"-226.194671058\n",
"999.026463842\n",
"-333.008821281\n",
"747.699051554\n",
"-370.707933124\n",
"1074.42468753\n",
"-659.734457254\n",
"1696.46003294\n",
"-898.495498927\n",
"2808.58383231\n",
"-1514.24765903\n",
"2783.45109108\n",
"-2953.09709437\n",
"471.238898038\n",
"-314.159265359\n",
"659.734457254\n",
"-527.787565803\n",
"402.123859659\n",
"-163.362817987\n",
"772.831792783\n",
"-138.230076758\n",
"-94.2477796077\n",
"-213.628300444\n",
"-131.946891451\n",
"226.194671058\n",
"-144.513262065\n",
"188.495559215\n",
"-201.06192983\n",
"326.725635973\n",
"157.079632679\n",
"829.380460548\n",
"125.663706144\n",
"791.681348705\n",
"245.04422698\n",
"1438.84943534\n",
"251.327412287\n",
"2525.84049349\n",
"282.743338823\n",
"3003.36257683\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Print the circumference of a circle of radius R.
Constraints
* 1 \leq R \leq 100
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
R
Output
Print the circumference of the circle. Your output is considered correct if and only if its absolute or relative error from our answer is at most 10^{-2}.
Examples
Input
1
Output
6.28318530717958623200
Input
73
Output
458.67252742410977361942
### Input:
73
### Output:
458.67252742410977361942
### Input:
1
### Output:
6.28318530717958623200
### Code:
R=int(input())
print(R*6.2831853)
|
p02834 AtCoder Beginner Contest 148 - Playing Tag on Tree_1088 | We have a tree with N vertices. The i-th edge connects Vertex A_i and B_i bidirectionally.
Takahashi is standing at Vertex u, and Aoki is standing at Vertex v.
Now, they will play a game of tag as follows:
* 1. If Takahashi and Aoki are standing at the same vertex, the game ends. Otherwise, Takahashi moves to a vertex of his choice that is adjacent to his current vertex.
* 2. If Takahashi and Aoki are standing at the same vertex, the game ends. Otherwise, Aoki moves to a vertex of his choice that is adjacent to his current vertex.
* 3. Go back to step 1.
Takahashi performs his moves so that the game ends as late as possible, while Aoki performs his moves so that the game ends as early as possible.
Find the number of moves Aoki will perform before the end of the game if both Takahashi and Aoki know each other's position and strategy.
It can be proved that the game is bound to end.
Constraints
* 2 \leq N \leq 10^5
* 1 \leq u,v \leq N
* u \neq v
* 1 \leq A_i,B_i \leq N
* The given graph is a tree.
Input
Input is given from Standard Input in the following format:
N u v
A_1 B_1
:
A_{N-1} B_{N-1}
Output
Print the number of moves Aoki will perform before the end of the game.
Examples
Input
5 4 1
1 2
2 3
3 4
3 5
Output
2
Input
5 4 5
1 2
1 3
1 4
1 5
Output
1
Input
2 1 2
1 2
Output
0
Input
9 6 1
1 2
2 3
3 4
4 5
5 6
4 7
7 8
8 9
Output
5 | import sys
sys.setrecursionlimit(10**8)
input = sys.stdin.readline
n, u, v = map(int, input().split())
u, v = u - 1, v - 1
graph = [[] for _ in range(n)]
for _ in range(n - 1):
a, b = map(int, input().split())
a, b = a - 1, b - 1
graph[a].append(b)
graph[b].append(a)
def dfs(v, d, count):
count[v] = d
for v_next in graph[v]:
if count[v_next] >= 0:
continue
dfs(v_next, d + 1, count)
count_tak = [-1] * n
dfs(u, 0, count_tak)
count_aok = [-1] * n
dfs(v, 0, count_aok)
ans = 0
for i in range(n):
if count_tak[i] < count_aok[i]:
ans = max(ans, count_aok[i] - 1)
print(ans)
| {
"input": [
"2 1 2\n1 2",
"5 4 5\n1 2\n1 3\n1 4\n1 5",
"5 4 1\n1 2\n2 3\n3 4\n3 5",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n5 6\n4 7\n7 8\n8 9",
"5 4 5\n1 2\n1 3\n2 4\n1 5",
"5 4 1\n1 2\n1 3\n3 4\n3 5",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"5 4 1\n1 2\n2 3\n1 4\n3 5",
"9 6 1\n1 2\n2 4\n3 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 6\n4 5\n7 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 3\n3 8\n6 5\n7 6\n4 7\n4 8\n8 9",
"5 4 5\n1 2\n1 5\n2 4\n1 5",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n4 8\n8 9",
"9 6 1\n1 4\n2 3\n3 4\n4 5\n7 6\n4 7\n4 8\n8 9",
"5 4 5\n2 2\n1 3\n1 4\n1 5",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 4\n3 4\n4 5\n5 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 4\n3 4\n4 5\n9 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 3\n3 6\n4 5\n8 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 4\n2 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n8 7\n8 9",
"9 6 1\n1 2\n2 1\n3 4\n4 5\n9 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 1\n3 4\n7 5\n9 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 6\n3 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"5 5 1\n1 2\n2 3\n1 4\n3 5",
"9 6 1\n1 2\n2 5\n3 4\n4 5\n7 6\n4 7\n4 8\n8 9",
"9 6 1\n1 4\n4 3\n3 4\n4 5\n7 6\n4 7\n4 8\n8 9",
"9 3 1\n1 2\n2 4\n3 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n1 6\n4 7\n4 7\n8 9",
"9 6 2\n1 2\n2 4\n3 4\n4 5\n5 6\n4 7\n4 8\n2 9",
"9 6 1\n1 3\n2 3\n3 6\n4 5\n7 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 4\n3 4\n4 5\n9 6\n4 7\n8 8\n2 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n8 1\n8 9",
"5 5 1\n1 2\n2 3\n1 4\n4 5",
"9 3 1\n1 2\n2 4\n3 4\n4 7\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n3 5\n1 6\n4 7\n4 7\n8 9",
"9 6 2\n1 3\n2 4\n3 4\n4 5\n5 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n8 1\n7 9",
"5 5 1\n1 2\n4 3\n1 4\n4 5",
"5 5 1\n1 2\n2 3\n3 4\n3 5",
"5 1 5\n1 2\n1 3\n2 4\n1 5",
"5 4 2\n1 2\n1 3\n3 4\n3 5",
"9 6 1\n1 2\n2 3\n3 4\n6 5\n7 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n4 7\n2 9",
"9 6 1\n1 2\n2 4\n2 4\n4 5\n5 6\n4 7\n4 8\n9 9",
"9 6 1\n1 2\n2 5\n3 4\n4 5\n7 6\n4 7\n8 7\n8 9",
"9 6 1\n1 2\n2 1\n3 4\n7 5\n9 6\n4 3\n4 8\n2 9",
"9 6 1\n2 2\n2 3\n3 4\n4 5\n1 6\n4 7\n4 7\n8 9",
"9 6 1\n1 3\n2 3\n3 6\n4 5\n7 8\n4 7\n4 7\n8 9",
"9 3 1\n1 2\n2 4\n3 4\n4 7\n5 6\n4 7\n4 5\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n5 6\n4 7\n8 1\n7 9",
"5 5 1\n2 2\n4 3\n1 4\n4 5",
"9 6 1\n1 2\n2 4\n2 4\n4 5\n5 6\n4 7\n4 8\n3 9",
"9 6 1\n1 2\n2 1\n3 4\n7 5\n9 6\n4 3\n4 8\n1 9",
"9 6 1\n2 2\n2 3\n3 4\n4 8\n1 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 3\n3 6\n4 5\n7 8\n4 7\n4 7\n8 9",
"9 3 1\n1 2\n2 4\n3 4\n4 7\n5 4\n4 7\n4 5\n8 9",
"9 6 1\n1 2\n2 3\n3 7\n6 5\n7 6\n4 7\n4 8\n8 9",
"5 4 2\n1 2\n2 3\n3 4\n3 5",
"5 4 1\n2 2\n1 3\n3 4\n3 5",
"9 7 1\n1 2\n2 3\n3 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n8 8\n8 9",
"9 6 1\n1 2\n2 4\n3 4\n4 5\n4 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 8\n4 7\n8 9",
"9 6 1\n1 2\n2 4\n3 4\n4 5\n5 6\n4 2\n4 8\n2 9",
"9 6 1\n1 4\n2 3\n3 4\n4 5\n7 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 4\n2 4\n4 5\n7 6\n4 7\n4 8\n8 9",
"9 6 2\n1 2\n2 1\n3 4\n4 5\n9 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 1\n3 4\n2 5\n9 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 8\n3 4\n4 5\n7 6\n4 7\n4 8\n8 9",
"9 3 1\n1 2\n2 4\n3 4\n6 5\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n1 3\n3 4\n4 5\n1 6\n4 7\n4 7\n8 9",
"9 6 2\n1 2\n2 4\n3 6\n4 5\n5 6\n4 7\n4 8\n2 9",
"9 6 2\n1 3\n2 4\n3 5\n4 5\n5 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 3\n2 4\n4 5\n7 6\n4 7\n8 1\n7 9",
"5 5 1\n1 2\n4 5\n1 4\n4 5",
"5 1 5\n1 2\n1 3\n2 4\n2 5",
"9 3 1\n1 2\n2 4\n3 4\n4 7\n3 6\n4 7\n4 5\n8 9",
"9 6 1\n1 2\n2 3\n3 7\n4 5\n5 6\n4 7\n8 1\n7 9",
"9 6 1\n1 2\n2 3\n3 8\n6 5\n7 6\n4 7\n4 8\n6 9",
"9 6 1\n1 2\n2 3\n3 6\n7 5\n7 8\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n8 8\n4 9",
"9 6 1\n1 2\n2 4\n6 4\n4 5\n4 6\n4 7\n4 8\n8 9",
"9 6 1\n1 4\n2 3\n3 4\n4 5\n7 6\n4 7\n4 7\n4 9",
"9 6 2\n1 2\n2 1\n4 4\n4 5\n9 6\n4 7\n4 8\n2 9",
"9 6 1\n1 2\n2 1\n3 4\n2 5\n9 6\n7 7\n4 8\n2 9",
"9 6 1\n1 2\n2 8\n3 4\n4 5\n7 6\n4 7\n4 8\n8 4",
"9 6 1\n1 2\n1 3\n3 4\n4 5\n1 6\n4 7\n4 7\n1 9",
"9 6 1\n1 3\n2 3\n2 4\n4 5\n7 6\n4 7\n8 1\n7 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 7\n8 8\n5 9",
"9 6 1\n1 4\n2 3\n3 4\n8 5\n7 6\n4 7\n4 7\n4 9",
"9 6 1\n1 2\n2 1\n3 4\n2 5\n9 6\n7 2\n4 8\n2 9",
"9 2 1\n1 2\n1 3\n3 4\n4 5\n1 6\n4 7\n4 7\n1 9",
"9 6 1\n1 2\n2 3\n2 4\n4 5\n7 6\n4 7\n8 8\n5 9",
"5 4 1\n1 2\n2 3\n5 4\n3 5",
"9 6 1\n1 2\n2 3\n3 4\n1 5\n5 6\n4 7\n7 8\n8 9",
"9 6 1\n1 4\n2 3\n3 4\n4 5\n8 6\n4 7\n4 8\n8 9",
"5 4 5\n2 2\n2 3\n1 4\n1 5",
"9 2 1\n1 2\n2 4\n3 4\n4 5\n5 6\n4 7\n4 8\n8 9",
"9 6 1\n1 2\n2 3\n3 6\n3 5\n8 6\n4 7\n4 7\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n4 6\n8 7\n8 9",
"9 6 1\n1 2\n2 3\n3 4\n4 5\n7 6\n2 7\n8 1\n8 9",
"5 5 1\n2 2\n2 3\n1 4\n4 5",
"9 6 1\n1 2\n2 3\n3 4\n2 5\n1 6\n4 7\n4 7\n8 9"
],
"output": [
"0",
"1",
"2",
"5",
"2\n",
"1\n",
"4\n",
"0\n",
"3\n",
"5\n",
"6\n",
"2\n",
"4\n",
"2\n",
"1\n",
"4\n",
"3\n",
"2\n",
"4\n",
"3\n",
"5\n",
"2\n",
"2\n",
"5\n",
"2\n",
"4\n",
"2\n",
"3\n",
"0\n",
"2\n",
"4\n",
"2\n",
"4\n",
"1\n",
"3\n",
"0\n",
"2\n",
"4\n",
"1\n",
"2\n",
"2\n",
"2\n",
"5\n",
"4\n",
"3\n",
"5\n",
"2\n",
"0\n",
"1\n",
"3\n",
"4\n",
"1\n",
"3\n",
"1\n",
"0\n",
"2\n",
"2\n",
"5\n",
"1\n",
"1\n",
"4\n",
"4\n",
"3\n",
"4\n",
"3\n",
"2\n",
"3\n",
"1\n",
"2\n",
"4\n",
"3\n",
"0\n",
"3\n",
"3\n",
"3\n",
"1\n",
"2\n",
"3\n",
"5\n",
"6\n",
"2\n",
"4\n",
"3\n",
"2\n",
"1\n",
"2\n",
"4\n",
"0\n",
"4\n",
"4\n",
"2\n",
"2\n",
"0\n",
"3\n",
"3\n",
"1\n",
"2\n",
"1\n",
"3\n",
"4\n",
"6\n",
"2\n",
"1\n",
"0\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
We have a tree with N vertices. The i-th edge connects Vertex A_i and B_i bidirectionally.
Takahashi is standing at Vertex u, and Aoki is standing at Vertex v.
Now, they will play a game of tag as follows:
* 1. If Takahashi and Aoki are standing at the same vertex, the game ends. Otherwise, Takahashi moves to a vertex of his choice that is adjacent to his current vertex.
* 2. If Takahashi and Aoki are standing at the same vertex, the game ends. Otherwise, Aoki moves to a vertex of his choice that is adjacent to his current vertex.
* 3. Go back to step 1.
Takahashi performs his moves so that the game ends as late as possible, while Aoki performs his moves so that the game ends as early as possible.
Find the number of moves Aoki will perform before the end of the game if both Takahashi and Aoki know each other's position and strategy.
It can be proved that the game is bound to end.
Constraints
* 2 \leq N \leq 10^5
* 1 \leq u,v \leq N
* u \neq v
* 1 \leq A_i,B_i \leq N
* The given graph is a tree.
Input
Input is given from Standard Input in the following format:
N u v
A_1 B_1
:
A_{N-1} B_{N-1}
Output
Print the number of moves Aoki will perform before the end of the game.
Examples
Input
5 4 1
1 2
2 3
3 4
3 5
Output
2
Input
5 4 5
1 2
1 3
1 4
1 5
Output
1
Input
2 1 2
1 2
Output
0
Input
9 6 1
1 2
2 3
3 4
4 5
5 6
4 7
7 8
8 9
Output
5
### Input:
2 1 2
1 2
### Output:
0
### Input:
5 4 5
1 2
1 3
1 4
1 5
### Output:
1
### Code:
import sys
sys.setrecursionlimit(10**8)
input = sys.stdin.readline
n, u, v = map(int, input().split())
u, v = u - 1, v - 1
graph = [[] for _ in range(n)]
for _ in range(n - 1):
a, b = map(int, input().split())
a, b = a - 1, b - 1
graph[a].append(b)
graph[b].append(a)
def dfs(v, d, count):
count[v] = d
for v_next in graph[v]:
if count[v_next] >= 0:
continue
dfs(v_next, d + 1, count)
count_tak = [-1] * n
dfs(u, 0, count_tak)
count_aok = [-1] * n
dfs(v, 0, count_aok)
ans = 0
for i in range(n):
if count_tak[i] < count_aok[i]:
ans = max(ans, count_aok[i] - 1)
print(ans)
|
p02971 AtCoder Beginner Contest 134 - Exception Handling_1092 | You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), answer the following question:
* Find the maximum value among the N-1 elements other than A_i in the sequence.
Constraints
* 2 \leq N \leq 200000
* 1 \leq A_i \leq 200000
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1
:
A_N
Output
Print N lines. The i-th line (1 \leq i \leq N) should contain the maximum value among the N-1 elements other than A_i in the sequence.
Examples
Input
3
1
4
3
Output
4
3
4
Input
2
5
5
Output
5
5 | n=int(input())
a=[int(input()) for _ in [0]*n]
b,c=sorted(a,reverse=True)[0:2]
for A in a:
if A==b:
print(c)
else:
print(b) | {
"input": [
"2\n5\n5",
"3\n1\n4\n3",
"2\n5\n4",
"3\n1\n0\n3",
"2\n3\n4",
"3\n1\n0\n2",
"2\n4\n4",
"3\n1\n0\n1",
"2\n4\n0",
"3\n1\n2\n1",
"3\n1\n3\n1",
"3\n1\n3\n2",
"3\n1\n2\n2",
"3\n1\n4\n2",
"3\n3\n4\n2",
"3\n2\n4\n4",
"3\n2\n3\n4",
"3\n2\n3\n7",
"3\n2\n6\n7",
"3\n2\n1\n7",
"3\n0\n1\n7",
"3\n-1\n1\n4",
"3\n-1\n2\n4",
"3\n-2\n0\n2",
"3\n-2\n0\n4",
"2\n5\n3",
"3\n1\n2\n3",
"2\n5\n8",
"2\n3\n5",
"2\n8\n4",
"3\n1\n0\n0",
"2\n0\n0",
"3\n1\n5\n2",
"3\n1\n5\n3",
"3\n1\n8\n2",
"3\n2\n6\n2",
"3\n2\n6\n4",
"3\n0\n1\n13",
"3\n0\n0\n7",
"3\n0\n1\n9",
"2\n5\n0",
"3\n1\n2\n6",
"2\n5\n11",
"2\n5\n2",
"2\n8\n8",
"2\n1\n0",
"3\n2\n1\n1",
"3\n0\n-1\n3",
"3\n1\n5\n0",
"3\n1\n5\n6",
"3\n1\n9\n2",
"3\n3\n6\n3",
"3\n2\n0\n0",
"3\n1\n5\n7",
"3\n0\n1\n12",
"3\n-1\n4\n1",
"3\n-1\n0\n0",
"2\n5\n1",
"3\n1\n2\n12",
"2\n5\n12",
"2\n3\n2",
"2\n8\n2",
"3\n1\n9\n3",
"3\n4\n2\n1",
"3\n-1\n0\n13",
"3\n0\n2\n13",
"3\n0\n1\n11",
"2\n2\n1",
"3\n1\n2\n11",
"2\n2\n12",
"3\n3\n-2\n3",
"2\n1\n2",
"2\n7\n2",
"3\n4\n0\n1",
"3\n1\n9\n1",
"3\n0\n5\n8",
"3\n1\n12\n3",
"3\n0\n4\n13",
"3\n0\n1\n8",
"2\n1\n1",
"2\n2\n20",
"2\n2\n0",
"2\n8\n0",
"3\n0\n0\n1",
"3\n1\n0\n6",
"3\n1\n10\n0",
"3\n1\n12\n0",
"3\n-2\n0\n16",
"3\n-1\n1\n0",
"3\n-1\n4\n0",
"2\n2\n2",
"2\n0\n1",
"3\n3\n-1\n5",
"2\n3\n0",
"2\n15\n0",
"3\n1\n0\n10",
"3\n2\n10\n0",
"3\n1\n5\n10",
"3\n0\n12\n0",
"3\n4\n0\n0",
"3\n-2\n0\n5",
"3\n1\n5\n13"
],
"output": [
"5\n5",
"4\n3\n4",
"4\n5\n",
"3\n3\n1\n",
"4\n3\n",
"2\n2\n1\n",
"4\n4\n",
"1\n1\n1\n",
"0\n4\n",
"2\n1\n2\n",
"3\n1\n3\n",
"3\n2\n3\n",
"2\n2\n2\n",
"4\n2\n4\n",
"4\n3\n4\n",
"4\n4\n4\n",
"4\n4\n3\n",
"7\n7\n3\n",
"7\n7\n6\n",
"7\n7\n2\n",
"7\n7\n1\n",
"4\n4\n1\n",
"4\n4\n2\n",
"2\n2\n0\n",
"4\n4\n0\n",
"3\n5\n",
"3\n3\n2\n",
"8\n5\n",
"5\n3\n",
"4\n8\n",
"0\n1\n1\n",
"0\n0\n",
"5\n2\n5\n",
"5\n3\n5\n",
"8\n2\n8\n",
"6\n2\n6\n",
"6\n4\n6\n",
"13\n13\n1\n",
"7\n7\n0\n",
"9\n9\n1\n",
"0\n5\n",
"6\n6\n2\n",
"11\n5\n",
"2\n5\n",
"8\n8\n",
"0\n1\n",
"1\n2\n2\n",
"3\n3\n0\n",
"5\n1\n5\n",
"6\n6\n5\n",
"9\n2\n9\n",
"6\n3\n6\n",
"0\n2\n2\n",
"7\n7\n5\n",
"12\n12\n1\n",
"4\n1\n4\n",
"0\n0\n0\n",
"1\n5\n",
"12\n12\n2\n",
"12\n5\n",
"2\n3\n",
"2\n8\n",
"9\n3\n9\n",
"2\n4\n4\n",
"13\n13\n0\n",
"13\n13\n2\n",
"11\n11\n1\n",
"1\n2\n",
"11\n11\n2\n",
"12\n2\n",
"3\n3\n3\n",
"2\n1\n",
"2\n7\n",
"1\n4\n4\n",
"9\n1\n9\n",
"8\n8\n5\n",
"12\n3\n12\n",
"13\n13\n4\n",
"8\n8\n1\n",
"1\n1\n",
"20\n2\n",
"0\n2\n",
"0\n8\n",
"1\n1\n0\n",
"6\n6\n1\n",
"10\n1\n10\n",
"12\n1\n12\n",
"16\n16\n0\n",
"1\n0\n1\n",
"4\n0\n4\n",
"2\n2\n",
"1\n0\n",
"5\n5\n3\n",
"0\n3\n",
"0\n15\n",
"10\n10\n1\n",
"10\n2\n10\n",
"10\n10\n5\n",
"12\n0\n12\n",
"0\n4\n4\n",
"5\n5\n0\n",
"13\n13\n5\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a sequence of length N: A_1, A_2, ..., A_N. For each integer i between 1 and N (inclusive), answer the following question:
* Find the maximum value among the N-1 elements other than A_i in the sequence.
Constraints
* 2 \leq N \leq 200000
* 1 \leq A_i \leq 200000
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1
:
A_N
Output
Print N lines. The i-th line (1 \leq i \leq N) should contain the maximum value among the N-1 elements other than A_i in the sequence.
Examples
Input
3
1
4
3
Output
4
3
4
Input
2
5
5
Output
5
5
### Input:
2
5
5
### Output:
5
5
### Input:
3
1
4
3
### Output:
4
3
4
### Code:
n=int(input())
a=[int(input()) for _ in [0]*n]
b,c=sorted(a,reverse=True)[0:2]
for A in a:
if A==b:
print(c)
else:
print(b) |
p03107 AtCoder Beginner Contest 120 - Unification_1096 | There are N cubes stacked vertically on a desk.
You are given a string S of length N. The color of the i-th cube from the bottom is red if the i-th character in S is `0`, and blue if that character is `1`.
You can perform the following operation any number of times: choose a red cube and a blue cube that are adjacent, and remove them. Here, the cubes that were stacked on the removed cubes will fall down onto the object below them.
At most how many cubes can be removed?
Constraints
* 1 \leq N \leq 10^5
* |S| = N
* Each character in S is `0` or `1`.
Input
Input is given from Standard Input in the following format:
S
Output
Print the maximum number of cubes that can be removed.
Examples
Input
0011
Output
4
Input
11011010001011
Output
12
Input
0
Output
0 | S = input()
print(min(S.count('1'),S.count('0'))*2) | {
"input": [
"0",
"0011",
"11011010001011",
"1",
"0010",
"11011010001001",
"11001010001001",
"11001000001001",
"1010",
"01001000101000",
"11011011111101",
"0000",
"1000",
"11001000101001",
"1011",
"11001010101001",
"1100",
"01001010101001",
"0100",
"01001000101001",
"0101",
"1101",
"01001001101000",
"1111",
"01001001100000",
"1110",
"01001001100100",
"0001",
"01001011100100",
"0110",
"01001010100100",
"0111",
"01001000100100",
"1001",
"11001000100100",
"11000000100100",
"11000000101100",
"11000000111100",
"10000000111100",
"10000000111000",
"11000000111000",
"11001000111000",
"11001000111001",
"11001010111001",
"11001010111101",
"11001011111101",
"01011011111101",
"01011011011101",
"01111011011101",
"01111011011100",
"01111011111100",
"00111011111100",
"00111111111100",
"00111111111000",
"00111111011000",
"00011111011000",
"00011111111000",
"00011110111000",
"01011110111000",
"01011110111010",
"11011110111010",
"11010110111010",
"11010110110010",
"11010100110010",
"11010100111010",
"11010101111010",
"11010101110010",
"11000101110010",
"11000101100010",
"11000111100010",
"11000110100010",
"01000110100010",
"01000010100010",
"01100010100010",
"01100110100010",
"01100110101010",
"01100110001010",
"01100111001010",
"01101111001010",
"01101111001000",
"01101111001001",
"01001111001001",
"01001110001001",
"00001110001001",
"00001110001011",
"00001110000011",
"00001110010011",
"00001010010011",
"00001010110011",
"00101010110011",
"00101010111011",
"00101000111011",
"00101000011011",
"00101000110011",
"01101000110011",
"01101100110011",
"00101100110011",
"00001100110011",
"00001100111011",
"00001000111011",
"01001000111011",
"01011000111011",
"01010000111011"
],
"output": [
"0",
"4",
"12",
"0\n",
"2\n",
"14\n",
"12\n",
"10\n",
"4\n",
"8\n",
"6\n",
"0\n",
"2\n",
"12\n",
"2\n",
"14\n",
"4\n",
"12\n",
"2\n",
"10\n",
"4\n",
"2\n",
"10\n",
"0\n",
"8\n",
"2\n",
"10\n",
"2\n",
"12\n",
"4\n",
"10\n",
"2\n",
"8\n",
"4\n",
"10\n",
"8\n",
"10\n",
"12\n",
"10\n",
"8\n",
"10\n",
"12\n",
"14\n",
"12\n",
"10\n",
"8\n",
"8\n",
"10\n",
"8\n",
"10\n",
"8\n",
"10\n",
"8\n",
"10\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"10\n",
"8\n",
"10\n",
"12\n",
"14\n",
"12\n",
"10\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"10\n",
"8\n",
"10\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"10\n",
"12\n",
"10\n",
"12\n",
"10\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"14\n",
"12\n",
"14\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are N cubes stacked vertically on a desk.
You are given a string S of length N. The color of the i-th cube from the bottom is red if the i-th character in S is `0`, and blue if that character is `1`.
You can perform the following operation any number of times: choose a red cube and a blue cube that are adjacent, and remove them. Here, the cubes that were stacked on the removed cubes will fall down onto the object below them.
At most how many cubes can be removed?
Constraints
* 1 \leq N \leq 10^5
* |S| = N
* Each character in S is `0` or `1`.
Input
Input is given from Standard Input in the following format:
S
Output
Print the maximum number of cubes that can be removed.
Examples
Input
0011
Output
4
Input
11011010001011
Output
12
Input
0
Output
0
### Input:
0
### Output:
0
### Input:
0011
### Output:
4
### Code:
S = input()
print(min(S.count('1'),S.count('0'))*2) |
p03254 AtCoder Grand Contest 027 - Candy Distribution Again_1100 | There are N children, numbered 1, 2, ..., N.
Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets.
For each i (1 \leq i \leq N), Child i will be happy if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
Constraints
* All values in input are integers.
* 2 \leq N \leq 100
* 1 \leq x \leq 10^9
* 1 \leq a_i \leq 10^9
Input
Input is given from Standard Input in the following format:
N x
a_1 a_2 ... a_N
Output
Print the maximum possible number of happy children.
Examples
Input
3 70
20 30 10
Output
2
Input
3 10
20 30 10
Output
1
Input
4 1111
1 10 100 1000
Output
4
Input
2 10
20 20
Output
0 | n, x = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
ans = 0
for i in a:
if x < i:
break
ans += 1
x -= i
else:
if x > 0:
ans -= 1
print(ans) | {
"input": [
"4 1111\n1 10 100 1000",
"3 70\n20 30 10",
"3 10\n20 30 10",
"2 10\n20 20",
"3 70\n20 30 5",
"3 10\n20 18 10",
"2 10\n29 20",
"4 1111\n1 5 100 1000",
"4 1111\n-1 2 110 1000",
"3 70\n20 49 5",
"3 10\n20 9 10",
"2 10\n30 20",
"3 70\n4 49 5",
"3 10\n20 4 10",
"2 0\n30 20",
"3 70\n4 40 5",
"3 10\n20 1 10",
"2 1\n30 20",
"3 70\n4 72 5",
"2 10\n20 1 10",
"2 1\n30 26",
"3 70\n0 72 5",
"2 0\n30 26",
"3 66\n20 30 10",
"3 10\n18 30 10",
"2 10\n20 2",
"3 93\n20 30 5",
"3 11\n20 18 10",
"2 10\n29 37",
"3 70\n20 32 5",
"3 10\n16 9 10",
"2 10\n35 20",
"3 70\n4 24 5",
"2 0\n30 17",
"3 62\n4 40 5",
"3 13\n20 1 10",
"3 70\n4 17 5",
"2 9\n20 1 10",
"2 1\n30 1",
"3 70\n0 72 6",
"2 0\n20 26",
"4 1101\n1 5 100 1000",
"3 66\n20 30 9",
"3 0\n18 30 10",
"3 93\n20 30 4",
"3 11\n37 18 10",
"2 19\n29 37",
"3 70\n20 32 6",
"2 13\n35 20",
"3 70\n4 24 7",
"3 62\n1 40 5",
"3 70\n4 2 5",
"3 70\n1 72 6",
"1 0\n20 26",
"4 1101\n0 5 100 1000",
"3 11\n37 18 9",
"3 70\n20 32 2",
"2 13\n35 34",
"3 23\n4 24 7",
"3 62\n1 80 5",
"3 70\n2 2 5",
"3 70\n1 118 6",
"1 0\n20 48",
"4 1101\n0 5 110 1000",
"3 11\n37 9 9",
"3 70\n20 32 3",
"3 23\n4 24 11",
"3 62\n1 99 5",
"3 70\n0 2 5",
"3 121\n1 118 6",
"1 0\n20 59",
"4 1101\n1 5 110 1000",
"3 70\n20 39 3",
"3 23\n4 18 11",
"3 62\n1 164 5",
"3 70\n-1 2 5",
"1 0\n20 103",
"4 1101\n1 2 110 1000",
"3 70\n29 39 3",
"3 23\n6 18 11",
"3 62\n1 164 1",
"3 24\n0 2 5",
"4 1101\n0 2 110 1000",
"3 70\n29 39 4",
"3 23\n3 18 11",
"3 14\n0 2 5",
"3 70\n29 43 4",
"3 23\n3 22 11",
"3 14\n0 3 5",
"3 79\n29 43 4",
"3 18\n3 22 11",
"3 14\n1 3 5",
"3 79\n29 59 4",
"3 18\n3 32 11",
"3 26\n1 3 5",
"3 79\n29 18 4",
"3 18\n3 32 15",
"3 26\n1 6 5",
"3 30\n29 18 4",
"3 28\n3 32 15",
"3 26\n1 10 5",
"3 26\n29 18 4",
"3 51\n3 32 15",
"3 26\n1 10 10"
],
"output": [
"4",
"2",
"1",
"0",
"2\n",
"1\n",
"0\n",
"3\n",
"4\n",
"2\n",
"1\n",
"0\n",
"2\n",
"1\n",
"0\n",
"2\n",
"1\n",
"0\n",
"2\n",
"1\n",
"0\n",
"2\n",
"0\n",
"2\n",
"1\n",
"1\n",
"2\n",
"1\n",
"0\n",
"2\n",
"1\n",
"0\n",
"2\n",
"0\n",
"2\n",
"2\n",
"2\n",
"1\n",
"1\n",
"2\n",
"0\n",
"3\n",
"2\n",
"0\n",
"2\n",
"1\n",
"0\n",
"2\n",
"0\n",
"2\n",
"2\n",
"2\n",
"2\n",
"0\n",
"3\n",
"1\n",
"2\n",
"0\n",
"2\n",
"2\n",
"2\n",
"2\n",
"0\n",
"3\n",
"1\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"0\n",
"3\n",
"2\n",
"2\n",
"2\n",
"2\n",
"0\n",
"3\n",
"2\n",
"2\n",
"2\n",
"2\n",
"3\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n",
"2\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are N children, numbered 1, 2, ..., N.
Snuke has decided to distribute x sweets among them. He needs to give out all the x sweets, but some of the children may get zero sweets.
For each i (1 \leq i \leq N), Child i will be happy if he/she gets exactly a_i sweets. Snuke is trying to maximize the number of happy children by optimally distributing the sweets. Find the maximum possible number of happy children.
Constraints
* All values in input are integers.
* 2 \leq N \leq 100
* 1 \leq x \leq 10^9
* 1 \leq a_i \leq 10^9
Input
Input is given from Standard Input in the following format:
N x
a_1 a_2 ... a_N
Output
Print the maximum possible number of happy children.
Examples
Input
3 70
20 30 10
Output
2
Input
3 10
20 30 10
Output
1
Input
4 1111
1 10 100 1000
Output
4
Input
2 10
20 20
Output
0
### Input:
4 1111
1 10 100 1000
### Output:
4
### Input:
3 70
20 30 10
### Output:
2
### Code:
n, x = map(int, input().split())
a = list(map(int, input().split()))
a.sort()
ans = 0
for i in a:
if x < i:
break
ans += 1
x -= i
else:
if x > 0:
ans -= 1
print(ans) |
p03407 AtCoder Beginner Contest 091 - Two Coins_1104 | An elementary school student Takahashi has come to a variety store.
He has two coins, A-yen and B-yen coins (yen is the currency of Japan), and wants to buy a toy that costs C yen. Can he buy it?
Note that he lives in Takahashi Kingdom, and may have coins that do not exist in Japan.
Constraints
* All input values are integers.
* 1 \leq A, B \leq 500
* 1 \leq C \leq 1000
Input
Input is given from Standard Input in the following format:
A B C
Output
If Takahashi can buy the toy, print `Yes`; if he cannot, print `No`.
Examples
Input
50 100 120
Output
Yes
Input
500 100 1000
Output
No
Input
19 123 143
Output
No
Input
19 123 142
Output
Yes | a,b,c = map(int,input().split())
if c > a + b:
print('No')
else:
print('Yes') | {
"input": [
"500 100 1000",
"19 123 143",
"19 123 142",
"50 100 120",
"500 000 1000",
"31 123 143",
"19 123 141",
"50 100 127",
"500 101 1000",
"55 123 143",
"1 123 141",
"50 000 127",
"500 001 1000",
"64 123 143",
"1 123 281",
"50 001 127",
"726 101 1000",
"64 123 92",
"1 229 281",
"74 001 127",
"726 101 1100",
"64 17 92",
"1 229 514",
"74 101 127",
"726 111 1100",
"64 17 106",
"1 386 514",
"74 101 41",
"726 111 1000",
"64 17 44",
"0 386 514",
"59 101 41",
"726 111 1110",
"64 17 49",
"0 386 696",
"59 100 41",
"726 011 1110",
"64 17 43",
"0 386 1197",
"104 100 41",
"726 011 1111",
"64 23 43",
"0 730 1197",
"104 101 41",
"726 011 1011",
"31 23 43",
"0 730 1200",
"120 101 41",
"726 001 1011",
"31 36 43",
"0 730 303",
"120 100 41",
"726 001 1111",
"31 36 76",
"0 1224 303",
"120 000 41",
"1031 001 1111",
"31 36 83",
"0 1224 110",
"120 000 2",
"1977 001 1111",
"31 36 14",
"0 2224 110",
"120 100 2",
"1977 011 1111",
"31 64 14",
"0 2224 111",
"120 100 4",
"1977 011 1110",
"57 64 14",
"0 2224 011",
"120 110 4",
"1977 011 0110",
"57 20 14",
"0 2224 010",
"120 101 4",
"1677 011 0110",
"57 7 14",
"0 2059 010",
"120 101 5",
"1677 011 0100",
"57 1 14",
"0 3995 010",
"120 001 5",
"1677 111 0100",
"27 1 14",
"0 6831 010",
"120 011 5",
"3233 111 0100",
"12 1 14",
"0 6831 000",
"120 011 1",
"292 111 0100",
"12 1 5",
"0 2022 000",
"120 001 1",
"292 011 0100",
"17 1 5",
"0 1205 000",
"120 101 1",
"292 001 0100",
"17 2 5",
"0 1205 100",
"120 100 1"
],
"output": [
"No",
"No",
"Yes",
"Yes",
"No\n",
"Yes\n",
"Yes\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"Yes\n",
"Yes\n",
"No\n",
"No\n",
"Yes\n",
"Yes\n",
"No\n",
"No\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"No\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n",
"Yes\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
An elementary school student Takahashi has come to a variety store.
He has two coins, A-yen and B-yen coins (yen is the currency of Japan), and wants to buy a toy that costs C yen. Can he buy it?
Note that he lives in Takahashi Kingdom, and may have coins that do not exist in Japan.
Constraints
* All input values are integers.
* 1 \leq A, B \leq 500
* 1 \leq C \leq 1000
Input
Input is given from Standard Input in the following format:
A B C
Output
If Takahashi can buy the toy, print `Yes`; if he cannot, print `No`.
Examples
Input
50 100 120
Output
Yes
Input
500 100 1000
Output
No
Input
19 123 143
Output
No
Input
19 123 142
Output
Yes
### Input:
500 100 1000
### Output:
No
### Input:
19 123 143
### Output:
No
### Code:
a,b,c = map(int,input().split())
if c > a + b:
print('No')
else:
print('Yes') |
p03570 CODE FESTIVAL 2017 qual C - Yet Another Palindrome Partitioning_1107 | We have a string s consisting of lowercase English letters. Snuke is partitioning s into some number of non-empty substrings. Let the subtrings obtained be s_1, s_2, ..., s_N from left to right. (Here, s = s_1 + s_2 + ... + s_N holds.) Snuke wants to satisfy the following condition:
* For each i (1 \leq i \leq N), it is possible to permute the characters in s_i and obtain a palindrome.
Find the minimum possible value of N when the partition satisfies the condition.
Constraints
* 1 \leq |s| \leq 2 \times 10^5
* s consists of lowercase English letters.
Input
Input is given from Standard Input in the following format:
s
Output
Print the minimum possible value of N when the partition satisfies the condition.
Examples
Input
aabxyyzz
Output
2
Input
byebye
Output
1
Input
abcdefghijklmnopqrstuvwxyz
Output
26
Input
abcabcxabcx
Output
3 | import sys
readline = sys.stdin.readline
from collections import defaultdict
S = list(map(lambda x: ord(x)-97, readline().strip()))
N = len(S)
table = [0] + [1<<S[i] for i in range(N)]
for i in range(1, N+1):
table[i] ^= table[i-1]
inf = 10**9+7
dp = defaultdict(lambda: inf)
dp[0] = 0
for i in range(1, N+1):
t = table[i]
res = 1+dp[t]
for j in range(26):
res = min(res, 1+dp[t^(1<<j)])
dp[t] = min(dp[t], res)
print(res) | {
"input": [
"byebye",
"abcdefghijklmnopqrstuvwxyz",
"aabxyyzz",
"abcabcxabcx",
"byeybe",
"zyxwvutsrqponmlkjihgfedcba",
"aabwyyzz",
"axcabcbabcx",
"zyxwvutsrqponmlkjihgfedbba",
"aabwyzzz",
"eybcxb",
"abzwxayz",
"ayxwvutsrqponmlkiihgfedbbz",
"yccabbcacxa",
"ayxwwutsrqponmlkiihgfedbbz",
"ayxwwutsrpponmlkiihgfedbbz",
"ayxwwutsrpponmmkiihgfedbbz",
"zbbdefhhiikmmnorppstuxwxya",
"abeawcaaxcb",
"abeaacwaxcb",
"arroikqxuxfxmvcxecjmjetogf",
"ebyeyb",
"xcbabcbacxa",
"eybeyb",
"zzzywbaa",
"eybdyb",
"zzzywaaa",
"eybcyb",
"zyzywaaa",
"aaawyzyz",
"byecxb",
"aazwyayz",
"cyebxb",
"aazwxayz",
"czebxb",
"bxbezc",
"zyaxwzba",
"bxbzec",
"zyaxwzbb",
"xbbzec",
"zxaxwzbb",
"cezbbx",
"xxazwzbb",
"cezabx",
"xxazwzab",
"bezacx",
"yxazwzab",
"cezacx",
"xxaywzab",
"eczacx",
"bazwyaxx",
"eczacy",
"zxaywxab",
"ecyacy",
"ycayce",
"ycazce",
"acyzce",
"byebxe",
"arcdefghijklmnopqbstuvwxyz",
"zzyyxbaa",
"ebyyeb",
"zyxwvutsrqponmlkjghifedcba",
"xccabcbacxa",
"eybexb",
"ayxwvutsrqponmlkjihgfedbbz",
"aybwayzz",
"xcaabcbacxa",
"dybeyb",
"zzyywbaa",
"bydbye",
"aaawyzzz",
"bycbye",
"ayzywaaz",
"cyecxb",
"zyzwyaaa",
"bxceyb",
"wazayayz",
"cyebyb",
"aaxwzayz",
"bzebxb",
"axzwbayz",
"czdbxb",
"zyaxwzab",
"cezbxb",
"zyaxxzbb",
"xbbzeb",
"zxaxwzba",
"czebbx",
"bazwzaxx",
"xbazec",
"xcazeb",
"yxbzwzab",
"xcazec",
"bazwyayx",
"ecyacx",
"bbzwyaxx",
"dczacy",
"baxwyaxz",
"ecybcy",
"ycaycf",
"ycaecz",
"bxebxe",
"arcdefghijklnnopqbstuvwxyz",
"aabxyyyz"
],
"output": [
"1",
"26",
"2",
"3",
"1\n",
"26\n",
"2\n",
"5\n",
"24\n",
"4\n",
"6\n",
"8\n",
"22\n",
"3\n",
"20\n",
"18\n",
"16\n",
"14\n",
"7\n",
"9\n",
"12\n",
"1\n",
"5\n",
"1\n",
"4\n",
"2\n",
"4\n",
"2\n",
"2\n",
"2\n",
"6\n",
"2\n",
"4\n",
"6\n",
"4\n",
"4\n",
"8\n",
"4\n",
"6\n",
"4\n",
"4\n",
"4\n",
"2\n",
"6\n",
"2\n",
"6\n",
"4\n",
"6\n",
"6\n",
"6\n",
"6\n",
"6\n",
"8\n",
"2\n",
"2\n",
"6\n",
"6\n",
"6\n",
"26\n",
"2\n",
"1\n",
"26\n",
"1\n",
"6\n",
"24\n",
"6\n",
"1\n",
"2\n",
"2\n",
"2\n",
"4\n",
"2\n",
"2\n",
"6\n",
"2\n",
"6\n",
"2\n",
"2\n",
"6\n",
"4\n",
"8\n",
"4\n",
"8\n",
"4\n",
"4\n",
"4\n",
"6\n",
"4\n",
"2\n",
"6\n",
"6\n",
"6\n",
"6\n",
"6\n",
"6\n",
"4\n",
"6\n",
"8\n",
"2\n",
"2\n",
"6\n",
"1\n",
"24\n",
"4\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
We have a string s consisting of lowercase English letters. Snuke is partitioning s into some number of non-empty substrings. Let the subtrings obtained be s_1, s_2, ..., s_N from left to right. (Here, s = s_1 + s_2 + ... + s_N holds.) Snuke wants to satisfy the following condition:
* For each i (1 \leq i \leq N), it is possible to permute the characters in s_i and obtain a palindrome.
Find the minimum possible value of N when the partition satisfies the condition.
Constraints
* 1 \leq |s| \leq 2 \times 10^5
* s consists of lowercase English letters.
Input
Input is given from Standard Input in the following format:
s
Output
Print the minimum possible value of N when the partition satisfies the condition.
Examples
Input
aabxyyzz
Output
2
Input
byebye
Output
1
Input
abcdefghijklmnopqrstuvwxyz
Output
26
Input
abcabcxabcx
Output
3
### Input:
byebye
### Output:
1
### Input:
abcdefghijklmnopqrstuvwxyz
### Output:
26
### Code:
import sys
readline = sys.stdin.readline
from collections import defaultdict
S = list(map(lambda x: ord(x)-97, readline().strip()))
N = len(S)
table = [0] + [1<<S[i] for i in range(N)]
for i in range(1, N+1):
table[i] ^= table[i-1]
inf = 10**9+7
dp = defaultdict(lambda: inf)
dp[0] = 0
for i in range(1, N+1):
t = table[i]
res = 1+dp[t]
for j in range(26):
res = min(res, 1+dp[t^(1<<j)])
dp[t] = min(dp[t], res)
print(res) |
p03725 AtCoder Grand Contest 014 - Closed Rooms_1111 | Takahashi is locked within a building.
This building consists of H×W rooms, arranged in H rows and W columns. We will denote the room at the i-th row and j-th column as (i,j). The state of this room is represented by a character A_{i,j}. If A_{i,j}= `#`, the room is locked and cannot be entered; if A_{i,j}= `.`, the room is not locked and can be freely entered. Takahashi is currently at the room where A_{i,j}= `S`, which can also be freely entered.
Each room in the 1-st row, 1-st column, H-th row or W-th column, has an exit. Each of the other rooms (i,j) is connected to four rooms: (i-1,j), (i+1,j), (i,j-1) and (i,j+1).
Takahashi will use his magic to get out of the building. In one cast, he can do the following:
* Move to an adjacent room at most K times, possibly zero. Here, locked rooms cannot be entered.
* Then, select and unlock at most K locked rooms, possibly zero. Those rooms will remain unlocked from then on.
His objective is to reach a room with an exit. Find the minimum necessary number of casts to do so.
It is guaranteed that Takahashi is initially at a room without an exit.
Constraints
* 3 ≤ H ≤ 800
* 3 ≤ W ≤ 800
* 1 ≤ K ≤ H×W
* Each A_{i,j} is `#` , `.` or `S`.
* There uniquely exists (i,j) such that A_{i,j}= `S`, and it satisfies 2 ≤ i ≤ H-1 and 2 ≤ j ≤ W-1.
Input
Input is given from Standard Input in the following format:
H W K
A_{1,1}A_{1,2}...A_{1,W}
:
A_{H,1}A_{H,2}...A_{H,W}
Output
Print the minimum necessary number of casts.
Examples
Input
3 3 3
#.#
#S.
###
Output
1
Input
3 3 3
.#
S.
Output
1
Input
3 3 3
S#
Output
2
Input
7 7 2
...##
S###
.#.##
.###
Output
2 | from collections import deque
h,w,k = map(int,input().split())
a = []
for i in range(h):
b = input()
tmp = []
for j in range(w):
tmp.append(b[j])
if b[j] == "S":
sx = i
sy = j
a.append(tmp)
ma = [[0]*w for i in range(h)]
def dfs(x,y,z):
if ma[x][y] == 1:
return
if z>k:
return
ma[x][y] = 1
if x > 0 and a[x-1][y]== ".":
que.append([x-1,y,z+1])
if y > 0 and a[x][y-1]== ".":
que.append([x,y-1,z+1])
if x <h-1 and a[x+1][y]==".":
que.append([x+1,y,z+1])
if y <w-1 and a[x][y+1]==".":
que.append([x,y+1,z+1])
que = deque([[sx,sy,0]])
while que:
x,y,z = que.popleft()
dfs(x,y,z)
ans = float("inf")
for i in range(h):
for j in range(w):
if ma[i][j] == 1:
ans = min(ans,1+(h-i-1)//k+ (1 if (h-i-1)%k else 0),1+(w-j-1)//k+ (1 if (w-j-1)%k else 0),
1+(i)//k+ (1 if (i)%k else 0),1+(j)//k+ (1 if (j)%k else 0))
print(ans) | {
"input": [
"3 3 3\n#.#\n#S.\n###",
"3 3 3\n.#\nS.",
"3 3 3\n\nS#",
"7 7 2\n\n\n...##\nS###\n.#.##\n.###",
"2 3 3\n.#\nS.",
"7 8 2\n\n\n...##\n###S\n.#.##\n.###",
"7 7 2\n\n\n##...\nS###\n.#.##\n.###",
"2 3 3\n#.\nS.",
"7 7 2\n\n\n##...\nS###\n##.#.\n.###",
"2 3 3\n#.\n.S",
"7 12 2\n\n\n##...\nS###\n##.#.\n.###",
"7 12 2\n\n\n#$...\nS###\n##.#.\n.###",
"7 12 2\n\n\n#$...\nS##\"\n##.#.\n.###",
"7 12 2\n\n\n#$...\nS##\"\n$#.#.\n.###",
"2 12 2\n\n\n#$...\nS##\"\n$#.#.\n.###",
"2 12 2\n\n\n#$...\nS##\"\n$#.#.\n.\"##",
"2 12 2\n\n\n#$...\nS#\"\"\n$#.#.\n.\"##",
"2 6 2\n\n\n#$...\nS#\"\"\n$#.#.\n.\"##",
"2 6 2\n\n\n#$...\n\"\"#S\n$#.#.\n.\"##",
"2 10 2\n\n\n#$...\n\"\"#S\n$#.#.\n.\"##",
"2 17 2\n\n\n#$...\n\"\"#S\n$#.#.\n.\"##",
"2 17 2\n\n\n#$...\n#\"#S\n$#.#.\n.\"##",
"2 17 2\n\n\n...$#\n#\"#S\n$#.#.\n.\"##",
"2 4 2\n\n\n...$#\n#\"#S\n$#.#.\n.\"##",
"2 4 2\n\n\n...$#\n\"\"#S\n$#.#.\n.\"##",
"2 4 2\n\n\n...$#\n\"\"#S\n$\".#.\n.\"##",
"2 4 2\n\n\n...$#\n\"!#S\n$\".#.\n.\"##",
"6 3 3\n#.#\n#S.\n###",
"3 3 6\n.#\nS.",
"1 3 3\n\nS#",
"7 7 2\n\n\n...##\nS###\n.#.#$\n.###",
"7 7 2\n\n\n##...\nS###\n.#.##\n##.#",
"2 3 4\n#.\nS.",
"7 7 2\n\n\n##.-.\nS###\n##.#.\n.###",
"3 3 3\n#.\n.S",
"7 12 2\n\n\n##...\nS###\n##.#.\n#.##",
"7 12 3\n\n\n#$...\nS###\n##.#.\n.###",
"11 12 2\n\n\n#$...\nS###\n##.#.\n.###",
"7 2 2\n\n\n#$...\nS##\"\n$#.#.\n.###",
"2 12 2\n\n\n#$...\nS##\"\n$#.#.\n/###",
"2 12 2\n\n\n#$...\n##S\"\n$#.#.\n.\"##",
"2 12 2\n\n\n#$...\nS#\"\"\n$#.#.\n##\".",
"2 6 1\n\n\n#$...\nS#\"\"\n$#.#.\n.\"##",
"2 6 2\n\n\n#$...\n\"\"S#\n$#.#.\n.\"##",
"2 10 2\n\n\n#$...\n\"\"$S\n$#.#.\n.\"##",
"4 17 2\n\n\n#$...\n\"\"#S\n$#.#.\n.\"##",
"4 17 2\n\n\n#$...\n#\"#S\n$#.#.\n.\"##",
"2 17 2\n\n\n...$#\n#\"#S\n$#.#.\n/\"##",
"3 4 2\n\n\n...$#\n#\"#S\n$#.#.\n.\"##",
"2 4 2\n\n\n...$#\n\"!#S\n$#.#.\n.\"##",
"3 4 2\n\n\n...$#\n\"\"#S\n$\".#.\n.\"##",
"2 4 2\n\n\n...$#\n\"!#S\n.#.#$\n.\"##",
"6 6 3\n#.#\n#S.\n###",
"3 3 7\n.#\nS.",
"1 3 3\n\n#S",
"7 7 2\n\n\n../##\nS###\n.#.#$\n.###",
"7 5 2\n\n\n##...\nS###\n.#.##\n##.#",
"4 3 4\n#.\nS.",
"11 7 2\n\n\n##.-.\nS###\n##.#.\n.###",
"5 3 3\n#.\n.S",
"7 18 2\n\n\n##...\nS###\n##.#.\n#.##",
"7 12 3\n\n\n#$...\nS###\n$#.#.\n.###",
"11 12 2\n\n\n#$...\nS###\n##.#.\n.\"##",
"7 2 4\n\n\n#$...\nS##\"\n$#.#.\n.###",
"2 12 2\n\n\n#$...\nS##\"\n$#/#.\n/###",
"2 12 1\n\n\n#$...\n##S\"\n$#.#.\n.\"##",
"2 12 2\n\n\n#$../\nS#\"\"\n$#.#.\n##\".",
"2 4 1\n\n\n#$...\nS#\"\"\n$#.#.\n.\"##",
"2 6 2\n\n\n#$...\n#\"S#\n$#.#.\n.\"##",
"2 10 2\n\n\n#$...\n\"\"$S\n##.#.\n.\"##",
"4 23 2\n\n\n#$...\n\"\"#S\n$#.#.\n.\"##",
"4 17 2\n\n\n#$...\n#\"#S\n$#.#/\n.\"##",
"2 17 2\n\n\n...$#\n#\"#S\n$#.#.\n\"/##",
"3 4 2\n\n\n...$#\n#\"#S\n$#.#.\n.!##",
"2 4 4\n\n\n...$#\n\"!#S\n$#.#.\n.\"##",
"3 4 3\n\n\n...$#\n\"\"#S\n$\".#.\n.\"##",
"2 6 2\n\n\n...$#\n\"!#S\n.#.#$\n.\"##",
"6 2 3\n#.#\n#S.\n###",
"4 3 7\n.#\nS.",
"1 4 3\n\n#S",
"2 7 2\n\n\n../##\nS###\n.#.#$\n.###",
"7 5 2\n\n\n##...\n###S\n.#.##\n##.#",
"4 3 4\n.#\nS.",
"11 7 2\n\n\n#..-#\nS###\n##.#.\n.###",
"5 3 3\n.#\n.S",
"7 18 2\n\n\n##...\nS#$#\n##.#.\n#.##",
"7 2 3\n\n\n#$...\nS###\n$#.#.\n.###",
"11 12 2\n\n\n#$...\nS###\n.#.##\n.\"##",
"7 2 4\n\n\n#$...\nS##\"\n$#.#.\n.##\"",
"2 12 2\n\n\n#$...\nS##\"\n$#/#.\n/#\"#",
"2 12 1\n\n\n#$...\n##S\"\n$#.#.\n.!##",
"2 12 2\n\n\n/..$#\nS#\"\"\n$#.#.\n##\".",
"2 4 1\n\n\n#$...\nS#\"\"\n$#.#.\n#\".#",
"2 6 2\n\n\n#$...\n#\"S#\n#$.#.\n.\"##",
"2 10 1\n\n\n#$...\n\"\"$S\n##.#.\n.\"##",
"5 23 2\n\n\n#$...\n\"\"#S\n$#.#.\n.\"##",
"4 8 2\n\n\n#$...\n#\"#S\n$#.#/\n.\"##",
"2 17 2\n\n\n...$#\n#\"#S\n$#.#.\n\".##",
"3 4 3\n\n\n...$#\n#\"#S\n$#.#.\n.!##",
"2 4 4\n\n\n...$#\nS!#\"\n$#.#.\n.\"##",
"2 9 2\n\n\n...$#\n\"!#S\n.#.#$\n.\"##",
"6 4 3\n#.#\n#S.\n###",
"4 3 7\n.#\nS/",
"2 7 2\n\n\n../##\n##S#\n.#.#$\n.###"
],
"output": [
"1",
"1",
"2",
"2",
"1\n",
"2\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n",
"1\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Takahashi is locked within a building.
This building consists of H×W rooms, arranged in H rows and W columns. We will denote the room at the i-th row and j-th column as (i,j). The state of this room is represented by a character A_{i,j}. If A_{i,j}= `#`, the room is locked and cannot be entered; if A_{i,j}= `.`, the room is not locked and can be freely entered. Takahashi is currently at the room where A_{i,j}= `S`, which can also be freely entered.
Each room in the 1-st row, 1-st column, H-th row or W-th column, has an exit. Each of the other rooms (i,j) is connected to four rooms: (i-1,j), (i+1,j), (i,j-1) and (i,j+1).
Takahashi will use his magic to get out of the building. In one cast, he can do the following:
* Move to an adjacent room at most K times, possibly zero. Here, locked rooms cannot be entered.
* Then, select and unlock at most K locked rooms, possibly zero. Those rooms will remain unlocked from then on.
His objective is to reach a room with an exit. Find the minimum necessary number of casts to do so.
It is guaranteed that Takahashi is initially at a room without an exit.
Constraints
* 3 ≤ H ≤ 800
* 3 ≤ W ≤ 800
* 1 ≤ K ≤ H×W
* Each A_{i,j} is `#` , `.` or `S`.
* There uniquely exists (i,j) such that A_{i,j}= `S`, and it satisfies 2 ≤ i ≤ H-1 and 2 ≤ j ≤ W-1.
Input
Input is given from Standard Input in the following format:
H W K
A_{1,1}A_{1,2}...A_{1,W}
:
A_{H,1}A_{H,2}...A_{H,W}
Output
Print the minimum necessary number of casts.
Examples
Input
3 3 3
#.#
#S.
###
Output
1
Input
3 3 3
.#
S.
Output
1
Input
3 3 3
S#
Output
2
Input
7 7 2
...##
S###
.#.##
.###
Output
2
### Input:
3 3 3
#.#
#S.
###
### Output:
1
### Input:
3 3 3
.#
S.
### Output:
1
### Code:
from collections import deque
h,w,k = map(int,input().split())
a = []
for i in range(h):
b = input()
tmp = []
for j in range(w):
tmp.append(b[j])
if b[j] == "S":
sx = i
sy = j
a.append(tmp)
ma = [[0]*w for i in range(h)]
def dfs(x,y,z):
if ma[x][y] == 1:
return
if z>k:
return
ma[x][y] = 1
if x > 0 and a[x-1][y]== ".":
que.append([x-1,y,z+1])
if y > 0 and a[x][y-1]== ".":
que.append([x,y-1,z+1])
if x <h-1 and a[x+1][y]==".":
que.append([x+1,y,z+1])
if y <w-1 and a[x][y+1]==".":
que.append([x,y+1,z+1])
que = deque([[sx,sy,0]])
while que:
x,y,z = que.popleft()
dfs(x,y,z)
ans = float("inf")
for i in range(h):
for j in range(w):
if ma[i][j] == 1:
ans = min(ans,1+(h-i-1)//k+ (1 if (h-i-1)%k else 0),1+(w-j-1)//k+ (1 if (w-j-1)%k else 0),
1+(i)//k+ (1 if (i)%k else 0),1+(j)//k+ (1 if (j)%k else 0))
print(ans) |
p03889 CODE FESTIVAL 2016 Relay (Parallel) - Mirror String_1115 | You are given a string S consisting of letters `b`, `d`, `p` and `q`. Determine whether S is a mirror string.
Here, a mirror string is a string S such that the following sequence of operations on S results in the same string S:
1. Reverse the order of the characters in S.
2. Replace each occurrence of `b` by `d`, `d` by `b`, `p` by `q`, and `q` by `p`, simultaneously.
Constraints
* 1 \leq |S| \leq 10^5
* S consists of letters `b`, `d`, `p`, and `q`.
Input
The input is given from Standard Input in the following format:
S
Output
If S is a mirror string, print `Yes`. Otherwise, print `No`.
Examples
Input
pdbq
Output
Yes
Input
ppqb
Output
No | r=str.replace
s=input()
print(['No','Yes'][s==''.join(reversed(r(r(r(r(r(r(r(r(s,'b','0'),'d','1'),'p','2'),'q','3'),'0','d'),'1','b'),'2','q'),'3','p')))]) | {
"input": [
"ppqb",
"pdbq",
"qbdp",
"dbqp",
"bdqp",
"bqpp",
"pdqb",
"dqbp",
"pqbd",
"pqdb",
"bqqp",
"pdpb",
"pbqd",
"dqpb",
"bqpq",
"pbpd",
"dppb",
"qpqb",
"dpbp",
"bpdp",
"bqdp",
"pqqb",
"dpbq",
"dpqb",
"dbpp",
"bdpp",
"bpqp",
"bppd",
"qqqb",
"pbqq",
"dqbq",
"bpqd",
"dbpq",
"qqpb",
"bpdq",
"dbqq",
"bpqq",
"pqpb",
"pbdp",
"qqdb",
"bppq",
"bqpd",
"bqqq",
"qbqp",
"dqqb",
"qqbd",
"ppbd",
"pdbp",
"qbqd",
"qppb",
"pbdq",
"qpdb",
"qdbp",
"qqbp",
"qbpd",
"ppdb",
"bppp",
"qpbd",
"pqbq",
"qdqb",
"bqqd",
"qdpb",
"qdbq",
"ppbq",
"bqdq",
"qbpp",
"pbpq",
"pdpd",
"qbdq",
"qpbp",
"qdpd",
"pqbp",
"qpbq",
"bdpq",
"qqbq",
"pbqp",
"bdqq",
"qbqq",
"pppb",
"qbpq",
"dpdq",
"qddp",
"pddq",
"qddq",
"ppbp",
"dqdq",
"qdqd",
"dpdp",
"bpbp",
"pbpp",
"dqqp",
"pdqd",
"dqqd",
"dqdp",
"pbpb",
"dqpd",
"dpqd",
"ppdd",
"pddp",
"qqdp",
"pqdd",
"pdqq"
],
"output": [
"No",
"Yes",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a string S consisting of letters `b`, `d`, `p` and `q`. Determine whether S is a mirror string.
Here, a mirror string is a string S such that the following sequence of operations on S results in the same string S:
1. Reverse the order of the characters in S.
2. Replace each occurrence of `b` by `d`, `d` by `b`, `p` by `q`, and `q` by `p`, simultaneously.
Constraints
* 1 \leq |S| \leq 10^5
* S consists of letters `b`, `d`, `p`, and `q`.
Input
The input is given from Standard Input in the following format:
S
Output
If S is a mirror string, print `Yes`. Otherwise, print `No`.
Examples
Input
pdbq
Output
Yes
Input
ppqb
Output
No
### Input:
ppqb
### Output:
No
### Input:
pdbq
### Output:
Yes
### Code:
r=str.replace
s=input()
print(['No','Yes'][s==''.join(reversed(r(r(r(r(r(r(r(r(s,'b','0'),'d','1'),'p','2'),'q','3'),'0','d'),'1','b'),'2','q'),'3','p')))]) |
p04048 AtCoder Grand Contest 001 - Mysterious Light_1119 | Snuke is conducting an optical experiment using mirrors and his new invention, the rifle of Mysterious Light.
Three mirrors of length N are set so that they form an equilateral triangle. Let the vertices of the triangle be a, b and c.
Inside the triangle, the rifle is placed at the point p on segment ab such that ap = X. (The size of the rifle is negligible.) Now, the rifle is about to fire a ray of Mysterious Light in the direction of bc.
The ray of Mysterious Light will travel in a straight line, and will be reflected by mirrors, in the same ways as "ordinary" light. There is one major difference, though: it will be also reflected by its own trajectory as if it is a mirror! When the ray comes back to the rifle, the ray will be absorbed.
The following image shows the ray's trajectory where N = 5 and X = 2.
btriangle.png
It can be shown that the ray eventually comes back to the rifle and is absorbed, regardless of the values of N and X. Find the total length of the ray's trajectory.
Constraints
* 2≦N≦10^{12}
* 1≦X≦N-1
* N and X are integers.
Input
The input is given from Standard Input in the following format:
N X
Output
Print the total length of the ray's trajectory.
Example
Input
5 2
Output
12 | """B - Mysterious Light"""
N,X=(int(i) for i in input().split())
def MysteriousLight(tmp,rem):
while rem:
tmp, rem= rem,tmp%rem
return tmp
print(3*(N-MysteriousLight(N,X))) | {
"input": [
"5 2",
"5 4",
"7 4",
"6 1",
"9 4",
"6 3",
"14 4",
"8 1",
"28 4",
"15 2",
"28 3",
"19 2",
"32 2",
"29 5",
"26 3",
"46 1",
"46 2",
"81 3",
"85 3",
"10 3",
"14 1",
"2 1",
"11 4",
"4 2",
"18 4",
"28 6",
"28 7",
"33 2",
"60 2",
"16 5",
"44 1",
"75 3",
"92 3",
"84 3",
"61 2",
"23 8",
"75 2",
"12 1",
"22 4",
"92 2",
"156 6",
"43 2",
"60 1",
"116 2",
"49 6",
"36 2",
"67 2",
"102 1",
"142 2",
"42 4",
"103 2",
"172 1",
"142 1",
"56 4",
"172 2",
"54 1",
"260 3",
"457 3",
"371 4",
"702 4",
"590 4",
"590 1",
"843 1",
"916 1",
"916 2",
"1435 1",
"18 1",
"40 2",
"51 5",
"69 2",
"150 3",
"64 1",
"24 1",
"77 2",
"37 2",
"147 1",
"84 2",
"129 6",
"48 2",
"65 1",
"129 2",
"156 5",
"119 1",
"116 4",
"30 1",
"82 2",
"102 2",
"228 1",
"202 2",
"110 4",
"249 3",
"120 3",
"332 4",
"772 4",
"1556 2",
"95 2",
"150 6",
"55 7",
"20 3",
"62 1",
"114 3"
],
"output": [
"12",
"12\n",
"18\n",
"15\n",
"24\n",
"9\n",
"36\n",
"21\n",
"72\n",
"42\n",
"81\n",
"54\n",
"90\n",
"84\n",
"75\n",
"135\n",
"132\n",
"234\n",
"252\n",
"27\n",
"39\n",
"3\n",
"30\n",
"6\n",
"48\n",
"78\n",
"63\n",
"96\n",
"174\n",
"45\n",
"129\n",
"216\n",
"273\n",
"243\n",
"180\n",
"66\n",
"222\n",
"33\n",
"60\n",
"270\n",
"450\n",
"126\n",
"177\n",
"342\n",
"144\n",
"102\n",
"198\n",
"303\n",
"420\n",
"120\n",
"306\n",
"513\n",
"423\n",
"156\n",
"510\n",
"159\n",
"777\n",
"1368\n",
"1110\n",
"2100\n",
"1764\n",
"1767\n",
"2526\n",
"2745\n",
"2742\n",
"4302\n",
"51\n",
"114\n",
"150\n",
"204\n",
"441\n",
"189\n",
"69\n",
"228\n",
"108\n",
"438\n",
"246\n",
"378\n",
"138\n",
"192\n",
"384\n",
"465\n",
"354\n",
"336\n",
"87\n",
"240\n",
"300\n",
"681\n",
"600\n",
"324\n",
"738\n",
"351\n",
"984\n",
"2304\n",
"4662\n",
"282\n",
"432\n",
"162\n",
"57\n",
"183\n",
"333\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Snuke is conducting an optical experiment using mirrors and his new invention, the rifle of Mysterious Light.
Three mirrors of length N are set so that they form an equilateral triangle. Let the vertices of the triangle be a, b and c.
Inside the triangle, the rifle is placed at the point p on segment ab such that ap = X. (The size of the rifle is negligible.) Now, the rifle is about to fire a ray of Mysterious Light in the direction of bc.
The ray of Mysterious Light will travel in a straight line, and will be reflected by mirrors, in the same ways as "ordinary" light. There is one major difference, though: it will be also reflected by its own trajectory as if it is a mirror! When the ray comes back to the rifle, the ray will be absorbed.
The following image shows the ray's trajectory where N = 5 and X = 2.
btriangle.png
It can be shown that the ray eventually comes back to the rifle and is absorbed, regardless of the values of N and X. Find the total length of the ray's trajectory.
Constraints
* 2≦N≦10^{12}
* 1≦X≦N-1
* N and X are integers.
Input
The input is given from Standard Input in the following format:
N X
Output
Print the total length of the ray's trajectory.
Example
Input
5 2
Output
12
### Input:
5 2
### Output:
12
### Input:
5 4
### Output:
12
### Code:
"""B - Mysterious Light"""
N,X=(int(i) for i in input().split())
def MysteriousLight(tmp,rem):
while rem:
tmp, rem= rem,tmp%rem
return tmp
print(3*(N-MysteriousLight(N,X))) |
p00127 Pocket Pager Input_1123 | One day, Taro received a strange email with only the number "519345213244" in the text. The email was from my cousin, who was 10 years older than me, so when I called and asked, "Oh, I sent it with a pocket bell because I was in a hurry. It's convenient. Nice to meet you!" I got it. You know this cousin, who is always busy and a little bit aggressive, and when you have no choice but to research "pager hitting" yourself, you can see that it is a method of input that prevailed in the world about 10 years ago. I understand.
In "Pokebell Strike", enter one character with two numbers, such as 11 for "A" and 15 for "O" according to the conversion table shown in Fig. 1. For example, to enter the string "Naruto", type "519345". Therefore, any letter can be entered with two numbers.
<image>
Figure 1
When mobile phones weren't widespread, high school students used this method to send messages from payphones to their friends' pagers. Some high school girls were able to pager at a tremendous speed. Recently, my cousin, who has been busy with work, has unknowingly started typing emails with a pager.
Therefore, in order to help Taro who is having a hard time deciphering every time, please write a program that converts the pager message into a character string and outputs it. However, the conversion table shown in Fig. 2 is used for conversion, and only lowercase letters, ".", "?", "!", And blanks are targeted. Output NA for messages that contain characters that cannot be converted.
<image>
Figure 2
Input
Multiple messages are given. One message (up to 200 characters) is given on each line. The total number of messages does not exceed 50.
Output
For each message, output the converted message or NA on one line.
Example
Input
341143514535
314
143565553551655311343411652235654535651124615163
551544654451431564
4
3411
6363636363
153414
Output
naruto
NA
do you wanna go to aizu?
yes sure!
NA
na
?????
end | mes = {11:"a",12:"b",13:"c",14:"d",15:"e"
,21:"f",22:"g",23:"h",24:"i",25:"j"
,31:"k",32:"l",33:"m",34:"n",35:"o"
,41:"p",42:"q",43:"r",44:"s",45:"t"
,51:"u",52:"v",53:"w",54:"x",55:"y"
,61:"z",62:".",63:"?",64:"!",65:" "}
while True:
try:
s = input()
except:
break
ss = ""
for i in range(0, len(s), 2):
if len(s) % 2 == 1:
ss = "NA"
break
if int(s[i:i+2]) in mes:
ss+=mes[int(s[i:i+2])]
else:
ss = "NA"
break
print(ss)
| {
"input": [
"341143514535\n314\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n3411\n6363636363\n153414",
"341143514535\n158\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n3411\n6363636363\n153414",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n551544654451431564\n4\n3411\n6363636363\n153414",
"341143514535\n158\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n2934\n6363636363\n153414",
"341143514535\n315\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n3411\n6363636363\n286878",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n551544654451431564\n4\n5438\n6363636363\n153414",
"341143514535\n315\n134434432068311350616294587682501914319399594776\n551544654451431564\n4\n3411\n6363636363\n286878",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n551544654451431564\n4\n2886\n6363636363\n187636",
"341143514535\n181\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n2566\n944133637\n153414",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n282179687988515070\n8\n2886\n6363636363\n187636",
"341143514535\n181\n143565553551655311343411652235654535651124615163\n115800800717045334\n4\n3636\n944133637\n153414",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n282179687988515070\n13\n2886\n6363636363\n187636",
"341143514535\n181\n32046002108896980375797364913448132483569780115\n115800800717045334\n4\n3636\n944133637\n153414",
"341143514535\n181\n32046002108896980375797364913448132483569780115\n115800800717045334\n4\n3636\n926957805\n226283",
"341143514535\n41\n37162501094979428233651696205621400978554503807\n282027569597679523\n2\n2497\n8100605990\n32262",
"341143514535\n4\n57416920605994760048925235855038060245069725244\n2676207125938811\n16\n892\n2344655145\n113538",
"341143514535\n41\n184446995852376586192732086039967558479859887996\n369297301045414755\n1\n4412\n15230971988\n27",
"341143514535\n62\n184446995852376586192732086039967558479859887996\n369297301045414755\n1\n4412\n15230971988\n27",
"341143514535\n315\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n3411\n3125343369\n153414",
"341143514535\n315\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n3411\n18682587\n286878",
"341143514535\n12\n134434432068311350616294587682501914319399594776\n551544654451431564\n4\n3411\n6363636363\n286878",
"341143514535\n181\n143565553551655311343411652235654535651124615163\n551544654451431564\n4\n2566\n944133637\n189969",
"341143514535\n181\n217268323167730556873628418879974796689502460470\n551544654451431564\n4\n3636\n944133637\n153414",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n282179687988515070\n13\n2886\n9463978611\n187636",
"341143514535\n181\n32046002108896980375797364913448132483569780115\n115800800717045334\n4\n3636\n926957805\n315414",
"341143514535\n314\n30898720832098000876026338206663650229398181059\n282179687988515070\n16\n1312\n1774794917\n113538",
"341143514535\n15\n30898720832098000876026338206663650229398181059\n2676207125938811\n16\n2886\n1774794917\n113538",
"341143514535\n314\n30898720832098000876026338206663650229398181059\n2676207125938811\n15\n892\n2194480272\n113538",
"341143514535\n3\n57416920605994760048925235855038060245069725244\n2676207125938811\n1\n1315\n2344655145\n221643",
"341143514535\n41\n184446995852376586192732086039967558479859887996\n205297297129669275\n2\n3654\n9144392746\n45",
"341143514535\n62\n184446995852376586192732086039967558479859887996\n369297301045414755\n1\n2335\n15230971988\n27",
"341143514535\n314\n125923231755564817894069768408189922984281004281\n102889087146575028\n4\n3411\n6363636363\n153414",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n551544654451431564\n4\n3411\n1596976849\n204903",
"341143514535\n34\n10141283183115209195186599000583233654691126402\n551544654451431564\n4\n5438\n6363636363\n153414",
"341143514535\n315\n134434432068311350616294587682501914319399594776\n551544654451431564\n2\n3522\n6363636363\n476174",
"341143514535\n181\n143565553551655311343411652235654535651124615163\n234111792188021198\n4\n2566\n944133637\n189969",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n551544654451431564\n8\n3870\n10982863501\n187636",
"341143514535\n41\n65381078271673290232735155892140400888196361877\n282027569597679523\n2\n3654\n4678369764\n6512",
"341143514535\n4\n57416920605994760048925235855038060245069725244\n4315398340179219\n1\n483\n2344655145\n3562",
"341143514535\n13\n184446995852376586192732086039967558479859887996\n369297301045414755\n1\n2335\n15230971988\n27",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n658086598628596146\n4\n3411\n1596976849\n204903",
"341143514535\n34\n10141283183115209195186599000583233654691126402\n597176611475512765\n4\n5438\n6363636363\n153414",
"341143514535\n21\n40600485682933788523415793109169629735840429955\n551544654451431564\n4\n3411\n6363636363\n286878",
"341143514535\n181\n217268323167730556873628418879974796689502460470\n551544654451431564\n2\n4362\n944133637\n153414",
"341143514535\n62\n32046002108896980375797364913448132483569780115\n3043193507085101\n4\n3636\n926957805\n153414",
"341143514535\n531\n37162501094979428233651696205621400978554503807\n551544654451431564\n7\n1221\n6363636363\n158596",
"341143514535\n4\n57416920605994760048925235855038060245069725244\n2676207125938811\n12\n892\n381840708\n210580",
"341143514535\n4\n37399701148259227720821529344819936896153605650\n2676207125938811\n12\n758\n2344655145\n211356",
"341143514535\n41\n184446995852376586192732086039967558479859887996\n205297297129669275\n2\n1437\n9144392746\n34",
"341143514535\n13\n184446995852376586192732086039967558479859887996\n369297301045414755\n1\n4298\n15230971988\n27",
"341143514535\n53\n10141283183115209195186599000583233654691126402\n597176611475512765\n4\n5438\n6363636363\n153414",
"341143514535\n315\n197449213697249494482601297880256428166369373159\n551544654451431564\n2\n3522\n6537062539\n476174",
"341143514535\n314\n18269162309686324710123374771799119703741778791\n525739556089971699\n22\n1669\n7326895675\n113538",
"341143514535\n247\n37162501094979428233651696205621400978554503807\n282027569597679523\n2\n54\n6363636363\n18080",
"341143514535\n51\n29783341012351940289658165982850381294333272161\n282027569597679523\n2\n3003\n8100605990\n5862",
"341143514535\n52\n115594971191498200927022084247910438448390243498\n85612849220156641\n2\n3654\n4901577317\n8",
"341143514535\n46\n184446995852376586192732086039967558479859887996\n93525119426646135\n4\n3654\n14315392071\n23",
"341143514535\n314\n10141283183115209195186599000583233654691126402\n658086598628596146\n4\n3411\n1596976849\n213522",
"341143514535\n53\n10141283183115209195186599000583233654691126402\n597176611475512765\n4\n5438\n9495385163\n153414",
"341143514535\n181\n19825000303799288081485376679544670767852795880\n38503409770577147\n5\n45\n6363636363\n83979",
"341143514535\n531\n37162501094979428233651696205621400978554503807\n282027569597679523\n4\n872\n1933238719\n2334",
"341143514535\n4\n57416920605994760048925235855038060245069725244\n2676207125938811\n25\n1721\n5872974446\n19929",
"341143514535\n72\n3076486307450056489538247907517896239068515318\n282027569597679523\n2\n978\n4678369764\n6512",
"341143514535\n63\n115594971191498200927022084247910438448390243498\n85612849220156641\n2\n3654\n4901577317\n8",
"341143514535\n448\n193116182628118295904261439594415083914751086107\n137528655344406976\n4\n3411\n6363636363\n208864",
"341143514535\n290\n30898720832098000876026338206663650229398181059\n17352232542053536\n14\n1312\n1774794917\n102377",
"341143514535\n247\n18567775233544482973034888475783419745934051775\n282027569597679523\n2\n54\n6363636363\n5361",
"341143514535\n13\n30898720832098000876026338206663650229398181059\n2676207125938811\n15\n1393\n4270665842\n113538",
"341143514535\n314\n18378654077924835003166058323764793081194911052\n658086598628596146\n4\n963\n1596976849\n213522",
"341143514535\n65\n143565553551655311343411652235654535651124615163\n113166202513197773\n3\n3696\n11336774140\n279322",
"341143514535\n21\n42443804740720571425221499465094514081038277326\n551544654451431564\n2\n1458\n6363636363\n286878",
"341143514535\n181\n19825000303799288081485376679544670767852795880\n38503409770577147\n5\n45\n8837961198\n125291",
"341143514535\n11\n30898720832098000876026338206663650229398181059\n2676207125938811\n15\n1393\n4270665842\n113538",
"341143514535\n385\n71824655952207740901311455438096728011967778146\n551544654451431564\n15\n2934\n574683466\n190759",
"341143514535\n21\n42443804740720571425221499465094514081038277326\n1059545874915856537\n2\n1458\n6363636363\n286878",
"341143514535\n42\n38214796081874822096200569325615860221659832255\n119023580899048464\n4\n1814\n1962155200\n271812",
"341143514535\n716\n37162501094979428233651696205621400978554503807\n720524643915987824\n7\n1221\n6363636363\n27088",
"341143514535\n355\n18035278010800399267121408158985052229288143132\n282179687988515070\n33\n3700\n5382360231\n153067",
"341143514535\n279\n42377013992733378815798372875856762676512892368\n6970289269838656\n2\n4423\n926957805\n226283",
"341143514535\n232\n32046002108896980375797364913448132483569780115\n66578530082653522\n4\n4331\n926957805\n7459",
"341143514535\n234\n37162501094979428233651696205621400978554503807\n599068204338957948\n2\n4372\n12549756109\n34",
"341143514535\n4\n54006127823908085499122309644186136569355580523\n4412551451445422\n25\n1359\n5872974446\n19929",
"341143514535\n65\n184446995852376586192732086039967558479859887996\n48851490094833147\n5\n3654\n9819338479\n4",
"341143514535\n333\n30454996331578992914462330581351594845790018452\n282179687988515070\n1\n6315\n3228386496\n192312",
"341143514535\n11\n30898720832098000876026338206663650229398181059\n2676207125938811\n21\n1393\n5345507448\n113538",
"341143514535\n1\n37162501094979428233651696205621400978554503807\n98431333038118151\n2\n2441\n838527013\n14017",
"341143514535\n8\n58142494878361992805410320338006660666574236572\n2676207125938811\n13\n758\n2344655145\n83020",
"341143514535\n63\n176148955982438742549278076157068587034179176431\n85612849220156641\n3\n3654\n4901577317\n12",
"341143514535\n4\n2628504932669101613029881637936342059028211893\n4681474653965067\n2\n483\n1973970059\n1522",
"341143514535\n11\n57416920605994760048925235855038060245069725244\n295970426956453\n2\n321\n857945608\n33920",
"341143514535\n531\n134434432068311350616294587682501914319399594776\n551544654451431564\n12\n6734\n371152768\n567",
"341143514535\n11\n30898720832098000876026338206663650229398181059\n2676207125938811\n31\n1393\n5345507448\n113538",
"341143514535\n234\n14606625495965263072462227259073979016841604425\n77996439312031059\n2\n4372\n12549756109\n64",
"341143514535\n102\n176148955982438742549278076157068587034179176431\n85612849220156641\n3\n3654\n1399854718\n12",
"341143514535\n506\n32046002108896980375797364913448132483569780115\n1292438870134678934\n14\n4793\n154446917\n286401",
"341143514535\n8\n54006127823908085499122309644186136569355580523\n4412551451445422\n42\n1359\n7212471124\n16994",
"341143514535\n652\n37162501094979428233651696205621400978554503807\n1525359881703302780\n7\n1221\n6986316617\n27088",
"341143514535\n22\n18269162309686324710123374771799119703741778791\n113737592225256219\n29\n191\n7695515663\n139698",
"341143514535\n213\n9847033797941223760026525496657618436475016601\n282179687988515070\n44\n3700\n735224264\n94448",
"341143514535\n287\n32046002108896980375797364913448132483569780115\n164382963489396257\n1\n4331\n926957805\n2161",
"341143514535\n234\n82010430586822946922000437502153184712784069\n77996439312031059\n2\n2151\n12549756109\n126"
],
"output": [
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nna\n?????\nend",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nna\n?????\nend\n",
"naruto\nNA\nNA\nyes sure!\nNA\nna\n?????\nend\n",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nNA\n?????\nend\n",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nna\n?????\nNA\n",
"naruto\nNA\nNA\nyes sure!\nNA\nNA\n?????\nend\n",
"naruto\nNA\nNA\nyes sure!\nNA\nna\n?????\nNA\n",
"naruto\nNA\nNA\nyes sure!\nNA\nNA\n?????\nNA\n",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nNA\nNA\nend\n",
"naruto\nNA\nNA\nNA\nNA\nNA\n?????\nNA\n",
"naruto\nNA\ndo you wanna go to aizu?\nNA\nNA\nNA\nNA\nend\n",
"naruto\nNA\nNA\nNA\nc\nNA\n?????\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nend\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\np\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nhs ut\nNA\n",
"naruto\np\nNA\nNA\nNA\nsb\nNA\nNA\n",
"naruto\n.\nNA\nNA\nNA\nsb\nNA\nNA\n",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nna\nNA\nend\n",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nna\nNA\nNA\n",
"naruto\nb\nNA\nyes sure!\nNA\nna\n?????\nNA\n",
"naruto\nNA\ndo you wanna go to aizu?\nyes sure!\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nyes sure!\nNA\nNA\nNA\nend\n",
"naruto\nNA\nNA\nNA\nc\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nkxd\n",
"naruto\nNA\nNA\nNA\nNA\ncb\nNA\nNA\n",
"naruto\ne\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\ne\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nce\nhs ut\nNA\n",
"naruto\np\nNA\nNA\nNA\nNA\nNA\nt\n",
"naruto\n.\nNA\nNA\nNA\nho\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nna\n?????\nend\n",
"naruto\nNA\nNA\nyes sure!\nNA\nna\nNA\nNA\n",
"naruto\nn\nNA\nyes sure!\nNA\nNA\n?????\nend\n",
"naruto\nNA\nNA\nyes sure!\nNA\nog\n?????\nNA\n",
"naruto\nNA\ndo you wanna go to aizu?\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nyes sure!\nNA\nNA\nNA\nNA\n",
"naruto\np\nNA\nNA\nNA\nNA\nNA\n b\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nhs ut\no.\n",
"naruto\nc\nNA\nNA\nNA\nho\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nna\nNA\nNA\n",
"naruto\nn\nNA\nNA\nNA\nNA\n?????\nend\n",
"naruto\nf\nNA\nyes sure!\nNA\nna\n?????\nNA\n",
"naruto\nNA\nNA\nyes sure!\nNA\nr.\nNA\nend\n",
"naruto\n.\nNA\nNA\nNA\nNA\nNA\nend\n",
"naruto\nNA\nNA\nyes sure!\nNA\nbf\n?????\nNA\n",
"naruto\nNA\nNA\nNA\nb\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nb\nNA\nhs ut\nNA\n",
"naruto\np\nNA\nNA\nNA\nNA\nNA\nn\n",
"naruto\nc\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nw\nNA\nNA\nNA\nNA\n?????\nend\n",
"naruto\nNA\nNA\nyes sure!\nNA\nog\nNA\nNA\n",
"naruto\nNA\nNA\nNA\ng\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nx\n?????\nNA\n",
"naruto\nu\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nv\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nh\n",
"naruto\nNA\nNA\nNA\nNA\nna\nNA\nfog\n",
"naruto\nw\nNA\nNA\nNA\nNA\nNA\nend\n",
"naruto\nNA\nNA\nNA\nNA\nt\n?????\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nhn\n",
"naruto\nNA\nNA\nNA\nj\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\n b\n",
"naruto\n?\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nna\n?????\nNA\n",
"naruto\nNA\nNA\nNA\nd\ncb\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nx\n?????\nwz\n",
"naruto\nc\nNA\nNA\ne\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nfog\n",
"naruto\n \ndo you wanna go to aizu?\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nf\nNA\nyes sure!\nNA\nNA\n?????\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nt\nNA\nNA\n",
"naruto\na\nNA\nNA\ne\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nyes sure!\ne\nNA\nNA\nNA\n",
"naruto\nf\nNA\nNA\nNA\nNA\n?????\nNA\n",
"naruto\nq\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nbf\n?????\nNA\n",
"naruto\nNA\nNA\nNA\nm\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nsh\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nrk\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nn\n",
"naruto\nNA\nNA\nsbydusxg\nj\nNA\nNA\nNA\n",
"naruto\n \nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\n?e\nNA\nNA\n",
"naruto\na\nNA\nNA\nf\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nip\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nc\nNA\nhs ut\nNA\n",
"naruto\n?\nNA\nNA\nNA\nNA\nNA\nb\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\neg\n",
"naruto\na\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nyes sure!\nb\nNA\nNA\nNA\n",
"naruto\na\nNA\nNA\nk\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\n!\n",
"naruto\nNA\nNA\nNA\nNA\nNA\nNA\nb\n",
"naruto\nNA\nNA\nNA\nd\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nsbydusxg\nq\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nbf\nNA\nNA\n",
"naruto\ng\nNA\nNA\nNA\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\ns\nNA\nNA\nNA\n",
"naruto\nNA\nNA\nNA\nNA\nrk\nNA\nfz\n",
"naruto\nNA\nNA\nNA\nNA\nfu\nNA\nNA\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
One day, Taro received a strange email with only the number "519345213244" in the text. The email was from my cousin, who was 10 years older than me, so when I called and asked, "Oh, I sent it with a pocket bell because I was in a hurry. It's convenient. Nice to meet you!" I got it. You know this cousin, who is always busy and a little bit aggressive, and when you have no choice but to research "pager hitting" yourself, you can see that it is a method of input that prevailed in the world about 10 years ago. I understand.
In "Pokebell Strike", enter one character with two numbers, such as 11 for "A" and 15 for "O" according to the conversion table shown in Fig. 1. For example, to enter the string "Naruto", type "519345". Therefore, any letter can be entered with two numbers.
<image>
Figure 1
When mobile phones weren't widespread, high school students used this method to send messages from payphones to their friends' pagers. Some high school girls were able to pager at a tremendous speed. Recently, my cousin, who has been busy with work, has unknowingly started typing emails with a pager.
Therefore, in order to help Taro who is having a hard time deciphering every time, please write a program that converts the pager message into a character string and outputs it. However, the conversion table shown in Fig. 2 is used for conversion, and only lowercase letters, ".", "?", "!", And blanks are targeted. Output NA for messages that contain characters that cannot be converted.
<image>
Figure 2
Input
Multiple messages are given. One message (up to 200 characters) is given on each line. The total number of messages does not exceed 50.
Output
For each message, output the converted message or NA on one line.
Example
Input
341143514535
314
143565553551655311343411652235654535651124615163
551544654451431564
4
3411
6363636363
153414
Output
naruto
NA
do you wanna go to aizu?
yes sure!
NA
na
?????
end
### Input:
341143514535
314
143565553551655311343411652235654535651124615163
551544654451431564
4
3411
6363636363
153414
### Output:
naruto
NA
do you wanna go to aizu?
yes sure!
NA
na
?????
end
### Input:
341143514535
158
143565553551655311343411652235654535651124615163
551544654451431564
4
3411
6363636363
153414
### Output:
naruto
NA
do you wanna go to aizu?
yes sure!
NA
na
?????
end
### Code:
mes = {11:"a",12:"b",13:"c",14:"d",15:"e"
,21:"f",22:"g",23:"h",24:"i",25:"j"
,31:"k",32:"l",33:"m",34:"n",35:"o"
,41:"p",42:"q",43:"r",44:"s",45:"t"
,51:"u",52:"v",53:"w",54:"x",55:"y"
,61:"z",62:".",63:"?",64:"!",65:" "}
while True:
try:
s = input()
except:
break
ss = ""
for i in range(0, len(s), 2):
if len(s) % 2 == 1:
ss = "NA"
break
if int(s[i:i+2]) in mes:
ss+=mes[int(s[i:i+2])]
else:
ss = "NA"
break
print(ss)
|
p00447 Searching Constellation_1128 | problem
You are looking for a constellation in a picture of the starry sky. The photo always contains exactly one figure with the same shape, orientation, and size as the constellation you are looking for. However, there is a possibility that extra stars are shown in the photograph other than the stars that make up the constellation.
For example, the constellations in Figure 1 are included in the photo in Figure 2 (circled). If you translate the coordinates of a star in a given constellation by 2 in the x direction and −3 in the y direction, it will be the position in the photo.
Given the shape of the constellation you want to look for and the position of the star in the picture, write a program that answers the amount to translate to convert the coordinates of the constellation to the coordinates in the picture.
<image> | <image>
--- | ---
Figure 1: The constellation you want to find | Figure 2: Photograph of the starry sky
input
The input consists of multiple datasets. Each dataset is given in the following format.
The first line of the input contains the number of stars m that make up the constellation you want to find. In the following m line, the integers indicating the x and y coordinates of the m stars that make up the constellation you want to search for are written separated by blanks. The number n of stars in the photo is written on the m + 2 line. In the following n lines, the integers indicating the x and y coordinates of the n stars in the photo are written separated by blanks.
The positions of the m stars that make up the constellation are all different. Also, the positions of the n stars in the picture are all different. 1 ≤ m ≤ 200, 1 ≤ n ≤ 1000. The x and y coordinates of a star are all 0 or more and 1000000 or less.
When m is 0, it indicates the end of input. The number of datasets does not exceed 5.
output
The output of each dataset consists of one line, with two integers separated by blanks. These show how much the coordinates of the constellation you want to find should be translated to become the coordinates in the photo. The first integer is the amount to translate in the x direction, and the second integer is the amount to translate in the y direction.
Examples
Input
5
8 5
6 4
4 3
7 10
0 10
10
10 5
2 7
9 7
8 10
10 2
1 2
8 1
6 7
6 0
0 9
5
904207 809784
845370 244806
499091 59863
638406 182509
435076 362268
10
757559 866424
114810 239537
519926 989458
461089 424480
674361 448440
81851 150384
459107 795405
299682 6700
254125 362183
50795 541942
0
Output
2 -3
-384281 179674
Input
None
Output
None | import operator
for e in iter(input,'0'):
target = [[*map(int,input().split())]for _ in[0]*int(e)]
s,t = min(target)
b = {tuple(map(int,input().split()))for _ in[0]*int(input())}
m=max(b)[0] - max(target)[0] + s
for x,y in b:
if x>m:continue
for u,v in target:
if (x + u - s, y + v - t) not in b:break
else:
print(x - s, y - t)
break
| {
"input": [
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n919396 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 0\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 499\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 10\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 453172\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n0 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 11\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 0\n4 3\n11 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 -1\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n2 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 6\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 14\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 499\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 6\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n3 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 10\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n155867 150384\n459107 453172\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 4\n0 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 410813\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n919396 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 11\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 543658\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n2 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 1\n6 6\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 8\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 11\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n155867 150384\n459107 453172\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n0 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 4\n0 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 11\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n1329980 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 543658\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n1 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n2 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 10\n10\n10 10\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 978460\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 6\n2 8\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 9\n10\n10 10\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n10 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 978460\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 6\n2 8\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 278949\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 9\n10\n10 10\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 272353\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n7 5\n2 4\n8 7\n10 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 978460\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 9\n10\n10 10\n2 7\n5 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 272353\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 0\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 7\n10 7\n8 16\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 5\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n1 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n799632 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n269052 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n1 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n5 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 10\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 12308\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n0 2\n8 2\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 14\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n919396 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n11 5\n6 4\n4 3\n7 6\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 14\n0 10\n10\n10 5\n2 7\n10 7\n14 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 499\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 6\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n467161 6700\n254125 362183\n50795 541942\n0",
"5\n3 5\n6 4\n4 3\n11 10\n0 10\n10\n3 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 10\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 0\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n155867 150384\n459107 453172\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 18\n10\n10 5\n2 7\n10 7\n8 10\n10 4\n0 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 410813\n499091 11981\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n919396 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n5 7\n6 0\n0 11\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 543658\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 0\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n12 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 1\n6 6\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 22300\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 8\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n273181 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 1\n0 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 4\n0 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n3 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 11\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n1329980 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 543658\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n1 5\n6 4\n4 3\n11 10\n0 10\n10\n10 1\n2 4\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n2 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 978460\n114810 239537\n519926 989458\n461089 424480\n1004499 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 6\n2 8\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 1015352\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 0\n7 6\n0 9\n10\n10 10\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n2 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n10 10\n10 2\n1 4\n3 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 978460\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 6\n2 8\n4 7\n8 15\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 278949\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n6 6\n0 9\n10\n10 10\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 272353\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n8 6\n0 9\n10\n10 10\n2 7\n5 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 272353\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 0\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n157231 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 0\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 163968\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n8 5\n2 7\n10 7\n8 16\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 5\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 93700\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n1 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 222262\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n8 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n799632 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n0 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n269052 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n1 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 2029\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n5 10\n0 10\n10\n10 7\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 72082\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 2\n0 10\n10\n10 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 10\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 12308\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n0 2\n8 2\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 29124\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 10\n10\n10 5\n2 7\n9 7\n8 10\n10 2\n1 2\n8 1\n6 14\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n919396 989458\n461089 424480\n674361 684012\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n11 5\n2 4\n4 3\n7 6\n0 10\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 14\n0 10\n10\n10 5\n2 7\n7 7\n14 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 499\n254125 362183\n50795 541942\n0",
"5\n3 5\n6 4\n4 3\n11 10\n0 19\n10\n3 5\n2 4\n8 7\n8 10\n10 2\n1 2\n8 1\n6 7\n6 0\n0 10\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n7 10\n0 12\n10\n10 5\n2 7\n10 7\n8 10\n10 2\n1 2\n8 1\n5 7\n6 0\n0 11\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 543658\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n9 4\n4 3\n7 6\n0 10\n10\n10 8\n2 7\n10 7\n8 10\n10 0\n1 2\n8 1\n6 8\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n674361 448440\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 1\n6 6\n4 3\n11 10\n0 10\n10\n10 5\n2 4\n10 7\n8 12\n10 2\n1 2\n8 1\n6 7\n6 0\n0 12\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n757559 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 448440\n81851 150384\n459107 22300\n299682 6700\n254125 362183\n50795 541942\n0",
"5\n8 5\n6 4\n4 3\n11 10\n0 10\n10\n10 5\n4 8\n4 7\n8 10\n10 3\n1 2\n8 1\n6 7\n6 0\n0 9\n5\n904207 809784\n845370 244806\n499091 59863\n638406 182509\n435076 362268\n10\n273181 866424\n114810 239537\n519926 989458\n461089 424480\n1244032 646221\n81851 150384\n459107 795405\n299682 6700\n254125 362183\n50795 541942\n0"
],
"output": [
"2 -3\n-384281 179674",
"-384281 179674\n",
"2 -3\n",
"2 -3\n-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"2 -3\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"2 -3\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"2 -3\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"2 -3\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"2 -3\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n",
"-384281 179674\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
problem
You are looking for a constellation in a picture of the starry sky. The photo always contains exactly one figure with the same shape, orientation, and size as the constellation you are looking for. However, there is a possibility that extra stars are shown in the photograph other than the stars that make up the constellation.
For example, the constellations in Figure 1 are included in the photo in Figure 2 (circled). If you translate the coordinates of a star in a given constellation by 2 in the x direction and −3 in the y direction, it will be the position in the photo.
Given the shape of the constellation you want to look for and the position of the star in the picture, write a program that answers the amount to translate to convert the coordinates of the constellation to the coordinates in the picture.
<image> | <image>
--- | ---
Figure 1: The constellation you want to find | Figure 2: Photograph of the starry sky
input
The input consists of multiple datasets. Each dataset is given in the following format.
The first line of the input contains the number of stars m that make up the constellation you want to find. In the following m line, the integers indicating the x and y coordinates of the m stars that make up the constellation you want to search for are written separated by blanks. The number n of stars in the photo is written on the m + 2 line. In the following n lines, the integers indicating the x and y coordinates of the n stars in the photo are written separated by blanks.
The positions of the m stars that make up the constellation are all different. Also, the positions of the n stars in the picture are all different. 1 ≤ m ≤ 200, 1 ≤ n ≤ 1000. The x and y coordinates of a star are all 0 or more and 1000000 or less.
When m is 0, it indicates the end of input. The number of datasets does not exceed 5.
output
The output of each dataset consists of one line, with two integers separated by blanks. These show how much the coordinates of the constellation you want to find should be translated to become the coordinates in the photo. The first integer is the amount to translate in the x direction, and the second integer is the amount to translate in the y direction.
Examples
Input
5
8 5
6 4
4 3
7 10
0 10
10
10 5
2 7
9 7
8 10
10 2
1 2
8 1
6 7
6 0
0 9
5
904207 809784
845370 244806
499091 59863
638406 182509
435076 362268
10
757559 866424
114810 239537
519926 989458
461089 424480
674361 448440
81851 150384
459107 795405
299682 6700
254125 362183
50795 541942
0
Output
2 -3
-384281 179674
Input
None
Output
None
### Input:
5
8 5
6 4
4 3
7 10
0 10
10
10 5
2 7
9 7
8 10
10 2
1 2
8 1
6 7
6 0
0 9
5
904207 809784
845370 244806
499091 59863
638406 182509
435076 362268
10
757559 866424
114810 239537
519926 989458
461089 424480
674361 448440
81851 150384
459107 795405
299682 6700
254125 362183
50795 541942
0
### Output:
2 -3
-384281 179674
### Input:
5
8 5
6 4
4 3
7 10
0 10
10
10 5
2 7
10 7
8 10
10 2
1 2
8 1
6 7
6 0
0 9
5
904207 809784
845370 244806
499091 59863
638406 182509
435076 362268
10
757559 866424
114810 239537
519926 989458
461089 424480
674361 448440
81851 150384
459107 795405
299682 6700
254125 362183
50795 541942
0
### Output:
-384281 179674
### Code:
import operator
for e in iter(input,'0'):
target = [[*map(int,input().split())]for _ in[0]*int(e)]
s,t = min(target)
b = {tuple(map(int,input().split()))for _ in[0]*int(input())}
m=max(b)[0] - max(target)[0] + s
for x,y in b:
if x>m:continue
for u,v in target:
if (x + u - s, y + v - t) not in b:break
else:
print(x - s, y - t)
break
|
p00638 Old Bridges_1132 | Long long ago, there was a thief. Looking for treasures, he was running about all over the world. One day, he heard a rumor that there were islands that had large amount of treasures, so he decided to head for there.
Finally he found n islands that had treasures and one island that had nothing. Most of islands had seashore and he can land only on an island which had nothing. He walked around the island and found that there was an old bridge between this island and each of all other n islands.
He tries to visit all islands one by one and pick all the treasures up. Since he is afraid to be stolen, he visits with bringing all treasures that he has picked up. He is a strong man and can bring all the treasures at a time, but the old bridges will break if he cross it with taking certain or more amount of treasures.
Please write a program that judges if he can collect all the treasures and can be back to the island where he land on by properly selecting an order of his visit.
Constraints
* 1 ≤ n ≤ 25
Input
Input consists of several datasets.
The first line of each dataset contains an integer n. Next n lines represents information of the islands. Each line has two integers, which means the amount of treasures of the island and the maximal amount that he can take when he crosses the bridge to the islands, respectively.
The end of input is represented by a case with n = 0.
Output
For each dataset, if he can collect all the treasures and can be back, print "Yes" Otherwise print "No"
Example
Input
3
2 3
3 6
1 2
3
2 3
3 5
1 2
0
Output
Yes
No | while True:
n = int(input())
if n == 0:
break
z = sorted([tuple(map(int, input().split())) for _ in range(n)], key=lambda x: x[1])
total = 0
for a, b in z:
total += a
if total > b:
print("No")
break
else:
print("Yes") | {
"input": [
"3\n2 3\n3 6\n1 2\n3\n2 3\n3 5\n1 2\n0",
"3\n2 3\n3 6\n1 2\n3\n2 3\n3 5\n2 2\n0",
"3\n2 3\n3 6\n2 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 1\n3 6\n1 2\n3\n2 3\n3 5\n0 2\n0",
"3\n2 5\n0 9\n4 1\n0\n2 0\n3 10\n2 3\n0",
"3\n4 5\n3 8\n1 2\n0\n7 3\n3 5\n2 1\n0",
"3\n2 3\n3 6\n1 2\n3\n0 3\n3 5\n1 2\n0",
"3\n2 3\n3 6\n1 2\n3\n3 3\n3 5\n2 2\n0",
"3\n2 3\n3 6\n1 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 3\n3 8\n2 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 3\n3 8\n2 2\n3\n3 3\n3 6\n2 3\n0",
"3\n2 3\n3 8\n2 2\n3\n2 3\n3 6\n2 3\n0",
"3\n2 5\n3 8\n2 2\n3\n2 3\n3 6\n2 3\n0",
"3\n2 5\n0 8\n2 2\n3\n2 3\n3 6\n2 3\n0",
"3\n2 5\n0 8\n2 2\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 8\n2 1\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 8\n2 1\n3\n2 0\n3 10\n2 3\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n3 10\n2 3\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n3 10\n2 5\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n3 10\n2 2\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n4 10\n2 2\n0",
"3\n2 1\n3 6\n1 2\n3\n2 3\n3 5\n1 2\n0",
"3\n2 3\n3 6\n1 2\n3\n4 3\n3 5\n2 2\n0",
"3\n2 3\n3 6\n1 4\n3\n3 3\n3 5\n2 2\n0",
"3\n2 3\n2 6\n1 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 3\n3 6\n2 2\n3\n3 3\n3 6\n3 2\n0",
"3\n2 3\n3 8\n0 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 3\n3 8\n2 2\n3\n3 3\n3 11\n2 3\n0",
"3\n3 3\n3 8\n2 2\n3\n2 3\n3 6\n2 3\n0",
"3\n0 5\n3 8\n2 2\n3\n2 3\n3 6\n2 3\n0",
"3\n2 5\n0 8\n2 2\n3\n2 3\n3 10\n2 3\n0",
"3\n2 5\n0 13\n2 2\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 8\n2 1\n3\n2 -1\n3 10\n2 3\n0",
"3\n2 5\n0 9\n4 1\n3\n2 0\n3 10\n2 3\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n3 10\n4 5\n0",
"3\n2 5\n0 9\n2 1\n3\n2 1\n3 10\n2 2\n0",
"3\n2 5\n0 9\n4 1\n3\n2 0\n4 10\n2 2\n0",
"3\n2 3\n3 6\n1 2\n3\n7 3\n3 5\n2 2\n0",
"3\n2 3\n3 6\n1 0\n3\n3 3\n3 5\n2 2\n0",
"3\n3 3\n3 6\n1 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 4\n3 6\n2 2\n3\n3 3\n3 6\n3 2\n0",
"3\n2 3\n6 8\n2 2\n3\n3 3\n3 11\n2 3\n0",
"3\n3 3\n3 8\n2 2\n3\n2 3\n3 6\n1 3\n0",
"3\n0 5\n3 8\n2 2\n3\n2 3\n3 0\n2 3\n0",
"3\n2 5\n0 8\n2 2\n3\n2 3\n3 0\n2 3\n0",
"3\n2 5\n-1 13\n2 2\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n3 6\n2 4\n0",
"3\n2 5\n0 8\n2 1\n3\n2 -1\n3 10\n2 2\n0",
"3\n2 5\n0 6\n2 1\n3\n2 0\n3 10\n4 5\n0",
"3\n2 5\n0 9\n2 1\n3\n2 1\n1 10\n2 2\n0",
"3\n2 5\n0 9\n4 1\n3\n2 0\n4 9\n2 2\n0",
"3\n4 3\n3 6\n1 2\n3\n7 3\n3 5\n2 2\n0",
"3\n2 3\n3 6\n1 0\n3\n3 4\n3 5\n2 2\n0",
"3\n3 3\n2 6\n1 2\n3\n3 3\n3 6\n2 2\n0",
"3\n2 4\n3 6\n2 3\n3\n3 3\n3 6\n3 2\n0",
"3\n2 3\n6 8\n1 2\n3\n3 3\n3 11\n2 3\n0",
"3\n3 3\n3 8\n2 1\n3\n2 3\n3 6\n1 3\n0",
"3\n0 5\n3 8\n2 4\n3\n2 3\n3 0\n2 3\n0",
"3\n2 5\n0 16\n2 2\n3\n2 3\n3 0\n2 3\n0",
"3\n3 5\n-1 13\n2 2\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 13\n2 1\n3\n2 0\n3 6\n2 4\n0",
"3\n2 5\n0 8\n2 2\n3\n2 -1\n3 10\n2 2\n0",
"3\n2 5\n0 6\n2 1\n3\n2 0\n3 10\n4 4\n0",
"3\n2 5\n0 9\n2 1\n3\n3 1\n1 10\n2 2\n0",
"3\n4 6\n3 6\n1 2\n3\n7 3\n3 5\n2 2\n0",
"3\n2 3\n3 6\n1 0\n3\n6 4\n3 5\n2 2\n0",
"3\n3 3\n2 6\n1 2\n3\n2 3\n3 6\n2 2\n0",
"3\n2 4\n3 6\n2 3\n3\n3 3\n6 6\n3 2\n0",
"3\n2 3\n6 8\n1 2\n3\n3 0\n3 11\n2 3\n0",
"3\n3 3\n3 8\n2 1\n3\n3 3\n3 6\n1 3\n0",
"3\n0 5\n3 16\n2 4\n3\n2 3\n3 0\n2 3\n0",
"3\n0 5\n0 16\n2 2\n3\n2 3\n3 0\n2 3\n0",
"3\n3 3\n-1 13\n2 2\n3\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 6\n2 1\n3\n2 0\n3 6\n2 4\n0",
"3\n2 4\n0 8\n2 2\n3\n2 -1\n3 10\n2 2\n0",
"3\n2 5\n0 6\n2 1\n3\n4 0\n3 10\n4 4\n0",
"3\n2 5\n0 9\n2 1\n3\n3 0\n1 10\n2 2\n0",
"3\n4 6\n3 6\n1 2\n3\n7 3\n3 5\n2 1\n0",
"3\n2 3\n3 6\n1 0\n0\n6 4\n3 5\n2 2\n0",
"3\n3 3\n2 6\n1 2\n3\n2 3\n1 6\n2 2\n0",
"3\n2 4\n3 6\n2 3\n3\n3 3\n6 6\n3 0\n0",
"3\n3 3\n3 8\n2 1\n3\n4 3\n3 6\n1 3\n0",
"3\n0 5\n3 16\n2 4\n3\n2 3\n2 0\n2 3\n0",
"3\n3 3\n-1 13\n2 2\n0\n2 0\n3 6\n2 3\n0",
"3\n2 5\n0 6\n2 1\n3\n2 0\n3 6\n2 8\n0",
"3\n2 5\n0 6\n2 1\n3\n4 0\n0 10\n4 4\n0",
"3\n2 5\n0 9\n2 1\n3\n2 0\n1 10\n2 2\n0",
"3\n4 6\n3 6\n1 2\n0\n7 3\n3 5\n2 1\n0",
"3\n2 3\n3 6\n1 0\n0\n5 4\n3 5\n2 2\n0",
"3\n3 3\n2 6\n0 2\n3\n2 3\n1 6\n2 2\n0",
"3\n2 4\n3 6\n2 3\n3\n3 3\n6 6\n3 1\n0",
"3\n3 3\n3 8\n2 1\n3\n4 3\n0 6\n1 3\n0",
"3\n0 5\n3 16\n2 0\n3\n2 3\n2 0\n2 3\n0",
"3\n3 3\n-1 13\n2 2\n0\n2 0\n3 6\n2 1\n0",
"3\n2 5\n0 6\n2 1\n3\n2 -1\n3 6\n2 8\n0",
"3\n2 5\n-1 6\n2 1\n3\n4 0\n0 10\n4 4\n0",
"3\n4 5\n3 6\n1 2\n0\n7 3\n3 5\n2 1\n0",
"3\n2 3\n3 6\n1 0\n0\n5 4\n3 7\n2 2\n0",
"3\n3 0\n2 6\n0 2\n3\n2 3\n1 6\n2 2\n0",
"3\n2 1\n3 6\n2 3\n3\n3 3\n6 6\n3 1\n0"
],
"output": [
"Yes\nNo",
"Yes\nNo\n",
"No\nNo\n",
"No\nYes\n",
"No\n",
"Yes\n",
"Yes\nYes\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nYes\n",
"Yes\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nYes\n",
"Yes\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"Yes\nNo\n",
"No\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\n",
"No\n",
"Yes\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\nNo\n",
"No\n",
"No\nNo\n",
"No\nNo\n",
"No\n",
"No\n",
"No\nNo\n",
"No\nNo\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Long long ago, there was a thief. Looking for treasures, he was running about all over the world. One day, he heard a rumor that there were islands that had large amount of treasures, so he decided to head for there.
Finally he found n islands that had treasures and one island that had nothing. Most of islands had seashore and he can land only on an island which had nothing. He walked around the island and found that there was an old bridge between this island and each of all other n islands.
He tries to visit all islands one by one and pick all the treasures up. Since he is afraid to be stolen, he visits with bringing all treasures that he has picked up. He is a strong man and can bring all the treasures at a time, but the old bridges will break if he cross it with taking certain or more amount of treasures.
Please write a program that judges if he can collect all the treasures and can be back to the island where he land on by properly selecting an order of his visit.
Constraints
* 1 ≤ n ≤ 25
Input
Input consists of several datasets.
The first line of each dataset contains an integer n. Next n lines represents information of the islands. Each line has two integers, which means the amount of treasures of the island and the maximal amount that he can take when he crosses the bridge to the islands, respectively.
The end of input is represented by a case with n = 0.
Output
For each dataset, if he can collect all the treasures and can be back, print "Yes" Otherwise print "No"
Example
Input
3
2 3
3 6
1 2
3
2 3
3 5
1 2
0
Output
Yes
No
### Input:
3
2 3
3 6
1 2
3
2 3
3 5
1 2
0
### Output:
Yes
No
### Input:
3
2 3
3 6
1 2
3
2 3
3 5
2 2
0
### Output:
Yes
No
### Code:
while True:
n = int(input())
if n == 0:
break
z = sorted([tuple(map(int, input().split())) for _ in range(n)], key=lambda x: x[1])
total = 0
for a, b in z:
total += a
if total > b:
print("No")
break
else:
print("Yes") |
p00914 Equal Sum Sets_1138 | Let us consider sets of positive integers less than or equal to n. Note that all elements of a set are different. Also note that the order of elements doesn't matter, that is, both {3, 5, 9} and {5, 9, 3} mean the same set.
Specifying the number of set elements and their sum to be k and s, respectively, sets satisfying the conditions are limited. When n = 9, k = 3 and s = 23, {6, 8, 9} is the only such set. There may be more than one such set, in general, however. When n = 9, k = 3 and s = 22, both {5, 8, 9} and {6, 7, 9} are possible.
You have to write a program that calculates the number of the sets that satisfy the given conditions.
Input
The input consists of multiple datasets. The number of datasets does not exceed 100.
Each of the datasets has three integers n, k and s in one line, separated by a space. You may assume 1 ≤ n ≤ 20, 1 ≤ k ≤ 10 and 1 ≤ s ≤ 155.
The end of the input is indicated by a line containing three zeros.
Output
The output for each dataset should be a line containing a single integer that gives the number of the sets that satisfy the conditions. No other characters should appear in the output.
You can assume that the number of sets does not exceed 231 - 1.
Example
Input
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 4 3
4 2 11
0 0 0
Output
1
2
0
20
1542
5448
1
0
0 | import itertools
while True:
N,K,S = map(int,input().split())
if N == 0: break
cnt = 0
for comb in itertools.combinations(range(1,N+1),K):
if sum(comb) == S:
cnt += 1
print(cnt) | {
"input": [
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 10 105\n20 10 155\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 10 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 18\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n26 8 102\n20 10 105\n20 10 155\n3 4 3\n4 2 11\n0 0 0",
"4 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n16 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 19\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n26 8 102\n20 10 105\n20 10 2\n3 4 3\n4 2 11\n0 0 0",
"4 3 23\n9 3 22\n10 5 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n16 3 22\n10 3 28\n16 5 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 20 107\n20 8 18\n20 8 105\n21 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 5\n9 3 22\n10 3 28\n16 10 107\n26 8 102\n20 10 105\n20 10 2\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 109\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 87\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 3 15\n0 0 0",
"9 3 23\n2 3 3\n10 3 28\n16 10 87\n20 3 102\n20 8 19\n20 20 155\n3 6 3\n3 3 15\n0 0 0",
"9 3 31\n2 3 3\n10 3 28\n16 10 87\n20 3 102\n20 8 19\n20 20 155\n3 6 6\n3 3 15\n0 0 0",
"9 3 31\n2 3 3\n10 3 28\n16 6 87\n20 3 102\n20 8 19\n20 20 155\n3 6 6\n3 3 15\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 7 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 18\n20 8 105\n20 20 155\n3 2 3\n2 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n26 8 102\n20 10 105\n24 10 155\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 38\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n16 3 22\n10 3 28\n16 5 107\n20 8 102\n20 1 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 5\n9 3 22\n10 3 28\n16 10 107\n26 1 102\n20 10 105\n20 10 2\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 109\n20 8 71\n20 8 19\n20 20 155\n3 6 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 1 109\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 3 11\n0 0 0",
"7 3 23\n2 3 22\n10 3 28\n16 10 87\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 3 15\n0 0 0",
"9 3 31\n2 3 3\n10 3 19\n16 10 87\n20 3 102\n20 8 19\n20 20 155\n3 6 6\n3 3 15\n0 0 0",
"9 3 23\n9 3 22\n10 6 28\n16 10 107\n20 8 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 7 107\n17 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n26 8 28\n20 10 105\n24 10 155\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n14 3 22\n10 3 28\n16 5 107\n20 8 102\n20 1 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 5\n9 3 22\n10 3 28\n16 10 107\n26 1 102\n20 10 21\n20 10 2\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 109\n7 8 71\n20 8 19\n20 20 155\n3 6 3\n2 2 11\n0 0 0",
"9 5 23\n2 3 3\n10 3 28\n16 10 87\n20 8 183\n20 8 19\n20 20 155\n3 6 3\n2 3 15\n0 0 0",
"18 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 18\n20 8 105\n20 20 155\n6 2 3\n2 2 11\n0 0 0",
"4 3 32\n9 3 21\n10 5 4\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 5\n9 1 22\n10 3 28\n16 10 107\n26 1 102\n20 10 21\n20 10 2\n3 4 3\n4 2 11\n0 0 0",
"9 5 23\n2 3 3\n10 3 28\n16 10 128\n20 8 183\n20 8 19\n20 20 155\n3 6 3\n2 3 15\n0 0 0",
"9 3 23\n2 3 3\n10 3 41\n16 10 87\n20 3 102\n20 2 19\n20 20 155\n4 6 6\n3 3 15\n0 0 0",
"9 3 23\n9 3 8\n10 6 28\n16 10 107\n20 1 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 5\n9 1 22\n10 3 28\n16 10 107\n26 1 102\n20 10 21\n20 10 2\n3 4 3\n4 2 6\n0 0 0",
"9 3 23\n9 3 8\n20 6 28\n16 10 107\n20 1 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"5 3 23\n9 3 22\n10 3 51\n5 7 107\n17 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n4 5 22\n10 3 28\n4 10 107\n20 8 102\n20 8 38\n20 20 155\n1 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 43\n3 3 28\n16 1 109\n20 8 202\n20 8 19\n20 20 155\n3 6 2\n2 3 11\n0 0 0",
"9 6 23\n2 3 3\n8 3 41\n16 10 87\n20 3 102\n20 2 19\n20 20 155\n4 6 6\n3 3 15\n0 0 0",
"9 3 23\n9 3 8\n20 6 26\n16 10 107\n20 1 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"5 3 23\n9 3 22\n10 3 51\n5 7 107\n24 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"12 3 23\n4 5 22\n10 3 28\n4 10 107\n20 8 102\n20 8 38\n20 20 155\n1 5 3\n2 2 11\n0 0 0",
"5 3 23\n3 3 22\n10 3 51\n5 7 107\n24 8 102\n20 8 105\n28 20 155\n3 5 2\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 5\n16 10 63\n7 8 71\n20 8 19\n20 20 155\n3 12 4\n2 2 14\n0 0 0",
"9 3 23\n14 3 22\n1 3 28\n16 5 107\n20 8 102\n2 1 105\n20 7 155\n4 5 1\n4 2 6\n0 0 0",
"9 3 23\n14 3 22\n1 3 28\n16 5 107\n20 8 108\n2 1 105\n20 7 155\n4 5 1\n4 2 6\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 9 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 37\n10 3 28\n16 10 107\n20 8 102\n20 10 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 97\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n19 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n15 8 102\n20 10 105\n20 10 155\n3 4 3\n4 2 11\n0 0 0",
"9 3 23\n16 3 22\n10 5 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 2 18\n20 8 105\n21 20 155\n3 5 3\n2 2 11\n0 0 0",
"4 3 23\n9 3 22\n10 5 28\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 2 3\n4 2 11\n0 0 0",
"9 3 23\n13 3 22\n10 3 28\n16 10 107\n20 8 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"1 3 23\n9 3 22\n10 3 24\n16 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n17 10 107\n12 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 18\n20 10 105\n20 20 155\n3 2 3\n2 2 11\n0 0 0",
"9 3 23\n10 3 22\n10 3 28\n16 10 107\n26 8 102\n20 10 105\n24 10 155\n3 4 3\n4 2 11\n0 0 0",
"9 4 23\n2 3 22\n10 3 28\n16 10 107\n20 8 102\n20 8 38\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 5\n1 3 22\n10 3 28\n16 10 107\n26 1 102\n20 10 105\n20 10 2\n3 4 3\n4 2 11\n0 0 0",
"9 5 23\n2 3 22\n10 3 28\n16 1 109\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 3 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 19 109\n20 8 102\n20 8 19\n20 20 155\n3 2 3\n2 3 15\n0 0 0",
"9 3 23\n8 3 22\n10 3 28\n16 7 107\n17 8 102\n20 8 105\n20 20 155\n3 5 3\n2 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 12 107\n26 8 28\n20 10 105\n24 10 155\n3 4 3\n4 2 11\n0 0 0",
"4 3 32\n9 3 22\n10 5 4\n1 10 107\n20 8 102\n20 8 105\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"5 3 23\n2 3 43\n10 3 28\n16 1 109\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 3 11\n0 0 0",
"9 3 23\n2 3 22\n10 3 28\n16 19 109\n20 8 86\n20 8 19\n20 20 155\n3 6 3\n2 1 15\n0 0 0",
"9 3 23\n9 3 8\n10 6 28\n16 10 107\n20 8 102\n17 10 105\n20 10 195\n3 5 3\n4 2 11\n0 0 0",
"9 3 23\n9 3 22\n10 3 28\n16 10 107\n20 8 102\n20 10 197\n5 1 155\n3 5 3\n1 2 11\n0 0 0",
"21 3 23\n2 3 22\n10 3 28\n16 10 107\n20 8 18\n20 8 105\n20 20 155\n6 2 3\n2 2 11\n0 0 0",
"15 3 23\n2 5 22\n10 3 28\n16 10 107\n20 8 102\n20 8 38\n20 20 155\n1 5 3\n2 2 11\n0 0 0",
"4 3 32\n9 3 21\n10 5 4\n16 10 107\n20 8 102\n20 8 11\n20 20 155\n3 5 3\n4 2 11\n0 0 0",
"9 3 14\n2 3 43\n3 3 28\n16 1 109\n20 8 102\n20 8 19\n20 20 155\n3 6 3\n2 3 11\n0 0 0",
"18 3 23\n2 3 22\n10 3 28\n16 14 107\n20 8 35\n20 8 105\n20 20 155\n6 2 3\n2 2 11\n0 0 0",
"9 3 23\n7 5 22\n10 3 28\n16 10 107\n20 8 102\n20 8 38\n20 20 155\n1 5 3\n2 2 11\n0 0 0",
"8 3 23\n2 2 22\n10 3 28\n16 10 109\n7 8 71\n20 8 19\n20 20 155\n3 6 3\n2 2 14\n0 0 0",
"9 5 23\n2 3 3\n10 3 28\n16 10 128\n20 8 183\n16 5 19\n20 20 155\n3 6 3\n2 3 15\n0 0 0",
"9 1 31\n2 3 3\n3 3 19\n16 10 3\n20 3 45\n20 8 19\n20 20 155\n3 6 6\n3 3 15\n0 0 0",
"9 3 23\n9 3 8\n20 6 28\n16 12 107\n20 1 102\n17 10 105\n20 10 155\n3 5 3\n4 2 11\n0 0 0",
"9 6 23\n2 3 3\n16 3 41\n16 10 87\n20 3 102\n20 2 19\n20 20 155\n4 6 6\n3 3 15\n0 0 0",
"12 3 23\n4 5 22\n10 3 28\n4 10 107\n20 12 102\n20 8 38\n20 20 155\n1 5 3\n2 2 11\n0 0 0",
"9 3 23\n14 3 22\n1 3 28\n16 5 107\n27 8 102\n2 1 105\n20 8 155\n4 5 3\n2 2 11\n0 0 0",
"9 6 23\n2 3 3\n8 3 41\n16 10 87\n20 3 102\n10 2 19\n20 20 155\n4 12 6\n3 3 15\n0 0 0",
"5 3 23\n9 3 22\n10 3 51\n5 7 107\n24 1 102\n20 8 105\n20 20 155\n3 5 2\n2 2 11\n0 0 0",
"9 6 14\n2 3 3\n8 3 41\n16 10 87\n9 3 167\n20 2 19\n20 20 155\n4 12 6\n5 3 15\n0 0 0",
"9 3 23\n14 3 35\n1 3 28\n16 5 107\n20 8 102\n2 1 105\n20 7 155\n4 5 1\n3 2 6\n0 0 0",
"9 3 43\n14 3 22\n1 3 28\n16 5 107\n20 8 102\n2 1 105\n20 7 155\n4 5 1\n4 2 6\n0 0 0",
"9 5 23\n14 3 22\n1 3 28\n16 5 107\n20 8 108\n2 1 105\n20 7 155\n4 5 1\n4 2 6\n0 0 0",
"9 3 23\n14 3 22\n1 3 28\n16 5 107\n20 10 108\n2 1 105\n20 7 155\n4 9 1\n4 2 6\n0 0 0"
],
"output": [
"1\n2\n0\n20\n1542\n5448\n1\n0\n0",
"1\n2\n0\n20\n1542\n5448\n1\n0\n0\n",
"1\n2\n0\n20\n1542\n5448\n0\n0\n0\n",
"1\n2\n0\n20\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n0\n1095\n0\n0\n0\n",
"1\n2\n0\n20\n32200\n5448\n1\n0\n0\n",
"0\n2\n0\n20\n1542\n1095\n0\n0\n0\n",
"1\n26\n0\n20\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n1542\n0\n0\n0\n0\n",
"1\n2\n0\n20\n32200\n5448\n0\n0\n0\n",
"0\n2\n20\n20\n1542\n1095\n0\n0\n0\n",
"1\n26\n0\n0\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n0\n0\n1095\n0\n0\n0\n",
"0\n2\n0\n20\n32200\n5448\n0\n0\n0\n",
"1\n0\n0\n11\n1542\n0\n0\n0\n0\n",
"1\n0\n0\n330\n1542\n0\n0\n0\n0\n",
"1\n0\n0\n330\n0\n0\n0\n0\n0\n",
"0\n0\n0\n330\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n2\n0\n20\n1542\n274\n1\n0\n0\n",
"1\n2\n0\n0\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n0\n1095\n0\n1\n0\n",
"1\n2\n0\n20\n32200\n5448\n10222\n0\n0\n",
"1\n0\n0\n20\n1542\n2\n0\n0\n0\n",
"1\n26\n0\n0\n1542\n0\n0\n0\n0\n",
"0\n2\n0\n20\n0\n5448\n0\n0\n0\n",
"1\n0\n0\n11\n2378\n0\n0\n0\n0\n",
"1\n0\n0\n0\n1542\n0\n0\n0\n0\n",
"0\n0\n0\n330\n1542\n0\n0\n0\n0\n",
"0\n0\n9\n330\n0\n0\n0\n0\n0\n",
"1\n2\n10\n20\n1542\n274\n1\n0\n0\n",
"1\n2\n0\n0\n11\n1095\n0\n0\n0\n",
"1\n2\n0\n20\n0\n5448\n10222\n0\n0\n",
"1\n21\n0\n0\n1542\n0\n0\n0\n0\n",
"0\n2\n0\n20\n0\n0\n0\n0\n0\n",
"1\n0\n0\n11\n0\n0\n0\n0\n0\n",
"11\n0\n0\n330\n0\n0\n0\n0\n0\n",
"31\n0\n0\n20\n0\n1095\n0\n1\n0\n",
"0\n3\n0\n20\n1542\n1095\n0\n0\n0\n",
"0\n0\n0\n20\n0\n0\n0\n0\n0\n",
"11\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n330\n0\n9\n0\n0\n0\n",
"1\n2\n10\n20\n0\n274\n1\n0\n0\n",
"0\n0\n0\n20\n0\n0\n0\n0\n1\n",
"1\n2\n14\n20\n0\n274\n1\n0\n0\n",
"0\n2\n0\n0\n11\n1095\n0\n0\n0\n",
"1\n0\n0\n0\n1542\n2\n0\n0\n0\n",
"1\n0\n0\n0\n0\n0\n0\n0\n0\n",
"2\n0\n0\n330\n0\n9\n0\n0\n0\n",
"1\n2\n7\n20\n0\n274\n1\n0\n0\n",
"0\n2\n0\n0\n17454\n1095\n0\n0\n0\n",
"13\n0\n0\n0\n1542\n2\n0\n0\n0\n",
"0\n0\n0\n0\n17454\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n0\n0\n0\n0\n0\n",
"1\n21\n0\n0\n1542\n0\n0\n0\n1\n",
"1\n21\n0\n0\n738\n0\n0\n0\n1\n",
"1\n2\n0\n20\n1542\n3712\n1\n0\n0\n",
"1\n0\n0\n20\n1542\n5448\n0\n0\n0\n",
"1\n2\n0\n20\n2378\n1095\n0\n0\n0\n",
"1\n2\n0\n20\n1542\n307\n0\n0\n0\n",
"1\n2\n0\n20\n0\n5448\n1\n0\n0\n",
"1\n26\n20\n20\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n8\n1095\n0\n0\n0\n",
"0\n2\n20\n20\n1542\n1095\n0\n1\n0\n",
"1\n18\n0\n20\n1542\n274\n1\n0\n0\n",
"0\n2\n3\n20\n1542\n1095\n0\n0\n0\n",
"1\n0\n0\n204\n0\n1095\n0\n0\n0\n",
"1\n0\n0\n20\n0\n5448\n0\n1\n0\n",
"1\n5\n0\n20\n32200\n5448\n10222\n0\n0\n",
"9\n0\n0\n20\n1542\n2\n0\n0\n0\n",
"0\n0\n0\n20\n0\n5448\n0\n0\n0\n",
"11\n0\n0\n0\n1542\n0\n0\n0\n0\n",
"1\n0\n0\n0\n1542\n0\n0\n1\n0\n",
"1\n0\n0\n0\n11\n1095\n0\n0\n0\n",
"1\n2\n0\n71\n0\n5448\n10222\n0\n0\n",
"0\n2\n0\n0\n1542\n1095\n0\n0\n0\n",
"0\n0\n0\n0\n1542\n0\n0\n0\n0\n",
"1\n0\n0\n0\n3746\n0\n0\n0\n0\n",
"1\n2\n10\n20\n1542\n274\n0\n0\n0\n",
"1\n2\n0\n20\n1542\n0\n0\n0\n0\n",
"33\n0\n0\n20\n0\n1095\n0\n1\n0\n",
"24\n0\n0\n20\n1542\n2\n0\n0\n0\n",
"0\n3\n0\n20\n1542\n0\n0\n0\n0\n",
"8\n0\n0\n0\n1542\n0\n0\n0\n0\n",
"31\n0\n0\n2\n0\n1095\n0\n1\n0\n",
"1\n2\n0\n20\n1542\n2\n0\n0\n0\n",
"0\n0\n0\n11\n0\n0\n0\n0\n0\n",
"11\n0\n0\n0\n0\n5\n0\n0\n0\n",
"0\n0\n0\n0\n19\n0\n0\n0\n0\n",
"1\n2\n14\n71\n0\n274\n1\n0\n0\n",
"2\n0\n4\n330\n0\n9\n0\n0\n0\n",
"13\n0\n0\n0\n738\n2\n0\n0\n0\n",
"1\n21\n0\n0\n40427\n0\n0\n0\n0\n",
"2\n0\n0\n330\n0\n1\n0\n0\n0\n",
"0\n2\n0\n0\n0\n1095\n0\n0\n0\n",
"0\n0\n0\n330\n0\n9\n0\n0\n0\n",
"1\n4\n0\n0\n1542\n0\n0\n0\n0\n",
"0\n21\n0\n0\n1542\n0\n0\n0\n1\n",
"11\n21\n0\n0\n738\n0\n0\n0\n1\n",
"1\n21\n0\n0\n5311\n0\n0\n0\n1\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Let us consider sets of positive integers less than or equal to n. Note that all elements of a set are different. Also note that the order of elements doesn't matter, that is, both {3, 5, 9} and {5, 9, 3} mean the same set.
Specifying the number of set elements and their sum to be k and s, respectively, sets satisfying the conditions are limited. When n = 9, k = 3 and s = 23, {6, 8, 9} is the only such set. There may be more than one such set, in general, however. When n = 9, k = 3 and s = 22, both {5, 8, 9} and {6, 7, 9} are possible.
You have to write a program that calculates the number of the sets that satisfy the given conditions.
Input
The input consists of multiple datasets. The number of datasets does not exceed 100.
Each of the datasets has three integers n, k and s in one line, separated by a space. You may assume 1 ≤ n ≤ 20, 1 ≤ k ≤ 10 and 1 ≤ s ≤ 155.
The end of the input is indicated by a line containing three zeros.
Output
The output for each dataset should be a line containing a single integer that gives the number of the sets that satisfy the conditions. No other characters should appear in the output.
You can assume that the number of sets does not exceed 231 - 1.
Example
Input
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 4 3
4 2 11
0 0 0
Output
1
2
0
20
1542
5448
1
0
0
### Input:
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 4 3
4 2 11
0 0 0
### Output:
1
2
0
20
1542
5448
1
0
0
### Input:
9 3 23
9 3 22
10 3 28
16 10 107
20 8 102
20 10 105
20 10 155
3 5 3
4 2 11
0 0 0
### Output:
1
2
0
20
1542
5448
1
0
0
### Code:
import itertools
while True:
N,K,S = map(int,input().split())
if N == 0: break
cnt = 0
for comb in itertools.combinations(range(1,N+1),K):
if sum(comb) == S:
cnt += 1
print(cnt) |
p01316 Differential Pulse Code Modulation_1143 | Differential pulse code modulation is one of the compression methods mainly used when compressing audio signals.
The audio signal is treated as an integer sequence (impulse sequence) on the computer. The integer sequence is a sample of the input signal at regular time intervals and the amplitude recorded. In general, this sequence of integers tends to have similar values before and after. Differential pulse code modulation uses this to encode the difference between the values before and after and improve the compression rate.
In this problem, we consider selecting the difference value from a predetermined set of values. We call this set of values a codebook. The decrypted audio signal yn is defined by the following equation.
> yn = yn --1 + C [kn]
Where kn is the output sequence output by the program and C [j] is the jth value in the codebook. However, yn is rounded to 0 if the value is less than 0 by addition, and to 255 if the value is greater than 255. The value of y0 is 128.
Your job is to select the output sequence so that the sum of squares of the difference between the original input signal and the decoded output signal is minimized given the input signal and the codebook, and the difference at that time. It is to write a program that outputs the sum of squares of.
For example, if you compress the columns 131, 137 using a set of values {4, 2, 1, 0, -1, -2, -4} as a codebook, y0 = 128, y1 = 128 + 4 = When compressed into the sequence 132, y2 = 132 + 4 = 136, the sum of squares becomes the minimum (131 --132) ^ 2 + (137 --136) ^ 2 = 2.
Also, if you also compress the columns 131, 123 using the set of values {4, 2, 1, 0, -1, -2, -4} as a codebook, y0 = 128, y1 = 128 + 1 = 129, y2 = 129 --4 = 125, and unlike the previous example, it is better not to adopt +2, which is closer to 131 (131 --129) ^ 2 + (123 --125) ^ 2 = 8, which is a smaller square. The sum is obtained.
The above two examples are the first two examples of sample input.
Input
The input consists of multiple datasets. The format of each data set is as follows.
> N M
> C1
> C2
> ...
> CM
> x1
> x2
> ...
> xN
>
The first line specifies the size of the input dataset. N is the length (number of samples) of the input signal to be compressed. M is the number of values contained in the codebook. N and M satisfy 1 ≤ N ≤ 20000 and 1 ≤ M ≤ 16.
The M line that follows is the description of the codebook. Ci represents the i-th value contained in the codebook. Ci satisfies -255 ≤ Ci ≤ 255.
The N lines that follow are the description of the input signal. xi is the i-th value of a sequence of integers representing the input signal. xi satisfies 0 ≤ xi ≤ 255.
The input items in the dataset are all integers. The end of the input is represented by a line consisting of only two zeros separated by a single space character.
Output
For each input data set, output the minimum value of the sum of squares of the difference between the original input signal and the decoded output signal in one line.
Example
Input
2 7
4
2
1
0
-1
-2
-4
131
137
2 7
4
2
1
0
-1
-2
-4
131
123
10 7
-4
-2
-1
0
1
2
4
132
134
135
134
132
128
124
122
121
122
5 1
255
0
0
0
0
0
4 1
0
255
0
255
0
0 0
Output
2
8
0
325125
65026 | def solve():
from sys import stdin
INF = float('inf')
f_i = stdin
while True:
N, M = map(int, f_i.readline().split())
if N == 0:
break
C = tuple(int(f_i.readline()) for i in range(M))
# decode table
tbl_1 = tuple(tuple(255 if i + c > 255 else 0 if i + c < 0 \
else i + c for c in C) for i in range(256))
# tabale of squared difference
tbl_2 = tuple(tuple((i - j) ** 2 for j in range(256)) \
for i in range(256))
dp1 = [INF] * 256
dp2 = [INF] * 256
dp1[128] = 0
for i in range(N):
x = int(f_i.readline())
tbl_2_x = tbl_2[x]
for signal, pre_cost in enumerate(dp1):
for decoded in tbl_1[signal]:
new_cost = pre_cost + tbl_2_x[decoded]
if new_cost < dp2[decoded]:
dp2[decoded] = new_cost
dp1 = dp2[:]
dp2 = [INF] * 256
print(min(dp1))
solve()
| {
"input": [
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n86\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-7\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n6\n1\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n24\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n242\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-2\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n0\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n114\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n62\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n0\n0\n-1\n-2\n-4\n166\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n114\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n106\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n106\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n6\n2\n1\n0\n-1\n0\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n242\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n1\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n6\n2\n1\n0\n-1\n0\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n251\n134\n135\n134\n132\n242\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n1\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n0\n7\n106\n84\n85\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n0\n0\n1\n0\n7\n106\n84\n85\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n424\n123\n10 7\n-4\n-2\n-1\n0\n1\n4\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n1\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n424\n229\n10 7\n-4\n-2\n-1\n0\n1\n4\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n2\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-1\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n235\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n452\n0\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n6\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n1\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n256\n1\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-6\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n86\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n-1\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n204\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n6\n1\n1\n0\n0\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n24\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-2\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n3 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n244\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n239\n62\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n6\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n95\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n119\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-2\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n74\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n255\n0\n255\n-1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n-1\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-8\n-2\n-1\n0\n1\n2\n7\n106\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n106\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n6\n2\n1\n0\n-1\n0\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n123\n10 10\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n242\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n1\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n0\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n6\n2\n1\n0\n-1\n0\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-4\n-4\n199\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n251\n134\n135\n134\n132\n242\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n1\n0\n4 1\n0\n255\n0\n255\n1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n24\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n0\n7\n106\n84\n85\n134\n132\n128\n124\n122\n121\n122\n5 1\n65\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-6\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n0\n0\n1\n0\n7\n106\n84\n85\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n0\n427\n0\n0 0",
"2 7\n0\n1\n1\n1\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n424\n229\n10 7\n-4\n-2\n-1\n0\n1\n4\n4\n132\n84\n135\n134\n15\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n1\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n0\n-2\n-4\n424\n229\n10 7\n-4\n-2\n-1\n0\n1\n4\n4\n132\n84\n135\n134\n42\n128\n207\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-1\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n0\n0\n1\n2\n4\n132\n84\n135\n134\n235\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n86\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n452\n0\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n6\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n0\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n1\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n5\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-6\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n86\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n54\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n-1\n4 1\n0\n8\n-1\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-2\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n255\n0\n-1\n0\n0\n0\n3 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n244\n84\n135\n134\n132\n128\n195\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n4\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n0\n0\n-1\n-2\n-4\n166\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n114\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n334\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-2\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n89\n74\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n121\n60\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n255\n0\n255\n-1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n0\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n-1\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-8\n-2\n-1\n0\n1\n2\n7\n106\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n100\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n1\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n3\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n106\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n-2\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n0\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n182\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n1\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n0\n7\n131\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n24\n253\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n0\n1\n1\n0\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n325\n123\n10 7\n-6\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n-1\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n0\n0\n1\n0\n7\n106\n84\n85\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n-1\n0\n-1\n0\n4 1\n1\n255\n0\n427\n0\n0 0",
"2 7\n0\n0\n1\n0\n-2\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n424\n123\n10 7\n-3\n-2\n-1\n0\n1\n4\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n53\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n1\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-1\n-1\n0\n1\n2\n7\n132\n102\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n4\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n0\n0\n1\n2\n4\n132\n84\n135\n134\n235\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n128\n86\n122\n121\n122\n5 1\n76\n0\n0\n0\n0\n0\n4 1\n0\n452\n0\n255\n0\n0 0",
"2 7\n-1\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n6\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n0\n-1\n0\n1\n2\n4\n132\n84\n34\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n1\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n2\n0\n-1\n-2\n-4\n131\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n290\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n256\n1\n0 0",
"2 7\n5\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-6\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n42\n121\n122\n5 1\n255\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n86\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n54\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n299\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n0\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-4\n-1\n0\n1\n3\n4\n213\n84\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n0\n0\n-1\n-4\n-4\n131\n137\n2 7\n6\n1\n1\n0\n0\n-2\n-4\n80\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n134\n132\n24\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n4\n2\n1\n0\n-1\n-2\n-4\n131\n240\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-4\n-2\n-2\n0\n1\n2\n4\n132\n134\n135\n134\n132\n128\n124\n122\n121\n122\n3 1\n255\n0\n-1\n0\n0\n0\n3 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n0\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n394\n84\n135\n134\n132\n128\n195\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-5\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n124\n123\n10 7\n-7\n-2\n-1\n0\n1\n2\n4\n239\n62\n135\n134\n132\n128\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n-1\n255\n0\n0 0",
"2 7\n4\n4\n1\n0\n-1\n-2\n-4\n131\n137\n2 7\n4\n2\n0\n0\n-1\n-2\n-4\n166\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n4\n132\n84\n135\n114\n132\n198\n124\n122\n121\n122\n5 1\n61\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n334\n0\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n1\n1\n4\n132\n84\n135\n134\n132\n119\n124\n122\n121\n122\n5 1\n3\n0\n0\n0\n0\n0\n4 1\n0\n255\n0\n255\n-1\n0 0",
"2 7\n-1\n2\n1\n0\n-1\n-4\n-4\n131\n137\n2 7\n4\n2\n1\n0\n-1\n-2\n-2\n124\n123\n10 7\n-4\n-2\n-1\n0\n1\n2\n7\n132\n84\n135\n134\n132\n128\n124\n122\n121\n60\n5 1\n61\n0\n0\n0\n-1\n0\n4 1\n0\n255\n0\n255\n-1\n0 0",
"2 7\n0\n1\n1\n0\n-1\n-4\n-4\n131\n161\n2 7\n4\n2\n1\n0\n-1\n-2\n-4\n211\n123\n10 7\n-4\n-2\n-1\n0\n0\n2\n4\n132\n84\n135\n134\n42\n128\n124\n122\n121\n122\n5 1\n3\n0\n0\n-1\n0\n0\n4 1\n0\n255\n0\n255\n0\n0 0"
],
"output": [
"2\n8\n0\n325125\n65026",
"2\n0\n0\n325125\n65026\n",
"2\n0\n0\n293296\n65026\n",
"2\n0\n1517\n293296\n65026\n",
"26\n0\n1517\n293296\n65026\n",
"2\n8\n0\n325125\n64771\n",
"10817\n0\n0\n325125\n65026\n",
"2\n1156\n0\n293296\n65026\n",
"2\n5\n1517\n293296\n65026\n",
"26\n6266\n1517\n293296\n65026\n",
"26\n0\n1517\n293296\n65283\n",
"26\n0\n1424\n293296\n65026\n",
"26\n0\n9526\n293296\n65026\n",
"2\n8\n10050\n325125\n64771\n",
"10817\n0\n2\n325125\n65026\n",
"2\n0\n1581\n293296\n65026\n",
"26\n6266\n1517\n93935\n65026\n",
"26\n0\n3585\n293296\n65283\n",
"26\n0\n1424\n293807\n65026\n",
"2\n1181\n1581\n293296\n65026\n",
"53\n6266\n1517\n93935\n65026\n",
"53\n6266\n6885\n93935\n65026\n",
"26\n0\n1684\n293807\n65026\n",
"53\n6266\n6885\n93935\n65576\n",
"26\n0\n1684\n294308\n65026\n",
"2\n8\n10050\n324616\n64771\n",
"53\n37274\n6885\n93935\n65576\n",
"2\n8\n24211\n324616\n64771\n",
"53\n37274\n9651\n93935\n65576\n",
"26\n0\n2706\n294308\n65026\n",
"26\n0\n2707\n294308\n65026\n",
"53\n85289\n9651\n93935\n65576\n",
"53\n93913\n9651\n93935\n65576\n",
"2\n0\n1518\n293296\n65026\n",
"2\n0\n1519\n293296\n65026\n",
"26\n0\n11058\n293296\n65026\n",
"26\n0\n1517\n293296\n153873\n",
"26\n0\n1517\n292787\n65026\n",
"2\n8\n0\n325125\n65026\n",
"10817\n4\n0\n325125\n65026\n",
"2\n1156\n0\n293296\n65283\n",
"26\n0\n1517\n293807\n65283\n",
"26\n0\n5499\n293296\n65026\n",
"26\n1\n9526\n293296\n65026\n",
"10817\n0\n2\n325125\n48642\n",
"26\n6266\n14489\n93935\n65026\n",
"26\n0\n15814\n293296\n65283\n",
"2\n8\n722\n325125\n64771\n",
"53\n6266\n1558\n93935\n65026\n",
"26\n0\n2337\n293296\n65283\n",
"26\n0\n1424\n293807\n65283\n",
"53\n6266\n6885\n94210\n65026\n",
"26\n0\n1310\n293807\n65026\n",
"26\n0\n1684\n294308\n65283\n",
"2\n8\n34231\n",
"14449\n37274\n6885\n93935\n65576\n",
"2\n4514\n24211\n324616\n64771\n",
"53\n37274\n12351\n93935\n65576\n",
"26\n0\n2706\n298371\n65026\n",
"53\n37274\n8817\n93935\n65576\n",
"26\n0\n2707\n294308\n138298\n",
"53\n93913\n13944\n93935\n65576\n",
"53\n93913\n17616\n93935\n65576\n",
"2\n0\n1428\n293296\n65026\n",
"26\n0\n11062\n293296\n65026\n",
"26\n0\n2546\n293296\n153873\n",
"26\n0\n1519\n292787\n65026\n",
"10408\n4\n0\n325125\n65026\n",
"2\n1156\n4577\n293296\n65283\n",
"26\n0\n1517\n293807\n63554\n",
"10817\n0\n2\n325636\n48642\n",
"26\n6266\n17889\n93935\n65026\n",
"2\n1181\n1581\n293296\n91333\n",
"26\n0\n3498\n293296\n65283\n",
"26\n0\n3846\n293807\n65283\n",
"53\n6266\n6886\n94210\n65026\n",
"26\n0\n1310\n293807\n49681\n",
"53\n6266\n6971\n93935\n65576\n",
"26\n0\n1684\n294308\n65542\n",
"14449\n2525\n6885\n93935\n65576\n",
"26\n0\n1409\n294308\n65026\n",
"53\n37274\n30589\n93935\n65576\n",
"53\n37274\n8817\n94210\n65576\n",
"26\n0\n2707\n294308\n137816\n",
"53\n85289\n10329\n93935\n65576\n",
"2\n0\n456\n293296\n65026\n",
"2\n0\n11062\n293296\n65026\n",
"26\n0\n2546\n301716\n153873\n",
"26\n0\n8346\n292787\n65026\n",
"2\n10\n0\n325125\n65026\n",
"10408\n4\n5058\n325125\n65026\n",
"2\n1156\n4577\n293296\n78395\n",
"2\n0\n8509\n293296\n65026\n",
"26\n1937\n9526\n293296\n65026\n",
"10817\n0\n2\n195586\n",
"26\n6266\n73989\n93935\n65026\n",
"26\n0\n15460\n293296\n65283\n",
"2\n1181\n5610\n293296\n91333\n",
"53\n6266\n1558\n93935\n65283\n",
"26\n5\n3846\n293807\n65283\n",
"965\n6266\n6886\n94210\n65026\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Differential pulse code modulation is one of the compression methods mainly used when compressing audio signals.
The audio signal is treated as an integer sequence (impulse sequence) on the computer. The integer sequence is a sample of the input signal at regular time intervals and the amplitude recorded. In general, this sequence of integers tends to have similar values before and after. Differential pulse code modulation uses this to encode the difference between the values before and after and improve the compression rate.
In this problem, we consider selecting the difference value from a predetermined set of values. We call this set of values a codebook. The decrypted audio signal yn is defined by the following equation.
> yn = yn --1 + C [kn]
Where kn is the output sequence output by the program and C [j] is the jth value in the codebook. However, yn is rounded to 0 if the value is less than 0 by addition, and to 255 if the value is greater than 255. The value of y0 is 128.
Your job is to select the output sequence so that the sum of squares of the difference between the original input signal and the decoded output signal is minimized given the input signal and the codebook, and the difference at that time. It is to write a program that outputs the sum of squares of.
For example, if you compress the columns 131, 137 using a set of values {4, 2, 1, 0, -1, -2, -4} as a codebook, y0 = 128, y1 = 128 + 4 = When compressed into the sequence 132, y2 = 132 + 4 = 136, the sum of squares becomes the minimum (131 --132) ^ 2 + (137 --136) ^ 2 = 2.
Also, if you also compress the columns 131, 123 using the set of values {4, 2, 1, 0, -1, -2, -4} as a codebook, y0 = 128, y1 = 128 + 1 = 129, y2 = 129 --4 = 125, and unlike the previous example, it is better not to adopt +2, which is closer to 131 (131 --129) ^ 2 + (123 --125) ^ 2 = 8, which is a smaller square. The sum is obtained.
The above two examples are the first two examples of sample input.
Input
The input consists of multiple datasets. The format of each data set is as follows.
> N M
> C1
> C2
> ...
> CM
> x1
> x2
> ...
> xN
>
The first line specifies the size of the input dataset. N is the length (number of samples) of the input signal to be compressed. M is the number of values contained in the codebook. N and M satisfy 1 ≤ N ≤ 20000 and 1 ≤ M ≤ 16.
The M line that follows is the description of the codebook. Ci represents the i-th value contained in the codebook. Ci satisfies -255 ≤ Ci ≤ 255.
The N lines that follow are the description of the input signal. xi is the i-th value of a sequence of integers representing the input signal. xi satisfies 0 ≤ xi ≤ 255.
The input items in the dataset are all integers. The end of the input is represented by a line consisting of only two zeros separated by a single space character.
Output
For each input data set, output the minimum value of the sum of squares of the difference between the original input signal and the decoded output signal in one line.
Example
Input
2 7
4
2
1
0
-1
-2
-4
131
137
2 7
4
2
1
0
-1
-2
-4
131
123
10 7
-4
-2
-1
0
1
2
4
132
134
135
134
132
128
124
122
121
122
5 1
255
0
0
0
0
0
4 1
0
255
0
255
0
0 0
Output
2
8
0
325125
65026
### Input:
2 7
4
2
1
0
-1
-2
-4
131
137
2 7
4
2
1
0
-1
-2
-4
131
123
10 7
-4
-2
-1
0
1
2
4
132
134
135
134
132
128
124
122
121
122
5 1
255
0
0
0
0
0
4 1
0
255
0
255
0
0 0
### Output:
2
8
0
325125
65026
### Input:
2 7
4
2
1
0
-1
-2
-4
131
137
2 7
4
2
1
0
-1
-2
-4
124
123
10 7
-4
-2
-1
0
1
2
4
132
134
135
134
132
128
124
122
121
122
5 1
255
0
0
0
0
0
4 1
0
255
0
255
0
0 0
### Output:
2
0
0
325125
65026
### Code:
def solve():
from sys import stdin
INF = float('inf')
f_i = stdin
while True:
N, M = map(int, f_i.readline().split())
if N == 0:
break
C = tuple(int(f_i.readline()) for i in range(M))
# decode table
tbl_1 = tuple(tuple(255 if i + c > 255 else 0 if i + c < 0 \
else i + c for c in C) for i in range(256))
# tabale of squared difference
tbl_2 = tuple(tuple((i - j) ** 2 for j in range(256)) \
for i in range(256))
dp1 = [INF] * 256
dp2 = [INF] * 256
dp1[128] = 0
for i in range(N):
x = int(f_i.readline())
tbl_2_x = tbl_2[x]
for signal, pre_cost in enumerate(dp1):
for decoded in tbl_1[signal]:
new_cost = pre_cost + tbl_2_x[decoded]
if new_cost < dp2[decoded]:
dp2[decoded] = new_cost
dp1 = dp2[:]
dp2 = [INF] * 256
print(min(dp1))
solve()
|
p01646 Dictionary_1148 | Problem Statement
We found a dictionary of the Ancient Civilization Mayo (ACM) during excavation of the ruins. After analysis of the dictionary, we revealed they used a language that had not more than 26 letters. So one of us mapped each letter to a different English alphabet and typed all the words in the dictionary into a computer.
How the words are ordered in the dictionary, especially whether they are ordered lexicographically, is an interesting topic to many people. As a good programmer, you are requested to write a program to judge whether we can consider the words to be sorted in a lexicographical order.
Note: In a lexicographical order, a word always precedes other words it is a prefix of. For example, `ab` precedes `abc`, `abde`, and so on.
Input
The input consists of multiple datasets. Each dataset is formatted as follows:
n
string_1
...
string_n
Each dataset consists of n+1 lines. The first line of each dataset contains an integer that indicates n (1 \leq n \leq 500). The i-th line of the following n lines contains string_i, which consists of up to 10 English lowercase letters.
The end of the input is `0`, and this should not be processed.
Output
Print either `yes` or `no` in a line for each dataset, in the order of the input. If all words in the dataset can be considered to be ordered lexicographically, print `yes`. Otherwise, print `no`.
Example
Input
4
cba
cab
b
a
3
bca
ab
a
5
abc
acb
b
c
c
5
abc
acb
c
b
b
0
Output
yes
no
yes
no | def add_edge(node, adj_lst, s1, s2):
ind = 0
max_len = min(len(s1), len(s2))
while ind < max_len and s1[ind] == s2[ind]:
ind += 1
if ind == max_len:
return max_len < len(s1)
c1 = ord(s1[ind]) - ord("a")
c2 = ord(s2[ind]) - ord("a")
adj_lst[c1].add(c2)
node.add(c1)
node.add(c2)
return False
def visit(n, visited, adj_lst):
ret = False
if visited[n] == 2:
return True
elif visited[n] == 0:
visited[n] = 2
for to in adj_lst[n]:
ret = ret or visit(to, visited, adj_lst)
visited[n] = 1
return ret
def main():
while True:
n = int(input())
if n == 0:
break
lst = [input() for _ in range(n)]
node = set()
adj_lst = [set() for _ in range(26)]
blank_flag = False
for i in range(n):
for j in range(i + 1, n):
blank_flag = blank_flag or add_edge(node, adj_lst, lst[i], lst[j])
if blank_flag:
print("no")
continue
visited = [0] * 26
cycle_flag = False
for n in node:
cycle_flag = cycle_flag or visit(n, visited, adj_lst)
if cycle_flag:
print("no")
else:
print("yes")
main()
| {
"input": [
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacb\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n0\nabc\nabc\nc\nb\nc\n0",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\nabc\nbca\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nbbc\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n0\nabc\nabc\nc\nb\nc\n1",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\ncba\nbba\nb\nc\nc\n5\nabc\nacc\nb\nb\nb\n0",
"4\nbba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nbac\nacb\nb\nb\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nbbc\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nbcb\nb\nb\nc\n0\nabc\nabc\nc\nb\nc\n1",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\ncab\nb\nb\nc\n0\nabc\nabc\nd\nb\nc\n0",
"4\nabc\ncab\nb\na\n0\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\ncba\nabc\nc\nb\nc\n0",
"4\nabc\ncac\nb\na\n3\n`cb\nda\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nccb\ncab\nb\na\n3\nbca\nba\na\n5\nacb\nbca\nb\nb\nc\n5\n`bd\n`bc\nc\nb\nc\n0",
"4\ncba\ncab\nb\na\n3\nacb\nac\na\n0\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nbba\nbab\nb\na\n3\ncba\nba\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nbba\nbab\nc\na\n3\ncba\nba\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nbba\nbab\nb\na\n3\ncba\nab\na\n0\nbca\nacc\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nbba\nbab\nb\na\n3\ncba\nba\na\n0\nbca\nacc\nb\nc\nb\n3\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n0\nbca\nab\nb\n4\nabc\nacb\nc\nb\nc\n5\ncba\nabc\ne\nb\nc\n0",
"4\nbbc\ncab\nb\na\n3\nbcb\nba\na\n5\nabc\nacb\nb\nb\nc\n0\nabc\nabc\nc\nb\nc\n1",
"4\nabc\nbac\nb\na\n3\ncab\ncb\na\n5\nabc\nbba\nb\nc\nc\n0\nabc\nbcb\nb\nb\na\n0",
"4\naac\ncab\nb\na\n3\nbca\nca\na\n5\nabc\nacb\nb\nb\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncbb\ncab\nb\na\n3\nbca\nba\na\n5\nabc\nacb\nb\nb\nc\n0\nabc\nabc\nb\nb\nc\n1",
"4\ncbb\ncab\nb\na\n3\nbca\nbb\na\n5\nbac\ncab\nc\nc\nc\n0\nabc\nabc\nd\nb\nc\n-1",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacb\nc\nb\nc\n0",
"4\ncba\ncab\nb\na\n3\nacb\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\naa\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\ncba\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n0\nabc\nabc\nc\nb\nc\n1",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\nabc\nbba\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\ncba\nbba\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nbbc\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n0\ncba\nabc\nc\nb\nc\n1",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n0\ncba\nabc\nc\nb\nc\n1",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\ncba\nbba\nb\nc\nc\n5\nabc\nbcc\nb\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\nca\na\n5\ncba\nbba\nb\nc\nc\n5\nabc\nbcc\nb\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\nca\na\n5\nabc\nbba\nb\nc\nc\n5\nabc\nbcc\nb\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacb\nc\nb\na\n0",
"4\ncba\ncab\nb\na\n3\ncca\nab\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nc\na\n3\nbca\naa\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\ncba\nabc\nc\nb\nc\n0",
"4\nbba\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nccb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nd\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n0\nabc\nabc\nd\nb\nc\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\na\n5\ncba\nbba\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\ncac\nb\na\n3\nacb\nac\na\n5\ncba\nbba\nb\nc\nc\n5\nabc\nacc\nb\nb\nb\n0",
"4\ncbb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n0\ncba\nabc\nc\nb\nc\n1",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nbcc\nb\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\nca\na\n5\nabc\nbba\nb\nc\nc\n5\nabc\nbcc\nb\nb\na\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nc\nc\nc\n5\nabc\nacb\nc\nb\na\n0",
"4\nbba\ncab\nb\na\n3\ncba\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\ncca\nab\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\na\nb\n0",
"4\ncba\ncab\nc\na\n3\nbca\naa\na\n5\ncca\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nabc\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\ncba\nabc\nc\nb\nc\n0",
"4\nbba\nbac\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nb`c\nacb\nb\nb\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nb\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\nccb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n5\nabd\nabc\nc\nb\nc\n0",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\nabb\nacb\nb\nd\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\ncac\nb\na\n3\nacb\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nacc\nb\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nbcc\nb\nc\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\nca\na\n5\nabc\nbba\nb\nc\nc\n5\nabc\nbcb\nb\nb\na\n0",
"4\ncba\ncab\nb\na\n3\nacb\nab\na\n5\nabc\nacb\nc\nc\nc\n5\nabc\nacb\nc\nb\na\n0",
"4\nbba\nbab\nb\na\n3\ncba\nab\na\n5\nabc\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\ncca\nab\na\n5\ncba\nacb\nb\nd\nc\n5\nabc\nacc\nd\na\nb\n0",
"4\nbba\nbac\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nc\nb\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nb`c\nacb\nb\na\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nb\nc\n5\ncba\nacc\nd\nb\nb\n0",
"4\nccb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nacb\nb\nb\nc\n5\n`bd\nabc\nc\nb\nc\n0",
"4\nabc\nbac\na\na\n3\nacb\nac\na\n5\nabb\nacb\nb\nd\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncbb\ncab\nc\na\n3\nbca\nab\na\n5\nabc\ncab\nb\nb\nc\n0\nabc\nabc\nd\nb\nc\n0",
"4\nabc\ncac\nb\na\n3\n`cb\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nacc\nb\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nbca\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nbcc\nb\nc\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\ncb\na\n5\nabc\nbba\nb\nc\nc\n5\nabc\nbcb\nb\nb\na\n0",
"4\ncba\ncab\nb\na\n3\nacb\nab\na\n5\nabc\nacb\nc\nc\nc\n5\nabc\nacb\nd\nb\na\n0",
"4\nbba\nbab\nb\na\n3\ncba\nab\na\n5\ncba\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\ncab\nc\na\n3\ncca\nab\na\n5\ncba\nacb\nb\nd\nc\n5\nabc\nacc\nd\na\nb\n0",
"4\nabc\ncaa\nb\na\n0\nbca\nab\na\n5\nabc\nacb\nb\nc\nc\n5\ncba\nabc\nc\nb\nc\n0",
"4\nbba\nbac\nb\na\n3\nbca\nac\na\n5\nabc\nacb\nb\nc\nb\n5\nabc\nacc\nc\nb\nb\n0",
"4\ncba\ncab\nb\na\n3\nbca\nab\na\n5\nc`b\nacb\nb\na\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\na\n5\nabc\nacb\nb\nb\nc\n5\ncbb\nacc\nd\nb\nb\n0",
"4\nccb\ncab\nb\na\n3\nbca\nab\na\n5\nabc\nbca\nb\nb\nc\n5\n`bd\nabc\nc\nb\nc\n0",
"4\nabc\ncac\na\na\n3\nacb\nac\na\n5\nabb\nacb\nb\nd\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\ncac\nb\na\n3\n`cb\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nbca\nac\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nbcc\nc\nc\nb\n0",
"4\nabc\nbac\nb\na\n3\nacb\ncb\na\n5\nabc\nbba\na\nc\nc\n5\nabc\nbcb\nb\nb\na\n0",
"4\nbba\nbab\nb\na\n3\ncba\nab\na\n5\nbca\nacb\nb\nc\nc\n5\nabc\nacc\nd\nb\nb\n0",
"4\ncba\nbab\nb\na\n3\nbca\nab\na\n5\nc`b\nacb\nb\na\nc\n5\nabc\nabc\nc\nb\nc\n0",
"4\nabc\ncab\nb\na\n3\nacb\nac\n`\n5\nabc\nacb\nb\nb\nc\n5\ncbb\nacc\nd\nb\nb\n0",
"4\nccb\ncab\nb\na\n3\nbca\nab\na\n5\nacb\nbca\nb\nb\nc\n5\n`bd\nabc\nc\nb\nc\n0",
"4\nabc\ncac\na\na\n3\nacb\nac\na\n5\nabb\nacb\nb\nd\nc\n5\nabc\nbcc\nc\nb\nb\n0",
"4\nabc\ncac\nb\na\n3\n`cb\nad\na\n5\ncba\nabb\nb\nc\nc\n5\nabc\nacc\nc\nb\nb\n0",
"4\nabc\nbac\nb\na\n3\nbca\nac\na\n5\ncba\nabb\nb\nc\nb\n5\nabc\nbcc\nc\nc\nb\n0"
],
"output": [
"yes\nno\nyes\nno",
"yes\nno\nyes\nno\n",
"yes\nno\nyes\nyes\n",
"yes\nno\nno\nyes\n",
"no\nno\nyes\nno\n",
"yes\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nyes\n",
"no\nno\nno\nyes\n",
"no\nno\nyes\nyes\n",
"yes\nno\nno\nno\n",
"no\nno\nno\n",
"yes\nno\nno\n",
"no\n",
"no\nyes\nno\nno\n",
"yes\nyes\nno\nno\n",
"yes\nno\n",
"no\nyes\nno\nyes\n",
"yes\nyes\nno\nyes\n",
"no\nno\n",
"no\nyes\n",
"yes\n",
"no\nyes\nyes\n",
"no\nyes\nno\n",
"no\nyes\nyes\nyes\n",
"yes\nyes\nyes\n",
"yes\nyes\nno\n",
"yes\nno\nyes\nno\n",
"yes\nno\nyes\nno\n",
"yes\nno\nno\nyes\n",
"yes\nno\nyes\nno\n",
"yes\nno\nyes\nno\n",
"yes\nno\nyes\nno\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nno\n",
"yes\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"no\nno\nyes\n",
"yes\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"yes\nno\nyes\nno\n",
"yes\nno\nno\nyes\n",
"no\nno\nno\nyes\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nno\n",
"yes\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nno\nyes\n",
"yes\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nno\nno\n",
"no\nno\nno\nyes\n",
"no\nno\nyes\nno\n",
"no\nno\nyes\nno\n",
"yes\nno\nno\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nno\n",
"no\nno\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nno\nno\n",
"no\nno\nno\nno\n",
"yes\nno\nno\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nyes\nno\n",
"no\nno\nyes\nno\n",
"no\nno\nno\n",
"no\nno\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"yes\nno\nyes\nno\n",
"no\nno\nno\nyes\n",
"no\nno\nno\nno\n",
"no\n",
"no\nno\nno\nno\n",
"yes\nno\nno\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nno\nno\n",
"no\nno\nyes\nno\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n",
"no\nno\nno\nyes\n",
"no\nno\nno\nno\n",
"no\nno\nyes\nyes\n",
"yes\nno\nno\nno\n",
"no\nno\nyes\nno\n",
"no\nno\nno\nno\n",
"no\nno\nno\nno\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Problem Statement
We found a dictionary of the Ancient Civilization Mayo (ACM) during excavation of the ruins. After analysis of the dictionary, we revealed they used a language that had not more than 26 letters. So one of us mapped each letter to a different English alphabet and typed all the words in the dictionary into a computer.
How the words are ordered in the dictionary, especially whether they are ordered lexicographically, is an interesting topic to many people. As a good programmer, you are requested to write a program to judge whether we can consider the words to be sorted in a lexicographical order.
Note: In a lexicographical order, a word always precedes other words it is a prefix of. For example, `ab` precedes `abc`, `abde`, and so on.
Input
The input consists of multiple datasets. Each dataset is formatted as follows:
n
string_1
...
string_n
Each dataset consists of n+1 lines. The first line of each dataset contains an integer that indicates n (1 \leq n \leq 500). The i-th line of the following n lines contains string_i, which consists of up to 10 English lowercase letters.
The end of the input is `0`, and this should not be processed.
Output
Print either `yes` or `no` in a line for each dataset, in the order of the input. If all words in the dataset can be considered to be ordered lexicographically, print `yes`. Otherwise, print `no`.
Example
Input
4
cba
cab
b
a
3
bca
ab
a
5
abc
acb
b
c
c
5
abc
acb
c
b
b
0
Output
yes
no
yes
no
### Input:
4
cba
cab
b
a
3
bca
ab
a
5
abc
acb
b
c
c
5
abc
acb
c
b
b
0
### Output:
yes
no
yes
no
### Input:
4
cba
cab
b
a
3
bca
ab
a
5
abc
acb
b
c
c
5
abc
acc
c
b
b
0
### Output:
yes
no
yes
no
### Code:
def add_edge(node, adj_lst, s1, s2):
ind = 0
max_len = min(len(s1), len(s2))
while ind < max_len and s1[ind] == s2[ind]:
ind += 1
if ind == max_len:
return max_len < len(s1)
c1 = ord(s1[ind]) - ord("a")
c2 = ord(s2[ind]) - ord("a")
adj_lst[c1].add(c2)
node.add(c1)
node.add(c2)
return False
def visit(n, visited, adj_lst):
ret = False
if visited[n] == 2:
return True
elif visited[n] == 0:
visited[n] = 2
for to in adj_lst[n]:
ret = ret or visit(to, visited, adj_lst)
visited[n] = 1
return ret
def main():
while True:
n = int(input())
if n == 0:
break
lst = [input() for _ in range(n)]
node = set()
adj_lst = [set() for _ in range(26)]
blank_flag = False
for i in range(n):
for j in range(i + 1, n):
blank_flag = blank_flag or add_edge(node, adj_lst, lst[i], lst[j])
if blank_flag:
print("no")
continue
visited = [0] * 26
cycle_flag = False
for n in node:
cycle_flag = cycle_flag or visit(n, visited, adj_lst)
if cycle_flag:
print("no")
else:
print("yes")
main()
|
p01931 Check answers_1153 | problem
AOR Ika is studying to pass the test.
AOR Ika-chan solved the $ N $ question. After that, round the solved problem according to the following procedure.
1. Check the correctness of the answer.
2. If the answer is correct, write a circle mark, and if it is incorrect, write a cross mark on the answer sheet.
AOR Ika faints because of the fear of failing the test the moment she finds that the answer is wrong for $ 2 $ in a row. And no further rounding is possible.
Syncope occurs between steps $ 1 $ and $ 2 $.
You will be given an integer $ N $, which represents the number of questions AOR Ika has solved, and a string $ S $, which is a length $ N $ and represents the correctness of the answer. The string consists of'o'and'x', with'o' indicating the correct answer and'x' indicating the incorrect answer. The $ i $ letter indicates the correctness of the $ i $ question, and AOR Ika-chan rounds the $ 1 $ question in order.
Please output the number of questions that AOR Ika-chan can write the correctness.
output
Output the number of questions that AOR Ika-chan could write in the $ 1 $ line. Also, output a line break at the end.
Example
Input
3
oxx
Output
2 | def main():
N = int(input())
S = input()
try:
ans = S.index('xx') + 1
print(ans)
except:
print(N)
main() | {
"input": [
"3\noxx",
"3\nnxx",
"3\nnwx",
"3\nxxo",
"3\nxwn",
"3\nowx",
"3\npxx",
"3\npyx",
"3\npzx",
"3\npzw",
"3\npwz",
"3\nzwp",
"3\nzxp",
"3\npxz",
"3\nzyp",
"3\nyzp",
"3\nyzq",
"3\nyzr",
"3\nxzr",
"3\nrzx",
"3\nxrz",
"3\nwrz",
"3\nzrw",
"3\nzrv",
"3\nzqv",
"3\nzvq",
"3\nyvq",
"3\nyvp",
"3\npvy",
"3\npwy",
"3\nowz",
"3\novz",
"3\nzvo",
"3\nzov",
"3\nvoz",
"3\nwoz",
"3\nzow",
"3\nzpw",
"3\nwpz",
"3\npyw",
"3\nwyp",
"3\noyw",
"3\noyx",
"3\nnyx",
"3\nnzx",
"3\nznx",
"3\nzmx",
"3\nmzx",
"3\nnzy",
"3\nyzn",
"3\nynz",
"3\nzny",
"3\nmzy",
"3\nmyz",
"3\nymz",
"3\nyoz",
"3\nyzo",
"3\nozy",
"3\noyy",
"3\nyyo",
"3\nyoy",
"3\nzoy",
"3\nzox",
"3\nznw",
"3\nznv",
"3\nvnz",
"3\nzmv",
"3\nzmu",
"3\numz",
"3\nvmz",
"3\nznu",
"3\nunz",
"3\nynu",
"3\nymu",
"3\nylu",
"3\nyku",
"3\nkyu",
"3\nuyk",
"3\njyu",
"3\njyv",
"3\njyw",
"3\nwyj",
"3\nvyj",
"3\nvxj",
"3\nvxi",
"3\nuxi",
"3\nixu",
"3\nuwi",
"3\nuiw",
"3\niuw",
"3\niux",
"3\nhuw",
"3\nhvw",
"3\nhww",
"3\nhwx",
"3\nwhx",
"3\nwhw",
"3\nwhv",
"3\nwhu",
"3\nwuh",
"3\nhwu"
],
"output": [
"2",
"2\n",
"3\n",
"1\n",
"3\n",
"3\n",
"2\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n",
"3\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
problem
AOR Ika is studying to pass the test.
AOR Ika-chan solved the $ N $ question. After that, round the solved problem according to the following procedure.
1. Check the correctness of the answer.
2. If the answer is correct, write a circle mark, and if it is incorrect, write a cross mark on the answer sheet.
AOR Ika faints because of the fear of failing the test the moment she finds that the answer is wrong for $ 2 $ in a row. And no further rounding is possible.
Syncope occurs between steps $ 1 $ and $ 2 $.
You will be given an integer $ N $, which represents the number of questions AOR Ika has solved, and a string $ S $, which is a length $ N $ and represents the correctness of the answer. The string consists of'o'and'x', with'o' indicating the correct answer and'x' indicating the incorrect answer. The $ i $ letter indicates the correctness of the $ i $ question, and AOR Ika-chan rounds the $ 1 $ question in order.
Please output the number of questions that AOR Ika-chan can write the correctness.
output
Output the number of questions that AOR Ika-chan could write in the $ 1 $ line. Also, output a line break at the end.
Example
Input
3
oxx
Output
2
### Input:
3
oxx
### Output:
2
### Input:
3
nxx
### Output:
2
### Code:
def main():
N = int(input())
S = input()
try:
ans = S.index('xx') + 1
print(ans)
except:
print(N)
main() |
p02365 Minimum-Cost Arborescence_1160 | Find the sum of the weights of edges of the Minimum-Cost Arborescence with the root r for a given weighted directed graph G = (V, E).
Constraints
* 1 ≤ |V| ≤ 100
* 0 ≤ |E| ≤ 1,000
* 0 ≤ wi ≤ 10,000
* G has arborescence(s) with the root r
Input
|V| |E| r
s0 t0 w0
s1 t1 w1
:
s|E|-1 t|E|-1 w|E|-1
, where |V| is the number of vertices and |E| is the number of edges in the graph. The graph vertices are named with the numbers 0, 1,..., |V|-1 respectively. r is the root of the Minimum-Cost Arborescence.
si and ti represent source and target verticess of i-th directed edge. wi represents the weight of the i-th directed edge.
Output
Print the sum of the weights the Minimum-Cost Arborescence.
Examples
Input
4 6 0
0 1 3
0 2 2
2 0 1
2 3 1
3 0 1
3 1 5
Output
6
Input
6 10 0
0 2 7
0 1 1
0 3 5
1 4 9
2 1 6
1 3 2
3 4 3
4 2 2
2 5 8
3 5 3
Output
11 | from collections import defaultdict
from itertools import chain
nv, ne, r = map(int, input().split())
in_edges = defaultdict(set)
out_edges = defaultdict(set)
while ne:
s, t, w = map(int, input().split())
in_edges[t].add((w, s))
out_edges[s].add((w, t))
ne -= 1
def chu_liu_edmond(vertices, cycle_cost):
global in_edges, out_edges, nv, r
total_cost = cycle_cost
prev_v = {v: None for v in vertices}
next_vs = {v: set() for v in vertices}
for t in vertices:
if t == r:
continue
min_in_w, min_in_s = min(in_edges[t])
total_cost += min_in_w
prev_v[t] = min_in_s
next_vs[min_in_s].add(t)
visited = {r}
queue = set(next_vs[r])
while queue:
t = queue.pop()
visited.add(t)
queue.update(next_vs[t])
cycles = []
for i in vertices:
if i in visited:
continue
cycle_vertices = set()
while i not in visited:
visited.add(i)
cycle_vertices.add(i)
i = prev_v[i]
# Branched single path from cycle
if i not in cycle_vertices:
continue
# Current cycle_vertices are not necessarily cycle (may contain branch from cycle)
cycle_vertices, j = {i}, prev_v[i]
while j != i:
cycle_vertices.add(j)
j = prev_v[j]
cycles.append(cycle_vertices)
if not cycles:
return total_cost
for cycle in cycles:
vertices.difference_update(cycle)
vertices.add(nv)
for v in cycle:
prev_e_cost = min(in_edges[v])[0]
cycle_cost += prev_e_cost
for w, t in out_edges[v]:
if t in vertices:
out_edges[nv].add((w, t))
in_edges[t].remove((w, v))
in_edges[t].add((w, nv))
for w, s in in_edges[v]:
if s in vertices:
new_w = w - prev_e_cost
in_edges[nv].add((new_w, s))
out_edges[s].remove((w, v))
out_edges[s].add((new_w, nv))
del in_edges[v]
del out_edges[v]
nv += 1
return chu_liu_edmond(vertices, cycle_cost)
print(chu_liu_edmond(set(range(nv)), 0)) | {
"input": [
"4 6 0\n0 1 3\n0 2 2\n2 0 1\n2 3 1\n3 0 1\n3 1 5",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 4 3\n4 2 2\n2 5 8\n3 5 3",
"4 6 0\n0 1 3\n0 2 2\n2 0 1\n2 3 2\n3 0 1\n3 1 5",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 4 3\n4 2 2\n1 5 8\n3 5 3",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 0 1\n3 1 5",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n2 3 3\n3 0 0\n0 1 7",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n4 2 2\n1 5 8\n3 5 3",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n4 2 2\n1 5 8\n3 5 3",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 0\n3 1 1\n3 1 5",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n3 5 3",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n5 5 3",
"4 5 0\n0 1 4\n0 2 2\n3 1 1\n1 3 3\n3 0 0\n0 1 9",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n5 5 3",
"6 10 0\n0 2 7\n0 1 0\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 4 3\n4 2 2\n2 5 8\n3 5 3",
"4 5 0\n0 1 2\n0 2 3\n3 1 1\n1 3 3\n3 0 0\n0 1 9",
"6 10 0\n0 2 8\n0 0 1\n0 3 5\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n5 3 3",
"4 6 0\n0 0 1\n0 2 4\n3 0 1\n2 3 2\n3 0 0\n0 1 7",
"4 6 0\n0 0 1\n0 2 4\n3 0 1\n2 3 2\n3 0 0\n0 1 12",
"4 6 0\n0 1 1\n0 2 0\n3 0 1\n2 3 2\n3 0 0\n0 1 0",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 7\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 8\n0 5 3",
"4 6 0\n0 1 3\n0 2 2\n2 0 1\n2 3 1\n3 1 1\n3 1 5",
"4 6 0\n0 1 1\n0 2 0\n2 0 1\n2 3 0\n3 1 1\n3 1 5",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 6\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n5 5 3",
"6 10 0\n0 2 7\n0 0 0\n0 3 5\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n2 3 3",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 8\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 8\n3 5 3",
"6 10 0\n0 2 14\n0 0 1\n0 3 5\n1 4 7\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 0\n0 5 3",
"6 10 0\n0 2 7\n0 0 0\n0 3 1\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n2 3 3",
"6 10 0\n0 2 4\n0 0 1\n0 4 5\n1 4 9\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 8\n0 5 3",
"6 10 0\n0 2 7\n0 4 1\n0 3 3\n1 4 9\n2 1 6\n1 3 4\n3 1 3\n3 2 2\n1 5 8\n3 5 3",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n3 2 2\n1 5 0\n3 5 3",
"6 10 0\n0 2 8\n0 0 1\n0 3 1\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 1 2\n1 5 8\n5 3 3",
"6 10 0\n0 2 4\n0 0 1\n0 4 5\n1 4 9\n2 1 6\n1 3 2\n4 1 4\n4 2 2\n1 3 8\n0 5 3",
"6 10 0\n0 2 14\n0 0 1\n0 3 5\n1 4 7\n2 1 6\n1 2 2\n4 1 3\n4 2 2\n1 3 1\n0 5 3",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 0 1\n1 1 5",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 0 1\n0 1 5",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 0 1\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n3 0 1\n2 3 2\n3 0 1\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n3 0 1\n2 3 2\n3 0 0\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n2 3 2\n3 0 0\n0 1 7",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n2 3 3\n3 0 0\n0 1 7",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n0 3 3\n3 0 0\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 1 1\n3 1 5",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 0 1\n1 1 1",
"4 6 0\n0 1 1\n0 2 2\n3 0 1\n2 3 2\n3 0 1\n0 1 14",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n2 3 2\n3 0 -1\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n2 3 3\n3 1 0\n0 1 7",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n0 3 3\n3 0 0\n0 1 9",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n1 3 2\n3 0 -1\n0 1 7",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n1 3 3\n3 0 0\n0 1 9",
"4 6 0\n0 1 1\n0 2 2\n2 0 0\n2 3 0\n3 1 1\n3 1 5",
"4 6 0\n0 1 1\n0 2 2\n3 1 2\n1 3 2\n3 0 -1\n0 1 7",
"4 5 0\n0 1 2\n0 2 2\n3 1 1\n1 3 3\n3 0 0\n0 1 9",
"4 5 0\n0 1 4\n0 2 2\n3 1 1\n1 3 3\n3 1 0\n0 1 9",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n5 3 3",
"6 10 0\n0 2 7\n0 0 0\n0 3 5\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 0 2\n1 5 8\n5 3 3",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 5 9\n2 1 6\n1 3 2\n3 4 3\n4 2 2\n1 5 8\n3 5 3",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n6 0 1\n0 1 7",
"4 6 0\n0 1 1\n0 2 0\n3 0 1\n2 3 2\n3 0 1\n0 1 7",
"4 6 0\n0 0 1\n0 2 2\n3 0 1\n2 3 2\n3 0 0\n0 1 7",
"4 6 0\n0 1 1\n0 2 3\n3 1 1\n2 3 3\n3 0 0\n0 1 7",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n3 2 2\n1 5 8\n3 5 3",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n3 1 1\n5 1 5",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n0 3 3\n1 0 0\n0 1 9",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n4 2 2\n1 3 8\n3 5 3",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n1 3 3\n3 0 0\n0 0 9",
"4 6 0\n0 1 1\n0 2 2\n2 0 -1\n2 3 0\n3 1 1\n3 1 5",
"4 4 0\n0 1 1\n0 2 2\n3 1 2\n1 3 2\n3 0 -1\n0 1 7",
"4 5 0\n0 1 0\n0 2 2\n3 1 1\n1 3 3\n3 0 0\n0 1 9",
"4 6 0\n0 1 1\n0 2 0\n3 0 1\n2 3 2\n3 0 0\n0 1 7",
"4 6 0\n0 1 1\n0 2 3\n3 0 1\n2 3 3\n3 0 0\n0 1 7",
"6 10 0\n0 2 7\n0 1 1\n0 2 5\n1 4 9\n2 1 6\n1 3 2\n3 1 3\n3 2 2\n1 5 8\n3 5 3",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n0 3 3\n1 0 -1\n0 1 9",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 8\n3 5 3",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n1 3 3\n3 1 0\n0 0 9",
"4 4 0\n0 1 1\n0 2 2\n3 1 2\n1 3 2\n4 0 -1\n0 1 7",
"4 5 0\n0 1 2\n0 2 3\n3 2 1\n1 3 3\n3 0 0\n0 1 9",
"6 10 0\n0 2 8\n0 0 1\n0 3 5\n1 4 0\n2 1 6\n1 3 2\n3 1 3\n4 1 2\n1 5 8\n5 3 3",
"4 6 0\n0 1 1\n0 2 0\n3 0 1\n2 3 2\n3 0 0\n0 1 1",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 9\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 8\n0 5 3",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n1 3 3\n3 1 -1\n0 0 9",
"4 5 0\n0 1 2\n0 2 3\n3 2 1\n2 3 3\n3 0 0\n0 1 9",
"4 6 0\n0 0 1\n0 2 4\n6 0 1\n2 3 2\n3 0 0\n0 1 12",
"4 5 0\n0 1 2\n0 2 3\n3 2 1\n1 3 2\n3 0 0\n0 1 9",
"4 6 0\n0 1 1\n0 2 0\n3 0 1\n1 3 2\n3 0 0\n0 1 0",
"6 10 0\n0 2 7\n0 0 1\n0 3 5\n1 4 7\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 10\n0 5 3",
"4 6 0\n0 1 1\n0 2 0\n3 0 2\n1 3 2\n3 0 0\n0 1 0",
"6 10 0\n0 2 14\n0 0 1\n0 3 5\n1 4 7\n2 1 6\n1 3 2\n4 1 3\n4 2 2\n1 3 10\n0 5 3",
"4 6 0\n-1 1 1\n0 2 0\n3 0 2\n1 3 2\n3 0 0\n0 1 0",
"4 6 0\n0 1 3\n0 2 2\n2 0 1\n2 3 2\n3 0 0\n3 1 5",
"6 10 0\n0 2 7\n0 1 1\n0 3 5\n1 4 8\n2 1 6\n1 3 2\n3 4 3\n4 2 2\n1 5 8\n3 5 3",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 0\n3 0 1\n3 1 5",
"4 6 0\n0 1 1\n0 2 3\n2 0 1\n2 3 2\n3 0 1\n1 1 5",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n4 0 1\n0 1 5",
"4 6 0\n0 1 1\n0 2 2\n2 0 2\n2 3 2\n3 0 1\n0 1 7",
"4 6 0\n0 1 1\n0 2 1\n3 0 1\n2 3 2\n3 0 1\n0 1 7",
"4 6 0\n0 1 1\n1 2 2\n3 1 1\n2 3 2\n3 0 0\n0 1 7",
"4 6 0\n0 1 2\n0 2 2\n3 1 1\n2 3 3\n3 0 0\n0 2 7",
"4 6 0\n1 1 2\n0 2 2\n3 1 1\n0 3 3\n3 0 0\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n2 0 1\n2 3 2\n0 1 1\n3 1 5",
"4 6 0\n0 1 1\n0 2 2\n1 0 1\n2 3 2\n3 0 1\n0 1 14",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n2 3 1\n3 0 -1\n0 1 7",
"4 6 0\n0 1 1\n0 2 2\n3 1 1\n2 3 3\n3 1 0\n0 2 7"
],
"output": [
"6",
"11",
"7\n",
"11\n",
"5\n",
"6\n",
"17\n",
"22\n",
"3\n",
"27\n",
"32\n",
"9\n",
"23\n",
"10\n",
"8\n",
"24\n",
"13\n",
"18\n",
"2\n",
"25\n",
"4\n",
"1\n",
"29\n",
"21\n",
"26\n",
"30\n",
"19\n",
"15\n",
"12\n",
"14\n",
"20\n",
"16\n",
"31\n",
"5\n",
"5\n",
"5\n",
"5\n",
"5\n",
"5\n",
"6\n",
"6\n",
"5\n",
"5\n",
"5\n",
"5\n",
"5\n",
"6\n",
"5\n",
"7\n",
"3\n",
"5\n",
"7\n",
"9\n",
"23\n",
"23\n",
"11\n",
"5\n",
"3\n",
"11\n",
"7\n",
"17\n",
"5\n",
"6\n",
"22\n",
"7\n",
"3\n",
"5\n",
"5\n",
"3\n",
"7\n",
"17\n",
"6\n",
"27\n",
"7\n",
"5\n",
"6\n",
"24\n",
"3\n",
"27\n",
"7\n",
"8\n",
"18\n",
"5\n",
"2\n",
"25\n",
"2\n",
"32\n",
"2\n",
"7\n",
"11\n",
"3\n",
"6\n",
"5\n",
"5\n",
"4\n",
"5\n",
"6\n",
"6\n",
"5\n",
"5\n",
"4\n",
"5\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Find the sum of the weights of edges of the Minimum-Cost Arborescence with the root r for a given weighted directed graph G = (V, E).
Constraints
* 1 ≤ |V| ≤ 100
* 0 ≤ |E| ≤ 1,000
* 0 ≤ wi ≤ 10,000
* G has arborescence(s) with the root r
Input
|V| |E| r
s0 t0 w0
s1 t1 w1
:
s|E|-1 t|E|-1 w|E|-1
, where |V| is the number of vertices and |E| is the number of edges in the graph. The graph vertices are named with the numbers 0, 1,..., |V|-1 respectively. r is the root of the Minimum-Cost Arborescence.
si and ti represent source and target verticess of i-th directed edge. wi represents the weight of the i-th directed edge.
Output
Print the sum of the weights the Minimum-Cost Arborescence.
Examples
Input
4 6 0
0 1 3
0 2 2
2 0 1
2 3 1
3 0 1
3 1 5
Output
6
Input
6 10 0
0 2 7
0 1 1
0 3 5
1 4 9
2 1 6
1 3 2
3 4 3
4 2 2
2 5 8
3 5 3
Output
11
### Input:
4 6 0
0 1 3
0 2 2
2 0 1
2 3 1
3 0 1
3 1 5
### Output:
6
### Input:
6 10 0
0 2 7
0 1 1
0 3 5
1 4 9
2 1 6
1 3 2
3 4 3
4 2 2
2 5 8
3 5 3
### Output:
11
### Code:
from collections import defaultdict
from itertools import chain
nv, ne, r = map(int, input().split())
in_edges = defaultdict(set)
out_edges = defaultdict(set)
while ne:
s, t, w = map(int, input().split())
in_edges[t].add((w, s))
out_edges[s].add((w, t))
ne -= 1
def chu_liu_edmond(vertices, cycle_cost):
global in_edges, out_edges, nv, r
total_cost = cycle_cost
prev_v = {v: None for v in vertices}
next_vs = {v: set() for v in vertices}
for t in vertices:
if t == r:
continue
min_in_w, min_in_s = min(in_edges[t])
total_cost += min_in_w
prev_v[t] = min_in_s
next_vs[min_in_s].add(t)
visited = {r}
queue = set(next_vs[r])
while queue:
t = queue.pop()
visited.add(t)
queue.update(next_vs[t])
cycles = []
for i in vertices:
if i in visited:
continue
cycle_vertices = set()
while i not in visited:
visited.add(i)
cycle_vertices.add(i)
i = prev_v[i]
# Branched single path from cycle
if i not in cycle_vertices:
continue
# Current cycle_vertices are not necessarily cycle (may contain branch from cycle)
cycle_vertices, j = {i}, prev_v[i]
while j != i:
cycle_vertices.add(j)
j = prev_v[j]
cycles.append(cycle_vertices)
if not cycles:
return total_cost
for cycle in cycles:
vertices.difference_update(cycle)
vertices.add(nv)
for v in cycle:
prev_e_cost = min(in_edges[v])[0]
cycle_cost += prev_e_cost
for w, t in out_edges[v]:
if t in vertices:
out_edges[nv].add((w, t))
in_edges[t].remove((w, v))
in_edges[t].add((w, nv))
for w, s in in_edges[v]:
if s in vertices:
new_w = w - prev_e_cost
in_edges[nv].add((new_w, s))
out_edges[s].remove((w, v))
out_edges[s].add((new_w, nv))
del in_edges[v]
del out_edges[v]
nv += 1
return chu_liu_edmond(vertices, cycle_cost)
print(chu_liu_edmond(set(range(nv)), 0)) |
1003_D. Coins and Queries_1170 | Polycarp has n coins, the value of the i-th coin is a_i. It is guaranteed that all the values are integer powers of 2 (i.e. a_i = 2^d for some non-negative integer number d).
Polycarp wants to know answers on q queries. The j-th query is described as integer number b_j. The answer to the query is the minimum number of coins that is necessary to obtain the value b_j using some subset of coins (Polycarp can use only coins he has). If Polycarp can't obtain the value b_j, the answer to the j-th query is -1.
The queries are independent (the answer on the query doesn't affect Polycarp's coins).
Input
The first line of the input contains two integers n and q (1 ≤ n, q ≤ 2 ⋅ 10^5) — the number of coins and the number of queries.
The second line of the input contains n integers a_1, a_2, ..., a_n — values of coins (1 ≤ a_i ≤ 2 ⋅ 10^9). It is guaranteed that all a_i are integer powers of 2 (i.e. a_i = 2^d for some non-negative integer number d).
The next q lines contain one integer each. The j-th line contains one integer b_j — the value of the j-th query (1 ≤ b_j ≤ 10^9).
Output
Print q integers ans_j. The j-th integer must be equal to the answer on the j-th query. If Polycarp can't obtain the value b_j the answer to the j-th query is -1.
Example
Input
5 4
2 4 8 2 4
8
5
14
10
Output
1
-1
3
2 | # @oj: codeforces
# @id: hitwanyang
# @email: 296866643@qq.com
# @date: 2020-10-14 16:44
# @url:https://codeforc.es/contest/1003/problem/D
import sys,os
from io import BytesIO, IOBase
import collections,itertools,bisect,heapq,math,string
from decimal import *
# region fastio
BUFSIZE = 8192
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------------------
## 注意嵌套括号!!!!!!
## 先有思路,再写代码,别着急!!!
## 先有朴素解法,不要有思维定式,试着换思路解决
## 精度 print("%.10f" % ans)
def main():
n,q=map(int,input().split())
a=list(map(int,input().split()))
d=collections.Counter(a)
keys=sorted(d.keys(),reverse=True)
# print (keys,d)
for i in range(q):
ans=0
b=int(input())
for k in keys:
cnt=b//k
ans+=min(cnt,d[k])
b-=min(cnt,d[k])*k
# if cnt<=d[k]:
# ans+=cnt
# b-=cnt*k
# else:
# ans+=d[k]
# b-=d[k]*k
if b>0:
print (-1)
else:
print (ans)
if __name__ == "__main__":
main() | {
"input": [
"5 4\n2 4 8 2 4\n8\n5\n14\n10\n",
"1 10\n8\n1\n2\n3\n4\n5\n6\n7\n8\n9\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n7\n8\n9\n16\n",
"1 10\n2\n1\n2\n3\n4\n5\n6\n7\n8\n9\n16\n",
"1 10\n1\n1\n2\n3\n4\n5\n6\n7\n8\n9\n16\n",
"3 3\n1 1 1\n1\n2\n3\n",
"4 1\n2 4 16 32\n14\n",
"1 10\n8\n1\n2\n3\n4\n5\n6\n7\n13\n9\n16\n",
"1 10\n2\n1\n2\n3\n4\n5\n6\n7\n8\n3\n16\n",
"1 10\n1\n1\n2\n3\n4\n4\n6\n7\n8\n9\n16\n",
"3 3\n1 1 1\n1\n4\n3\n",
"1 10\n8\n1\n2\n6\n4\n5\n6\n7\n8\n9\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n7\n8\n9\n18\n",
"1 10\n1\n1\n2\n3\n4\n4\n6\n7\n1\n9\n16\n",
"3 3\n1 2 1\n1\n4\n3\n",
"3 3\n1 4 1\n1\n4\n3\n",
"3 3\n1 4 1\n1\n6\n3\n",
"3 3\n1 4 2\n1\n6\n3\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n4\n8\n10\n16\n",
"3 3\n1 4 2\n1\n6\n2\n",
"5 4\n2 4 8 2 4\n8\n5\n12\n10\n",
"3 3\n1 1 1\n1\n4\n5\n",
"3 3\n1 2 1\n1\n6\n3\n",
"1 10\n1\n1\n2\n1\n7\n4\n6\n7\n8\n9\n17\n",
"1 10\n4\n1\n2\n3\n2\n5\n6\n3\n8\n4\n16\n",
"5 4\n2 4 8 2 4\n8\n5\n12\n2\n",
"1 10\n1\n1\n2\n1\n1\n4\n6\n7\n8\n9\n3\n",
"3 3\n1 1 1\n1\n2\n4\n",
"4 1\n2 4 16 32\n24\n",
"1 10\n8\n1\n2\n3\n4\n8\n5\n7\n13\n9\n30\n",
"1 10\n4\n1\n2\n3\n5\n5\n6\n7\n8\n9\n16\n",
"1 10\n1\n1\n2\n3\n4\n4\n6\n7\n8\n9\n17\n",
"1 10\n1\n1\n2\n2\n4\n4\n6\n7\n8\n9\n17\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n3\n8\n9\n16\n",
"1 10\n8\n1\n2\n3\n4\n5\n6\n7\n13\n9\n30\n",
"1 10\n1\n1\n2\n3\n7\n4\n6\n7\n8\n9\n17\n",
"1 10\n4\n1\n2\n3\n2\n5\n6\n3\n8\n9\n16\n",
"1 10\n8\n1\n2\n3\n4\n5\n5\n7\n13\n9\n30\n",
"1 10\n4\n1\n2\n3\n2\n5\n6\n3\n8\n10\n16\n",
"1 10\n8\n1\n2\n3\n4\n5\n5\n7\n13\n9\n2\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n3\n8\n10\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n6\n8\n9\n16\n",
"1 10\n2\n1\n2\n3\n5\n5\n6\n7\n8\n9\n16\n",
"1 10\n1\n1\n2\n3\n4\n4\n6\n9\n8\n9\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n4\n8\n9\n16\n",
"1 10\n8\n1\n2\n3\n4\n5\n6\n7\n7\n9\n30\n",
"1 10\n4\n1\n2\n3\n2\n5\n6\n3\n13\n9\n16\n",
"1 10\n8\n1\n2\n3\n4\n5\n5\n7\n13\n9\n3\n",
"3 3\n1 4 1\n1\n1\n3\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n1\n8\n10\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n4\n8\n18\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n6\n8\n7\n16\n",
"3 3\n1 2 1\n1\n7\n3\n",
"1 10\n1\n1\n2\n1\n7\n4\n6\n7\n8\n9\n3\n",
"1 10\n4\n1\n4\n3\n2\n5\n6\n3\n13\n9\n16\n",
"1 10\n4\n1\n2\n3\n2\n5\n6\n3\n8\n4\n17\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n4\n16\n18\n16\n",
"1 10\n4\n1\n2\n3\n4\n5\n6\n6\n8\n11\n16\n",
"1 10\n1\n1\n2\n1\n5\n4\n6\n7\n8\n9\n3\n",
"1 10\n2\n1\n4\n3\n2\n5\n6\n3\n13\n9\n16\n",
"1 10\n1\n1\n2\n3\n4\n5\n6\n4\n16\n18\n16\n",
"1 10\n4\n1\n2\n3\n1\n5\n6\n6\n8\n11\n16\n",
"1 10\n2\n1\n4\n3\n2\n3\n6\n3\n13\n9\n16\n",
"1 10\n1\n1\n4\n3\n4\n5\n6\n4\n16\n18\n16\n",
"1 10\n4\n1\n2\n3\n1\n5\n3\n6\n8\n11\n16\n",
"1 10\n2\n1\n4\n3\n2\n3\n6\n3\n13\n15\n16\n",
"1 10\n1\n1\n4\n3\n4\n9\n6\n4\n16\n18\n16\n",
"1 10\n2\n1\n4\n3\n2\n3\n6\n3\n1\n15\n16\n",
"1 10\n1\n1\n4\n3\n4\n9\n6\n7\n16\n18\n16\n",
"1 10\n1\n1\n4\n3\n4\n9\n6\n7\n16\n21\n16\n",
"1 10\n1\n1\n4\n3\n4\n9\n6\n7\n16\n21\n3\n",
"1 10\n1\n1\n4\n3\n4\n9\n6\n7\n16\n21\n6\n",
"1 10\n1\n1\n4\n3\n4\n9\n6\n7\n30\n21\n6\n",
"1 10\n1\n1\n7\n3\n4\n9\n6\n7\n30\n21\n6\n",
"1 10\n1\n1\n7\n3\n3\n9\n6\n7\n30\n21\n6\n",
"1 10\n8\n1\n2\n3\n4\n3\n6\n7\n8\n9\n16\n",
"1 10\n4\n2\n2\n3\n4\n5\n6\n7\n8\n9\n16\n",
"1 10\n1\n1\n2\n3\n4\n5\n6\n7\n8\n9\n29\n",
"1 10\n8\n1\n2\n3\n4\n5\n6\n7\n13\n17\n16\n",
"1 10\n4\n1\n2\n3\n5\n5\n6\n7\n8\n9\n2\n",
"1 10\n1\n1\n2\n3\n3\n4\n6\n7\n8\n9\n17\n",
"1 10\n1\n1\n2\n2\n2\n4\n6\n7\n8\n9\n17\n",
"1 10\n4\n1\n2\n3\n1\n5\n6\n7\n8\n9\n18\n",
"1 10\n8\n1\n2\n3\n4\n5\n3\n7\n13\n9\n30\n",
"3 3\n1 2 1\n1\n3\n3\n",
"1 10\n4\n1\n2\n3\n2\n5\n2\n3\n8\n9\n16\n",
"1 10\n8\n1\n4\n3\n4\n5\n5\n7\n13\n9\n2\n",
"3 3\n1 4 1\n1\n6\n2\n",
"1 10\n1\n1\n2\n3\n4\n5\n6\n3\n8\n10\n16\n",
"1 10\n4\n1\n2\n3\n1\n5\n6\n6\n8\n9\n16\n",
"1 10\n1\n1\n2\n3\n2\n4\n6\n9\n8\n9\n16\n"
],
"output": [
"1\n-1\n3\n2\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n2\n3\n",
"-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n3\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n1\n-1\n-1\n",
"1\n3\n2\n",
"1\n1\n-1\n",
"1\n3\n-1\n",
"1\n2\n2\n",
"-1\n-1\n-1\n1\n-1\n-1\n1\n-1\n-1\n-1\n",
"1\n2\n1\n",
"1\n-1\n2\n2\n",
"1\n-1\n-1\n",
"1\n-1\n2\n",
"1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n1\n-1\n",
"1\n-1\n2\n1\n",
"1\n-1\n1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n2\n-1\n",
"-1\n",
"-1\n-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n2\n",
"1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n1\n-1\n-1\n",
"-1\n-1\n-1\n1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n2\n2\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n3\n2\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n",
"1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Polycarp has n coins, the value of the i-th coin is a_i. It is guaranteed that all the values are integer powers of 2 (i.e. a_i = 2^d for some non-negative integer number d).
Polycarp wants to know answers on q queries. The j-th query is described as integer number b_j. The answer to the query is the minimum number of coins that is necessary to obtain the value b_j using some subset of coins (Polycarp can use only coins he has). If Polycarp can't obtain the value b_j, the answer to the j-th query is -1.
The queries are independent (the answer on the query doesn't affect Polycarp's coins).
Input
The first line of the input contains two integers n and q (1 ≤ n, q ≤ 2 ⋅ 10^5) — the number of coins and the number of queries.
The second line of the input contains n integers a_1, a_2, ..., a_n — values of coins (1 ≤ a_i ≤ 2 ⋅ 10^9). It is guaranteed that all a_i are integer powers of 2 (i.e. a_i = 2^d for some non-negative integer number d).
The next q lines contain one integer each. The j-th line contains one integer b_j — the value of the j-th query (1 ≤ b_j ≤ 10^9).
Output
Print q integers ans_j. The j-th integer must be equal to the answer on the j-th query. If Polycarp can't obtain the value b_j the answer to the j-th query is -1.
Example
Input
5 4
2 4 8 2 4
8
5
14
10
Output
1
-1
3
2
### Input:
5 4
2 4 8 2 4
8
5
14
10
### Output:
1
-1
3
2
### Input:
1 10
8
1
2
3
4
5
6
7
8
9
16
### Output:
-1
-1
-1
-1
-1
-1
-1
1
-1
-1
### Code:
# @oj: codeforces
# @id: hitwanyang
# @email: 296866643@qq.com
# @date: 2020-10-14 16:44
# @url:https://codeforc.es/contest/1003/problem/D
import sys,os
from io import BytesIO, IOBase
import collections,itertools,bisect,heapq,math,string
from decimal import *
# region fastio
BUFSIZE = 8192
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
# ------------------------------
## 注意嵌套括号!!!!!!
## 先有思路,再写代码,别着急!!!
## 先有朴素解法,不要有思维定式,试着换思路解决
## 精度 print("%.10f" % ans)
def main():
n,q=map(int,input().split())
a=list(map(int,input().split()))
d=collections.Counter(a)
keys=sorted(d.keys(),reverse=True)
# print (keys,d)
for i in range(q):
ans=0
b=int(input())
for k in keys:
cnt=b//k
ans+=min(cnt,d[k])
b-=min(cnt,d[k])*k
# if cnt<=d[k]:
# ans+=cnt
# b-=cnt*k
# else:
# ans+=d[k]
# b-=d[k]*k
if b>0:
print (-1)
else:
print (ans)
if __name__ == "__main__":
main() |
1027_E. Inverse Coloring_1174 | You are given a square board, consisting of n rows and n columns. Each tile in it should be colored either white or black.
Let's call some coloring beautiful if each pair of adjacent rows are either the same or different in every position. The same condition should be held for the columns as well.
Let's call some coloring suitable if it is beautiful and there is no rectangle of the single color, consisting of at least k tiles.
Your task is to count the number of suitable colorings of the board of the given size.
Since the answer can be very large, print it modulo 998244353.
Input
A single line contains two integers n and k (1 ≤ n ≤ 500, 1 ≤ k ≤ n^2) — the number of rows and columns of the board and the maximum number of tiles inside the rectangle of the single color, respectively.
Output
Print a single integer — the number of suitable colorings of the board of the given size modulo 998244353.
Examples
Input
1 1
Output
0
Input
2 3
Output
6
Input
49 1808
Output
359087121
Note
Board of size 1 × 1 is either a single black tile or a single white tile. Both of them include a rectangle of a single color, consisting of 1 tile.
Here are the beautiful colorings of a board of size 2 × 2 that don't include rectangles of a single color, consisting of at least 3 tiles:
<image>
The rest of beautiful colorings of a board of size 2 × 2 are the following:
<image> | import sys
from array import array # noqa: F401
def readline(): return sys.stdin.buffer.readline().decode('utf-8')
n, k = map(int, readline().split())
mod = 998244353
if k == 1:
print(0)
exit()
dp1 = [array('i', [0])*n for _ in range(n)]
dp2 = [array('i', [0])*n for _ in range(n)]
dp1[0][0] = 1
for i in range(n-1):
for j in range(i+1):
for l in range(j+1):
dp2[j][0] += dp1[j][l]
if dp2[j][0] >= mod:
dp2[j][0] -= mod
dp2[j+1 if j == l else j][l+1] += dp1[j][l]
if dp2[j+1 if j == l else j][l+1] >= mod:
dp2[j+1 if j == l else j][l+1] -= mod
dp1[j][l] = 0
dp1, dp2 = dp2, dp1
ans = 0
for i in range(1, n+1):
t = (k-1) // i
if t == 0:
break
dps1 = array('i', [0])*(t+1)
dps2 = array('i', [0])*(t+1)
dps1[0] = 1
for j in range(n-1):
for l in range(min(j+1, t)):
dps2[0] += dps1[l]
if dps2[0] >= mod:
dps2[0] -= mod
dps2[l+1] += dps1[l]
if dps2[l+1] >= mod:
dps2[l+1] -= mod
dps1[l] = 0
dps1, dps2 = dps2, dps1
x = sum(dp1[i-1]) % mod
ans = (ans + x * sum(dps1[:-1])) % mod
print(ans * 2 % mod)
| {
"input": [
"2 3\n",
"1 1\n",
"49 1808\n",
"4 15\n",
"4 2\n",
"467 4\n",
"4 11\n",
"4 7\n",
"3 1\n",
"4 14\n",
"500 125000\n",
"3 7\n",
"499 248999\n",
"3 2\n",
"4 9\n",
"3 4\n",
"2 2\n",
"4 12\n",
"499 249001\n",
"4 5\n",
"499 249000\n",
"4 13\n",
"3 8\n",
"467 1\n",
"4 8\n",
"4 6\n",
"2 1\n",
"4 1\n",
"2 4\n",
"3 6\n",
"467 3463\n",
"4 4\n",
"3 9\n",
"4 10\n",
"3 3\n",
"467 2\n",
"3 5\n",
"4 16\n",
"4 3\n",
"500 250000\n",
"500 1\n",
"8 15\n",
"6 1\n",
"8 9\n",
"500 17172\n",
"5 2\n",
"5 9\n",
"2 7\n",
"3 15\n",
"61 249001\n",
"8 5\n",
"180 249000\n",
"467 3\n",
"8 12\n",
"6 9\n",
"5 6\n",
"8 14\n",
"65 1808\n",
"8 21\n",
"8 3\n",
"158 17172\n",
"5 4\n",
"9 9\n",
"74 249001\n",
"16 3\n",
"6 6\n",
"8 7\n",
"65 1995\n",
"8 38\n",
"8 6\n",
"276 17172\n",
"5 7\n",
"5 15\n",
"22 3\n",
"6 12\n",
"2 8\n",
"5 1\n",
"2 14\n",
"9 1\n",
"2 10\n",
"2 15\n",
"180 103843\n",
"2 13\n",
"339 1\n",
"8 13\n",
"12 1\n",
"2 9\n",
"2 6\n",
"74 18741\n",
"180 35433\n",
"3 13\n",
"339 2\n",
"8 2\n"
],
"output": [
"6\n",
"0\n",
"359087121\n",
"126\n",
"2\n",
"484676931\n",
"118\n",
"94\n",
"0\n",
"126\n",
"337093334\n",
"30\n",
"377244915\n",
"2\n",
"110\n",
"14\n",
"2\n",
"118\n",
"377244915\n",
"62\n",
"377244915\n",
"126\n",
"30\n",
"0\n",
"94\n",
"62\n",
"0\n",
"0\n",
"6\n",
"22\n",
"770701787\n",
"26\n",
"30\n",
"118\n",
"10\n",
"2\n",
"22\n",
"126\n",
"18\n",
"510735313\n",
"0\n",
"24458\n",
"0\n",
"12456\n",
"600590872\n",
"2\n",
"356\n",
"8\n",
"32\n",
"2340313\n",
"2608\n",
"135218181\n",
"624243413\n",
"18458\n",
"1182\n",
"160\n",
"24194\n",
"642196736\n",
"30540\n",
"134\n",
"169416445\n",
"50\n",
"39898\n",
"964532589\n",
"6386\n",
"410\n",
"8880\n",
"383107382\n",
"32642\n",
"2656\n",
"663876572\n",
"300\n",
"474\n",
"114626\n",
"1520\n",
"8\n",
"0\n",
"8\n",
"0\n",
"8\n",
"8\n",
"135218181\n",
"8\n",
"0\n",
"24194\n",
"0\n",
"8\n",
"8\n",
"964532589\n",
"135218181\n",
"32\n",
"2\n",
"2\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a square board, consisting of n rows and n columns. Each tile in it should be colored either white or black.
Let's call some coloring beautiful if each pair of adjacent rows are either the same or different in every position. The same condition should be held for the columns as well.
Let's call some coloring suitable if it is beautiful and there is no rectangle of the single color, consisting of at least k tiles.
Your task is to count the number of suitable colorings of the board of the given size.
Since the answer can be very large, print it modulo 998244353.
Input
A single line contains two integers n and k (1 ≤ n ≤ 500, 1 ≤ k ≤ n^2) — the number of rows and columns of the board and the maximum number of tiles inside the rectangle of the single color, respectively.
Output
Print a single integer — the number of suitable colorings of the board of the given size modulo 998244353.
Examples
Input
1 1
Output
0
Input
2 3
Output
6
Input
49 1808
Output
359087121
Note
Board of size 1 × 1 is either a single black tile or a single white tile. Both of them include a rectangle of a single color, consisting of 1 tile.
Here are the beautiful colorings of a board of size 2 × 2 that don't include rectangles of a single color, consisting of at least 3 tiles:
<image>
The rest of beautiful colorings of a board of size 2 × 2 are the following:
<image>
### Input:
2 3
### Output:
6
### Input:
1 1
### Output:
0
### Code:
import sys
from array import array # noqa: F401
def readline(): return sys.stdin.buffer.readline().decode('utf-8')
n, k = map(int, readline().split())
mod = 998244353
if k == 1:
print(0)
exit()
dp1 = [array('i', [0])*n for _ in range(n)]
dp2 = [array('i', [0])*n for _ in range(n)]
dp1[0][0] = 1
for i in range(n-1):
for j in range(i+1):
for l in range(j+1):
dp2[j][0] += dp1[j][l]
if dp2[j][0] >= mod:
dp2[j][0] -= mod
dp2[j+1 if j == l else j][l+1] += dp1[j][l]
if dp2[j+1 if j == l else j][l+1] >= mod:
dp2[j+1 if j == l else j][l+1] -= mod
dp1[j][l] = 0
dp1, dp2 = dp2, dp1
ans = 0
for i in range(1, n+1):
t = (k-1) // i
if t == 0:
break
dps1 = array('i', [0])*(t+1)
dps2 = array('i', [0])*(t+1)
dps1[0] = 1
for j in range(n-1):
for l in range(min(j+1, t)):
dps2[0] += dps1[l]
if dps2[0] >= mod:
dps2[0] -= mod
dps2[l+1] += dps1[l]
if dps2[l+1] >= mod:
dps2[l+1] -= mod
dps1[l] = 0
dps1, dps2 = dps2, dps1
x = sum(dp1[i-1]) % mod
ans = (ans + x * sum(dps1[:-1])) % mod
print(ans * 2 % mod)
|
1091_G. New Year and the Factorisation Collaboration_1182 | Integer factorisation is hard. The RSA Factoring Challenge offered $100 000 for factoring RSA-1024, a 1024-bit long product of two prime numbers. To this date, nobody was able to claim the prize. We want you to factorise a 1024-bit number.
Since your programming language of choice might not offer facilities for handling large integers, we will provide you with a very simple calculator.
To use this calculator, you can print queries on the standard output and retrieve the results from the standard input. The operations are as follows:
* + x y where x and y are integers between 0 and n-1. Returns (x+y) mod n.
* - x y where x and y are integers between 0 and n-1. Returns (x-y) mod n.
* * x y where x and y are integers between 0 and n-1. Returns (x ⋅ y) mod n.
* / x y where x and y are integers between 0 and n-1 and y is coprime with n. Returns (x ⋅ y^{-1}) mod n where y^{-1} is multiplicative inverse of y modulo n. If y is not coprime with n, then -1 is returned instead.
* sqrt x where x is integer between 0 and n-1 coprime with n. Returns y such that y^2 mod n = x. If there are multiple such integers, only one of them is returned. If there are none, -1 is returned instead.
* ^ x y where x and y are integers between 0 and n-1. Returns {x^y mod n}.
Find the factorisation of n that is a product of between 2 and 10 distinct prime numbers, all of form 4x + 3 for some integer x.
Because of technical issues, we restrict number of requests to 100.
Input
The only line contains a single integer n (21 ≤ n ≤ 2^{1024}). It is guaranteed that n is a product of between 2 and 10 distinct prime numbers, all of form 4x + 3 for some integer x.
Output
You can print as many queries as you wish, adhering to the time limit (see the Interaction section for more details).
When you think you know the answer, output a single line of form ! k p_1 p_2 ... p_k, where k is the number of prime factors of n, and p_i are the distinct prime factors. You may print the factors in any order.
Hacks input
For hacks, use the following format:.
The first should contain k (2 ≤ k ≤ 10) — the number of prime factors of n.
The second should contain k space separated integers p_1, p_2, ..., p_k (21 ≤ n ≤ 2^{1024}) — the prime factors of n. All prime factors have to be of form 4x + 3 for some integer x. They all have to be distinct.
Interaction
After printing a query do not forget to output end of line and flush the output. Otherwise you will get Idleness limit exceeded. To do this, use:
* fflush(stdout) or cout.flush() in C++;
* System.out.flush() in Java;
* flush(output) in Pascal;
* stdout.flush() in Python;
* see documentation for other languages.
The number of queries is not limited. However, your program must (as always) fit in the time limit. The run time of the interactor is also counted towards the time limit. The maximum runtime of each query is given below.
* + x y — up to 1 ms.
* - x y — up to 1 ms.
* * x y — up to 1 ms.
* / x y — up to 350 ms.
* sqrt x — up to 80 ms.
* ^ x y — up to 350 ms.
Note that the sample input contains extra empty lines so that it easier to read. The real input will not contain any empty lines and you do not need to output extra empty lines.
Example
Input
21
7
17
15
17
11
-1
15
Output
+ 12 16
- 6 10
* 8 15
/ 5 4
sqrt 16
sqrt 5
^ 6 12
! 2 3 7
Note
We start by reading the first line containing the integer n = 21. Then, we ask for:
1. (12 + 16) mod 21 = 28 mod 21 = 7.
2. (6 - 10) mod 21 = -4 mod 21 = 17.
3. (8 ⋅ 15) mod 21 = 120 mod 21 = 15.
4. (5 ⋅ 4^{-1}) mod 21 = (5 ⋅ 16) mod 21 = 80 mod 21 = 17.
5. Square root of 16. The answer is 11, as (11 ⋅ 11) mod 21 = 121 mod 21 = 16. Note that the answer may as well be 10.
6. Square root of 5. There is no x such that x^2 mod 21 = 5, so the output is -1.
7. (6^{12}) mod 21 = 2176782336 mod 21 = 15.
We conclude that our calculator is working, stop fooling around and realise that 21 = 3 ⋅ 7. | import sys
import random
def gcd(x, y):
return x if y == 0 else gcd(y, x % y)
def isPrime(n):
"""
Miller-Rabin primality test.
A return value of False means n is certainly not prime. A return value of
True means n is very likely a prime.
"""
if n!=int(n):
return False
n=int(n)
#Miller-Rabin test for prime
if n==0 or n==1 or n==4 or n==6 or n==8 or n==9:
return False
if n==2 or n==3 or n==5 or n==7:
return True
s = 0
d = n-1
while d%2==0:
d>>=1
s+=1
assert(2**s * d == n-1)
def trial_composite(a):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True
for i in range(20):#number of trials
a = random.randrange(2, n)
if trial_composite(a):
return False
return True
if __name__=='__main__':
n=int(input())
divs=[n]
while not all([isPrime(x) for x in divs]):
x=random.randint(1,n-1)
sys.stdout.write("sqrt %d\n"%(x*x%n))
sys.stdout.flush()
x+=int(input())
tmp=[]
for it in divs:
g=gcd(x,it)
if g!=1:
tmp.append(g)
if it//g!=1:
tmp.append(it//g)
divs=tmp
divs=list(set(divs)-{1})
sys.stdout.write("! %d"%len(divs))
for it in divs:
sys.stdout.write(" %d"%it)
sys.stdout.write("\n") | {
"input": [
"21\n\n7\n\n17\n\n15\n\n17\n\n11\n\n-1\n\n15\n\n",
"3\n230967221047542071272908186525868331398921682471308664253988778356539397562182960087 182611080502122916090565666030857827681271950069759605734177210648361435031281924911 205581245187208120217130726679204642305706761599409643715552516156991358586934923987\n",
"2\n5190121999413161479387363647747512215784104976911754390311 4597107588290239376085618545645139122534560671442179903199\n",
"3\n3523981375851289206178011383155855450377365680432705085266260213682705611105645814666520335698090339239 1211510341651507261058355088089898191712486876408182218110041392143856106531374750738479302660683685499 1911001074692407046848196881616841037851780000594182606099537224619606800872474977536894202843167319147\n",
"5\n6842011762087819746054655305052882601691728795707315002071699 23825569639174298341600669678016106152595732681365611575308851 12482974570286827745795469547848540807580733932756985849528651 23333176891806047997999532522201127320880305897123864359232943 11284294701017052297967090530689968055106641769712855320225911\n",
"7\n84407310723505807006551187990104485800140011 78124485841477954712388136036695280190378203 27117234996007395068734381961860935590242303 23246883157675578020249621696526296099282887 46416281160828028392769891742681755384664939 71769475948230569054384362348895540634686791 43953799103067610631682050465809947025542059\n",
"7\n6088686935446289206171 2832628911377891042399 5303620767087471257987 9430506895017464877451 2687428616038529447191 7467440007379919964503 8458124100543678443999\n",
"9\n2621602196608792137767478218742127 8974262851897786356655427161734019 5868523238673640808953012247256659 7985640789738540770556958132992667 9224570218559887309253726323809851 5773114973902856226652340881898479 9696357920123989029937871871045023 2737949139977978507715100568666531 8354768822019006221830819550208539\n",
"2\n6935686723185612008241879881794737985027758018771395307619771301689432696110440953334903281565822785711331 3623031621271859564041158394227964431385552513672396506464814109103248291983056437317372026171457549712931\n",
"2\n3 7\n",
"2\n13307492258165571653166814597254802133479393654408783573758821224828453882031014336256011891461608029593142674764545962494305705233044248889766021143450963 13281348910215123202686021849346280975311259911570890573540307707651366392837436549155176625943453689954979635601286632483115846925659533368023277532536287\n",
"3\n10381669912260981559 11190460834210676027 11137874389171196063\n",
"5\n25916726997563588967793366672993739 33182794675917394441580576218321651 19785110617254824835745659708367403 39706473757929966298044191918616659 10817605665959332481994800973460883\n",
"4\n84027098106846579738303934794505508511838074597693351857264983554103725197827 57417355173020838715329436717056454231981949197039430478999634796502069323011 33759957327639015513631132804288129814449120698628762669165465766654268537463 67519901917664654558170940517219573267508225161718543185193648739455472681131\n",
"10\n391777165123464216059 1059886537529477559331 861113440132745841667 449141899773560216779 870681505641527868139 831285731137491595139 398431935380005492811 1127422265095891933459 1071477358350678830071 1134597910357285478659\n",
"5\n13889833235061217760250264692338250481868607465493338088636107 19528407667324810386000438552007282206096243977801375483812031 8011638741386291400934482627868033017219201219560905126622767 23088092105784499469261399170654370856623422318077752286396959 19298602091996330488850665631133015520099378989551481971148671\n",
"2\n374990555886569364083295366297545709043953352763 1229297223952805420551336729409155397760071634247\n",
"2\n39041058811914766827570807463 50416207293908602516559374879\n",
"9\n10850200910552996287 8715281079479095963 17360263149503176039 13841199380743316479 4787001053132638079 15759256112767322707 11102541347916427351 18324640467582659711 9577381663577129747\n",
"5\n396273103115332110491314012396964289898922127025113839 380201149750706917285213679225229186324235141886247239 430966931570532723539018473483508624243933449086335039 293361650157139961298595152512396764041608895109933631 351296624566534311443192042151833899725295581152915071\n",
"8\n317785500790833997823075065034949676267 99564718467399491153128153257870110803 147715828914977381791428495198965838967 159652122519571512804240388668507814043 295212414133849261299609599528786337923 311336508468696805011048524793104819563 207398890541853253111730253908085669119 134797250718960261678370032725454808927\n",
"6\n709216064121265634990372037355106664367247783 314847036545553679074975707703583153698933559 187550004905505627181133503547795795281847671 616942685810229320658135715655136752642996711 694472655499757271760232152444111772858210791 387130773388029935144539906717888444866363767\n",
"2\n11091417282418371372002708734441390695990292195452013756991974029393488564063246820549287974507923768525285721692987102846378924800710232498913099050577499 10503801496891728789785412443236902875835004576745658686139377676232453870506672889885974522564860522004294007866695461436884237495647952236158644326945263\n",
"4\n2134034452164689833988315489746723 2034076581749416358406352167646031 1914495387438070084455858289362463 1743698608140165007632363756932507\n",
"6\n263412878385549426760186592473094324483 128851596503005442227114895170912274363 223390643494314275511381637888838667043 148068977356817110216125785645263786087 315619350950399895417909699353928695443 239970525250670355950890458693605921251\n",
"5\n573171585046998075105793865738137744272787 1035946835639418859389073694060881465637123 758419329339228197592765463456373637087071 676641344386711856378314804091496648016187 1241853237440299756628191826829638125159487\n",
"4\n31944088717030459899203522953662322552769175969605542445640722737624749087283 102922528544359934661227096838947013337851977127462438083951633896741248812311 44749109495885490571237410367599048150195299532030096612112364751102880261123 107741031968937026894947506262263849585885405518547252116444384454704468567567\n",
"6\n13452570258782127041571631 18041534209129304828315987 14495903878574434977980159 23536981849489618700213539 16740032915463572421378583 20116966946049665411245079\n",
"2\n4092074075475306787842899920723225296026095948538937426926298489796489921115386922080298725037709407886786119472589908854386065222760847956132095494779343 3481640295396991556989258582292360674879347884011169854292202112134094100613842934171735988422143829797182413182027532886093049044030591730714651510553299\n",
"9\n6361172042406448201214921269953319 5485026360833667176522606572817071 8808898097114181226667295617944771 3757890181230279812762872903071811 4864718555626931681887102879550363 6752813363178701296525434293945327 6124367637641194103938701429752531 4076947295374046812128767648018411 8762780228823102734401868532830839\n",
"8\n9868672987529052787 16908853462205436059 7919171118447276691 17789749476641336119 17043921124378499383 15249065481570353327 8690983121184358051 6976768811470116227\n",
"5\n3633916226387049303734618980687 3993952068364426225807119901319 2281477259062170147066668540899 2684066652330178865190938736059 3131751948004934096920019255263\n",
"7\n879409164827004558629726405459 715422287039296755634927288267 1190056858112502027013055807107 758251765589183966170652088323 386862237409922328179698380263 830202802157152552923939395239 559498914068716974212334054167\n",
"8\n233042929510864259850267425893234699043 218508275756035453190120395731619650559 100400138256540283932995328361152368471 294966771809812332879674320256285049619 296753562317765740372789924699934211271 225655839810412563360872874934315814543 124807537300648454213631038241908398387 274837790216568932251370649778055623843\n",
"8\n1186291886518408897150771 984800548083560114967847 995524665978707465969503 878543476417661887566007 879836953838997422065219 944528406629741249011151 595484180118285859403503 1024609262781175222749503\n",
"5\n50240953436723376163027 62081050282861893882451 44158764063055563023803 47028800455340027896751 36263307105116634607919\n",
"10\n2259637935456488747559137915227 4030502262121530995056536100079 2871547856620185156679983560827 1701201105684797841773340147143 2027050548831702981047909655367 4280059080337692298189542907099 3446158669229551352501939019763 4896181136232457325562011187791 4755245658082923667265563347731 2175559195440072011947577963123\n",
"6\n117815646756115988436968615460840451 72757503044595631000586561471423423 152580584954376640713227931403168331 139614144627103046755071034130496499 95444040196389203688057506054981567 110867832135858543926255491370284147\n",
"10\n23079548793007135858987 40406832705839297874131 23300053128360040260479 26079088426567849537603 51911227716652213015079 45190286014847521025479 31456371622738163698687 47220271845375675299683 64538379205863617161927 47090361276502766036047\n",
"9\n55323278584628779381012888953367 47650126197375421911865083239147 20991008594289631573822979019259 69355655900656262822503273682251 29637603184977555853336508217119 30063870678285463508724173502323 62741338389442705756579059544943 29224575242681765086772152236539 60539070282501950069042639311451\n",
"7\n2269964989014941297716902539 2242420442288743291422294443 1868451417082383587733702559 1784658476384922092637872711 2055072569750047237600658839 2470739878909307063736909739 1020703825811546374980447419\n",
"2\n13311901836101192635352198938083838781794428157451696030190264573471920588786595328890004937022998594334063929498771259901192063127468347262497278169337203 11022649175440338184782195044211757738128191091952031789572849579281530695974598885673371205473133060608888359944615524461263938638029075360697236148875471\n",
"7\n49562844514681254091269189505250259543333607 76552538551866294370782386815676499101432231 74462226142181405437538238144923704086330367 47304312820852558770378775875817310030924971 44393873645658147948645721237677366711487327 49223280682195225774424586906259909851390803 85889000414494815410717496451914712203026471\n",
"7\n43953353708497312619046508476864423359734723 72045430709063411475154901869869535024367507 45643243771591578903056652602263799392956179 38060426825741016074029427146810934949477019 63402016753461190250810662115303336701916543 68805743448881504233679970769854457379869043 44500132850632188938601786135819793069738247\n",
"8\n261682848660051855394704817932661428919 253818252759201572428544838861380415383 86850081183194175556369888047439386979 147285296087231232006223870758014301859 334873015206554027374601639877256608067 178318510210432696394391137435285074931 192913970597188864255688323585791322451 262340107205363540758234927139257748047\n",
"5\n42888323538261878222039320029674132607736689269083 75545929255049862086151557012135791609331504988751 53834964360959469188374648913679644148269482208099 91278794551725372888411559167105423181564220939507 80573865898030003091516614049693615302906794938359\n",
"4\n940510612848299861972119642425033749535897021307 888282000957738634461252289966425931249800729743 802261504053284275987977276475787656551214878547 1221982962810231597897911620200931159722816504851\n",
"4\n962185153959468325318919 595701914993870971125467 788499288658739361166763 479542112823398293344439\n",
"5\n12932750362031049309505961092067001769156282331379814933735379 23031704171683513188501560784232670927898580776638354577759127 24493673414692114244679624233856220162900017325660804648001543 7581469276096592860056808435192834289347727328477210924798907 9403159530951202013976263021463928264418027609321167905698599\n",
"2\n10992711718170039432550703307724250879502082201824604169683427251443530165159308113059803883903585398916517739933466571107542669237181368836808135166108383 8919098969257722443713342777833872538288097167024335140819898464148950404178728831211829881607989928809701311567612383428600125507429384751512028727566091\n",
"7\n12477531239625528407 16633008045068562559 7468329159129265723 12584277603934821079 11897613190146612547 15774699621619926587 17100723797613644687\n",
"3\n11271760393053572159386543 31085081518302490018190887 31699237615808856811849583\n",
"4\n46835980159282220365330388431 64829718664864074209848172399 22359732617456350259980671203 75530103620902444657755751823\n",
"10\n8614901751241296239 13750317005948867263 17126888517925315291 7731886607109837239 6726971995330677119 17793917535154097731 8717463191211169223 11010040203711390511 13388222276867649803 16807505116432133759\n",
"7\n66707657181701285555573989415472794879591 80329370276818520651739553703319120957023 169352010486212931062659880647716083005379 171691302129518849470730805596597948967791 147381737110499780049996054608543487735847 160918334530250009166107214894736144919987 110888474979764763343144459844945770561739\n",
"2\n8456018948402393676532511275093943801614339513518078838406147379528885708232671871190684784403055718461375403267687173085972373167705753722929131522360527 7619203578007327512375509817764046026061546793857414597824296646420266235529722772637909016093402753701560392384674347404162217937564492816209709456726819\n",
"9\n12092902666520601975852359 28145313844377722814760027 22540896869649086858707231 14327377307424136516796927 14917102657563444456710147 24902170019153581306558171 32571168823560991097749711 37825377145908823371200551 11300173591538817534020831\n",
"7\n23569587128941503608758705497896615341310167 48459854049421584656966117171927765524487087 39153944492809625164528354461072312867479663 55790232814800866674553713074623995505775167 69463531589589278075905483512846478425014803 59642761923423334795004049937608748448281703 38990994935490229941911752696076331539102339\n",
"2\n20482335164210515627882995752642728808644731605144081702125497900611015177760310732089429176400183350718804928967863 38003450626286836248389955799008271261179541813396025230337450504189611338270059460430419790110723617507716433044183\n",
"4\n79807807133462184022517209851938921670244093710135290079705875695722976819979 114788397072688294894974104858575932651443337543683862483761576660060404905811 51989334105589963500227032326092880517068089967676739357286206926505467002611 44322799425335063870076152912877441365682494863974500655319551159842163841967\n",
"9\n2322999686585840029147 2060854636595291541131 879170658072406053811 1946174000658066143287 1315858533142844844691 2105808570292395683987 1259223003068012794871 1036586360146466156903 1754887964067880163911\n",
"7\n2599428490561420475163851 1615790992339358104024039 4010734343719921113521891 2631411582299412251338739 3167472107795958283057159 3180684390190534557410939 4509161474291015288378531\n",
"6\n1067803124791569658126737597737682867670259266783523 799644669418798021219780710101565091329354933873263 1018876320527791569511142020321834175085907927530923 560682543165228911690600840853083278927774155522127 732946203160514990814435251121767710526652401101799 1192647297830116351718061718994491788260519196855239\n",
"7\n580714608548462308923834225360107 200547257487911730314128368411199 608574884723653495222003560380651 186718295587304612730239797257583 233340189377627475692637755998987 243872922252079625689470914156323 441876694604863297363013392951663\n",
"10\n1594963418219890401195254139191 4341259778297522460349901780423 1547181502126281635024810811431 4342748139520088462589894455267 2571550046562937317557502468031 2518616237855849841942777038407 3266324406419179343274521532119 1466182177583425065662566557863 4224882043170725577144906458267 3156996972084774665369956059931\n",
"5\n3239919967850174301152021479688737880961786779 5515109156380161753520607356964943574899235771 6998105839322190513265722352900497872218138579 3038297211850206718408131481088140029694683199 11094845496969617599754820874538603617237149407\n",
"3\n3426894845840701042975209183701702972255536574322572238574022497468190014492589613408376333507614420191 3886685734211617888125682222927128149670302338755920062292446484727943164329543242010631010344169941323 4352825505683017982437112579472019419375219966316191566143935012749990073296432450917465857806001424567\n",
"6\n715642574450422992360309183048533747689057611910007 988705265293692812131931436455811976469121182883343 1000210774311558367267463554672974478100276666224039 439159386962483407895156688110477058949895016106507 1398733124363697872761967681258036812178549214496399 863639026648353690207405261548457264841703666272139\n",
"6\n74911056411150788869233086263 46325210333771600223607144819 44656464333072487436170947263 21992416810872818632710376367 21382840370274543908562649399 32174529091229422928972088971\n",
"10\n4543867901053124796152512207147 3237814703174494172268828686071 1615919663757849688737662485843 3813008089844004654197387162191 4387603041950560074039002732327 2064203877685322479878155693983 2150952096777570927195629111639 1656021164552237360837483912251 1713595908032820276991291782967 2381805851118014812737491670703\n",
"6\n13387757360816652231043 10766071278371066598191 15923382609682640441003 16178826713574698328979 9762617685511202873087 10407275282953512851123\n",
"3\n44456800928720501174620455064171 65851047484891853190628027312723 42498567878178878856905017415111\n",
"10\n416401847 970228507 960058507 357832963 1039564451 277885879 390436223 448577123 478183859 595454879\n",
"8\n4213749968660652942647 2654777009303762595983 1343973235761307794847 1390998333228627504559 3946118568675558569323 1199742155421990043343 3643401539224736866067 1340517013930871027311\n",
"6\n567850955992054578799866156064535033809737703583 1262453290881035101961481909831273088208251955947 921735513962013105639238524271712232486682854643 826012757456878967520003300203416333043272114099 1245814075565326878101049164180714146102205763167 383554331736789333122976681611015580432237233819\n",
"2\n11020011460785657960151171708935664540116549854743375270688411263939 17017925653247134552511117107711299467637397378907685414699824329651\n",
"8\n19552175884173559781646985146763 12286005890372366056479728058827 13865631724257634649866053802787 16886134758778400279919215599351 11484607773459848227989149606891 15035004414251574718354194057671 10222825543418468831970976834763 11697063903017643375812582645239\n",
"5\n204556950026232775387772408055042229763 164814494346537197615493399220117641811 133442663661526782049756451685543326239 259581025277502893102005366781402638559 115743481067595107054023814768132891543\n",
"5\n12320178326534501532232972294929532706795145671586545191576471 21270405831690249605377429356094680120119118661654624415509963 24487293792583262284592721772324162570288229815718530322189731 10009987712862122991142302099953240040475032231914317572010267 14373215937559968629118798680003583643069581529147189250291671\n",
"8\n3565752309788968395072638019853931 4738976298902408518181603308248739 2407596260313166876983437012686811 3925510914156696289466376159430427 4851193216550391327953556092538607 1428245415049743225296033362817539 5006954114584083101182213640643763 4751455102498524390844459725180383\n",
"3\n23219357387780072125161721117181498122192143775263492781813952849441851 27195621192227657385273716410281386576136085083337107292488758361458083 14946858768377528825654371053040607131716247252107695078614339586935667\n",
"2\n3 11\n",
"7\n226420231119172503488188776168256151 259950983269182659191731229206355799 293677708991299511798584325077381519 251559573681920058148634168747498083 263806685920130868316321212370357607 181561597721355361148886618673793039 94223963348870958313978280589842363\n",
"3\n108377867635689823460701680967408791449147595738301663734949561146810411329167 104304270599357513287706569567836105836807219971523919233878593518824359481003 39901960826568298254771799308017918343341802745686160866294488551394132713267\n",
"10\n429909830585168052294779651 452440835525393471147133179 430935018149100246049600459 477137395159615835187415711 323648459832105755171343391 181738063490839984476063139 302662390688361185651013211 459808116035708396457567067 232680508824957687745163023 435102419054795914578484663\n",
"4\n20321983321070134104049793992778835924489818839053550073071576115047 8498277966618377791252537842992837021367974026055713911019681893011 23679672484232101558749670195003407467624812220909703179112801834467 15363554524623106241691526753432160010027100658245947692916376183523\n",
"6\n140715920779181599811578743927914052365587 215966929854097554648490429407927248422723 302065665301488857938803840863162984184527 290415407159136673674602868875789970243359 104509164597657668188292140648073987824967 187672428909667816980074059047149383880947\n",
"5\n7654050550881934481277912588293209096003397638277591962920299 19484928664534069894967549493442218300710028293673149502541183 9464855434641437004184311337448886277618725253907321332666391 12315386081857106880748064053007778957346514535257640462884399 23895700370765926679400528678289178557007790364638804179939291\n",
"8\n233653075520523318230168099 157246104322873495254326887 102285569137251365343518771 138157829941464005552677543 208829394398065297806806167 125944204566890948041069843 106435744163792114434892839 218599100954207716039795027\n",
"5\n568418222662124122099820839 346238069991154407407661391 239950637162240722349894567 424693097663736636675989339 377790860997824442933991307\n",
"7\n85183747565323225718137940611298562973868027 62942403607221388833517234441635843825867439 72152335133242335334747080205180538816828759 38880208367752731242610793016876373118365011 70658563040138321662213790708113427384605999 80406135520464667938730125111230236357179551 39731443490983898770544715395096543683615183\n",
"3\n290391211872663195260832827039097431311684838666088135730235831512942119173029687217467139 318896039847892698667924170386264856547427185445415207574857311908553478127933642077924007 487332825966727765730346115482766362378313421623986088710378186284085290590483719124329583\n",
"8\n238296361473353920182213577032856136947 180898017845861601882346909566469641571 221811323275123659737551129851667770871 185695082027198793442961188408347877747 311271582631214006611747737853266996463 139278232587493758157849451631953301067 261587682537248492818537240049152322951 157468049477362161318572733813582052651\n",
"4\n27045902927134864297824679282649583863908496721931651 83314604773584455771009739004450117230287961791362379 63901467713072084625130039982935161990529822896333823 49684450370242599516670640666484586782084781205308303\n",
"4\n39031740235246836482312740930120491702276200403158223418709976440315784335903 105642574371175069775308712244932503086693230879583245442929564100061938962803 39743072901191560256362251780763249624714683725261203672814016511297826911823 106360489709160452652604482383067106232429928109029113572181252567615834374411\n",
"8\n272165281748666627255760151763521660787 227952111581175351253020858593605379239 298041678051272730564547615314459915403 125141955372276508774965473485028048087 148133718377714475277136514368158351727 175282674649560269606027103087990487823 161151142203974850829631957334071277659 247140816877791219028529355707726988839\n",
"6\n8327177967145272107 7037017630137986707 12002443774340291267 6700353033475897487 17545788721677088559 6616364348563231391\n",
"4\n18021352190827735927176361754118613427175287 15618153860874722783955158460253225663038343 17626927652266281928683390291696714444014003 7868481390009163133810712341543585726243519\n",
"10\n4377755636696615906405908729927 4244900515333286178936028520063 2571209797099639069361621688911 2035350378287950185155405865151 4957811225581987318806031907563 2705553049534360070725833352579 4348955395754409025988719075331 4133918139452299435890020566111 2903882078996186881731069491167 1635676036134911342704984484959\n",
"3\n3506384473865189712458770290453198602068451283754822472951 6044510604729594215338212427325756637732054324353862688603 4584024667185273390804191482312953586843454757612020065991\n",
"9\n9522409927148441098671105422944639 4784934391966754650662740000794703 5115382974931665880150065335036747 5134754903155579027340931177414227 4548848253838472394576253134773459 8772688657879227416777708045528731 3679175760059467393552677267344071 3716753603567921624051689053372127 3284269950054929105327932180976647\n",
"3\n3413217922375562510050761193555667883012009200843271112740779800232682794396218939428798904854481306991 3439449706925966620269403308433926144570368727489175892411888372881443173836694114877997763071629514147 2763725260798175438835426810026809269486313852943965588151227072022951742015011349206113042877069423827\n",
"4\n75936693897782707330469832979214673475593649078152913366750243522471977866711 61034170782773143597815816147756967748467001783943049329259176188070835441871 63382299688617217352446258633596378257963845883627109101887904859241353701503 91903343043299158952663319252863039939886344005110561728259897079029085137719\n",
"9\n1731777088558283042842135631 1540209399818151688274544871 3477916389266535181897806551 1805248927851882024817287923 2904721184371865870817212699 3431299642439429979344887703 2129689930405450165475864419 4383290493111771291122173391 3483020188923075163975607111\n",
"6\n627539521733960003246369066237958122163186468970211 1355588808334827399421174831648092487033929296738359 667914758231729302752903675255622197740795148798511 628394464120962097778973882695300356638427919490563 1429299554931960571720130544852195230530185465117103 955365108234226633851128658990363438663459093921259\n",
"6\n539078798325875152267729008796984905809329456227223 677750123363694794585652539197442319990503169723631 1094324929609056917728304081255945439606723886587839 1263702975720891424219167904376706263882090049941891 759492081964529846356676208814798000367798914282187 547847286238176087263616370134508195322973639605807\n",
"4\n236799879559823015908629085995589560659 186512977527683170171587030397161257107 138887602523700246806234188285911610603 145533063184554179839674511387411662979\n",
"5\n1925703875925478809152620180404699277645930132193997771307 6071555534696688678251402258555546068940802239559956575607 5168921006718520807624040637626953003016060985008215903619 1772144744890278606148610121706784289686304900353059064899 5340241099853175985564559102516941571013525107039623524059\n",
"4\n1271086107173403280580704747771116056093542256131462558534379729053784551 1427617017328755372171828131956982221070511977133935473193330677419689047 516949904249692320678768358888024022778391210552951948044894641278765411 819091547479701909105531555183323993231564688341848134198569790902915251\n",
"2\n595423706427198661635968735382122549934604450739048899668383488962857502058202803238026419282546807464154163339960058619690187372707787 237901028111125886888740395889111477298666461747303808377849076065946029932350614296722022052684681056984688699256026109363674458370471\n",
"6\n30303119928570725257315348126223 52416486839050977640227509699383 41502182275803506755619803125211 68153214865971683896890136187023 62967591607091335290608411440747 73383253167761015188177976897047\n",
"2\n11996586085509458483 13424388102308864567\n",
"9\n575906892332275790001186593531 200943816110699225589513356863 165823366567088096704632266063 544576313172343601789648670791 460961710189069107818954156059 390488111631717321413075372447 408316090971446120817355677223 205427859381732916292880033599 499522291275580688000642154427\n",
"5\n7314866952600481031 17651268220452080471 12642667998098348423 10644041564110614851 8013179248732054939\n",
"10\n2908554680819281400838436886551 3800892754347090912502733206211 2626776009774034587666376581427 4896308754268725157168468752859 2413119635193885134372937884863 2145334206858678445347772437551 1467372731807319018669263048431 4092099297790999416740042086007 4631667525183943006026805358023 1727416194212214588119886281971\n",
"7\n276725616480793215992457409097599562311 145678370662795996391452522345274210683 151604797656642981853321231573572129107 204308165872191572001945530645665137959 274273237475012471314860509226641511887 122690629932656906545640494610755345147 337908641414853678834818652610509255287\n",
"8\n460311109730267303229770939620910699 1063827016353840411122779753903080619 513185646607152150207108187825763231 1040877327852058829287703752381681139 849906011558353962333947914954811107 705580209613305516857974782379505227 572469153104785903616452786425314903 432571424506676471909133387987484571\n",
"4\n17990700368553179243 15751990232686191767 9155040737583717391 8256800570712943031\n",
"2\n388958010089269882769436972534880240779147745075624906365119284734357971623765661373319 317986547407311945437502554078053463366076737654742712400533173025460826930601310015887\n",
"5\n25561282438214415092627133105098687430103959524913951222113443 16900294282104058322634762752464882664933583252597699947586311 18822783715436925484128320000869466951714452960219784975267767 8680836163350715391509380405898613535514761291098718160569751 21522979314782795530566966761974743396640013201132541386022319\n",
"10\n52971099837970320725167975091 73914241734514316116522584859 47950605790753906767732687151 60098635563343656561832418719 52935389408171770725280801091 43050074238971517346534912891 69309274203246892386377459567 24359363535948889266767358427 72100627312609919354196289183 55454863305701520477204176567\n",
"3\n2090656627308264077377083659625761196384656345530179897403919891676333553632494134355787454896724661791 1392938033865545347184435277318642512410451129493518282265749025885922449353018246235220654322393052031 1419334891973258711160985624310926498464857703287825352420652967996607169301053847015036150200551896783\n",
"2\n1021251377355971250406472950913494188935425494430201469454405651309760733445740208763031571362707 612098892494793753660259415675052815575770721427165384906104591737247310853871785030399339219931\n",
"3\n541361383752569108009502792725023139435684971 188571758559078108766016022303731705186418431 300596391744994872497605819325767183552243763\n",
"3\n1373255485755002677781495587683517156886996238732919 1278710026123006202674549459490014125765540271140199 1472637049427324428927487726453729549200003614708563\n",
"10\n8893112951137799876149783 8329735683381410232943207 3593843409986942656816039 5855014438050351513447427 8690981566121473428550963 6718304949167151156925391 5577706151562433320417059 7661089195585893965187583 8949357997803847391801347 6555840353007214623859691\n",
"3\n850426559249859420148069425600880337651078384288430845689247883682141294054993627852173715850863 1416731643719075639407540889279645929480075420865053164422012307133980546141180493600385114964583 959452960289331812435241803728340535277340824429035466737935578394534817564199022603857288643311\n",
"4\n1835003746993327466442608595158523286045375447817824379327 1911631792020222091040182806662121961788186420354172351639 4966048224554500493547226669514899375484603669753875611503 5727404457836930145072403102802201104914492752364489281539\n",
"2\n107171324023578273123916428795197630047 192377968079664655998882007942089022811\n",
"3\n222603908201823623618215636744584717631 314255315857285324934621244741730110043 312811024622435699163810539188977932771\n",
"6\n445925879275693288674948431566347438258452489193187 1337105213435517401547108319187856784573124522774759 545352949798990865997075977962938796830857577496271 760820592751936401072360981950324400265674620863927 505258491011654824888208023693924970378403000781031 510873207897264981734181976175433533249732875776587\n",
"4\n125993850497118402020264673624918053780519116463827842218434651 242347231554222169902353982371166945263732181844278860952470359 271072888293850882767012457837971106612218653634289426199867947 179515269669999224724746456298608157050534031884536312409697211\n",
"2\n118224600896993929517740898292667355622396613497651399441691064556569776819120430655450106923405200148968410231483202981616683 146329077382001230896622761742976596698240664482510709016383307929183616463936621484191006532043366909857202562736515909918203\n",
"9\n99146545427059883709427 232780866878524688231063 118572569964377752248719 161453102216568809426627 148967153216202723184019 110177300298106606176571 280535205980847730616443 278159970145046298210463 94443689990132148821579\n",
"8\n72193365562351549576172998027 59433796354136810047701451639 36328810236352277381895422983 65404471309001527519817681687 68636293363750488038351317703 77046478287812588653236282367 63837568672745287318114865863 24464794407010226868502448047\n",
"10\n1617153686998991304958241921351 4234474381198698608626445324159 1731185529357452571406615949639 1487483233470640626694265589619 1819713300792423044358333681211 2274052564485053249031930603131 4898973252298145416747627907023 4591917027272663148380883862583 2537511537615784707034453615907 3018109708241068680860422464599\n",
"9\n3613782734720200690047172859423179 7748211230826596236305848614043971 3334468809734513081383226989455307 7490250731645908254107043413858963 7470341306105214398790704169437171 7917675794118282883941299505374483 9098624112408936809599749653650447 6063518228584904230692400123009019 5810075899267488038717315585467739\n",
"9\n8543867552349336386380670802548311 6464580962045882257012132289473703 7475119713079941731827282919214943 8911238888669223144331687994742299 9628811246358283043668321117102543 9431247241834296475531542824985551 8241292289840957404820393520625139 8838090181012141612149683701107323 9590475882293795344419885617477183\n",
"2\n7 11\n",
"2\n1588886997886479031840508185810658913040421204911206598128831894112298847007607949710868541078867689666595791985818640721815629333754169078136227 2897814569725245873997508531128493816346572325147304815360614645412793097706075584343488398010108145932113725372434260611595917717870575027904691\n",
"2\n82195843308148646007645070160137125362086524285637623468189203756475522521939 102148940904146230653798833169153407751367561742071630120144994085805995226903\n",
"3\n12315630606893888324246034372425495049452618523074293672302457283 8798860435030587270186733529709228608717720168789501052010178899 10148639413267766544159071800209987727255858436187509995232375323\n",
"3\n4186294048691622847132980423114905043579319154323558100821549266165201553618698668189304262273903989443 1352931594152278690128673730598283063696489409155693979924516549351052727596441658300220808319621015799 3220705090664712347813616734899539953746496283828319315697589645089018155445368411313568475639576381087\n",
"3\n230967221047542071272908186525868331398921682471308664253988778356539397562182960087 340820207937903327089340310302019464908611744685890268340784554651306981583996255737 205581245187208120217130726679204642305706761599409643715552516156991358586934923987\n",
"2\n5190121999413161479387363647747512215784104976911754390311 3350257941266627470193407293674742756108525407138862962292\n",
"5\n6842011762087819746054655305052882601691728795707315002071699 23825569639174298341600669678016106152595732681365611575308851 12482974570286827745795469547848540807580733932756985849528651 17846664274441610179875830056339728124208304651868813631483158 11284294701017052297967090530689968055106641769712855320225911\n",
"7\n84407310723505807006551187990104485800140011 78124485841477954712388136036695280190378203 27117234996007395068734381961860935590242303 36892213387967764396841807405194908066391254 46416281160828028392769891742681755384664939 71769475948230569054384362348895540634686791 43953799103067610631682050465809947025542059\n",
"7\n6961200302662830522617 2832628911377891042399 5303620767087471257987 9430506895017464877451 2687428616038529447191 7467440007379919964503 8458124100543678443999\n",
"9\n3817826389135894315957947091409103 8974262851897786356655427161734019 5868523238673640808953012247256659 7985640789738540770556958132992667 9224570218559887309253726323809851 5773114973902856226652340881898479 9696357920123989029937871871045023 2737949139977978507715100568666531 8354768822019006221830819550208539\n",
"2\n3 5\n",
"4\n84027098106846579738303934794505508511838074597693351857264983554103725197827 33889278007106158936829782929524710020492403443739308654304259681746350736088 33759957327639015513631132804288129814449120698628762669165465766654268537463 67519901917664654558170940517219573267508225161718543185193648739455472681131\n",
"10\n391777165123464216059 1059886537529477559331 861113440132745841667 449141899773560216779 870681505641527868139 1573282756727408977523 398431935380005492811 1127422265095891933459 1071477358350678830071 1134597910357285478659\n",
"8\n317785500790833997823075065034949676267 99564718467399491153128153257870110803 272090786769825211690544323182650905151 159652122519571512804240388668507814043 295212414133849261299609599528786337923 311336508468696805011048524793104819563 207398890541853253111730253908085669119 134797250718960261678370032725454808927\n",
"6\n709216064121265634990372037355106664367247783 383083627046934412010744778784980535704117418 187550004905505627181133503547795795281847671 616942685810229320658135715655136752642996711 694472655499757271760232152444111772858210791 387130773388029935144539906717888444866363767\n",
"6\n263412878385549426760186592473094324483 128851596503005442227114895170912274363 418284278130741993109393698077191181736 148068977356817110216125785645263786087 315619350950399895417909699353928695443 239970525250670355950890458693605921251\n",
"4\n31944088717030459899203522953662322552769175969605542445640722737624749087283 102922528544359934661227096838947013337851977127462438083951633896741248812311 87556884028512231507077172638217977170051815017396836334017469964876825440564 107741031968937026894947506262263849585885405518547252116444384454704468567567\n",
"9\n6361172042406448201214921269953319 5485026360833667176522606572817071 8808898097114181226667295617944771 3757890181230279812762872903071811 4864718555626931681887102879550363 6752813363178701296525434293945327 8540945540937433566948415223416023 4076947295374046812128767648018411 8762780228823102734401868532830839\n",
"10\n8614901751241296239 13750317005948867263 17126888517925315291 7731886607109837239 6726971995330677119 17793917535154097731 17362838568153435564 11010040203711390511 13388222276867649803 16807505116432133759\n",
"6\n1067803124791569658126737597737682867670259266783523 799644669418798021219780710101565091329354933873263 1018876320527791569511142020321834175085907927530923 560682543165228911690600840853083278927774155522127 1137183816091307199663276604603667547021300946996876 1192647297830116351718061718994491788260519196855239\n",
"3\n99402168608133119044739605854512301600908428784315934468875726781930878150107909227390349 318896039847892698667924170386264856547427185445415207574857311908553478127933642077924007 487332825966727765730346115482766362378313421623986088710378186284085290590483719124329583\n",
"9\n9522409927148441098671105422944639 4784934391966754650662740000794703 7444507493633857068066196630410020 5134754903155579027340931177414227 4548848253838472394576253134773459 8772688657879227416777708045528731 3679175760059467393552677267344071 3716753603567921624051689053372127 3284269950054929105327932180976647\n",
"10\n2908554680819281400838436886551 3800892754347090912502733206211 2626776009774034587666376581427 4896308754268725157168468752859 2413119635193885134372937884863 819759391587074363192652407236 1467372731807319018669263048431 4092099297790999416740042086007 4631667525183943006026805358023 1727416194212214588119886281971\n",
"21\n\n7\n\n17\n\n15\n\n25\n\n11\n\n-1\n\n15\n\n",
"2\n3 0\n",
"2\n10723495449472233846918003367256710637171532408 681950093731404709570385801062678639457372539528\n",
"3\n3523981375851289206178011383155855450377365680432705085266260213682705611105645814666520335698090339239 2248123267608649575135772265222391209278654575417440200736814969636241501775183688858036135430886183133 1911001074692407046848196881616841037851780000594182606099537224619606800872474977536894202843167319147\n",
"2\n6935686723185612008241879881794737985027758018771395307619771301689432696110440953334903281565822785711331 1200792926854349588689732388723608113821956506741458697121297985888274580836072834540703055626452880925552\n",
"2\n13307492258165571653166814597254802133479393654408783573758821224828453882031014336256011891461608029593142674764545962494305705233044248889766021143450963 18857904141870378181774605878936010003011194104087628563736130150192625407054989644800170143809450914596135934009661060828735477825415124076454056574757169\n",
"3\n10381669912260981559 11190460834210676027 2042045572574177802\n",
"5\n25916726997563588967793366672993739 29138322224015614124645666677427408 19785110617254824835745659708367403 39706473757929966298044191918616659 10817605665959332481994800973460883\n",
"5\n1538683704123503489477230390723611427470943904132865462962498 19528407667324810386000438552007282206096243977801375483812031 8011638741386291400934482627868033017219201219560905126622767 23088092105784499469261399170654370856623422318077752286396959 19298602091996330488850665631133015520099378989551481971148671\n",
"2\n10723495449472233846918003367256710637171532408 1229297223952805420551336729409155397760071634247\n",
"2\n16162282565545424156747604171 50416207293908602516559374879\n",
"9\n7017739822996838360 8715281079479095963 17360263149503176039 13841199380743316479 4787001053132638079 15759256112767322707 11102541347916427351 18324640467582659711 9577381663577129747\n",
"5\n396273103115332110491314012396964289898922127025113839 3023295871358069882391193904234536332048258313567052 430966931570532723539018473483508624243933449086335039 293361650157139961298595152512396764041608895109933631 351296624566534311443192042151833899725295581152915071\n",
"2\n9549844239134335234011284424452774902447730410437050266713231320571175642900584342517973493991165176966422230966241991777251641557908446813100533866532257 10503801496891728789785412443236902875835004576745658686139377676232453870506672889885974522564860522004294007866695461436884237495647952236158644326945263\n",
"4\n2134034452164689833988315489746723 2855508296038912569948236537416004 1914495387438070084455858289362463 1743698608140165007632363756932507\n",
"5\n62615385227051732256282083509255811193601 1035946835639418859389073694060881465637123 758419329339228197592765463456373637087071 676641344386711856378314804091496648016187 1241853237440299756628191826829638125159487\n",
"6\n13452570258782127041571631 18041534209129304828315987 23953008531405737214954472 23536981849489618700213539 16740032915463572421378583 20116966946049665411245079\n",
"2\n7911000273614036253248187293395522075556729549543359432020414610365808160635194404900508831085709506396823165496227242991388736403598996864596099817568199 3481640295396991556989258582292360674879347884011169854292202112134094100613842934171735988422143829797182413182027532886093049044030591730714651510553299\n",
"8\n9868672987529052787 32371313412358427155 7919171118447276691 17789749476641336119 17043921124378499383 15249065481570353327 8690983121184358051 6976768811470116227\n",
"5\n3058132406474376551602751283320 3993952068364426225807119901319 2281477259062170147066668540899 2684066652330178865190938736059 3131751948004934096920019255263\n",
"7\n879409164827004558629726405459 715422287039296755634927288267 1449937096217341183652369756037 758251765589183966170652088323 386862237409922328179698380263 830202802157152552923939395239 559498914068716974212334054167\n",
"8\n233042929510864259850267425893234699043 218508275756035453190120395731619650559 100400138256540283932995328361152368471 294966771809812332879674320256285049619 26348817979945211248218117159211291970 225655839810412563360872874934315814543 124807537300648454213631038241908398387 274837790216568932251370649778055623843\n",
"8\n1186291886518408897150771 984800548083560114967847 995524665978707465969503 1485564598577609137881813 879836953838997422065219 944528406629741249011151 595484180118285859403503 1024609262781175222749503\n",
"5\n35882406409280146973633 62081050282861893882451 44158764063055563023803 47028800455340027896751 36263307105116634607919\n",
"10\n2259637935456488747559137915227 4030502262121530995056536100079 2871547856620185156679983560827 1701201105684797841773340147143 2027050548831702981047909655367 4280059080337692298189542907099 3446158669229551352501939019763 4896181136232457325562011187791 1362756321298869417845275615367 2175559195440072011947577963123\n",
"6\n117815646756115988436968615460840451 72757503044595631000586561471423423 152580584954376640713227931403168331 220447882510963236900584591166446578 95444040196389203688057506054981567 110867832135858543926255491370284147\n",
"10\n23079548793007135858987 40406832705839297874131 23300053128360040260479 26079088426567849537603 51911227716652213015079 45190286014847521025479 31456371622738163698687 47220271845375675299683 64538379205863617161927 59161674810460141991587\n",
"9\n55323278584628779381012888953367 47650126197375421911865083239147 20991008594289631573822979019259 69355655900656262822503273682251 29637603184977555853336508217119 30063870678285463508724173502323 64727534874160458040901498321460 29224575242681765086772152236539 60539070282501950069042639311451\n",
"7\n2269964989014941297716902539 2242420442288743291422294443 1868451417082383587733702559 1784658476384922092637872711 2223985465928577137111230551 2470739878909307063736909739 1020703825811546374980447419\n",
"2\n13311901836101192635352198938083838781794428157451696030190264573471920588786595328890004937022998594334063929498771259901192063127468347262497278169337203 3540107692646476538675146520781066434455233155693006571760053732150742655329163889425540326750808802959045544350634119746287267865654951951051057554398422\n",
"7\n9367538394809565860828331262829021498010406 76552538551866294370782386815676499101432231 74462226142181405437538238144923704086330367 47304312820852558770378775875817310030924971 44393873645658147948645721237677366711487327 49223280682195225774424586906259909851390803 85889000414494815410717496451914712203026471\n",
"7\n50786091944563327519366881324603053376437479 72045430709063411475154901869869535024367507 45643243771591578903056652602263799392956179 38060426825741016074029427146810934949477019 63402016753461190250810662115303336701916543 68805743448881504233679970769854457379869043 44500132850632188938601786135819793069738247\n",
"8\n261682848660051855394704817932661428919 253818252759201572428544838861380415383 86850081183194175556369888047439386979 147285296087231232006223870758014301859 334873015206554027374601639877256608067 51629130026085972553839219412638332436 192913970597188864255688323585791322451 262340107205363540758234927139257748047\n",
"5\n42888323538261878222039320029674132607736689269083 137412860729953116311997767333099521939313584514166 53834964360959469188374648913679644148269482208099 91278794551725372888411559167105423181564220939507 80573865898030003091516614049693615302906794938359\n",
"4\n940510612848299861972119642425033749535897021307 888282000957738634461252289966425931249800729743 802261504053284275987977276475787656551214878547 147384500815099167777806425117492077104183327497\n",
"4\n962185153959468325318919 595701914993870971125467 901821744113347618725500 479542112823398293344439\n",
"5\n12932750362031049309505961092067001769156282331379814933735379 23031704171683513188501560784232670927898580776638354577759127 24493673414692114244679624233856220162900017325660804648001543 7581469276096592860056808435192834289347727328477210924798907 2280793483417798509046596582056576556616684993112434588346562\n",
"2\n9651347530131960345659253087315216126078226701165193505082437391369901412132521327071958271897808612836954977530316211969253978964344684914718035642437971 8919098969257722443713342777833872538288097167024335140819898464148950404178728831211829881607989928809701311567612383428600125507429384751512028727566091\n",
"7\n1856483612116018031 16633008045068562559 7468329159129265723 12584277603934821079 11897613190146612547 15774699621619926587 17100723797613644687\n",
"3\n11271760393053572159386543 31085081518302490018190887 62026172639841252316747697\n",
"4\n46835980159282220365330388431 96808714228574441849185369963 22359732617456350259980671203 75530103620902444657755751823\n",
"7\n66707657181701285555573989415472794879591 80329370276818520651739553703319120957023 169352010486212931062659880647716083005379 171691302129518849470730805596597948967791 147381737110499780049996054608543487735847 160918334530250009166107214894736144919987 91571804047201231360966996789481483657314\n",
"2\n716827002896215625051106660549653657929929368073109230660534933343920624260486092270915863624528751396277217331705228703329696226933220966452921002449525 7619203578007327512375509817764046026061546793857414597824296646420266235529722772637909016093402753701560392384674347404162217937564492816209709456726819\n",
"9\n9884497737933039874644585 28145313844377722814760027 22540896869649086858707231 14327377307424136516796927 14917102657563444456710147 24902170019153581306558171 32571168823560991097749711 37825377145908823371200551 11300173591538817534020831\n",
"7\n23569587128941503608758705497896615341310167 19159186913861939168106155455634552943308781 39153944492809625164528354461072312867479663 55790232814800866674553713074623995505775167 69463531589589278075905483512846478425014803 59642761923423334795004049937608748448281703 38990994935490229941911752696076331539102339\n",
"2\n20482335164210515627882995752642728808644731605144081702125497900611015177760310732089429176400183350718804928967863 64617334099278472549745335338788452742331354241353082610341796649349228098800456959868365889832159258567493009888393\n",
"4\n36159557625573154839876708345968208789994060306226372287818028706640227650754 114788397072688294894974104858575932651443337543683862483761576660060404905811 51989334105589963500227032326092880517068089967676739357286206926505467002611 44322799425335063870076152912877441365682494863974500655319551159842163841967\n",
"9\n2322999686585840029147 708262693488168244229 879170658072406053811 1946174000658066143287 1315858533142844844691 2105808570292395683987 1259223003068012794871 1036586360146466156903 1754887964067880163911\n",
"7\n2599428490561420475163851 2482331419280066717099381 4010734343719921113521891 2631411582299412251338739 3167472107795958283057159 3180684390190534557410939 4509161474291015288378531\n",
"7\n55028205760215524679530985557870 200547257487911730314128368411199 608574884723653495222003560380651 186718295587304612730239797257583 233340189377627475692637755998987 243872922252079625689470914156323 441876694604863297363013392951663\n",
"10\n1594963418219890401195254139191 4341259778297522460349901780423 1547181502126281635024810811431 4342748139520088462589894455267 2571550046562937317557502468031 2518616237855849841942777038407 571776083382629726079928439363 1466182177583425065662566557863 4224882043170725577144906458267 3156996972084774665369956059931\n",
"5\n3239919967850174301152021479688737880961786779 8398437407035962939078076497416723835692129203 6998105839322190513265722352900497872218138579 3038297211850206718408131481088140029694683199 11094845496969617599754820874538603617237149407\n",
"3\n3426894845840701042975209183701702972255536574322572238574022497468190014492589613408376333507614420191 3886685734211617888125682222927128149670302338755920062292446484727943164329543242010631010344169941323 2537240244511873894566092492123585834274733854606984418565320326777385538395859602180699032960295628417\n",
"6\n715642574450422992360309183048533747689057611910007 686371405495937142287547196067594722532546691060439 1000210774311558367267463554672974478100276666224039 439159386962483407895156688110477058949895016106507 1398733124363697872761967681258036812178549214496399 863639026648353690207405261548457264841703666272139\n",
"6\n74911056411150788869233086263 46325210333771600223607144819 44656464333072487436170947263 15088870220864694198761001619 21382840370274543908562649399 32174529091229422928972088971\n",
"10\n4543867901053124796152512207147 3237814703174494172268828686071 1615919663757849688737662485843 3813008089844004654197387162191 4387603041950560074039002732327 158492253367755197563591985733 2150952096777570927195629111639 1656021164552237360837483912251 1713595908032820276991291782967 2381805851118014812737491670703\n",
"6\n13387757360816652231043 10766071278371066598191 15923382609682640441003 16178826713574698328979 9762617685511202873087 6708970395509131161050\n",
"3\n61231401017508164355530148579665 65851047484891853190628027312723 42498567878178878856905017415111\n",
"10\n416401847 970228507 960058507 357832963 1039564451 277885879 205228542 448577123 478183859 595454879\n",
"8\n4213749968660652942647 2654777009303762595983 1343973235761307794847 1390998333228627504559 4326474639454252611261 1199742155421990043343 3643401539224736866067 1340517013930871027311\n",
"6\n567850955992054578799866156064535033809737703583 1262453290881035101961481909831273088208251955947 921735513962013105639238524271712232486682854643 826012757456878967520003300203416333043272114099 1245814075565326878101049164180714146102205763167 285577930715904208172023824185667586579642558065\n",
"2\n18146683042425485578850984118527168244804221820814642053543990315848 17017925653247134552511117107711299467637397378907685414699824329651\n",
"8\n19552175884173559781646985146763 12286005890372366056479728058827 25096886610476646571531718347291 16886134758778400279919215599351 11484607773459848227989149606891 15035004414251574718354194057671 10222825543418468831970976834763 11697063903017643375812582645239\n",
"5\n204556950026232775387772408055042229763 164814494346537197615493399220117641811 133442663661526782049756451685543326239 477405169647632676495362874250677400789 115743481067595107054023814768132891543\n",
"5\n12320178326534501532232972294929532706795145671586545191576471 26702629613393723526415818467131853351730829086115638605412955 24487293792583262284592721772324162570288229815718530322189731 10009987712862122991142302099953240040475032231914317572010267 14373215937559968629118798680003583643069581529147189250291671\n",
"8\n3565752309788968395072638019853931 4738976298902408518181603308248739 2407596260313166876983437012686811 3925510914156696289466376159430427 4851193216550391327953556092538607 1428245415049743225296033362817539 5006954114584083101182213640643763 3866044513139739984983408958191131\n",
"3\n25816815914194644782727097517094410130013029192365868904031178005459884 27195621192227657385273716410281386576136085083337107292488758361458083 14946858768377528825654371053040607131716247252107695078614339586935667\n",
"2\n3 17\n",
"7\n372024168609431293732105518657625165 259950983269182659191731229206355799 293677708991299511798584325077381519 251559573681920058148634168747498083 263806685920130868316321212370357607 181561597721355361148886618673793039 94223963348870958313978280589842363\n",
"3\n108377867635689823460701680967408791449147595738301663734949561146810411329167 162345195533123928855534295599873773144889880136187394699226388624729007240581 39901960826568298254771799308017918343341802745686160866294488551394132713267\n",
"10\n429909830585168052294779651 452440835525393471147133179 430935018149100246049600459 477137395159615835187415711 323648459832105755171343391 20558176321286851665923241 302662390688361185651013211 459808116035708396457567067 232680508824957687745163023 435102419054795914578484663\n",
"4\n20321983321070134104049793992778835924489818839053550073071576115047 8498277966618377791252537842992837021367974026055713911019681893011 23679672484232101558749670195003407467624812220909703179112801834467 19686547410486249888741055657778357604653186461593713466432821353163\n",
"6\n140715920779181599811578743927914052365587 319648628441078500910215193098935554613192 302065665301488857938803840863162984184527 290415407159136673674602868875789970243359 104509164597657668188292140648073987824967 187672428909667816980074059047149383880947\n",
"5\n7654050550881934481277912588293209096003397638277591962920299 19484928664534069894967549493442218300710028293673149502541183 2077236395372696200073699644675849924217830368727146396793689 12315386081857106880748064053007778957346514535257640462884399 23895700370765926679400528678289178557007790364638804179939291\n",
"8\n233653075520523318230168099 157246104322873495254326887 102285569137251365343518771 46130429070562377901867602 208829394398065297806806167 125944204566890948041069843 106435744163792114434892839 218599100954207716039795027\n",
"5\n300496094354209505351999970 346238069991154407407661391 239950637162240722349894567 424693097663736636675989339 377790860997824442933991307\n",
"7\n85183747565323225718137940611298562973868027 62942403607221388833517234441635843825867439 72152335133242335334747080205180538816828759 38880208367752731242610793016876373118365011 70658563040138321662213790708113427384605999 76619574729540742747108833841303397739748892 39731443490983898770544715395096543683615183\n",
"8\n238296361473353920182213577032856136947 180898017845861601882346909566469641571 215648133541271091480308330993341112403 185695082027198793442961188408347877747 311271582631214006611747737853266996463 139278232587493758157849451631953301067 261587682537248492818537240049152322951 157468049477362161318572733813582052651\n",
"4\n21718731195718025379343581011444189029592912987133884 83314604773584455771009739004450117230287961791362379 63901467713072084625130039982935161990529822896333823 49684450370242599516670640666484586782084781205308303\n",
"4\n39031740235246836482312740930120491702276200403158223418709976440315784335903 105642574371175069775308712244932503086693230879583245442929564100061938962803 39743072901191560256362251780763249624714683725261203672814016511297826911823 79953029826010215461473426494129183761970314584648541354367273219093378069722\n",
"8\n272165281748666627255760151763521660787 227952111581175351253020858593605379239 298041678051272730564547615314459915403 125141955372276508774965473485028048087 148133718377714475277136514368158351727 175282674649560269606027103087990487823 240823640924864318886665963206237958081 247140816877791219028529355707726988839\n"
],
"output": [
"+ 12 16\n\n- 6 10\n\n* 8 15\n\n/ 5 4\n\nsqrt 16\n\nsqrt 5\n\n^ 6 12\n\n! 2 3 7",
"! 1 3\n",
"! 1 2\n",
"! 1 3\n",
"! 1 5\n",
"! 1 7\n",
"! 1 7\n",
"9\n2621602196608792137767478218742127 2737949139977978507715100568666531 5773114973902856226652340881898479 5868523238673640808953012247256659 7985640789738540770556958132992667 8354768822019006221830819550208539 8974262851897786356655427161734019 9224570218559887309253726323809851 9696357920123989029937871871045023\n",
"! 1 2\n",
"! 1 2\n",
"! 1 2\n",
"! 1 3\n",
"! 1 5\n",
"4\n33759957327639015513631132804288129814449120698628762669165465766654268537463 57417355173020838715329436717056454231981949197039430478999634796502069323011 67519901917664654558170940517219573267508225161718543185193648739455472681131 84027098106846579738303934794505508511838074597693351857264983554103725197827\n",
"10\n391777165123464216059 398431935380005492811 449141899773560216779 831285731137491595139 861113440132745841667 870681505641527868139 1059886537529477559331 1071477358350678830071 1127422265095891933459 1134597910357285478659\n",
"! 1 5\n",
"! 1 2\n",
"! 1 2\n",
"9\n4787001053132638079 8715281079479095963 9577381663577129747 10850200910552996287 11102541347916427351 13841199380743316479 15759256112767322707 17360263149503176039 18324640467582659711\n",
"! 1 5\n",
"8\n99564718467399491153128153257870110803 134797250718960261678370032725454808927 147715828914977381791428495198965838967 159652122519571512804240388668507814043 207398890541853253111730253908085669119 295212414133849261299609599528786337923 311336508468696805011048524793104819563 317785500790833997823075065034949676267\n",
"6\n187550004905505627181133503547795795281847671 314847036545553679074975707703583153698933559 387130773388029935144539906717888444866363767 616942685810229320658135715655136752642996711 694472655499757271760232152444111772858210791 709216064121265634990372037355106664367247783\n",
"! 1 2\n",
"4\n1743698608140165007632363756932507 1914495387438070084455858289362463 2034076581749416358406352167646031 2134034452164689833988315489746723\n",
"6\n128851596503005442227114895170912274363 148068977356817110216125785645263786087 223390643494314275511381637888838667043 239970525250670355950890458693605921251 263412878385549426760186592473094324483 315619350950399895417909699353928695443\n",
"! 1 5\n",
"4\n31944088717030459899203522953662322552769175969605542445640722737624749087283 44749109495885490571237410367599048150195299532030096612112364751102880261123 102922528544359934661227096838947013337851977127462438083951633896741248812311 107741031968937026894947506262263849585885405518547252116444384454704468567567\n",
"6\n13452570258782127041571631 14495903878574434977980159 16740032915463572421378583 18041534209129304828315987 20116966946049665411245079 23536981849489618700213539\n",
"! 1 2\n",
"9\n3757890181230279812762872903071811 4076947295374046812128767648018411 4864718555626931681887102879550363 5485026360833667176522606572817071 6124367637641194103938701429752531 6361172042406448201214921269953319 6752813363178701296525434293945327 8762780228823102734401868532830839 8808898097114181226667295617944771\n",
"8\n6976768811470116227 7919171118447276691 8690983121184358051 9868672987529052787 15249065481570353327 16908853462205436059 17043921124378499383 17789749476641336119\n",
"! 1 5\n",
"! 1 7\n",
"8\n100400138256540283932995328361152368471 124807537300648454213631038241908398387 218508275756035453190120395731619650559 225655839810412563360872874934315814543 233042929510864259850267425893234699043 274837790216568932251370649778055623843 294966771809812332879674320256285049619 296753562317765740372789924699934211271\n",
"8\n595484180118285859403503 878543476417661887566007 879836953838997422065219 944528406629741249011151 984800548083560114967847 995524665978707465969503 1024609262781175222749503 1186291886518408897150771\n",
"! 1 5\n",
"10\n1701201105684797841773340147143 2027050548831702981047909655367 2175559195440072011947577963123 2259637935456488747559137915227 2871547856620185156679983560827 3446158669229551352501939019763 4030502262121530995056536100079 4280059080337692298189542907099 4755245658082923667265563347731 4896181136232457325562011187791\n",
"! 2 2 3\n",
"10\n23079548793007135858987 23300053128360040260479 26079088426567849537603 31456371622738163698687 40406832705839297874131 45190286014847521025479 47090361276502766036047 47220271845375675299683 51911227716652213015079 64538379205863617161927\n",
"9\n20991008594289631573822979019259 29224575242681765086772152236539 29637603184977555853336508217119 30063870678285463508724173502323 47650126197375421911865083239147 55323278584628779381012888953367 60539070282501950069042639311451 62741338389442705756579059544943 69355655900656262822503273682251\n",
"! 1 7\n",
"! 1 2\n",
"! 1 7\n",
"! 1 7\n",
"8\n86850081183194175556369888047439386979 147285296087231232006223870758014301859 178318510210432696394391137435285074931 192913970597188864255688323585791322451 253818252759201572428544838861380415383 261682848660051855394704817932661428919 262340107205363540758234927139257748047 334873015206554027374601639877256608067\n",
"! 1 5\n",
"4\n802261504053284275987977276475787656551214878547 888282000957738634461252289966425931249800729743 940510612848299861972119642425033749535897021307 1221982962810231597897911620200931159722816504851\n",
"4\n479542112823398293344439 595701914993870971125467 788499288658739361166763 962185153959468325318919\n",
"! 1 5\n",
"! 1 2\n",
"! 1 7\n",
"! 1 3\n",
"4\n22359732617456350259980671203 46835980159282220365330388431 64829718664864074209848172399 75530103620902444657755751823\n",
"10\n6726971995330677119 7731886607109837239 8614901751241296239 8717463191211169223 11010040203711390511 13388222276867649803 13750317005948867263 16807505116432133759 17126888517925315291 17793917535154097731\n",
"! 1 7\n",
"! 1 2\n",
"9\n11300173591538817534020831 12092902666520601975852359 14327377307424136516796927 14917102657563444456710147 22540896869649086858707231 24902170019153581306558171 28145313844377722814760027 32571168823560991097749711 37825377145908823371200551\n",
"! 1 7\n",
"! 1 2\n",
"4\n44322799425335063870076152912877441365682494863974500655319551159842163841967 51989334105589963500227032326092880517068089967676739357286206926505467002611 79807807133462184022517209851938921670244093710135290079705875695722976819979 114788397072688294894974104858575932651443337543683862483761576660060404905811\n",
"9\n879170658072406053811 1036586360146466156903 1259223003068012794871 1315858533142844844691 1754887964067880163911 1946174000658066143287 2060854636595291541131 2105808570292395683987 2322999686585840029147\n",
"! 1 7\n",
"! 2 2 3\n",
"! 1 7\n",
"10\n1466182177583425065662566557863 1547181502126281635024810811431 1594963418219890401195254139191 2518616237855849841942777038407 2571550046562937317557502468031 3156996972084774665369956059931 3266324406419179343274521532119 4224882043170725577144906458267 4341259778297522460349901780423 4342748139520088462589894455267\n",
"! 1 5\n",
"! 1 3\n",
"6\n439159386962483407895156688110477058949895016106507 715642574450422992360309183048533747689057611910007 863639026648353690207405261548457264841703666272139 988705265293692812131931436455811976469121182883343 1000210774311558367267463554672974478100276666224039 1398733124363697872761967681258036812178549214496399\n",
"6\n21382840370274543908562649399 21992416810872818632710376367 32174529091229422928972088971 44656464333072487436170947263 46325210333771600223607144819 74911056411150788869233086263\n",
"10\n1615919663757849688737662485843 1656021164552237360837483912251 1713595908032820276991291782967 2064203877685322479878155693983 2150952096777570927195629111639 2381805851118014812737491670703 3237814703174494172268828686071 3813008089844004654197387162191 4387603041950560074039002732327 4543867901053124796152512207147\n",
"6\n9762617685511202873087 10407275282953512851123 10766071278371066598191 13387757360816652231043 15923382609682640441003 16178826713574698328979\n",
"! 1 3\n",
"10\n277885879 357832963 390436223 416401847 448577123 478183859 595454879 960058507 970228507 1039564451\n",
"8\n1199742155421990043343 1340517013930871027311 1343973235761307794847 1390998333228627504559 2654777009303762595983 3643401539224736866067 3946118568675558569323 4213749968660652942647\n",
"6\n383554331736789333122976681611015580432237233819 567850955992054578799866156064535033809737703583 826012757456878967520003300203416333043272114099 921735513962013105639238524271712232486682854643 1245814075565326878101049164180714146102205763167 1262453290881035101961481909831273088208251955947\n",
"! 1 2\n",
"8\n10222825543418468831970976834763 11484607773459848227989149606891 11697063903017643375812582645239 12286005890372366056479728058827 13865631724257634649866053802787 15035004414251574718354194057671 16886134758778400279919215599351 19552175884173559781646985146763\n",
"! 1 5\n",
"! 1 5\n",
"8\n1428245415049743225296033362817539 2407596260313166876983437012686811 3565752309788968395072638019853931 3925510914156696289466376159430427 4738976298902408518181603308248739 4751455102498524390844459725180383 4851193216550391327953556092538607 5006954114584083101182213640643763\n",
"! 1 3\n",
"! 1 2\n",
"! 1 7\n",
"! 1 3\n",
"10\n181738063490839984476063139 232680508824957687745163023 302662390688361185651013211 323648459832105755171343391 429909830585168052294779651 430935018149100246049600459 435102419054795914578484663 452440835525393471147133179 459808116035708396457567067 477137395159615835187415711\n",
"4\n8498277966618377791252537842992837021367974026055713911019681893011 15363554524623106241691526753432160010027100658245947692916376183523 20321983321070134104049793992778835924489818839053550073071576115047 23679672484232101558749670195003407467624812220909703179112801834467\n",
"6\n104509164597657668188292140648073987824967 140715920779181599811578743927914052365587 187672428909667816980074059047149383880947 215966929854097554648490429407927248422723 290415407159136673674602868875789970243359 302065665301488857938803840863162984184527\n",
"! 1 5\n",
"8\n102285569137251365343518771 106435744163792114434892839 125944204566890948041069843 138157829941464005552677543 157246104322873495254326887 208829394398065297806806167 218599100954207716039795027 233653075520523318230168099\n",
"! 1 5\n",
"! 1 7\n",
"! 1 3\n",
"8\n139278232587493758157849451631953301067 157468049477362161318572733813582052651 180898017845861601882346909566469641571 185695082027198793442961188408347877747 221811323275123659737551129851667770871 238296361473353920182213577032856136947 261587682537248492818537240049152322951 311271582631214006611747737853266996463\n",
"4\n27045902927134864297824679282649583863908496721931651 49684450370242599516670640666484586782084781205308303 63901467713072084625130039982935161990529822896333823 83314604773584455771009739004450117230287961791362379\n",
"4\n39031740235246836482312740930120491702276200403158223418709976440315784335903 39743072901191560256362251780763249624714683725261203672814016511297826911823 105642574371175069775308712244932503086693230879583245442929564100061938962803 106360489709160452652604482383067106232429928109029113572181252567615834374411\n",
"8\n125141955372276508774965473485028048087 148133718377714475277136514368158351727 161151142203974850829631957334071277659 175282674649560269606027103087990487823 227952111581175351253020858593605379239 247140816877791219028529355707726988839 272165281748666627255760151763521660787 298041678051272730564547615314459915403\n",
"6\n6616364348563231391 6700353033475897487 7037017630137986707 8327177967145272107 12002443774340291267 17545788721677088559\n",
"4\n7868481390009163133810712341543585726243519 15618153860874722783955158460253225663038343 17626927652266281928683390291696714444014003 18021352190827735927176361754118613427175287\n",
"10\n1635676036134911342704984484959 2035350378287950185155405865151 2571209797099639069361621688911 2705553049534360070725833352579 2903882078996186881731069491167 4133918139452299435890020566111 4244900515333286178936028520063 4348955395754409025988719075331 4377755636696615906405908729927 4957811225581987318806031907563\n",
"! 1 3\n",
"9\n3284269950054929105327932180976647 3679175760059467393552677267344071 3716753603567921624051689053372127 4548848253838472394576253134773459 4784934391966754650662740000794703 5115382974931665880150065335036747 5134754903155579027340931177414227 8772688657879227416777708045528731 9522409927148441098671105422944639\n",
"! 1 3\n",
"4\n61034170782773143597815816147756967748467001783943049329259176188070835441871 63382299688617217352446258633596378257963845883627109101887904859241353701503 75936693897782707330469832979214673475593649078152913366750243522471977866711 91903343043299158952663319252863039939886344005110561728259897079029085137719\n",
"9\n1540209399818151688274544871 1731777088558283042842135631 1805248927851882024817287923 2129689930405450165475864419 2904721184371865870817212699 3431299642439429979344887703 3477916389266535181897806551 3483020188923075163975607111 4383290493111771291122173391\n",
"6\n627539521733960003246369066237958122163186468970211 628394464120962097778973882695300356638427919490563 667914758231729302752903675255622197740795148798511 955365108234226633851128658990363438663459093921259 1355588808334827399421174831648092487033929296738359 1429299554931960571720130544852195230530185465117103\n",
"6\n539078798325875152267729008796984905809329456227223 547847286238176087263616370134508195322973639605807 677750123363694794585652539197442319990503169723631 759492081964529846356676208814798000367798914282187 1094324929609056917728304081255945439606723886587839 1263702975720891424219167904376706263882090049941891\n",
"4\n138887602523700246806234188285911610603 145533063184554179839674511387411662979 186512977527683170171587030397161257107 236799879559823015908629085995589560659\n",
"! 1 5\n",
"4\n516949904249692320678768358888024022778391210552951948044894641278765411 819091547479701909105531555183323993231564688341848134198569790902915251 1271086107173403280580704747771116056093542256131462558534379729053784551 1427617017328755372171828131956982221070511977133935473193330677419689047\n",
"! 1 2\n",
"6\n30303119928570725257315348126223 41502182275803506755619803125211 52416486839050977640227509699383 62967591607091335290608411440747 68153214865971683896890136187023 73383253167761015188177976897047\n",
"! 1 2\n",
"9\n165823366567088096704632266063 200943816110699225589513356863 205427859381732916292880033599 390488111631717321413075372447 408316090971446120817355677223 460961710189069107818954156059 499522291275580688000642154427 544576313172343601789648670791 575906892332275790001186593531\n",
"! 1 5\n",
"10\n1467372731807319018669263048431 1727416194212214588119886281971 2145334206858678445347772437551 2413119635193885134372937884863 2626776009774034587666376581427 2908554680819281400838436886551 3800892754347090912502733206211 4092099297790999416740042086007 4631667525183943006026805358023 4896308754268725157168468752859\n",
"! 1 7\n",
"8\n432571424506676471909133387987484571 460311109730267303229770939620910699 513185646607152150207108187825763231 572469153104785903616452786425314903 705580209613305516857974782379505227 849906011558353962333947914954811107 1040877327852058829287703752381681139 1063827016353840411122779753903080619\n",
"4\n8256800570712943031 9155040737583717391 15751990232686191767 17990700368553179243\n",
"! 1 2\n",
"! 1 5\n",
"10\n24359363535948889266767358427 43050074238971517346534912891 47950605790753906767732687151 52935389408171770725280801091 52971099837970320725167975091 55454863305701520477204176567 60098635563343656561832418719 69309274203246892386377459567 72100627312609919354196289183 73914241734514316116522584859\n",
"! 1 3\n",
"! 1 2\n",
"! 1 3\n",
"! 1 3\n",
"! 2 2 5\n",
"! 1 3\n",
"4\n1835003746993327466442608595158523286045375447817824379327 1911631792020222091040182806662121961788186420354172351639 4966048224554500493547226669514899375484603669753875611503 5727404457836930145072403102802201104914492752364489281539\n",
"! 1 2\n",
"! 1 3\n",
"6\n445925879275693288674948431566347438258452489193187 505258491011654824888208023693924970378403000781031 510873207897264981734181976175433533249732875776587 545352949798990865997075977962938796830857577496271 760820592751936401072360981950324400265674620863927 1337105213435517401547108319187856784573124522774759\n",
"4\n125993850497118402020264673624918053780519116463827842218434651 179515269669999224724746456298608157050534031884536312409697211 242347231554222169902353982371166945263732181844278860952470359 271072888293850882767012457837971106612218653634289426199867947\n",
"! 1 2\n",
"9\n94443689990132148821579 99146545427059883709427 110177300298106606176571 118572569964377752248719 148967153216202723184019 161453102216568809426627 232780866878524688231063 278159970145046298210463 280535205980847730616443\n",
"8\n24464794407010226868502448047 36328810236352277381895422983 59433796354136810047701451639 63837568672745287318114865863 65404471309001527519817681687 68636293363750488038351317703 72193365562351549576172998027 77046478287812588653236282367\n",
"10\n1487483233470640626694265589619 1617153686998991304958241921351 1731185529357452571406615949639 1819713300792423044358333681211 2274052564485053249031930603131 2537511537615784707034453615907 3018109708241068680860422464599 4234474381198698608626445324159 4591917027272663148380883862583 4898973252298145416747627907023\n",
"9\n3334468809734513081383226989455307 3613782734720200690047172859423179 5810075899267488038717315585467739 6063518228584904230692400123009019 7470341306105214398790704169437171 7490250731645908254107043413858963 7748211230826596236305848614043971 7917675794118282883941299505374483 9098624112408936809599749653650447\n",
"9\n6464580962045882257012132289473703 7475119713079941731827282919214943 8241292289840957404820393520625139 8543867552349336386380670802548311 8838090181012141612149683701107323 8911238888669223144331687994742299 9431247241834296475531542824985551 9590475882293795344419885617477183 9628811246358283043668321117102543\n",
"! 1 2\n",
"! 1 2\n",
"! 1 2\n",
"! 1 3\n",
"! 1 3\n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 2 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 2 -1 1 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 4 -3 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -3 -1 1 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 4 -5 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 3 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 3 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 4 -2 -1 1 5 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 16\nsqrt 1\nsqrt 4\nsqrt 16\nsqrt 1\nsqrt 16\nsqrt 16\nsqrt 16\nsqrt 16\nsqrt 16\nsqrt 4\nsqrt 1\nsqrt 16\nsqrt 4\nsqrt 16\nsqrt 4\nsqrt 16\nsqrt 1\nsqrt 16\nsqrt 16\nsqrt 1\nsqrt 4\nsqrt 16\nsqrt 16\nsqrt 4\nsqrt 4\nsqrt 16\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 16\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 16\n! 3 1 3 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 4 -3 -1 1 3 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -3 -2 -1 1 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 4 -3 -1 1 3 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 2 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 4 -3 -1 1 3 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 7\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 7\nsqrt 7\nsqrt 7\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 7\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 4 -3 -1 1 3 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 2 1 2 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -1 1 3 \n",
"sqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 1\nsqrt 1\nsqrt 9\nsqrt 9\nsqrt 1\nsqrt 9\nsqrt 9\n! 3 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 3 -2 -1 1 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\n! 3 -1 1 5 \n",
"sqrt 1\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 2\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 2\nsqrt 2\nsqrt 1\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 1\nsqrt 2\nsqrt 4\nsqrt 1\nsqrt 4\nsqrt 4\nsqrt 2\nsqrt 1\n! 3 -1 1 7 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -2 -1 1 2 \n",
"sqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\nsqrt 1\n! 4 -4 -2 -1 1 \n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Integer factorisation is hard. The RSA Factoring Challenge offered $100 000 for factoring RSA-1024, a 1024-bit long product of two prime numbers. To this date, nobody was able to claim the prize. We want you to factorise a 1024-bit number.
Since your programming language of choice might not offer facilities for handling large integers, we will provide you with a very simple calculator.
To use this calculator, you can print queries on the standard output and retrieve the results from the standard input. The operations are as follows:
* + x y where x and y are integers between 0 and n-1. Returns (x+y) mod n.
* - x y where x and y are integers between 0 and n-1. Returns (x-y) mod n.
* * x y where x and y are integers between 0 and n-1. Returns (x ⋅ y) mod n.
* / x y where x and y are integers between 0 and n-1 and y is coprime with n. Returns (x ⋅ y^{-1}) mod n where y^{-1} is multiplicative inverse of y modulo n. If y is not coprime with n, then -1 is returned instead.
* sqrt x where x is integer between 0 and n-1 coprime with n. Returns y such that y^2 mod n = x. If there are multiple such integers, only one of them is returned. If there are none, -1 is returned instead.
* ^ x y where x and y are integers between 0 and n-1. Returns {x^y mod n}.
Find the factorisation of n that is a product of between 2 and 10 distinct prime numbers, all of form 4x + 3 for some integer x.
Because of technical issues, we restrict number of requests to 100.
Input
The only line contains a single integer n (21 ≤ n ≤ 2^{1024}). It is guaranteed that n is a product of between 2 and 10 distinct prime numbers, all of form 4x + 3 for some integer x.
Output
You can print as many queries as you wish, adhering to the time limit (see the Interaction section for more details).
When you think you know the answer, output a single line of form ! k p_1 p_2 ... p_k, where k is the number of prime factors of n, and p_i are the distinct prime factors. You may print the factors in any order.
Hacks input
For hacks, use the following format:.
The first should contain k (2 ≤ k ≤ 10) — the number of prime factors of n.
The second should contain k space separated integers p_1, p_2, ..., p_k (21 ≤ n ≤ 2^{1024}) — the prime factors of n. All prime factors have to be of form 4x + 3 for some integer x. They all have to be distinct.
Interaction
After printing a query do not forget to output end of line and flush the output. Otherwise you will get Idleness limit exceeded. To do this, use:
* fflush(stdout) or cout.flush() in C++;
* System.out.flush() in Java;
* flush(output) in Pascal;
* stdout.flush() in Python;
* see documentation for other languages.
The number of queries is not limited. However, your program must (as always) fit in the time limit. The run time of the interactor is also counted towards the time limit. The maximum runtime of each query is given below.
* + x y — up to 1 ms.
* - x y — up to 1 ms.
* * x y — up to 1 ms.
* / x y — up to 350 ms.
* sqrt x — up to 80 ms.
* ^ x y — up to 350 ms.
Note that the sample input contains extra empty lines so that it easier to read. The real input will not contain any empty lines and you do not need to output extra empty lines.
Example
Input
21
7
17
15
17
11
-1
15
Output
+ 12 16
- 6 10
* 8 15
/ 5 4
sqrt 16
sqrt 5
^ 6 12
! 2 3 7
Note
We start by reading the first line containing the integer n = 21. Then, we ask for:
1. (12 + 16) mod 21 = 28 mod 21 = 7.
2. (6 - 10) mod 21 = -4 mod 21 = 17.
3. (8 ⋅ 15) mod 21 = 120 mod 21 = 15.
4. (5 ⋅ 4^{-1}) mod 21 = (5 ⋅ 16) mod 21 = 80 mod 21 = 17.
5. Square root of 16. The answer is 11, as (11 ⋅ 11) mod 21 = 121 mod 21 = 16. Note that the answer may as well be 10.
6. Square root of 5. There is no x such that x^2 mod 21 = 5, so the output is -1.
7. (6^{12}) mod 21 = 2176782336 mod 21 = 15.
We conclude that our calculator is working, stop fooling around and realise that 21 = 3 ⋅ 7.
### Input:
21
7
17
15
17
11
-1
15
### Output:
+ 12 16
- 6 10
* 8 15
/ 5 4
sqrt 16
sqrt 5
^ 6 12
! 2 3 7
### Input:
3
230967221047542071272908186525868331398921682471308664253988778356539397562182960087 182611080502122916090565666030857827681271950069759605734177210648361435031281924911 205581245187208120217130726679204642305706761599409643715552516156991358586934923987
### Output:
! 1 3
### Code:
import sys
import random
def gcd(x, y):
return x if y == 0 else gcd(y, x % y)
def isPrime(n):
"""
Miller-Rabin primality test.
A return value of False means n is certainly not prime. A return value of
True means n is very likely a prime.
"""
if n!=int(n):
return False
n=int(n)
#Miller-Rabin test for prime
if n==0 or n==1 or n==4 or n==6 or n==8 or n==9:
return False
if n==2 or n==3 or n==5 or n==7:
return True
s = 0
d = n-1
while d%2==0:
d>>=1
s+=1
assert(2**s * d == n-1)
def trial_composite(a):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True
for i in range(20):#number of trials
a = random.randrange(2, n)
if trial_composite(a):
return False
return True
if __name__=='__main__':
n=int(input())
divs=[n]
while not all([isPrime(x) for x in divs]):
x=random.randint(1,n-1)
sys.stdout.write("sqrt %d\n"%(x*x%n))
sys.stdout.flush()
x+=int(input())
tmp=[]
for it in divs:
g=gcd(x,it)
if g!=1:
tmp.append(g)
if it//g!=1:
tmp.append(it//g)
divs=tmp
divs=list(set(divs)-{1})
sys.stdout.write("! %d"%len(divs))
for it in divs:
sys.stdout.write(" %d"%it)
sys.stdout.write("\n") |
1110_E. Magic Stones_1186 | Grigory has n magic stones, conveniently numbered from 1 to n. The charge of the i-th stone is equal to c_i.
Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index i, where 2 ≤ i ≤ n - 1), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge c_i changes to c_i' = c_{i + 1} + c_{i - 1} - c_i.
Andrew, Grigory's friend, also has n stones with charges t_i. Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes c_i into t_i for all i?
Input
The first line contains one integer n (2 ≤ n ≤ 10^5) — the number of magic stones.
The second line contains integers c_1, c_2, …, c_n (0 ≤ c_i ≤ 2 ⋅ 10^9) — the charges of Grigory's stones.
The second line contains integers t_1, t_2, …, t_n (0 ≤ t_i ≤ 2 ⋅ 10^9) — the charges of Andrew's stones.
Output
If there exists a (possibly empty) sequence of synchronization operations, which changes all charges to the required ones, print "Yes".
Otherwise, print "No".
Examples
Input
4
7 2 4 12
7 15 10 12
Output
Yes
Input
3
4 4 4
1 2 3
Output
No
Note
In the first example, we can perform the following synchronizations (1-indexed):
* First, synchronize the third stone [7, 2, 4, 12] → [7, 2, 10, 12].
* Then synchronize the second stone: [7, 2, 10, 12] → [7, 15, 10, 12].
In the second example, any operation with the second stone will not change its charge. | n=int(input())
a=list(map(int,input().split()))
b=list(map(int,input().split()))
f=a[0]==b[0]
a=sorted([a[i+1]-a[i] for i in range(n-1)])
b=sorted([b[i+1]-b[i] for i in range(n-1)])
print('YES' if f and a==b else 'NO')
| {
"input": [
"4\n7 2 4 12\n7 15 10 12\n",
"3\n4 4 4\n1 2 3\n",
"10\n62159435 282618243 791521863 214307200 976959598 590907019 166397456 708291256 85377387 569889619\n296371399 546807332 272720717 689420404 273026579 74510326 749070707 104458586 450770185 466655231\n",
"7\n12 9 8 6 9 12 84\n12 9 8 5 9 12 84\n",
"2\n1 3\n2 3\n",
"2\n0 0\n2000000000 2000000000\n",
"2\n0 2000000000\n0 2000000000\n",
"3\n5 8 9\n1 4 9\n",
"10\n1 2 3 4 5 6 7 8 9 10\n1 2 3 4 5 6 7 8 9 229\n",
"2\n1 69\n68 69\n",
"3\n3 3 0\n0 3 0\n",
"2\n0 0\n0 0\n",
"2\n1 2\n2 1\n",
"3\n3 6 7\n1 4 7\n",
"4\n1 0 2 2\n0 2 1 2\n",
"4\n11 15 19 23\n12 16 20 24\n",
"7\n1 2 3 5 9 13 16\n1 2 4 6 10 13 16\n",
"4\n11 15 18 22\n10 15 18 22\n",
"4\n1 4 3 2\n1 3 4 2\n",
"10\n589934963 440265648 161048053 196789927 951616256 63404428 660569162 779938975 237139603 31052281\n589934964 709304777 745046651 595377336 52577964 649742698 370525103 164437781 919264110 31052282\n",
"4\n7 10 13 16\n7 10 13 17\n",
"5\n2 3 4 5 6\n1 2 3 4 5\n",
"2\n1 10\n2 11\n",
"3\n0 1 2\n1 1 2\n",
"10\n707645074 7978468 456945316 474239945 262709403 240934546 113271669 851586694 388901819 787182236\n707645074 7978468 25273097 3498240 741813265 279128390 728095238 600432361 998712778 787182236\n",
"2\n3 8\n5 8\n",
"10\n4643665 282618243 791521863 214307200 976959598 590907019 166397456 708291256 85377387 569889619\n296371399 546807332 272720717 689420404 273026579 74510326 749070707 104458586 450770185 466655231\n",
"2\n3 8\n3 8\n",
"7\n12 9 8 6 9 12 84\n12 9 8 2 9 12 84\n",
"2\n1 2\n2 3\n",
"2\n0 0\n2000000000 2397495681\n",
"2\n0 569263929\n0 2000000000\n",
"3\n10 8 9\n1 4 9\n",
"10\n1 2 3 4 5 6 7 8 9 1\n1 2 3 4 5 6 7 8 9 229\n",
"2\n0 69\n68 69\n",
"3\n3 3 -1\n0 3 0\n",
"2\n0 0\n-1 0\n",
"2\n1 2\n0 1\n",
"3\n3 6 7\n1 5 7\n",
"4\n1 0 2 2\n0 2 0 2\n",
"4\n11 15 19 23\n12 16 20 5\n",
"7\n1 2 3 5 9 13 16\n1 2 4 5 10 13 16\n",
"4\n11 9 18 22\n10 15 18 22\n",
"4\n1 1 3 2\n1 3 4 2\n",
"10\n589934963 440265648 161048053 196789927 951616256 63404428 660569162 779938975 237139603 31052281\n496956518 709304777 745046651 595377336 52577964 649742698 370525103 164437781 919264110 31052282\n",
"4\n11 10 13 16\n7 10 13 17\n",
"5\n2 3 4 5 12\n1 2 3 4 5\n",
"2\n1 10\n2 0\n",
"10\n707645074 7978468 456945316 474239945 262709403 240934546 113271669 851586694 588595439 787182236\n707645074 7978468 25273097 3498240 741813265 279128390 728095238 600432361 998712778 787182236\n",
"4\n7 2 4 22\n7 15 10 12\n",
"3\n4 4 4\n1 2 4\n",
"10\n4643665 282618243 791521863 214307200 976959598 135244935 166397456 708291256 85377387 569889619\n296371399 546807332 272720717 689420404 273026579 74510326 749070707 104458586 450770185 466655231\n",
"7\n12 9 8 6 9 12 84\n12 9 8 0 9 12 84\n",
"2\n2 2\n2 3\n",
"2\n0 0\n3393967189 2397495681\n",
"2\n0 569263929\n0 202595052\n",
"3\n10 8 2\n1 4 9\n",
"10\n1 2 3 4 5 6 7 8 9 1\n1 2 3 4 5 6 7 5 9 229\n",
"2\n0 69\n34 69\n",
"3\n3 6 -1\n0 3 0\n",
"2\n0 -1\n-1 0\n",
"2\n1 2\n0 2\n",
"3\n4 6 7\n1 5 7\n",
"4\n1 0 1 2\n0 2 0 2\n",
"4\n11 15 19 23\n12 16 20 9\n",
"7\n1 2 3 5 9 13 16\n1 4 4 5 10 13 16\n",
"4\n11 9 18 22\n10 15 18 21\n",
"4\n1 1 3 2\n1 5 4 2\n",
"10\n589934963 440265648 84610409 196789927 951616256 63404428 660569162 779938975 237139603 31052281\n496956518 709304777 745046651 595377336 52577964 649742698 370525103 164437781 919264110 31052282\n",
"4\n11 2 13 16\n7 10 13 17\n",
"5\n2 3 4 0 12\n1 2 3 4 5\n",
"2\n1 10\n4 0\n",
"10\n707645074 7978468 456945316 474239945 262709403 240934546 113271669 219509953 588595439 787182236\n707645074 7978468 25273097 3498240 741813265 279128390 728095238 600432361 998712778 787182236\n",
"2\n5 8\n3 8\n",
"4\n7 2 4 22\n13 15 10 12\n",
"3\n4 8 4\n1 2 4\n",
"10\n4643665 282618243 791521863 214307200 976959598 135244935 137009691 708291256 85377387 569889619\n296371399 546807332 272720717 689420404 273026579 74510326 749070707 104458586 450770185 466655231\n",
"7\n12 9 8 6 9 12 84\n12 9 8 0 9 14 84\n",
"2\n2 0\n2 3\n",
"2\n0 0\n3305275405 2397495681\n",
"2\n0 818488331\n0 202595052\n",
"3\n11 8 2\n1 4 9\n",
"10\n2 2 3 4 5 6 7 8 9 1\n1 2 3 4 5 6 7 5 9 229\n",
"2\n0 86\n34 69\n",
"3\n3 6 -1\n0 4 0\n",
"2\n0 -1\n-1 1\n",
"2\n1 3\n0 2\n",
"3\n4 6 10\n1 5 7\n",
"4\n1 0 1 2\n0 2 0 3\n",
"4\n11 15 19 23\n12 9 20 9\n",
"7\n1 2 3 5 7 13 16\n1 4 4 5 10 13 16\n",
"4\n11 2 18 22\n10 15 18 21\n",
"4\n1 1 3 2\n2 5 4 2\n",
"10\n589934963 440265648 84610409 196789927 951616256 63404428 660569162 779938975 237139603 31052281\n496956518 709304777 745046651 595377336 52577964 649742698 466457272 164437781 919264110 31052282\n",
"4\n11 1 13 16\n7 10 13 17\n",
"5\n1 3 4 0 12\n1 2 3 4 5\n",
"2\n1 10\n6 0\n",
"10\n707645074 7978468 456945316 474239945 262709403 240934546 113271669 219509953 588595439 787182236\n707645074 7978468 25273097 3498240 741813265 279128390 728095238 600432361 998712778 1413524549\n",
"2\n9 8\n3 8\n",
"4\n5 2 4 22\n13 15 10 12\n",
"3\n4 8 4\n1 3 4\n",
"10\n4643665 282618243 791521863 214307200 976959598 135244935 137009691 708291256 85377387 569889619\n296371399 546807332 512324154 689420404 273026579 74510326 749070707 104458586 450770185 466655231\n",
"7\n12 9 13 6 9 12 84\n12 9 8 0 9 14 84\n",
"2\n2 0\n0 3\n",
"2\n0 0\n3305275405 695352500\n",
"2\n0 818488331\n-1 202595052\n",
"3\n11 8 2\n0 4 9\n",
"10\n2 2 3 4 5 6 7 8 18 1\n1 2 3 4 5 6 7 5 9 229\n",
"2\n0 86\n34 45\n",
"3\n3 6 -1\n-1 4 0\n",
"2\n0 -1\n-1 2\n",
"2\n1 0\n0 2\n",
"3\n4 6 10\n1 4 7\n",
"4\n1 0 1 2\n0 2 -1 3\n",
"4\n11 15 19 23\n12 9 20 0\n",
"7\n1 2 3 5 7 21 16\n1 4 4 5 10 13 16\n",
"4\n11 2 17 22\n10 15 18 21\n",
"4\n1 1 3 2\n2 5 4 1\n",
"10\n589934963 440265648 84610409 196789927 951616256 63404428 660569162 779938975 237139603 31052281\n496956518 709304777 745046651 595377336 21092038 649742698 466457272 164437781 919264110 31052282\n",
"4\n11 1 13 30\n7 10 13 17\n",
"5\n1 0 4 0 12\n1 2 3 4 5\n",
"2\n1 13\n6 0\n",
"10\n707645074 7978468 456945316 474239945 262709403 240934546 113271669 219509953 588595439 787182236\n16209512 7978468 25273097 3498240 741813265 279128390 728095238 600432361 998712778 1413524549\n",
"2\n4 8\n3 8\n",
"4\n5 2 4 22\n13 15 10 8\n"
],
"output": [
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Grigory has n magic stones, conveniently numbered from 1 to n. The charge of the i-th stone is equal to c_i.
Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index i, where 2 ≤ i ≤ n - 1), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge c_i changes to c_i' = c_{i + 1} + c_{i - 1} - c_i.
Andrew, Grigory's friend, also has n stones with charges t_i. Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes c_i into t_i for all i?
Input
The first line contains one integer n (2 ≤ n ≤ 10^5) — the number of magic stones.
The second line contains integers c_1, c_2, …, c_n (0 ≤ c_i ≤ 2 ⋅ 10^9) — the charges of Grigory's stones.
The second line contains integers t_1, t_2, …, t_n (0 ≤ t_i ≤ 2 ⋅ 10^9) — the charges of Andrew's stones.
Output
If there exists a (possibly empty) sequence of synchronization operations, which changes all charges to the required ones, print "Yes".
Otherwise, print "No".
Examples
Input
4
7 2 4 12
7 15 10 12
Output
Yes
Input
3
4 4 4
1 2 3
Output
No
Note
In the first example, we can perform the following synchronizations (1-indexed):
* First, synchronize the third stone [7, 2, 4, 12] → [7, 2, 10, 12].
* Then synchronize the second stone: [7, 2, 10, 12] → [7, 15, 10, 12].
In the second example, any operation with the second stone will not change its charge.
### Input:
4
7 2 4 12
7 15 10 12
### Output:
Yes
### Input:
3
4 4 4
1 2 3
### Output:
No
### Code:
n=int(input())
a=list(map(int,input().split()))
b=list(map(int,input().split()))
f=a[0]==b[0]
a=sorted([a[i+1]-a[i] for i in range(n-1)])
b=sorted([b[i+1]-b[i] for i in range(n-1)])
print('YES' if f and a==b else 'NO')
|
1140_B. Good String_1190 | You have a string s of length n consisting of only characters > and <. You may do some operations with this string, for each operation you have to choose some character that still remains in the string. If you choose a character >, the character that comes right after it is deleted (if the character you chose was the last one, nothing happens). If you choose a character <, the character that comes right before it is deleted (if the character you chose was the first one, nothing happens).
For example, if we choose character > in string > > < >, the string will become to > > >. And if we choose character < in string > <, the string will become to <.
The string is good if there is a sequence of operations such that after performing it only one character will remain in the string. For example, the strings >, > > are good.
Before applying the operations, you may remove any number of characters from the given string (possibly none, possibly up to n - 1, but not the whole string). You need to calculate the minimum number of characters to be deleted from string s so that it becomes good.
Input
The first line contains one integer t (1 ≤ t ≤ 100) – the number of test cases. Each test case is represented by two lines.
The first line of i-th test case contains one integer n (1 ≤ n ≤ 100) – the length of string s.
The second line of i-th test case contains string s, consisting of only characters > and <.
Output
For each test case print one line.
For i-th test case print the minimum number of characters to be deleted from string s so that it becomes good.
Example
Input
3
2
<>
3
><<
1
>
Output
1
0
0
Note
In the first test case we can delete any character in string <>.
In the second test case we don't need to delete any characters. The string > < < is good, because we can perform the following sequence of operations: > < < → < < → <. | t = int(input())
tests = []
for i in range(t):
length = int(input())
tests.append(input())
def solve(s):
streak1 = 0
streak2 = 0
for i in range(len(s)):
if s[i] == "<":
streak1 +=1
else:
break
for i in range(len(s)):
if s[-i-1] == ">":
streak2 +=1
else:
break
return min(streak1, streak2)
res = list(map(lambda x: str(solve(x)), tests))
print("\n".join(res)) | {
"input": [
"3\n2\n<>\n3\n><<\n1\n>\n",
"1\n9\n>>>>>>>><\n",
"13\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n",
"14\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n<\n",
"3\n2\n<>\n3\n><<\n1\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n",
"3\n2\n><\n3\n><<\n1\n>\n",
"3\n2\n><\n3\n<<>\n1\n>\n",
"14\n1\n>\n1\n>\n1\n=\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n<\n",
"1\n9\n<>>>>>>>>\n",
"3\n2\n<>\n3\n<<>\n1\n>\n",
"3\n2\n<>\n3\n;tl&;tl&;tg&\n1\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n",
"3\n2\n<>\n3\n><<\n1\n;tg&\n",
"3\n2\n<>\n1\n;tl&;tl&;tg&\n1\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n?\n1\n>\n",
"3\n3\n<>\n3\n><<\n1\n>\n",
"3\n2\n<>\n2\n;tl&;tl&;tg&\n1\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n@\n1\n>\n",
"3\n3\n&kt;>\n3\n><<\n1\n>\n",
"3\n2\n<>\n2\n;tl&;tl&;tg&\n1\ng&t;\n",
"3\n2\n<>\n2\n;tl&;tl&;tg&\n1\ng&t<\n",
"3\n1\n<>\n2\n;tl&;tl&;tg&\n1\ng&t<\n",
"3\n1\n<'gt;\n2\n;tl&;tl&;tg&\n1\ng&t<\n",
"3\n1\n<'gt;\n1\n;tl&;tl&;tg&\n1\ng&t<\n",
"3\n1\n<'gt;\n1\n;tl%;tl&;tg&\n1\ng&t<\n",
"3\n1\n<'gt;\n2\n;tl%;tl&;tg&\n1\ng&t<\n",
"3\n2\n<>\n3\n><<\n1\n;gt&\n",
"3\n2\n<>\n6\n;tl&;tl&;tg&\n1\n>\n",
"3\n1\n<>\n3\n><<\n1\n;tg&\n",
"3\n4\n<>\n1\n;tl&;tl&;tg&\n1\n>\n",
"3\n2\n<>\n2\n><<\n1\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n?\n1\n>\n1\n?\n1\n>\n1\n@\n1\n>\n",
"3\n3\ngkt;&&t;\n3\n><<\n1\n>\n",
"3\n3\n<>\n2\n;tl&;tl&;tg&\n1\ng&t;\n",
"3\n3\n<>\n2\n;tl&;tl&;tg&\n1\ng&t<\n",
"3\n1\n<>\n2\n;tl&;gl&;tt&\n1\ng&t<\n",
"3\n1\n<'ht;\n1\n;tl%;tl&;tg&\n1\ng&t<\n",
"3\n1\n;tg';tl&\n2\n;tl%;tl&;tg&\n1\ng&t<\n",
"14\n1\n>\n1\n>\n1\n=\n1\n>\n1\n>\n1\n>\n1\n>\n1\n=\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n<\n",
"3\n2\n<>\n3\n>&tl;<\n1\n;gt&\n",
"3\n2\n<>\n5\n;tl&;tl&;tg&\n1\n>\n",
"3\n1\n<>\n3\n><<\n2\n;tg&\n",
"3\n4\n<>\n1\n><<\n1\n>\n",
"3\n2\n<>\n2\n>&l&;tlt;\n1\n>\n",
"3\n3\ngkt;&&t;\n3\ntgt;<&l&;\n1\n>\n",
"3\n3\n<>\n2\n;t;<l&;tg&\n1\ng&t;\n",
"3\n3\n<>\n2\n;<tl&;tg&\n1\ng&t<\n",
"3\n1\n<>\n2\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n1\n;tg';tl&\n2\n;tl%;tl&;tg&\n1\n><\n",
"3\n2\n<>\n3\n>&tl;<\n1\ntg;&\n",
"3\n2\n<>\n5\n;tl&;tl&;tg&\n1\n>:\n",
"3\n7\n<>\n1\n><<\n1\n>\n",
"3\n2\n<&gs;\n2\n>&l&;tlt;\n1\n>\n",
"3\n3\ngkt;&&t;\n3\ntgt;<&l&;\n1\n;gt&\n",
"3\n3\n<>\n2\n><tl&;\n1\ng&t<\n",
"3\n2\n<>\n2\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n1\n;tg';tl&\n2\n;tl%;sl&;tg&\n1\n><\n",
"3\n2\n<>\n5\n>&tl;<\n1\ntg;&\n",
"3\n2\n<>:\n5\n;tl&;tl&;tg&\n1\n>:\n",
"3\n7\n<>\n1\n><<\n1\n><\n",
"3\n2\n<&gs;\n1\n>&l&;tlt;\n1\n>\n",
"3\n3\ngkt;&&t;\n3\ntgt;<&l&;\n2\n;gt&\n",
"3\n3\n<>\n4\n><tl&;\n1\ng&t<\n",
"3\n2\n<>\n4\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n1\n;tg';tl&\n4\n;tl%;sl&;tg&\n1\n><\n",
"3\n2\n<>:\n5\n><<\n1\n>:\n",
"3\n7\n<>\n1\n><<\n1\n&ft<\n",
"3\n2\n≶&ts;\n1\n>&l&;tlt;\n1\n>\n",
"3\n3\ngkt;&&t;\n3\ntgt;%lt;&l&;\n2\n;gt&\n",
"3\n1\n<>\n4\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n1\n;tg';tl&\n4\n;tg%;sl&;tl&\n1\n><\n",
"3\n4\n<>\n1\n><<\n1\n&ft<\n",
"3\n2\n≶&ts;\n1\n>&l&;tlt;\n1\n'gt;\n",
"3\n3\ngkt;&&t;\n3\ntgt;%lt;&l&;\n2\n;gs&\n",
"3\n1\n&kt;>\n4\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n2\n;tg';tl&\n4\n;tg%;sl&;tl&\n1\n><\n",
"3\n2\n≶&ts;\n1\n>&l&;tls;\n1\n'gt;\n",
"3\n1\ngkt;&&t;\n3\ntgt;%lt;&l&;\n2\n;gs&\n",
"3\n1\n&kt;>\n7\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n4\n;tg';tl&\n4\n;tg%;sl&;tl&\n1\n><\n",
"3\n2\n≶&ts;\n1\n>&l&;sls;\n1\n'gt;\n",
"3\n1\n;t&&;tkg\n3\ntgt;%lt;&l&;\n2\n;gs&\n",
"3\n1\n&kt;>\n6\n;tl&;hl&;tt&\n1\ng&t<\n",
"3\n2\n;st&;gl&\n1\n>&l&;sls;\n1\n'gt;\n",
"3\n1\n;t&&;tkg\n1\ntgt;%lt;&l&;\n2\n;gs&\n",
"3\n1\n&kt;>\n6\n;tl&;hl&;tt&\n1\n><\n",
"3\n1\n;t&&;tkg\n1\ntft;%lt;&l&;\n2\n;gs&\n",
"3\n1\n&kt;>\n5\n;tl&;hl&;tt&\n1\n><\n",
"3\n1\n&kt;>\n5\n&tt;&lh;<\n1\n><\n",
"3\n2\n&kt;>\n3\n><<\n1\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n=\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n1\n>\n",
"3\n2\n<:>\n3\n;tl&;tl&;tg&\n1\n>\n",
"3\n2\n<>\n3\n><<\n1\n;sg&\n",
"3\n2\n<>\n1\n;tl&;tl&;tg&\n2\n>\n",
"13\n1\n>\n1\n?\n1\n>\n1\n>\n1\n=\n1\n>\n1\n>\n1\n?\n1\n>\n1\n>\n1\n>\n1\n?\n1\n>\n",
"3\n3\n<>\n3\n><<\n2\n>\n",
"3\n2\n<>\n2\n;tl&;tl';tg&\n1\n>\n"
],
"output": [
"0\n0\n0\n",
"0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n1\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"1\n",
"1\n1\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n0\n",
"0\n0\n0\n",
"0\n0\n0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You have a string s of length n consisting of only characters > and <. You may do some operations with this string, for each operation you have to choose some character that still remains in the string. If you choose a character >, the character that comes right after it is deleted (if the character you chose was the last one, nothing happens). If you choose a character <, the character that comes right before it is deleted (if the character you chose was the first one, nothing happens).
For example, if we choose character > in string > > < >, the string will become to > > >. And if we choose character < in string > <, the string will become to <.
The string is good if there is a sequence of operations such that after performing it only one character will remain in the string. For example, the strings >, > > are good.
Before applying the operations, you may remove any number of characters from the given string (possibly none, possibly up to n - 1, but not the whole string). You need to calculate the minimum number of characters to be deleted from string s so that it becomes good.
Input
The first line contains one integer t (1 ≤ t ≤ 100) – the number of test cases. Each test case is represented by two lines.
The first line of i-th test case contains one integer n (1 ≤ n ≤ 100) – the length of string s.
The second line of i-th test case contains string s, consisting of only characters > and <.
Output
For each test case print one line.
For i-th test case print the minimum number of characters to be deleted from string s so that it becomes good.
Example
Input
3
2
<>
3
><<
1
>
Output
1
0
0
Note
In the first test case we can delete any character in string <>.
In the second test case we don't need to delete any characters. The string > < < is good, because we can perform the following sequence of operations: > < < → < < → <.
### Input:
3
2
<>
3
><<
1
>
### Output:
0
0
0
### Input:
1
9
>>>>>>>><
### Output:
0
### Code:
t = int(input())
tests = []
for i in range(t):
length = int(input())
tests.append(input())
def solve(s):
streak1 = 0
streak2 = 0
for i in range(len(s)):
if s[i] == "<":
streak1 +=1
else:
break
for i in range(len(s)):
if s[-i-1] == ">":
streak2 +=1
else:
break
return min(streak1, streak2)
res = list(map(lambda x: str(solve(x)), tests))
print("\n".join(res)) |
1199_E. Matching vs Independent Set_1197 | You are given a graph with 3 ⋅ n vertices and m edges. You are to find a matching of n edges, or an independent set of n vertices.
A set of edges is called a matching if no two edges share an endpoint.
A set of vertices is called an independent set if no two vertices are connected with an edge.
Input
The first line contains a single integer T ≥ 1 — the number of graphs you need to process. The description of T graphs follows.
The first line of description of a single graph contains two integers n and m, where 3 ⋅ n is the number of vertices, and m is the number of edges in the graph (1 ≤ n ≤ 10^{5}, 0 ≤ m ≤ 5 ⋅ 10^{5}).
Each of the next m lines contains two integers v_i and u_i (1 ≤ v_i, u_i ≤ 3 ⋅ n), meaning that there is an edge between vertices v_i and u_i.
It is guaranteed that there are no self-loops and no multiple edges in the graph.
It is guaranteed that the sum of all n over all graphs in a single test does not exceed 10^{5}, and the sum of all m over all graphs in a single test does not exceed 5 ⋅ 10^{5}.
Output
Print your answer for each of the T graphs. Output your answer for a single graph in the following format.
If you found a matching of size n, on the first line print "Matching" (without quotes), and on the second line print n integers — the indices of the edges in the matching. The edges are numbered from 1 to m in the input order.
If you found an independent set of size n, on the first line print "IndSet" (without quotes), and on the second line print n integers — the indices of the vertices in the independent set.
If there is no matching and no independent set of the specified size, print "Impossible" (without quotes).
You can print edges and vertices in any order.
If there are several solutions, print any. In particular, if there are both a matching of size n, and an independent set of size n, then you should print exactly one of such matchings or exactly one of such independent sets.
Example
Input
4
1 2
1 3
1 2
1 2
1 3
1 2
2 5
1 2
3 1
1 4
5 1
1 6
2 15
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6
Output
Matching
2
IndSet
1
IndSet
2 4
Matching
1 15
Note
The first two graphs are same, and there are both a matching of size 1 and an independent set of size 1. Any of these matchings and independent sets is a correct answer.
The third graph does not have a matching of size 2, however, there is an independent set of size 2. Moreover, there is an independent set of size 5: 2 3 4 5 6. However such answer is not correct, because you are asked to find an independent set (or matching) of size exactly n.
The fourth graph does not have an independent set of size 2, but there is a matching of size 2. | import sys
input = sys.stdin.readline
T = int(input())
for _ in range(T):
n, m = map(int, input().split())
v = [True] * (3 * n + 1)
e = [0] * n
ptr = 0
for i in range(1, m + 1):
a, b = map(int, input().split())
if ptr < n and v[a] and v[b]:
e[ptr] = i
ptr += 1
v[a] = False
v[b] = False
if ptr == n:
print('Matching')
print(*e)
else:
print('IndSet')
cnt = 0
for i in range(1, n * 3 + 1):
if v[i]:
print(i, end=' ')
cnt += 1
if cnt == n:
print()
break
| {
"input": [
"4\n1 2\n1 3\n1 2\n1 2\n1 3\n1 2\n2 5\n1 2\n3 1\n1 4\n5 1\n1 6\n2 15\n1 2\n1 3\n1 4\n1 5\n1 6\n2 3\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6\n4 5\n4 6\n5 6\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"4\n1 2\n1 3\n1 2\n1 2\n1 3\n1 2\n2 5\n1 2\n3 1\n1 4\n5 1\n1 6\n2 15\n1 2\n1 3\n1 4\n1 5\n1 6\n2 3\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6\n4 5\n4 6\n5 6\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 9\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n7 15\n14 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 9\n",
"1\n8 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"4\n1 2\n1 3\n1 2\n1 2\n1 3\n1 2\n2 5\n1 2\n3 1\n1 4\n5 1\n2 6\n2 15\n1 2\n1 3\n1 4\n1 5\n1 6\n2 3\n2 4\n2 5\n2 6\n3 4\n3 5\n3 6\n4 5\n4 6\n5 6\n",
"1\n8 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 14\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 4\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 13\n6 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 7\n15 4\n9 6\n10 6\n11 10\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n8 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n10 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 14\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n7 15\n14 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n1 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 2\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n6 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 4\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n6 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 3\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 11\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n7 15\n9 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 7\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 3\n11 4\n12 4\n13 4\n12 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n4 11\n5 12\n5 13\n7 14\n3 15\n14 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 9\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n12 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n5 8\n11 8\n12 2\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n4 13\n7 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 8\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n2 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n6 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 14\n4 11\n5 12\n5 13\n7 14\n3 15\n14 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 9\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 1\n12 1\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n12 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n10 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n8 6\n13 6\n14 6\n15 6\n9 8\n5 8\n11 8\n12 2\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n2 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 4\n11 3\n12 2\n13 2\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n6 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 14\n4 11\n5 12\n5 13\n7 14\n3 15\n14 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 1\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 9\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 1\n12 2\n13 2\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n12 8\n12 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n11 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n8 6\n13 6\n14 6\n15 6\n9 8\n5 8\n11 8\n12 2\n13 8\n14 8\n15 8\n",
"1\n8 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n10 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 3\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 14\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n2 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n10 4\n11 3\n12 2\n13 2\n14 2\n6 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n9 7\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n10 8\n11 8\n7 8\n13 8\n14 8\n6 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 14\n4 11\n5 12\n5 13\n7 14\n3 15\n14 2\n10 2\n11 2\n12 2\n13 2\n14 2\n15 2\n9 4\n14 4\n11 4\n12 4\n13 4\n14 1\n15 4\n9 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 8\n9 8\n10 8\n11 8\n12 8\n13 8\n14 8\n15 9\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n14 2\n11 3\n12 2\n13 2\n14 2\n15 2\n9 4\n11 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n8 6\n13 6\n14 6\n15 6\n9 8\n5 8\n11 8\n12 2\n13 8\n14 8\n15 8\n",
"1\n8 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n10 14\n7 15\n9 4\n10 2\n11 2\n12 1\n13 3\n14 2\n15 2\n9 4\n10 4\n11 4\n12 4\n13 4\n14 4\n15 4\n14 6\n10 6\n11 6\n12 6\n13 6\n14 6\n15 6\n9 8\n7 8\n11 8\n12 14\n13 8\n14 8\n15 8\n",
"1\n5 39\n1 2\n3 4\n5 6\n7 8\n1 9\n3 10\n3 11\n5 12\n5 13\n7 14\n7 15\n9 4\n14 2\n13 3\n12 2\n13 2\n14 2\n15 2\n9 4\n11 3\n11 4\n12 4\n13 4\n14 4\n15 4\n9 6\n10 6\n11 6\n8 6\n13 6\n14 6\n15 6\n9 8\n5 8\n11 8\n12 2\n13 8\n14 8\n15 8\n"
],
"output": [
"Matching\n1 \nMatching\n1 \nIndSet\n3 4 \nMatching\n1 10 \n\n",
"IndSet\n9 10 11 12 13 \n",
"Matching\n1 \nMatching\n1 \nIndSet\n3 4 \nMatching\n1 10 \n\n",
"IndSet\n9 10 11 12 13\n",
"Matching\n1 2 3 4 34\n",
"Matching\n1 2 3 4 39\n",
"IndSet\n9 10 11 12 13 14 15 16\n",
"Matching\n1\nMatching\n1\nIndSet\n3 4\nMatching\n1 10\n",
"IndSet\n9 10 11 13 15 16 17 18\n",
"Matching\n1 2 3 4 38\n",
"Matching\n1 2 3 4 28\n",
"IndSet\n9 11 12 13 15 16 17 18\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"Matching\n1 2 3 4 34\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"Matching\n1 2 3 4 39\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"Matching\n1 2 3 4 39\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"Matching\n1 2 3 4 39\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 11 12 13 15 16 17 18\n",
"IndSet\n9 10 11 12 13\n",
"Matching\n1 2 3 4 39\n",
"IndSet\n9 10 11 12 13\n",
"IndSet\n9 11 12 13 15 16 17 18\n",
"IndSet\n9 10 11 12 13\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a graph with 3 ⋅ n vertices and m edges. You are to find a matching of n edges, or an independent set of n vertices.
A set of edges is called a matching if no two edges share an endpoint.
A set of vertices is called an independent set if no two vertices are connected with an edge.
Input
The first line contains a single integer T ≥ 1 — the number of graphs you need to process. The description of T graphs follows.
The first line of description of a single graph contains two integers n and m, where 3 ⋅ n is the number of vertices, and m is the number of edges in the graph (1 ≤ n ≤ 10^{5}, 0 ≤ m ≤ 5 ⋅ 10^{5}).
Each of the next m lines contains two integers v_i and u_i (1 ≤ v_i, u_i ≤ 3 ⋅ n), meaning that there is an edge between vertices v_i and u_i.
It is guaranteed that there are no self-loops and no multiple edges in the graph.
It is guaranteed that the sum of all n over all graphs in a single test does not exceed 10^{5}, and the sum of all m over all graphs in a single test does not exceed 5 ⋅ 10^{5}.
Output
Print your answer for each of the T graphs. Output your answer for a single graph in the following format.
If you found a matching of size n, on the first line print "Matching" (without quotes), and on the second line print n integers — the indices of the edges in the matching. The edges are numbered from 1 to m in the input order.
If you found an independent set of size n, on the first line print "IndSet" (without quotes), and on the second line print n integers — the indices of the vertices in the independent set.
If there is no matching and no independent set of the specified size, print "Impossible" (without quotes).
You can print edges and vertices in any order.
If there are several solutions, print any. In particular, if there are both a matching of size n, and an independent set of size n, then you should print exactly one of such matchings or exactly one of such independent sets.
Example
Input
4
1 2
1 3
1 2
1 2
1 3
1 2
2 5
1 2
3 1
1 4
5 1
1 6
2 15
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6
Output
Matching
2
IndSet
1
IndSet
2 4
Matching
1 15
Note
The first two graphs are same, and there are both a matching of size 1 and an independent set of size 1. Any of these matchings and independent sets is a correct answer.
The third graph does not have a matching of size 2, however, there is an independent set of size 2. Moreover, there is an independent set of size 5: 2 3 4 5 6. However such answer is not correct, because you are asked to find an independent set (or matching) of size exactly n.
The fourth graph does not have an independent set of size 2, but there is a matching of size 2.
### Input:
4
1 2
1 3
1 2
1 2
1 3
1 2
2 5
1 2
3 1
1 4
5 1
1 6
2 15
1 2
1 3
1 4
1 5
1 6
2 3
2 4
2 5
2 6
3 4
3 5
3 6
4 5
4 6
5 6
### Output:
Matching
1
Matching
1
IndSet
3 4
Matching
1 10
### Input:
1
5 39
1 2
3 4
5 6
7 8
1 9
3 10
3 11
5 12
5 13
7 14
7 15
9 2
10 2
11 2
12 2
13 2
14 2
15 2
9 4
10 4
11 4
12 4
13 4
14 4
15 4
9 6
10 6
11 6
12 6
13 6
14 6
15 6
9 8
10 8
11 8
12 8
13 8
14 8
15 8
### Output:
IndSet
9 10 11 12 13
### Code:
import sys
input = sys.stdin.readline
T = int(input())
for _ in range(T):
n, m = map(int, input().split())
v = [True] * (3 * n + 1)
e = [0] * n
ptr = 0
for i in range(1, m + 1):
a, b = map(int, input().split())
if ptr < n and v[a] and v[b]:
e[ptr] = i
ptr += 1
v[a] = False
v[b] = False
if ptr == n:
print('Matching')
print(*e)
else:
print('IndSet')
cnt = 0
for i in range(1, n * 3 + 1):
if v[i]:
print(i, end=' ')
cnt += 1
if cnt == n:
print()
break
|
1216_D. Swords_1201 | There were n types of swords in the theater basement which had been used during the plays. Moreover there were exactly x swords of each type. y people have broken into the theater basement and each of them has taken exactly z swords of some single type. Note that different people might have taken different types of swords. Note that the values x, y and z are unknown for you.
The next morning the director of the theater discovers the loss. He counts all swords — exactly a_i swords of the i-th type are left untouched.
The director has no clue about the initial number of swords of each type in the basement, the number of people who have broken into the basement and how many swords each of them have taken.
For example, if n=3, a = [3, 12, 6] then one of the possible situations is x=12, y=5 and z=3. Then the first three people took swords of the first type and the other two people took swords of the third type. Note that you don't know values x, y and z beforehand but know values of n and a.
Thus he seeks for your help. Determine the minimum number of people y, which could have broken into the theater basement, and the number of swords z each of them has taken.
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^{5}) — the number of types of swords.
The second line of the input contains the sequence a_1, a_2, ..., a_n (0 ≤ a_i ≤ 10^{9}), where a_i equals to the number of swords of the i-th type, which have remained in the basement after the theft. It is guaranteed that there exists at least one such pair of indices (j, k) that a_j ≠ a_k.
Output
Print two integers y and z — the minimum number of people which could have broken into the basement and the number of swords each of them has taken.
Examples
Input
3
3 12 6
Output
5 3
Input
2
2 9
Output
1 7
Input
7
2 1000000000 4 6 8 4 2
Output
2999999987 2
Input
6
13 52 0 13 26 52
Output
12 13
Note
In the first example the minimum value of y equals to 5, i.e. the minimum number of people who could have broken into the basement, is 5. Each of them has taken 3 swords: three of them have taken 3 swords of the first type, and two others have taken 3 swords of the third type.
In the second example the minimum value of y is 1, i.e. the minimum number of people who could have broken into the basement, equals to 1. He has taken 7 swords of the first type. | n= int(input())
s = list(map(int,input().split()))
s.sort()
maxm = s[n-1]
ans = 0
def computeGCD(x, y):
while(y):
x, y = y, x % y
return x
a = maxm-s[0]
for i in range(1,n-1):
a = computeGCD(a,maxm-s[i])
for i in range(0,n-1):
ans += maxm - s[i]
print(ans//a,a)
| {
"input": [
"2\n2 9\n",
"3\n3 12 6\n",
"7\n2 1000000000 4 6 8 4 2\n",
"6\n13 52 0 13 26 52\n",
"10\n100000000 200000000 300000000 20 500000000 600000000 700000000 800000000 900000000 1000000000\n",
"10\n1 1000000000 1 1 1 1 1 1 1 1\n",
"5\n0 0 1 0 0\n",
"10\n1000000000 1 2 3 4 5 6 7 8 9\n",
"3\n1000000000 1 1000000000\n",
"10\n100000000 200000000 300000000 28 500000000 600000000 700000000 800000000 900000000 1000000000\n",
"10\n1 1000000000 2 1 1 1 1 1 1 1\n",
"5\n0 0 1 0 -1\n",
"10\n1000000000 1 2 3 4 5 6 7 2 9\n",
"3\n0000000000 1 1000000000\n",
"2\n1 9\n",
"3\n3 8 6\n",
"7\n2 1000000000 4 6 8 1 2\n",
"6\n13 52 0 13 26 31\n",
"10\n100000000 200000000 99172297 28 500000000 600000000 700000000 800000000 900000000 1000000000\n",
"10\n1 1000000000 2 1 2 1 1 1 1 1\n",
"5\n0 0 1 -1 -1\n",
"10\n1000000000 1 0 3 4 5 6 7 2 9\n",
"3\n0000000000 1 1000100000\n",
"2\n1 15\n",
"3\n3 8 0\n",
"7\n2 1000000000 4 6 7 1 2\n",
"6\n5 52 0 13 26 31\n",
"10\n100000000 200000000 171013924 28 500000000 600000000 700000000 800000000 900000000 1000000000\n",
"10\n1 1000000000 2 1 2 1 2 1 1 1\n",
"10\n0000000000 1 0 3 4 5 6 7 2 9\n",
"3\n0000000000 1 1001100000\n",
"2\n0 15\n",
"7\n2 1000000000 4 6 7 1 0\n",
"6\n5 52 0 20 26 31\n",
"10\n100000000 200000000 171013924 28 500000000 600000000 700000000 800000000 900000000 1000010000\n",
"10\n0000000000 1 0 3 4 5 2 7 2 9\n",
"3\n0000000001 1 1001100000\n",
"2\n0 13\n",
"3\n3 6 0\n",
"7\n2 1000000000 4 6 11 1 0\n",
"6\n5 52 0 20 51 31\n",
"10\n100000000 200000000 171013924 28 500000000 600000000 700000000 667029535 900000000 1000010000\n",
"5\n0 2 1 -1 -1\n",
"10\n0000000000 2 0 3 4 5 2 7 2 9\n",
"3\n0000000000 1 1001100100\n",
"6\n5 70 0 20 51 31\n",
"10\n100000010 200000000 171013924 28 500000000 600000000 700000000 667029535 900000000 1000010000\n",
"5\n-1 2 1 -1 -1\n",
"10\n0000100000 2 0 3 4 5 2 7 2 9\n",
"3\n0000000000 1 1011100100\n",
"7\n1 1000000100 4 6 11 1 0\n",
"6\n1 70 0 20 51 31\n",
"10\n100000010 23436524 171013924 28 500000000 600000000 700000000 667029535 900000000 1000010000\n",
"10\n1 1000000000 0 1 2 1 2 2 -1 1\n",
"5\n-1 4 1 -1 -1\n",
"10\n0000100000 2 0 3 4 5 2 7 4 9\n",
"3\n0000010000 1 1011100100\n",
"7\n1 1000000100 4 6 10 1 0\n",
"6\n1 70 0 20 51 53\n",
"10\n100000010 23436524 171013924 28 985204834 600000000 700000000 667029535 900000000 1000010000\n",
"10\n0000100000 2 0 0 4 5 2 7 4 9\n",
"3\n0000010000 0 1011100100\n",
"3\n5 7 -1\n",
"6\n1 70 -1 20 51 53\n",
"10\n100000010 23436524 225774845 28 985204834 600000000 700000000 667029535 900000000 1000010000\n",
"10\n0000100000 2 0 0 4 5 1 7 4 9\n",
"3\n0100010000 0 1011100100\n",
"3\n5 11 -1\n",
"7\n1 1000000100 6 6 10 1 0\n",
"6\n1 70 -1 19 51 53\n",
"10\n100000010 23436524 225774845 28 985204834 600000000 700000000 667029535 518484041 1000010000\n",
"10\n0000100000 2 0 0 4 10 1 7 4 9\n",
"3\n0100010001 0 1011100100\n",
"3\n7 11 -1\n",
"7\n2 1000000100 6 6 10 1 0\n",
"6\n1 70 -1 19 51 6\n",
"10\n100000010 23436524 225774845 0 985204834 600000000 700000000 667029535 518484041 1000010000\n",
"10\n1 1010000000 0 0 4 1 2 2 -1 1\n",
"3\n0100010001 0 1011100101\n",
"3\n7 0 -1\n",
"6\n1 70 -1 38 51 6\n",
"10\n100000010 23436524 225774845 0 1237987973 600000000 700000000 667029535 518484041 1000010000\n",
"10\n1 1010001000 0 0 4 1 2 2 -1 1\n",
"10\n0000100000 2 0 0 0 10 1 7 4 17\n",
"3\n0100010001 -1 1011100101\n",
"7\n0 1000000100 6 6 16 1 0\n",
"6\n1 70 -1 38 51 4\n",
"10\n100000010 23436524 225774845 0 1237987973 600000000 700000000 667029535 518484041 1000011000\n",
"10\n1 1010001000 0 0 4 1 2 2 -1 0\n",
"10\n0000101000 2 0 0 0 10 1 7 4 17\n",
"5\n0 0 1 -2 -1\n",
"3\n3 4 0\n",
"10\n1 1000000000 0 1 2 1 2 1 1 1\n",
"5\n0 1 1 -1 -1\n",
"10\n1 1000000000 0 1 2 1 2 2 1 1\n",
"2\n-1 13\n",
"3\n5 6 0\n",
"7\n1 1000000000 4 6 11 1 0\n",
"10\n1 1000000000 0 1 2 1 2 2 0 1\n",
"3\n5 4 0\n",
"3\n5 4 -1\n",
"10\n1 1000000000 0 1 3 1 2 2 -1 1\n",
"5\n-1 0 1 -1 -1\n",
"7\n1 1000000100 5 6 10 1 0\n",
"10\n1 1000000000 0 0 3 1 2 2 -1 1\n",
"5\n0 0 1 -1 0\n",
"10\n1 1000000000 0 0 4 1 2 2 -1 1\n",
"5\n0 -1 1 -1 0\n",
"10\n0000100000 2 0 0 0 10 1 7 4 9\n"
],
"output": [
"1 7\n",
"5 3\n",
"2999999987 2\n",
"12 13\n",
"244999999 20\n",
"9 999999999\n",
"4 1\n",
"8999999955 1\n",
"1 999999999\n",
"1224999993 4\n",
"8999999990 1\n",
"5 1\n",
"8999999961 1\n",
"1999999999 1\n",
"1 8\n",
"7 1\n",
"5999999977 1\n",
"177 1\n",
"5100827675 1\n",
"8999999989 1\n",
"6 1\n",
"8999999963 1\n",
"2000199999 1\n",
"1 14\n",
"13 1\n",
"5999999978 1\n",
"185 1\n",
"1257246512 4\n",
"8999999988 1\n",
"53 1\n",
"2002199999 1\n",
"1 15\n",
"5999999980 1\n",
"178 1\n",
"1257269012 4\n",
"57 1\n",
"2 1001099999\n",
"1 13\n",
"3 3\n",
"5999999976 1\n",
"153 1\n",
"5162046513 1\n",
"9 1\n",
"56 1\n",
"2002200199 1\n",
"243 1\n",
"5162046503 1\n",
"10 1\n",
"899966 1\n",
"2022200199 1\n",
"6000000577 1\n",
"247 1\n",
"5338609979 1\n",
"8999999991 1\n",
"18 1\n",
"899964 1\n",
"2022190199 1\n",
"6000000578 1\n",
"225 1\n",
"4853405145 1\n",
"899967 1\n",
"20221902 100\n",
"5 2\n",
"226 1\n",
"4798644224 1\n",
"899968 1\n",
"19221902 100\n",
"3 6\n",
"6000000576 1\n",
"227 1\n",
"5180160183 1\n",
"899963 1\n",
"1922190199 1\n",
"4 4\n",
"6000000575 1\n",
"274 1\n",
"5180160211 1\n",
"9089999990 1\n",
"640730067 3\n",
"15 1\n",
"255 1\n",
"7307156802 1\n",
"9090008990 1\n",
"899959 1\n",
"961095101 2\n",
"6000000571 1\n",
"257 1\n",
"7307155802 1\n",
"9090008991 1\n",
"908959 1\n",
"7 1\n",
"5 1\n",
"8999999990 1\n",
"5 1\n",
"8999999989 1\n",
"1 14\n",
"7 1\n",
"5999999977 1\n",
"8999999990 1\n",
"6 1\n",
"7 1\n",
"8999999990 1\n",
"7 1\n",
"6000000577 1\n",
"8999999991 1\n",
"5 1\n",
"8999999990 1\n",
"6 1\n",
"899967 1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There were n types of swords in the theater basement which had been used during the plays. Moreover there were exactly x swords of each type. y people have broken into the theater basement and each of them has taken exactly z swords of some single type. Note that different people might have taken different types of swords. Note that the values x, y and z are unknown for you.
The next morning the director of the theater discovers the loss. He counts all swords — exactly a_i swords of the i-th type are left untouched.
The director has no clue about the initial number of swords of each type in the basement, the number of people who have broken into the basement and how many swords each of them have taken.
For example, if n=3, a = [3, 12, 6] then one of the possible situations is x=12, y=5 and z=3. Then the first three people took swords of the first type and the other two people took swords of the third type. Note that you don't know values x, y and z beforehand but know values of n and a.
Thus he seeks for your help. Determine the minimum number of people y, which could have broken into the theater basement, and the number of swords z each of them has taken.
Input
The first line of the input contains one integer n (2 ≤ n ≤ 2 ⋅ 10^{5}) — the number of types of swords.
The second line of the input contains the sequence a_1, a_2, ..., a_n (0 ≤ a_i ≤ 10^{9}), where a_i equals to the number of swords of the i-th type, which have remained in the basement after the theft. It is guaranteed that there exists at least one such pair of indices (j, k) that a_j ≠ a_k.
Output
Print two integers y and z — the minimum number of people which could have broken into the basement and the number of swords each of them has taken.
Examples
Input
3
3 12 6
Output
5 3
Input
2
2 9
Output
1 7
Input
7
2 1000000000 4 6 8 4 2
Output
2999999987 2
Input
6
13 52 0 13 26 52
Output
12 13
Note
In the first example the minimum value of y equals to 5, i.e. the minimum number of people who could have broken into the basement, is 5. Each of them has taken 3 swords: three of them have taken 3 swords of the first type, and two others have taken 3 swords of the third type.
In the second example the minimum value of y is 1, i.e. the minimum number of people who could have broken into the basement, equals to 1. He has taken 7 swords of the first type.
### Input:
2
2 9
### Output:
1 7
### Input:
3
3 12 6
### Output:
5 3
### Code:
n= int(input())
s = list(map(int,input().split()))
s.sort()
maxm = s[n-1]
ans = 0
def computeGCD(x, y):
while(y):
x, y = y, x % y
return x
a = maxm-s[0]
for i in range(1,n-1):
a = computeGCD(a,maxm-s[i])
for i in range(0,n-1):
ans += maxm - s[i]
print(ans//a,a)
|
1281_B. Azamon Web Services_1208 | Your friend Jeff Zebos has been trying to run his new online company, but it's not going very well. He's not getting a lot of sales on his website which he decided to call Azamon. His big problem, you think, is that he's not ranking high enough on the search engines. If only he could rename his products to have better names than his competitors, then he'll be at the top of the search results and will be a millionaire.
After doing some research, you find out that search engines only sort their results lexicographically. If your friend could rename his products to lexicographically smaller strings than his competitor's, then he'll be at the top of the rankings!
To make your strategy less obvious to his competitors, you decide to swap no more than two letters of the product names.
Please help Jeff to find improved names for his products that are lexicographically smaller than his competitor's!
Given the string s representing Jeff's product name and the string c representing his competitor's product name, find a way to swap at most one pair of characters in s (that is, find two distinct indices i and j and swap s_i and s_j) such that the resulting new name becomes strictly lexicographically smaller than c, or determine that it is impossible.
Note: String a is strictly lexicographically smaller than string b if and only if one of the following holds:
* a is a proper prefix of b, that is, a is a prefix of b such that a ≠ b;
* There exists an integer 1 ≤ i ≤ min{(|a|, |b|)} such that a_i < b_i and a_j = b_j for 1 ≤ j < i.
Input
The first line of input contains a single integer t (1 ≤ t ≤ 1500) denoting the number of test cases. The next lines contain descriptions of the test cases.
Each test case consists of a single line containing two space-separated strings s and c (2 ≤ |s| ≤ 5000, 1 ≤ |c| ≤ 5000). The strings s and c consists of uppercase English letters.
It is guaranteed that the sum of |s| in the input is at most 5000 and the sum of the |c| in the input is at most 5000.
Output
For each test case, output a single line containing a single string, which is either
* the new name which is obtained after swapping no more than one pair of characters that is strictly lexicographically smaller than c. In case there are many possible such strings, you can output any of them;
* three dashes (the string "---" without quotes) if it is impossible.
Example
Input
3
AZAMON APPLE
AZAMON AAAAAAAAAAALIBABA
APPLE BANANA
Output
AMAZON
---
APPLE
Note
In the first test case, it is possible to swap the second and the fourth letters of the string and the resulting string "AMAZON" is lexicographically smaller than "APPLE".
It is impossible to improve the product's name in the second test case and satisfy all conditions.
In the third test case, it is possible not to swap a pair of characters. The name "APPLE" is lexicographically smaller than "BANANA". Note that there are other valid answers, e.g., "APPEL". | for _ in range(int(input())):
a,c=input().split()
a=list(a)
b=sorted(a)
if a!=b:
for i,x in enumerate(b):
if a[i]!=x:
tmp=a[i]
a[i]=x
break
for i in range(len(a)-1,-1,-1):
if a[i]==x:
a[i]=tmp
break
a=''.join(a)
if a<c:
print(a)
else:
print('---') | {
"input": [
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON APPLE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMNO ELPPA\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN AAAAAAAAAAALIBABA\nEPPLA BANANA\n",
"3\nAZAMON ALPPE\nAZOMAN AAAAAAAAAAALIBABA\nEPPLA ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN ABABILAAAAAAAAAAA\nEPPLA ANANAB\n",
"3\nAOAMNZ APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE ANANAB\n",
"3\nZABMON APPLE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMNN APPLE\nANMOZA AAAAAAAAAAALIBABA\nAPPFL ANAMAB\n",
"3\nAZAMNO ELPPA\nAZAMON AAAAAAAAAAALIBABA\nAPPME BANANA\n",
"3\nAZANOM APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nAZAMNO APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPOLE ANANAB\n",
"3\nZABMON ELPPA\nAZOMAN AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLE\nAZOMNA AAAAAAAAAAALIBABA\nAQPLF ANANAB\n",
"3\nZABMNN APPLE\nANMOZA AAALAAAAAAAAIBABA\nAOPFL ANAMAB\n",
"3\nZABMNN ELPPA\nAZOMNA AAALAAAAAAAAIBABA\nAPPFL ANAMAB\n",
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAOPLE BAN@NA\n",
"3\nAZAMON ELPPA\nAZAMON AAAAAAAAAAALIBABA\nELPPA BAAANN\n",
"3\nZABMON APPLE\nAZOMNA AAAAAAAAAAALIBABA\nAQPKF ANANAB\n",
"3\nAZAMON ELPPA\nAZAMON AAAAAAAAAAALIBABA\nPLEPA BAAANN\n",
"3\nAZAMON ALPPE\nAZOMAN ABABILAAAAAAAAAAA\nAPPLE ANAOAB\n",
"3\nAZANOM APPLE\nAAZMON ABABILAAAAAAAAAAA\nAPPLF ANANAB\n",
"3\nAZAMON ALPPE\nAZOMBN AAAAAAAAAABLIBABA\nALPPE BANANA\n",
"3\nZAAMON APPLE\nAZAMON ABABHLAAAA@AAAAAA\nAPPLF ANANAB\n",
"3\nZAAMON APPLE\nOZAMAN AAAAAAAAAAAKIBABA\nAPPMF ANANAB\n",
"3\nAZAMON ALPOE\nAZOMAN ABABILAAAAAAAAAAA\nALPOE ANANAB\n",
"3\nZABNOM FLPPA\nAZOMAN AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMNN APPLE\nAOMNZA AAALAAAAAAAAIBABA\nAOPEL ANAMAB\n",
"3\nAZAMON ELPPA\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMNO APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nZAAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nAZAMNO APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE ANANAB\n",
"3\nZAAMON APPLE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLE\nAZOMNA AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLE\nANMOZA AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLE\nANMOZA AAAAAAAAAAALIBABA\nAPPLF ANAMAB\n",
"3\nZABMNN APPLE\nANMOZA AAAAAAAAAAALIBABA\nAPPLF ANAMAB\n",
"3\nZABMNN APPLE\nANMOZA AAALAAAAAAAAIBABA\nAPPFL ANAMAB\n",
"3\nZABMNN APPLE\nAZOMNA AAALAAAAAAAAIBABA\nAPPFL ANAMAB\n",
"3\nAZAMON LPPAE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BAN@NA\n",
"3\nAZAMON PAPLE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON ELPPA\nAZAMON AAAAAAAAAAALIBABA\nAPPLE BAAANN\n",
"3\nAZAMON APPLE\nAZAMON AAAAAAAAAAALIBABA\nBPPLE ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLE BAOANA\n",
"3\nAZAMON ALPPE\nAZOMBN AAAAAAAAAAALIBABA\nEPPLA BANANA\n",
"3\nAZAMNO APPLE\nNOMAZA AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nZAAMON APPLE\nAZAMON AAAAAAAAAAALHBABA\nAPPLF ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN AAAAAAAAAAALIBABA\nEOPLA ANANAB\n",
"3\nZAAMON APPLE\nAZOMAN AAAAAAAAAAAKIBABA\nAPPLF ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN ABABILAAAAAAAAAAA\nEOPLA ANANAB\n",
"3\nZABMON APPLE\nANMOZA AAAAAAAAAABLIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLE\nANMOZA AAAAAAAAA@ALIBABA\nAPPLF ANAMAB\n",
"3\nZABMNN APPLE\nANMOZA AAAAAAAAAAALIBABA\nALPPF ANAMAB\n",
"3\nAZAMON LPPAE\nAZAMON AAAAAAAAA@ALIBABA\nAPPLE BANANA\n",
"3\nAZAMON PAPLE\nAZOMAN AAAAAAAAAAAKIBABA\nAPPLE BANANA\n",
"3\nAZAMON APPLF\nAZAMON AAAAAAAAAAALIBABA\nBPPLE ANANAB\n",
"3\nAZAMON ALPPE\nAZOMAN AAAAAAAAAAALIBABA\nAPPLE ANAOAB\n",
"3\nAZAMNO EPPLA\nAZAMON AAAAAAAAAAALIBABA\nAPPME BANANA\n",
"3\nAZANOM APPLE\nAAZMON AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nAZAMON ALPPE\nAZOMBN AAAAAAAAAABLIBABA\nEPPLA BANANA\n",
"3\nAZAMNO APPLE\nNZMAOA AAAAAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nZAAMON APPLE\nAZAMON AAAAAA@AAAALHBABA\nAPPLF ANANAB\n",
"3\nAZAMON ALPPE\nZAOMAN AAAAAAAAAAALIBABA\nEOPLA ANANAB\n",
"3\nAZAMNO APOLE\nAZAMON AAAAAAAAAAALIBABA\nAPOLE ANANAB\n",
"3\nZAAMON APPLE\nOZAMAN AAAAAAAAAAAKIBABA\nAPPLF ANANAB\n",
"3\nAZAMON ALPOE\nAZOMAN ABABILAAAAAAAAAAA\nEOPLA ANANAB\n",
"3\nZABMON FLPPA\nAZOMAN AAAAAAAAAAALIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLF\nANMOZA AAAAAAAAAABLIBABA\nAPPLF ANANAB\n",
"3\nZABMON APPLE\nAZOMNA AAAAAAAAA@ALIBABA\nAPPLF ANAMAB\n",
"3\nZABMNN LPPAE\nANMOZA AAAAAAAAAAALIBABA\nALPPF ANAMAB\n",
"3\nZABMNN APPLE\nAOMNZA AAALAAAAAAAAIBABA\nAOPFL ANAMAB\n",
"3\nAZAMON LPPAE\nAZAMON AAAAAAAAA@ALIBABA\nPAPLE BANANA\n",
"3\nAZAMON PAPLE\nAZOMAN AAAAAAAAAAAKIBABA\nAPPLE BAAANN\n",
"3\nAZAMON APPLF\nAZAMON AAAAAAAAAAALIBABA\nBPPLE ANANBA\n",
"3\nAZAMNO EPPLA\nAZAMON AAA@AAAAAAALIBABA\nAPPME BANANA\n",
"3\nAZAMNO APPLE\nNZMAOA AA@AAAAAAAALIBABA\nAPPLE BANANA\n",
"3\nAZAMON ALPPE\nZAOMAN AAAAAAAAAAALIBABA\nEOPMA ANANAB\n",
"3\nZABMON APPLE\nZAOMNA AAAAAAAAAAALIBABA\nAQPKF ANANAB\n",
"3\nZABMON APPLF\nANMOZA AAAAAAAAAABMIBABA\nAPPLF ANANAB\n",
"3\nZABMOM APPLE\nAZOMNA AAAAAAAAA@ALIBABA\nAPPLF ANAMAB\n",
"3\nZABMNN EAPPL\nANMOZA AAAAAAAAAAALIBABA\nALPPF ANAMAB\n",
"3\nAZAMON LPPAE\nAZAMON AAAAAAAAA@ALIBABA\nPAPLE ANANAB\n"
],
"output": [
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMNO\n---\nAEPLP\n",
"AAZMON\n---\nAFPLP\n",
"AAZMON\n---\nAPPLE\n",
"AAZMON\n---\n---\n",
"AAZMON\nAAOMZN\n---\n",
"AAOMNZ\n---\nAEPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPPL\n",
"AAZMNO\n---\nAEPMP\n",
"AAZNOM\n---\nAFPLP\n",
"AAZMNO\n---\nAEOLP\n",
"AZBMON\n---\nAFPLP\n",
"---\n---\nAFPLQ\n",
"---\n---\nAFPOL\n",
"AZBMNN\n---\nAFPPL\n",
"AAZMON\n---\nAEPLO\n",
"AAZMON\n---\nALPPE\n",
"---\n---\nAFPKQ\n",
"AAZMON\n---\nALEPP\n",
"AAZMON\nAAOMZN\nAEPLP\n",
"AAZNOM\nAAMZON\nAFPLP\n",
"AAZMON\n---\nAEPPL\n",
"AAZMON\nAAZMON\nAFPLP\n",
"AAZMON\n---\nAFPMP\n",
"AAZMON\nAAOMZN\nAEPOL\n",
"AZBNOM\n---\nAFPLP\n",
"---\n---\nAEPOL\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMNO\n---\nAEPLP\n",
"AAZMON\n---\nAFPLP\n",
"AAZMNO\n---\nAEPLP\n",
"AAZMON\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPPL\n",
"---\n---\nAFPPL\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\n---\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAPPLE\n",
"AAZMNO\n---\nAEPLP\n",
"AAZMON\n---\nAFPLP\n",
"AAZMON\n---\n---\n",
"AAZMON\n---\nAFPLP\n",
"AAZMON\nAAOMZN\n---\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPPL\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\n---\n",
"AAZMON\n---\nAEPLP\n",
"AAZMNO\n---\nAEPMP\n",
"AAZNOM\n---\nAFPLP\n",
"AAZMON\n---\nAPPLE\n",
"AAZMNO\n---\nAEPLP\n",
"AAZMON\n---\nAFPLP\n",
"AAZMON\n---\n---\n",
"AAZMNO\n---\nAEOLP\n",
"AAZMON\n---\nAFPLP\n",
"AAZMON\nAAOMZN\n---\n",
"AZBMON\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"AZBMNN\n---\nAFPPL\n",
"---\n---\nAFPOL\n",
"AAZMON\n---\nAPPLE\n",
"AAZMON\n---\nAEPLP\n",
"AAZMON\n---\n---\n",
"AAZMNO\n---\nAEPMP\n",
"AAZMNO\n---\nAEPLP\n",
"AAZMON\n---\n---\n",
"---\n---\nAFPKQ\n",
"---\n---\nAFPLP\n",
"---\n---\nAFPLP\n",
"AZBMNN\n---\nAFPPL\n",
"AAZMON\n---\n---\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Your friend Jeff Zebos has been trying to run his new online company, but it's not going very well. He's not getting a lot of sales on his website which he decided to call Azamon. His big problem, you think, is that he's not ranking high enough on the search engines. If only he could rename his products to have better names than his competitors, then he'll be at the top of the search results and will be a millionaire.
After doing some research, you find out that search engines only sort their results lexicographically. If your friend could rename his products to lexicographically smaller strings than his competitor's, then he'll be at the top of the rankings!
To make your strategy less obvious to his competitors, you decide to swap no more than two letters of the product names.
Please help Jeff to find improved names for his products that are lexicographically smaller than his competitor's!
Given the string s representing Jeff's product name and the string c representing his competitor's product name, find a way to swap at most one pair of characters in s (that is, find two distinct indices i and j and swap s_i and s_j) such that the resulting new name becomes strictly lexicographically smaller than c, or determine that it is impossible.
Note: String a is strictly lexicographically smaller than string b if and only if one of the following holds:
* a is a proper prefix of b, that is, a is a prefix of b such that a ≠ b;
* There exists an integer 1 ≤ i ≤ min{(|a|, |b|)} such that a_i < b_i and a_j = b_j for 1 ≤ j < i.
Input
The first line of input contains a single integer t (1 ≤ t ≤ 1500) denoting the number of test cases. The next lines contain descriptions of the test cases.
Each test case consists of a single line containing two space-separated strings s and c (2 ≤ |s| ≤ 5000, 1 ≤ |c| ≤ 5000). The strings s and c consists of uppercase English letters.
It is guaranteed that the sum of |s| in the input is at most 5000 and the sum of the |c| in the input is at most 5000.
Output
For each test case, output a single line containing a single string, which is either
* the new name which is obtained after swapping no more than one pair of characters that is strictly lexicographically smaller than c. In case there are many possible such strings, you can output any of them;
* three dashes (the string "---" without quotes) if it is impossible.
Example
Input
3
AZAMON APPLE
AZAMON AAAAAAAAAAALIBABA
APPLE BANANA
Output
AMAZON
---
APPLE
Note
In the first test case, it is possible to swap the second and the fourth letters of the string and the resulting string "AMAZON" is lexicographically smaller than "APPLE".
It is impossible to improve the product's name in the second test case and satisfy all conditions.
In the third test case, it is possible not to swap a pair of characters. The name "APPLE" is lexicographically smaller than "BANANA". Note that there are other valid answers, e.g., "APPEL".
### Input:
3
AZAMON APPLE
AZAMON AAAAAAAAAAALIBABA
APPLE BANANA
### Output:
AAZMON
---
AEPLP
### Input:
3
AZAMON APPLE
AZAMON AAAAAAAAAAALIBABA
APPLE BANANA
### Output:
AAZMON
---
AEPLP
### Code:
for _ in range(int(input())):
a,c=input().split()
a=list(a)
b=sorted(a)
if a!=b:
for i,x in enumerate(b):
if a[i]!=x:
tmp=a[i]
a[i]=x
break
for i in range(len(a)-1,-1,-1):
if a[i]==x:
a[i]=tmp
break
a=''.join(a)
if a<c:
print(a)
else:
print('---') |
1301_B. Motarack's Birthday_1212 | Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array a of n non-negative integers.
Dark created that array 1000 years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer k (0 ≤ k ≤ 10^{9}) and replaces all missing elements in the array a with k.
Let m be the maximum absolute difference between all adjacent elements (i.e. the maximum value of |a_i - a_{i+1}| for all 1 ≤ i ≤ n - 1) in the array a after Dark replaces all missing elements with k.
Dark should choose an integer k so that m is minimized. Can you help him?
Input
The input consists of multiple test cases. The first line contains a single integer t (1 ≤ t ≤ 10^4) — the number of test cases. The description of the test cases follows.
The first line of each test case contains one integer n (2 ≤ n ≤ 10^{5}) — the size of the array a.
The second line of each test case contains n integers a_1, a_2, …, a_n (-1 ≤ a_i ≤ 10 ^ {9}). If a_i = -1, then the i-th integer is missing. It is guaranteed that at least one integer is missing in every test case.
It is guaranteed, that the sum of n for all test cases does not exceed 4 ⋅ 10 ^ {5}.
Output
Print the answers for each test case in the following format:
You should print two integers, the minimum possible value of m and an integer k (0 ≤ k ≤ 10^{9}) that makes the maximum absolute difference between adjacent elements in the array a equal to m.
Make sure that after replacing all the missing elements with k, the maximum absolute difference between adjacent elements becomes m.
If there is more than one possible k, you can print any of them.
Example
Input
7
5
-1 10 -1 12 -1
5
-1 40 35 -1 35
6
-1 -1 9 -1 3 -1
2
-1 -1
2
0 -1
4
1 -1 3 -1
7
1 -1 7 5 2 -1 5
Output
1 11
5 35
3 6
0 42
0 0
1 2
3 4
Note
In the first test case after replacing all missing elements with 11 the array becomes [11, 10, 11, 12, 11]. The absolute difference between any adjacent elements is 1. It is impossible to choose a value of k, such that the absolute difference between any adjacent element will be ≤ 0. So, the answer is 1.
In the third test case after replacing all missing elements with 6 the array becomes [6, 6, 9, 6, 3, 6].
* |a_1 - a_2| = |6 - 6| = 0;
* |a_2 - a_3| = |6 - 9| = 3;
* |a_3 - a_4| = |9 - 6| = 3;
* |a_4 - a_5| = |6 - 3| = 3;
* |a_5 - a_6| = |3 - 6| = 3.
So, the maximum difference between any adjacent elements is 3. | # import sys
# file = open('test1')
# sys.stdin = file
def ii(): return int(input())
def ai(): return list(map(int, input().split()))
def mi(): return map(int, input().split())
for _ in range(int(input())):
n = ii()
lst = ai()
nlst = []
for ind, ele in enumerate(lst):
if ele==-1:
if ind!=0 and lst[ind-1]!=-1: nlst.append(lst[ind-1])
if ind!=n-1 and lst[ind+1]!=-1: nlst.append(lst[ind+1])
if len(nlst)!=0:
mx,mn = max(nlst), min(nlst)
k = (mx+mn)//2
nlst = [k if i==-1 else i for i in lst]
m = 0
for i in range(1,n):
m = max(m, abs(nlst[i]-nlst[i-1]))
print(m, k)
else: print(0, 1)
| {
"input": [
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n0 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 6 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n0 -1 0 -1\n4\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 2 5 2 -1 5\n",
"7\n5\n-1 18 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 2 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 1 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 0 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 2 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n0 -1 0 -1\n4\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 0\n",
"7\n5\n-1 16 -1 14 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n-1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 0 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 0 5\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 22 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 0\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 46 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 0 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 10 2 0 5\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 22 28 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 0\n",
"7\n5\n-1 10 0 14 -1\n5\n-1 46 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n0 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 16 -1 20 -1\n5\n-1 22 28 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 0\n",
"7\n5\n-1 10 0 14 -1\n5\n-1 46 35 -1 35\n6\n-1 -1 9 -1 2 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 10 0 14 -1\n5\n-1 46 35 -1 35\n6\n-1 -1 9 -1 2 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 10 0 14 -1\n5\n-1 46 35 0 35\n6\n-1 -1 9 -1 2 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 0 7 5 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n0 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 0 6 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 3 5 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n0 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 0 3 -1\n7\n1 -1 7 9 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 0 9 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 82 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -1 1\n",
"7\n5\n-1 10 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 0 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 8 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 1 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n0 -1 3 -1\n4\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 0 3 -1\n7\n0 -1 7 5 2 -1 0\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 22 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 12 5 2 -1 0\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 0 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 10 0 0 5\n",
"7\n5\n0 16 -1 12 -1\n5\n-1 40 20 -1 5\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 10 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 4 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 0 6 0\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 70\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 3 5 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 1 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 0 9 2 -1 5\n",
"7\n5\n-1 17 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 0 3 -1\n7\n1 -1 2 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 82 24 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -1 1\n",
"7\n5\n-1 1 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 0 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 6 -1\n7\n0 -1 7 8 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n0 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n0 -1 3 -1\n4\n1 -1 12 5 2 -1 5\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 0 3 -1\n7\n0 -1 7 2 2 -1 0\n",
"7\n5\n-1 10 0 13 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 10 -1 15 -1\n5\n-1 22 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 12 5 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n2 -1 3 -1\n7\n1 -1 7 6 0 -1 0\n",
"7\n5\n-1 3 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 0 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 10 0 0 5\n",
"7\n5\n0 16 -1 12 -1\n5\n-1 40 22 -1 5\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 10 -1 12 -1\n5\n0 40 35 -1 52\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 4 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 70\n6\n-1 0 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 40 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 3 5 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 82 24 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -1 1\n",
"7\n5\n-1 1 -1 12 -1\n5\n0 40 22 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 0 5\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 6 -1\n7\n0 -1 8 8 2 -1 0\n",
"7\n5\n-1 10 -1 20 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 0 3 -1\n7\n0 -1 7 2 2 -1 0\n",
"7\n5\n-1 10 0 13 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 3 3 2 -1 5\n",
"7\n5\n1 16 -1 12 -1\n5\n-1 40 22 -1 5\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 6 -1 24 -1\n5\n-1 40 20 -1 70\n6\n-1 0 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 0 13 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 3 3 0 -1 5\n",
"7\n5\n-1 3 -1 24 -1\n5\n-1 40 14 -1 35\n6\n-1 -1 6 -1 0 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 10 0 0 10\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 82 24 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 10 2 -1 1\n",
"7\n5\n-1 6 -1 24 -1\n5\n-1 60 20 -1 70\n6\n-1 0 6 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n0 -1 3 -1\n4\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -1 1\n",
"7\n5\n-1 10 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 7 5 2 -1 0\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n-1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n0 -1 3 -1\n4\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 70 20 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 7 9 2 -2 5\n",
"7\n5\n-1 16 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 3 5 2 -1 5\n",
"7\n5\n-1 17 -1 24 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 6 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n1 -1 2 5 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 37\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n0 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 2 -1 5\n",
"7\n5\n-1 16 -1 12 -1\n5\n-1 40 20 -1 35\n6\n-1 -1 1 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n2 -1 3 -1\n7\n1 -1 7 5 0 -1 0\n",
"7\n5\n-1 10 0 14 -1\n5\n-1 46 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 0\n7\n1 -1 7 3 3 -1 5\n",
"7\n5\n-1 10 0 14 -1\n5\n-1 46 35 -1 35\n6\n-1 -1 9 -1 2 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 0\n7\n2 -1 7 3 2 -1 5\n",
"7\n5\n-1 10 0 12 -1\n5\n-1 40 35 -1 35\n6\n-1 -1 9 -1 4 -1\n2\n-1 -1\n2\n1 -1\n4\n1 -1 3 -1\n7\n1 -1 7 5 2 -1 5\n",
"7\n5\n-1 10 -1 15 -1\n5\n-1 22 35 -1 35\n6\n-1 -1 9 -1 3 -1\n2\n-1 -1\n2\n0 -1\n4\n1 -1 3 -1\n7\n0 -1 12 5 1 -1 0\n"
],
"output": [
"1 11\n5 37\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"2 14\n5 37\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"2 14\n5 37\n3 6\n0 0\n0 0\n2 1\n3 4\n",
"12 11\n5 37\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"2 14\n20 30\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"4 20\n20 30\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"1 11\n5 37\n3 6\n0 0\n0 1\n1 2\n3 4\n",
"1 11\n5 37\n2 7\n0 0\n0 0\n1 2\n4 3\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n1 2\n3 4\n",
"2 14\n5 37\n3 6\n0 0\n0 0\n0 0\n3 4\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n7 4\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n1 2\n3 3\n",
"3 21\n20 30\n2 4\n0 0\n0 0\n1 2\n3 3\n",
"1 11\n40 35\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"12 11\n5 37\n3 6\n0 0\n0 0\n3 2\n3 4\n",
"2 14\n20 30\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n4 4\n",
"4 20\n20 30\n3 3\n0 0\n0 0\n1 2\n3 4\n",
"2 14\n5 37\n1 2\n0 0\n0 0\n0 0\n3 4\n",
"5 15\n5 37\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"1 15\n5 37\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"12 11\n5 37\n3 6\n0 0\n0 0\n3 2\n4 4\n",
"2 14\n20 30\n3 6\n0 0\n0 0\n1 2\n5 3\n",
"4 20\n20 30\n3 3\n0 0\n0 0\n1 2\n5 4\n",
"5 15\n13 28\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"12 11\n11 40\n3 6\n0 0\n0 0\n3 2\n4 4\n",
"2 14\n20 30\n1 2\n0 0\n0 0\n1 2\n5 3\n",
"4 20\n20 30\n3 3\n0 0\n0 0\n1 2\n8 4\n",
"5 15\n7 28\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"14 12\n11 40\n3 6\n0 0\n0 0\n3 2\n4 4\n",
"16 14\n20 30\n1 2\n0 0\n0 0\n1 2\n5 3\n",
"2 18\n7 28\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"14 12\n11 40\n4 5\n0 0\n0 0\n3 2\n4 4\n",
"14 12\n11 40\n4 5\n0 0\n0 1\n3 2\n4 4\n",
"14 12\n35 46\n4 5\n0 0\n0 1\n3 2\n4 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n1 2\n7 3\n",
"12 11\n5 37\n3 6\n0 0\n0 1\n1 2\n3 4\n",
"16 20\n20 30\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"1 11\n40 35\n3 6\n0 0\n0 1\n1 2\n3 4\n",
"1 11\n5 37\n9 7\n0 0\n0 0\n1 2\n4 3\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n3 3\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n2 1\n3 4\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n3 3\n7 4\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n9 2\n",
"2 14\n62 51\n3 6\n0 0\n0 0\n1 2\n7 4\n",
"1 11\n40 35\n3 6\n0 0\n0 0\n1 2\n5 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n1 2\n6 3\n",
"2 14\n19 18\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"2 14\n40 35\n3 6\n0 0\n0 0\n2 1\n3 4\n",
"5 15\n5 37\n3 6\n0 0\n0 0\n3 3\n4 3\n",
"5 15\n13 28\n3 6\n0 0\n0 0\n1 2\n7 6\n",
"4 20\n20 30\n3 3\n0 0\n0 0\n1 2\n10 4\n",
"16 14\n20 22\n1 2\n0 0\n0 0\n1 2\n5 3\n",
"1 11\n40 35\n3 6\n0 0\n0 1\n2 2\n3 4\n",
"1 11\n5 37\n9 9\n0 0\n0 0\n1 2\n4 3\n",
"4 20\n25 45\n2 4\n0 0\n0 0\n1 2\n3 4\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n1 2\n3 1\n",
"2 14\n50 45\n4 5\n0 0\n0 0\n1 2\n9 2\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n3 3\n3 3\n",
"2 14\n58 53\n3 6\n0 0\n0 0\n1 2\n7 4\n",
"6 6\n40 35\n3 6\n0 0\n0 0\n1 2\n5 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n3 3\n6 3\n",
"2 14\n40 35\n3 6\n0 0\n0 0\n2 1\n7 6\n",
"5 15\n5 37\n3 6\n0 0\n0 0\n3 3\n5 3\n",
"13 11\n5 37\n3 6\n0 0\n0 0\n3 2\n4 4\n",
"3 12\n13 28\n3 6\n0 0\n0 0\n1 2\n7 6\n",
"2 14\n20 30\n1 2\n0 0\n0 0\n1 2\n6 3\n",
"11 13\n20 30\n3 3\n0 0\n0 0\n1 2\n10 4\n",
"16 14\n18 22\n1 2\n0 0\n0 0\n1 2\n5 3\n",
"1 11\n40 43\n3 6\n0 0\n0 1\n2 2\n3 4\n",
"4 20\n25 45\n6 3\n0 0\n0 0\n1 2\n3 4\n",
"12 28\n20 30\n2 4\n0 0\n0 0\n1 2\n3 1\n",
"2 14\n58 53\n3 6\n0 0\n0 1\n1 2\n7 4\n",
"6 6\n40 28\n3 6\n0 0\n0 0\n1 2\n5 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n3 3\n6 4\n",
"5 15\n5 37\n1 2\n0 0\n0 0\n3 3\n5 3\n",
"13 11\n5 37\n3 6\n0 0\n0 0\n3 2\n2 3\n",
"15 14\n18 22\n1 2\n0 0\n0 0\n1 2\n5 3\n",
"9 15\n25 45\n6 3\n0 0\n0 0\n1 2\n3 4\n",
"13 11\n5 37\n3 6\n0 0\n0 0\n3 2\n3 2\n",
"11 13\n26 27\n3 3\n0 0\n0 0\n1 2\n10 4\n",
"2 14\n58 53\n3 6\n0 0\n0 1\n1 2\n8 4\n",
"9 15\n40 45\n6 3\n0 0\n0 0\n1 2\n3 4\n",
"2 14\n5 37\n3 6\n0 0\n0 0\n2 1\n3 4\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n7 4\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n7 4\n",
"1 11\n5 37\n3 6\n0 0\n0 0\n1 2\n4 3\n",
"2 14\n5 37\n3 6\n0 0\n0 0\n1 2\n3 4\n",
"2 14\n5 37\n3 6\n0 0\n0 0\n2 1\n3 4\n",
"2 14\n50 45\n3 6\n0 0\n0 0\n1 2\n7 4\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n1 2\n3 3\n",
"4 20\n20 30\n2 4\n0 0\n0 0\n1 2\n3 3\n",
"12 11\n5 37\n3 6\n0 0\n0 0\n3 2\n3 4\n",
"12 11\n5 37\n3 6\n0 0\n0 0\n3 2\n4 4\n",
"2 14\n20 30\n1 2\n0 0\n0 0\n1 2\n5 3\n",
"14 12\n11 40\n3 6\n0 0\n0 0\n3 2\n4 4\n",
"14 12\n11 40\n4 5\n0 0\n0 1\n3 2\n4 4\n",
"12 11\n5 37\n3 6\n0 0\n0 1\n1 2\n3 4\n",
"3 12\n13 28\n3 6\n0 0\n0 0\n1 2\n7 6\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array a of n non-negative integers.
Dark created that array 1000 years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer k (0 ≤ k ≤ 10^{9}) and replaces all missing elements in the array a with k.
Let m be the maximum absolute difference between all adjacent elements (i.e. the maximum value of |a_i - a_{i+1}| for all 1 ≤ i ≤ n - 1) in the array a after Dark replaces all missing elements with k.
Dark should choose an integer k so that m is minimized. Can you help him?
Input
The input consists of multiple test cases. The first line contains a single integer t (1 ≤ t ≤ 10^4) — the number of test cases. The description of the test cases follows.
The first line of each test case contains one integer n (2 ≤ n ≤ 10^{5}) — the size of the array a.
The second line of each test case contains n integers a_1, a_2, …, a_n (-1 ≤ a_i ≤ 10 ^ {9}). If a_i = -1, then the i-th integer is missing. It is guaranteed that at least one integer is missing in every test case.
It is guaranteed, that the sum of n for all test cases does not exceed 4 ⋅ 10 ^ {5}.
Output
Print the answers for each test case in the following format:
You should print two integers, the minimum possible value of m and an integer k (0 ≤ k ≤ 10^{9}) that makes the maximum absolute difference between adjacent elements in the array a equal to m.
Make sure that after replacing all the missing elements with k, the maximum absolute difference between adjacent elements becomes m.
If there is more than one possible k, you can print any of them.
Example
Input
7
5
-1 10 -1 12 -1
5
-1 40 35 -1 35
6
-1 -1 9 -1 3 -1
2
-1 -1
2
0 -1
4
1 -1 3 -1
7
1 -1 7 5 2 -1 5
Output
1 11
5 35
3 6
0 42
0 0
1 2
3 4
Note
In the first test case after replacing all missing elements with 11 the array becomes [11, 10, 11, 12, 11]. The absolute difference between any adjacent elements is 1. It is impossible to choose a value of k, such that the absolute difference between any adjacent element will be ≤ 0. So, the answer is 1.
In the third test case after replacing all missing elements with 6 the array becomes [6, 6, 9, 6, 3, 6].
* |a_1 - a_2| = |6 - 6| = 0;
* |a_2 - a_3| = |6 - 9| = 3;
* |a_3 - a_4| = |9 - 6| = 3;
* |a_4 - a_5| = |6 - 3| = 3;
* |a_5 - a_6| = |3 - 6| = 3.
So, the maximum difference between any adjacent elements is 3.
### Input:
7
5
-1 10 -1 12 -1
5
-1 40 35 -1 35
6
-1 -1 9 -1 3 -1
2
-1 -1
2
0 -1
4
1 -1 3 -1
7
1 -1 7 5 2 -1 5
### Output:
1 11
5 37
3 6
0 0
0 0
1 2
3 4
### Input:
7
5
-1 10 -1 12 -1
5
-1 40 35 -1 35
6
-1 -1 9 -1 3 -1
2
-1 -1
2
0 -1
4
1 -1 3 -1
7
1 -1 7 5 2 -1 5
### Output:
1 11
5 37
3 6
0 0
0 0
1 2
3 4
### Code:
# import sys
# file = open('test1')
# sys.stdin = file
def ii(): return int(input())
def ai(): return list(map(int, input().split()))
def mi(): return map(int, input().split())
for _ in range(int(input())):
n = ii()
lst = ai()
nlst = []
for ind, ele in enumerate(lst):
if ele==-1:
if ind!=0 and lst[ind-1]!=-1: nlst.append(lst[ind-1])
if ind!=n-1 and lst[ind+1]!=-1: nlst.append(lst[ind+1])
if len(nlst)!=0:
mx,mn = max(nlst), min(nlst)
k = (mx+mn)//2
nlst = [k if i==-1 else i for i in lst]
m = 0
for i in range(1,n):
m = max(m, abs(nlst[i]-nlst[i-1]))
print(m, k)
else: print(0, 1)
|
1325_B. CopyCopyCopyCopyCopy_1216 | Ehab has an array a of length n. He has just enough free time to make a new array consisting of n copies of the old array, written back-to-back. What will be the length of the new array's longest increasing subsequence?
A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements. The longest increasing subsequence of an array is the longest subsequence such that its elements are ordered in strictly increasing order.
Input
The first line contains an integer t — the number of test cases you need to solve. The description of the test cases follows.
The first line of each test case contains an integer n (1 ≤ n ≤ 10^5) — the number of elements in the array a.
The second line contains n space-separated integers a_1, a_2, …, a_{n} (1 ≤ a_i ≤ 10^9) — the elements of the array a.
The sum of n across the test cases doesn't exceed 10^5.
Output
For each testcase, output the length of the longest increasing subsequence of a if you concatenate it to itself n times.
Example
Input
2
3
3 2 1
6
3 1 4 1 5 9
Output
3
5
Note
In the first sample, the new array is [3,2,1,3,2,1,3,2,1]. The longest increasing subsequence is marked in bold.
In the second sample, the longest increasing subsequence will be [1,3,4,5,9]. | t = int(input())
for i in range(t):
n = int(input())
a = input().split()
s_a = set(a)
print(f"{len(s_a)}\n")
| {
"input": [
"2\n3\n3 2 1\n6\n3 1 4 1 5 9\n",
"1\n5\n1 3 4 5 2\n",
"1\n3\n1 1 274005660\n",
"4\n7\n6 6 8 8 6 6 6\n1\n2\n5\n4 5 9 8 7\n7\n1 2 7 1 6 10 2\n",
"2\n3\n1 1 1\n2\n1 1\n",
"2\n2\n1 1\n1\n1\n",
"2\n5\n5 5 5 5 5\n3\n1 2 5\n",
"2\n5\n1 2 3 4 5\n4\n2 3 4 5\n",
"2\n4\n1 3 3 3\n3\n1 2 3\n",
"1\n5\n2 3 4 5 2\n",
"1\n3\n1 1 129021590\n",
"4\n7\n6 6 8 8 6 6 6\n1\n2\n5\n4 5 9 8 7\n7\n1 2 7 1 6 20 2\n",
"2\n3\n2 1 1\n2\n1 1\n",
"2\n5\n5 5 5 5 4\n3\n1 2 5\n",
"2\n4\n1 3 6 3\n3\n1 2 3\n",
"2\n3\n3 2 1\n6\n3 2 4 1 5 9\n",
"2\n3\n3 2 1\n6\n5 2 4 1 5 9\n",
"2\n5\n1 2 3 8 5\n4\n2 3 4 5\n",
"2\n3\n3 2 1\n6\n5 1 4 1 5 9\n",
"1\n3\n1 2 129021590\n",
"2\n4\n1 3 6 3\n3\n2 2 3\n",
"2\n3\n1 2 1\n6\n5 2 4 1 5 9\n",
"2\n5\n2 5 5 5 5\n3\n2 2 5\n",
"2\n5\n3 7 5 5 4\n3\n1 2 5\n",
"2\n5\n3 7 2 5 4\n3\n1 2 5\n",
"1\n5\n1 3 4 8 2\n",
"2\n3\n1 1 1\n2\n1 2\n",
"2\n5\n1 3 3 4 5\n4\n2 3 4 5\n",
"2\n4\n1 3 6 3\n3\n2 2 2\n",
"2\n3\n1 2 1\n6\n10 2 4 1 5 9\n",
"4\n7\n6 6 12 8 6 6 6\n1\n2\n5\n4 5 9 2 7\n7\n1 2 7 1 6 20 2\n",
"4\n7\n6 6 12 8 6 5 6\n1\n2\n5\n4 5 9 2 7\n7\n1 2 7 1 6 20 2\n",
"2\n3\n3 2 1\n6\n5 2 4 1 5 18\n",
"2\n3\n3 2 1\n6\n5 2 3 1 5 18\n",
"1\n5\n1 3 4 5 1\n",
"2\n5\n2 5 5 5 5\n3\n1 2 5\n",
"2\n4\n1 1 3 3\n3\n1 2 3\n",
"1\n5\n3 3 4 5 2\n",
"2\n5\n5 4 5 5 4\n3\n1 2 5\n",
"2\n3\n3 2 1\n6\n5 2 4 1 7 18\n",
"2\n3\n3 2 1\n6\n5 2 3 1 7 18\n",
"2\n4\n2 1 3 3\n3\n1 2 3\n",
"2\n5\n5 7 5 5 4\n3\n1 2 5\n",
"2\n4\n2 3 6 3\n3\n2 2 3\n",
"2\n3\n3 2 1\n6\n5 2 4 1 7 11\n",
"2\n4\n2 2 3 3\n3\n1 2 3\n",
"2\n5\n5 7 5 5 3\n3\n1 2 5\n",
"2\n3\n3 2 1\n6\n5 2 4 1 1 11\n",
"2\n5\n7 7 5 5 4\n3\n1 2 5\n",
"2\n3\n3 2 1\n6\n5 2 5 1 1 11\n",
"1\n3\n1 1 232837279\n",
"2\n5\n5 5 5 7 5\n3\n1 2 5\n",
"2\n4\n1 3 3 3\n3\n2 2 3\n",
"2\n3\n3 2 1\n6\n3 1 3 1 5 9\n",
"1\n5\n2 5 4 5 2\n",
"1\n3\n1 2 92026373\n",
"4\n7\n6 6 8 8 6 6 6\n1\n2\n5\n4 5 9 2 7\n7\n1 2 7 1 6 20 2\n",
"2\n3\n3 2 1\n6\n3 2 5 1 5 9\n",
"2\n3\n3 2 1\n6\n5 2 4 1 5 7\n",
"2\n5\n2 5 5 5 5\n3\n1 2 7\n",
"2\n5\n1 2 3 14 5\n4\n2 3 4 5\n",
"2\n3\n3 2 1\n6\n5 2 4 1 7 5\n",
"2\n3\n3 2 1\n6\n5 2 3 1 13 18\n",
"2\n4\n2 1 3 3\n3\n1 3 3\n",
"2\n5\n5 7 5 5 1\n3\n1 2 5\n",
"2\n3\n3 2 1\n6\n2 2 4 1 7 11\n",
"2\n4\n3 2 3 3\n3\n1 2 3\n",
"2\n3\n3 1 1\n6\n5 2 4 1 1 11\n",
"2\n5\n7 7 5 5 4\n3\n1 2 6\n",
"2\n5\n3 7 1 5 4\n3\n1 2 5\n",
"1\n5\n1 3 7 8 2\n",
"1\n3\n1 2 232837279\n",
"2\n5\n5 5 5 7 5\n3\n1 2 4\n",
"2\n5\n1 3 3 4 5\n4\n2 2 4 5\n",
"2\n4\n1 3 3 3\n3\n2 2 6\n",
"2\n3\n3 2 1\n6\n3 1 3 2 5 9\n",
"2\n3\n3 1 1\n6\n3 2 5 1 5 9\n",
"2\n3\n3 2 1\n6\n5 2 4 1 5 5\n",
"2\n5\n2 5 5 5 5\n3\n1 1 7\n",
"2\n3\n1 2 1\n6\n5 2 4 1 5 6\n",
"2\n3\n3 2 1\n6\n7 2 4 1 7 5\n",
"2\n3\n3 3 1\n6\n5 2 3 1 13 18\n",
"2\n5\n5 7 5 5 1\n3\n1 4 5\n",
"2\n3\n3 2 1\n6\n4 2 4 1 7 11\n",
"2\n5\n7 7 6 5 4\n3\n1 2 6\n",
"2\n5\n3 7 1 7 4\n3\n1 2 5\n",
"1\n5\n1 3 2 8 2\n",
"2\n5\n5 5 6 7 5\n3\n1 2 4\n",
"2\n4\n1 3 1 3\n3\n2 2 6\n",
"2\n3\n3 2 1\n6\n3 1 3 2 5 14\n",
"2\n5\n2 5 5 5 5\n3\n2 1 7\n",
"2\n3\n1 2 1\n6\n8 2 4 1 5 6\n",
"2\n3\n3 3 1\n6\n5 2 5 1 13 18\n",
"2\n3\n3 2 1\n6\n4 2 4 1 10 11\n",
"2\n5\n13 7 6 5 4\n3\n1 2 6\n",
"2\n5\n3 6 1 7 4\n3\n1 2 5\n",
"1\n5\n1 3 2 9 2\n",
"2\n5\n5 5 6 1 5\n3\n1 2 4\n",
"2\n4\n1 5 1 3\n3\n2 2 6\n",
"2\n3\n3 2 1\n6\n3 1 3 2 2 14\n"
],
"output": [
"3\n5\n",
"5\n",
"2\n",
"2\n1\n5\n5\n",
"1\n1\n",
"1\n1\n",
"1\n3\n",
"5\n4\n",
"2\n3\n",
"4\n",
"2\n",
"2\n1\n5\n5\n",
"2\n1\n",
"2\n3\n",
"3\n3\n",
"3\n6\n",
"3\n5\n",
"5\n4\n",
"3\n4\n",
"3\n",
"3\n2\n",
"2\n5\n",
"2\n2\n",
"4\n3\n",
"5\n3\n",
"5\n",
"1\n2\n",
"4\n4\n",
"3\n1\n",
"2\n6\n",
"3\n1\n5\n5\n",
"4\n1\n5\n5\n",
"3\n5\n",
"3\n5\n",
"4\n",
"2\n3\n",
"2\n3\n",
"4\n",
"2\n3\n",
"3\n6\n",
"3\n6\n",
"3\n3\n",
"3\n3\n",
"3\n2\n",
"3\n6\n",
"2\n3\n",
"3\n3\n",
"3\n5\n",
"3\n3\n",
"3\n4\n",
"2\n",
"2\n3\n",
"2\n2\n",
"3\n4\n",
"3\n",
"3\n",
"2\n1\n5\n5\n",
"3\n5\n",
"3\n5\n",
"2\n3\n",
"5\n4\n",
"3\n5\n",
"3\n6\n",
"3\n2\n",
"3\n3\n",
"3\n5\n",
"2\n3\n",
"2\n5\n",
"3\n3\n",
"5\n3\n",
"5\n",
"3\n",
"2\n3\n",
"4\n3\n",
"2\n2\n",
"3\n5\n",
"2\n5\n",
"3\n4\n",
"2\n2\n",
"2\n5\n",
"3\n5\n",
"2\n6\n",
"3\n3\n",
"3\n5\n",
"4\n3\n",
"4\n3\n",
"4\n",
"3\n3\n",
"2\n2\n",
"3\n5\n",
"2\n3\n",
"2\n6\n",
"2\n5\n",
"3\n5\n",
"5\n3\n",
"5\n3\n",
"4\n",
"3\n3\n",
"3\n2\n",
"3\n4\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Ehab has an array a of length n. He has just enough free time to make a new array consisting of n copies of the old array, written back-to-back. What will be the length of the new array's longest increasing subsequence?
A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements. The longest increasing subsequence of an array is the longest subsequence such that its elements are ordered in strictly increasing order.
Input
The first line contains an integer t — the number of test cases you need to solve. The description of the test cases follows.
The first line of each test case contains an integer n (1 ≤ n ≤ 10^5) — the number of elements in the array a.
The second line contains n space-separated integers a_1, a_2, …, a_{n} (1 ≤ a_i ≤ 10^9) — the elements of the array a.
The sum of n across the test cases doesn't exceed 10^5.
Output
For each testcase, output the length of the longest increasing subsequence of a if you concatenate it to itself n times.
Example
Input
2
3
3 2 1
6
3 1 4 1 5 9
Output
3
5
Note
In the first sample, the new array is [3,2,1,3,2,1,3,2,1]. The longest increasing subsequence is marked in bold.
In the second sample, the longest increasing subsequence will be [1,3,4,5,9].
### Input:
2
3
3 2 1
6
3 1 4 1 5 9
### Output:
3
5
### Input:
1
5
1 3 4 5 2
### Output:
5
### Code:
t = int(input())
for i in range(t):
n = int(input())
a = input().split()
s_a = set(a)
print(f"{len(s_a)}\n")
|
1344_A. Hilbert's Hotel_1220 | Hilbert's Hotel is a very unusual hotel since the number of rooms is infinite! In fact, there is exactly one room for every integer, including zero and negative integers. Even stranger, the hotel is currently at full capacity, meaning there is exactly one guest in every room. The hotel's manager, David Hilbert himself, decides he wants to shuffle the guests around because he thinks this will create a vacancy (a room without a guest).
For any integer k and positive integer n, let kmod n denote the remainder when k is divided by n. More formally, r=kmod n is the smallest non-negative integer such that k-r is divisible by n. It always holds that 0≤ kmod n≤ n-1. For example, 100mod 12=4 and (-1337)mod 3=1.
Then the shuffling works as follows. There is an array of n integers a_0,a_1,…,a_{n-1}. Then for each integer k, the guest in room k is moved to room number k+a_{kmod n}.
After this shuffling process, determine if there is still exactly one guest assigned to each room. That is, there are no vacancies or rooms with multiple guests.
Input
Each test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 10^4) — the number of test cases. Next 2t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1≤ n≤ 2⋅ 10^5) — the length of the array.
The second line of each test case contains n integers a_0,a_1,…,a_{n-1} (-10^9≤ a_i≤ 10^9).
It is guaranteed that the sum of n over all test cases does not exceed 2⋅ 10^5.
Output
For each test case, output a single line containing "YES" if there is exactly one guest assigned to each room after the shuffling process, or "NO" otherwise. You can print each letter in any case (upper or lower).
Example
Input
6
1
14
2
1 -1
4
5 5 5 1
3
3 2 1
2
0 1
5
-239 -2 -100 -3 -11
Output
YES
YES
YES
NO
NO
YES
Note
In the first test case, every guest is shifted by 14 rooms, so the assignment is still unique.
In the second test case, even guests move to the right by 1 room, and odd guests move to the left by 1 room. We can show that the assignment is still unique.
In the third test case, every fourth guest moves to the right by 1 room, and the other guests move to the right by 5 rooms. We can show that the assignment is still unique.
In the fourth test case, guests 0 and 1 are both assigned to room 3.
In the fifth test case, guests 1 and 2 are both assigned to room 2. | # cook your dish here
t=int(input())
for _ in range(t):
n=int(input())
a=list(map(int,input().split()))
l=[0]*n
d={}
f=0
for i in range(n):
l[i]=i+a[i%n]
d[l[i]]=d.get(l[i],0)+1
if d[l[i]]==2:
f=1
break
r={}
for i in range(n):
r[l[i]%n]=r.get(l[i]%n,0)+1
if r[l[i]%n]==2:
f=1
break
if f:
print('NO')
else:
print('YES') | {
"input": [
"6\n1\n14\n2\n1 -1\n4\n5 5 5 1\n3\n3 2 1\n2\n0 1\n5\n-239 -2 -100 -3 -11\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n12 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"6\n1\n14\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 1\n2\n0 1\n5\n-239 -2 -100 -3 -11\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-852737322 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1942221517\n",
"6\n1\n14\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 1\n2\n0 1\n5\n-313 -2 -100 -3 -11\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"6\n1\n14\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 1\n2\n1 1\n5\n-313 -2 -100 -3 -11\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000000000\n2\n-586829011 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"6\n1\n14\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 1\n2\n1 1\n5\n-239 -2 -100 -3 -11\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 -1\n2\n0 1000100000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n0 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 -1\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000000000\n2\n-586829011 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-698912274 2\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 2\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -319516196\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 2\n2\n2 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -319516196\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 66 33 -98\n2\n5 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 -1\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 -1\n2\n0 1000100000\n2\n1000000000 1\n2\n2 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 -1\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000100000\n2\n-586829011 0\n2\n1 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000100000 0\n2\n-1 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-698912274 2\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-852737322 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000100000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n56 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-698912274 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -319516196\n",
"10\n1\n1000000000\n1\n-1786824094\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-852737322 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 4 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -24 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n56 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 13 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 5 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"6\n1\n13\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 1\n2\n1 1\n5\n-239 -2 -100 -3 -11\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n0 1000000000\n2\n-1000000000 0\n2\n0 -1732378972\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 -1\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000100000\n2\n-586829011 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -24 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -19\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-15 -33 79\n16\n56 -84 19 85 69 -64 93 -92 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 13 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000100000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-698912274 2\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 5 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 20 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000100 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n0 1000000000\n2\n-1000000000 0\n2\n0 -1732378972\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -85 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000001\n1\n-1226724342\n2\n1000000000 -1\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000100000\n2\n-586829011 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n56 -84 19 85 69 -64 93 -92 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 13 -86 88 -25 43 22 -44\n",
"10\n1\n1001000000\n1\n-1000000000\n2\n1000100000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-698912274 2\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 5 -52 -55 66 33 -7\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 20 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000100 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n-1 1000000000\n2\n-1000000000 0\n2\n0 -1732378972\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 21 69 -85 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-14 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 66 33 -98\n2\n5 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000100 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n-2 1000000000\n2\n-1000000000 0\n2\n0 -1732378972\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 21 69 -85 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -53 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-14 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 66 33 -98\n2\n5 0\n4\n-65 -76 5 28\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000100 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n-2 1000000100\n2\n-1000000000 0\n2\n0 -1732378972\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 21 69 -85 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -53 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -16\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-14 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -76 5 28\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 21 69 -85 93 -28 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -53 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -16\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -76 5 28\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -76 5 28\n5\n55 -66 63 -81 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -76 5 28\n5\n55 -66 63 -81 -35\n5\n-125 59 0 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -76 5 3\n5\n55 -66 63 -81 -35\n5\n-125 59 0 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 3\n5\n55 -66 63 -81 -35\n5\n-125 59 0 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n55 -66 63 -81 -35\n5\n-125 59 0 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n55 -66 113 -81 -35\n5\n-125 59 0 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n92 -66 113 -81 -35\n5\n-125 59 0 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n92 -66 113 -81 -35\n5\n-125 59 -1 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n92 -66 113 -81 -35\n5\n-125 59 -1 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 41 43 -83 57 8 -86 67 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n92 -66 113 -81 -35\n5\n-125 59 -1 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 41 43 -83 57 8 -86 111 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n92 -66 113 -81 -35\n5\n-125 59 -1 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 41 43 -157 57 8 -86 111 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n82 -66 113 -81 -35\n5\n-125 59 -1 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 41 43 -157 57 8 -86 111 -25 96 28 -44\n",
"10\n3\n-14 -33 142\n16\n45 -84 35 85 69 -64 93 -70 0 -102 2 -52 -55 38 33 -98\n2\n5 0\n4\n-65 -113 5 6\n5\n82 -66 113 -81 -35\n5\n-125 107 -1 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 41 43 -157 57 8 -86 111 -25 96 28 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n22 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -28 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n12 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 1\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-852737322 0\n2\n0 -1987984062\n2\n-1000000000 1\n2\n1 -1942221517\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -11\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n-1 1000100000\n2\n1000010000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -3 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"6\n1\n14\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 0\n2\n1 1\n5\n-313 -2 -100 -3 -11\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000000000\n2\n-586829011 0\n2\n0 -1000000000\n2\n-1356927426 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 15 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-199 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 67 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n56 -84 19 85 69 -64 93 -70 0 -11 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-13744782\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-852737322 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 4 -93 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"6\n1\n14\n2\n1 -1\n4\n5 5 3 1\n3\n3 2 1\n2\n1 1\n5\n-436 -2 -100 -3 -11\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 46 8 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 -1\n2\n-1 1000100000\n2\n1000000000 1\n2\n1 1000010000\n2\n-586829011 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -1000000000\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -24 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 5 -44\n",
"10\n3\n-15 -33 79\n16\n56 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-87 59 78 2 -10\n1\n25\n1\n-29\n1\n-8\n12\n32 34 43 -83 57 13 -86 88 -25 96 22 -44\n",
"10\n1\n1000000000\n1\n-1000000000\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 1\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-698912274 4\n2\n1 -1000000000\n",
"10\n1\n1000000000\n1\n-1226724342\n2\n1000000000 0\n2\n0 1000000000\n2\n1000000000 0\n2\n1 1000000000\n2\n-1000000000 0\n2\n0 -1000000000\n2\n-1000000000 1\n2\n1 -319516196\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -79 0 -53 5 -52 -55 66 33 -60\n2\n14 -2\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 19 85 69 -64 93 -70 -1 -53 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 58 -66 -35\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n34 34 43 -83 57 8 -86 88 -25 96 22 -44\n",
"10\n3\n-15 -33 79\n16\n45 -84 35 85 69 -64 93 -70 0 -24 2 -52 -55 66 33 -98\n2\n14 0\n4\n-65 -76 5 25\n5\n55 -66 63 -66 -19\n5\n-125 59 78 2 -10\n1\n25\n1\n-19\n1\n-8\n12\n32 34 43 -83 57 4 -86 88 -25 96 22 -44\n"
],
"output": [
"YES\nYES\nYES\nNO\nNO\nYES\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nYES\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\n",
"YES\nYES\nNO\nNO\nNO\nNO\n",
"YES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nNO\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\n",
"YES\nYES\nNO\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nYES\nYES\nYES\nYES\nNO\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nNO\n",
"YES\nYES\nNO\nYES\nNO\nYES\nYES\nYES\nNO\nNO\n",
"YES\nYES\nNO\nNO\nNO\nNO\nNO\nNO\nNO\nNO\n",
"YES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nYES\n",
"YES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nNO\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nNO\nYES\nNO\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nYES\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nNO\n",
"YES\nYES\nYES\nNO\nNO\nNO\nNO\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nNO\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nNO\nNO\nNO\nNO\nNO\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nNO\nNO\nYES\nYES\nYES\nNO\n",
"YES\nYES\nYES\nYES\nYES\nNO\nYES\nYES\nNO\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n",
"NO\nNO\nYES\nNO\nNO\nNO\nYES\nYES\nYES\nNO\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Hilbert's Hotel is a very unusual hotel since the number of rooms is infinite! In fact, there is exactly one room for every integer, including zero and negative integers. Even stranger, the hotel is currently at full capacity, meaning there is exactly one guest in every room. The hotel's manager, David Hilbert himself, decides he wants to shuffle the guests around because he thinks this will create a vacancy (a room without a guest).
For any integer k and positive integer n, let kmod n denote the remainder when k is divided by n. More formally, r=kmod n is the smallest non-negative integer such that k-r is divisible by n. It always holds that 0≤ kmod n≤ n-1. For example, 100mod 12=4 and (-1337)mod 3=1.
Then the shuffling works as follows. There is an array of n integers a_0,a_1,…,a_{n-1}. Then for each integer k, the guest in room k is moved to room number k+a_{kmod n}.
After this shuffling process, determine if there is still exactly one guest assigned to each room. That is, there are no vacancies or rooms with multiple guests.
Input
Each test consists of multiple test cases. The first line contains a single integer t (1≤ t≤ 10^4) — the number of test cases. Next 2t lines contain descriptions of test cases.
The first line of each test case contains a single integer n (1≤ n≤ 2⋅ 10^5) — the length of the array.
The second line of each test case contains n integers a_0,a_1,…,a_{n-1} (-10^9≤ a_i≤ 10^9).
It is guaranteed that the sum of n over all test cases does not exceed 2⋅ 10^5.
Output
For each test case, output a single line containing "YES" if there is exactly one guest assigned to each room after the shuffling process, or "NO" otherwise. You can print each letter in any case (upper or lower).
Example
Input
6
1
14
2
1 -1
4
5 5 5 1
3
3 2 1
2
0 1
5
-239 -2 -100 -3 -11
Output
YES
YES
YES
NO
NO
YES
Note
In the first test case, every guest is shifted by 14 rooms, so the assignment is still unique.
In the second test case, even guests move to the right by 1 room, and odd guests move to the left by 1 room. We can show that the assignment is still unique.
In the third test case, every fourth guest moves to the right by 1 room, and the other guests move to the right by 5 rooms. We can show that the assignment is still unique.
In the fourth test case, guests 0 and 1 are both assigned to room 3.
In the fifth test case, guests 1 and 2 are both assigned to room 2.
### Input:
6
1
14
2
1 -1
4
5 5 5 1
3
3 2 1
2
0 1
5
-239 -2 -100 -3 -11
### Output:
YES
YES
YES
NO
NO
YES
### Input:
10
3
-15 -33 79
16
45 -84 19 85 69 -64 93 -70 0 -53 2 -52 -55 66 33 -60
2
14 -2
4
-65 -76 5 25
5
55 -66 63 -66 -35
5
-87 59 78 2 -10
1
25
1
-19
1
-8
12
32 34 43 -83 57 8 -86 88 -25 96 22 -44
### Output:
NO
NO
YES
NO
NO
NO
YES
YES
YES
NO
### Code:
# cook your dish here
t=int(input())
for _ in range(t):
n=int(input())
a=list(map(int,input().split()))
l=[0]*n
d={}
f=0
for i in range(n):
l[i]=i+a[i%n]
d[l[i]]=d.get(l[i],0)+1
if d[l[i]]==2:
f=1
break
r={}
for i in range(n):
r[l[i]%n]=r.get(l[i]%n,0)+1
if r[l[i]%n]==2:
f=1
break
if f:
print('NO')
else:
print('YES') |
1366_A. Shovels and Swords_1224 | Polycarp plays a well-known computer game (we won't mention its name). In this game, he can craft tools of two types — shovels and swords. To craft a shovel, Polycarp spends two sticks and one diamond; to craft a sword, Polycarp spends two diamonds and one stick.
Each tool can be sold for exactly one emerald. How many emeralds can Polycarp earn, if he has a sticks and b diamonds?
Input
The first line contains one integer t (1 ≤ t ≤ 1000) — the number of test cases.
The only line of each test case contains two integers a and b (0 ≤ a, b ≤ 10^9) — the number of sticks and the number of diamonds, respectively.
Output
For each test case print one integer — the maximum number of emeralds Polycarp can earn.
Example
Input
4
4 4
1000000000 0
7 15
8 7
Output
2
0
7
5
Note
In the first test case Polycarp can earn two emeralds as follows: craft one sword and one shovel.
In the second test case Polycarp does not have any diamonds, so he cannot craft anything. | import math
t=int(input())
for i in range(t):
a,b=map(int,input().split())
m=min(a,b,(a+b)/3)
print(math.floor(m))
| {
"input": [
"4\n4 4\n1000000000 0\n7 15\n8 7\n",
"1\n656 656\n",
"1\n666 666\n",
"2\n7 4\n1 5\n",
"1\n33993 5\n",
"1\n1656 5\n",
"1\n1319 1777\n",
"1\n667 666\n",
"1\n656 281\n",
"1\n666 760\n",
"2\n10 4\n1 5\n",
"1\n33993 6\n",
"1\n1656 9\n",
"1\n1425 1777\n",
"1\n667 288\n",
"4\n4 4\n1000000000 0\n12 15\n8 7\n",
"1\n666 1297\n",
"1\n33993 2\n",
"1\n1656 15\n",
"1\n892 1777\n",
"1\n682 214\n",
"1\n1133 1297\n",
"1\n33993 0\n",
"1\n1030 1777\n",
"1\n682 154\n",
"1\n1133 1185\n",
"2\n10 4\n0 16\n",
"1\n738 13\n",
"1\n1030 1968\n",
"1\n1013 118\n",
"1\n1133 1275\n",
"1\n1019 1968\n",
"1\n168 118\n",
"1\n1133 867\n",
"2\n7 4\n0 8\n",
"1\n1019 987\n",
"1\n168 180\n",
"1\n710 292\n",
"1\n971 867\n",
"2\n4 4\n0 8\n",
"1\n1019 528\n",
"1\n84 180\n",
"1\n91 292\n",
"1\n971 1709\n",
"1\n1777 11\n",
"1\n528 528\n",
"1\n89 180\n",
"1\n971 88\n",
"1\n1777 20\n",
"1\n528 993\n",
"1\n89 109\n",
"1\n60 993\n",
"1\n89 121\n",
"1\n35 276\n",
"1\n1403 56\n",
"1\n1403 93\n",
"1\n29 1115\n",
"1\n1403 99\n",
"1\n49 1115\n",
"1\n73 176\n",
"1\n989 50\n",
"1\n543 1\n",
"1\n989 59\n",
"1\n682 281\n",
"2\n10 4\n1 9\n",
"1\n940 288\n",
"4\n4 4\n1010000000 0\n12 15\n8 7\n",
"2\n10 4\n1 16\n",
"1\n738 15\n",
"1\n1013 288\n",
"1\n428 154\n",
"2\n10 4\n0 8\n",
"1\n675 13\n",
"1\n710 154\n",
"1\n1158 13\n",
"1\n1777 13\n",
"2\n4 4\n0 12\n",
"1\n91 255\n",
"1\n91 276\n",
"1\n1403 88\n",
"1\n3433 20\n",
"1\n1913 20\n",
"1\n60 1115\n",
"1\n89 189\n",
"1\n35 383\n",
"1\n531 20\n",
"1\n89 176\n",
"1\n35 686\n",
"1\n531 2\n",
"1\n35 763\n",
"1\n1490 99\n",
"1\n531 0\n",
"1\n49 815\n",
"1\n6 176\n",
"1\n35 949\n",
"1\n989 99\n",
"1\n543 0\n",
"1\n89 815\n",
"1\n2 176\n",
"1\n35 819\n",
"1\n89 787\n",
"1\n2 75\n",
"1\n13 819\n",
"1\n723 1\n"
],
"output": [
"2\n0\n7\n5\n",
"437\n",
"444\n",
"3\n1\n",
"5\n",
"5\n",
"1032\n",
"444\n",
"281\n",
"475\n",
"4\n1\n",
"6\n",
"9\n",
"1067\n",
"288\n",
"2\n0\n9\n5\n",
"654\n",
"2\n",
"15\n",
"889\n",
"214\n",
"810\n",
"0\n",
"935\n",
"154\n",
"772\n",
"4\n0\n",
"13\n",
"999\n",
"118\n",
"802\n",
"995\n",
"95\n",
"666\n",
"3\n0\n",
"668\n",
"116\n",
"292\n",
"612\n",
"2\n0\n",
"515\n",
"84\n",
"91\n",
"893\n",
"11\n",
"352\n",
"89\n",
"88\n",
"20\n",
"507\n",
"66\n",
"60\n",
"70\n",
"35\n",
"56\n",
"93\n",
"29\n",
"99\n",
"49\n",
"73\n",
"50\n",
"1\n",
"59\n",
"281\n",
"4\n1\n",
"288\n",
"2\n0\n9\n5\n",
"4\n1\n",
"15\n",
"288\n",
"154\n",
"4\n0\n",
"13\n",
"154\n",
"13\n",
"13\n",
"2\n0\n",
"91\n",
"91\n",
"88\n",
"20\n",
"20\n",
"60\n",
"89\n",
"35\n",
"20\n",
"88\n",
"35\n",
"2\n",
"35\n",
"99\n",
"0\n",
"49\n",
"6\n",
"35\n",
"99\n",
"0\n",
"89\n",
"2\n",
"35\n",
"89\n",
"2\n",
"13\n",
"1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Polycarp plays a well-known computer game (we won't mention its name). In this game, he can craft tools of two types — shovels and swords. To craft a shovel, Polycarp spends two sticks and one diamond; to craft a sword, Polycarp spends two diamonds and one stick.
Each tool can be sold for exactly one emerald. How many emeralds can Polycarp earn, if he has a sticks and b diamonds?
Input
The first line contains one integer t (1 ≤ t ≤ 1000) — the number of test cases.
The only line of each test case contains two integers a and b (0 ≤ a, b ≤ 10^9) — the number of sticks and the number of diamonds, respectively.
Output
For each test case print one integer — the maximum number of emeralds Polycarp can earn.
Example
Input
4
4 4
1000000000 0
7 15
8 7
Output
2
0
7
5
Note
In the first test case Polycarp can earn two emeralds as follows: craft one sword and one shovel.
In the second test case Polycarp does not have any diamonds, so he cannot craft anything.
### Input:
4
4 4
1000000000 0
7 15
8 7
### Output:
2
0
7
5
### Input:
1
656 656
### Output:
437
### Code:
import math
t=int(input())
for i in range(t):
a,b=map(int,input().split())
m=min(a,b,(a+b)/3)
print(math.floor(m))
|
1408_A. Circle Coloring_1229 | You are given three sequences: a_1, a_2, …, a_n; b_1, b_2, …, b_n; c_1, c_2, …, c_n.
For each i, a_i ≠ b_i, a_i ≠ c_i, b_i ≠ c_i.
Find a sequence p_1, p_2, …, p_n, that satisfy the following conditions:
* p_i ∈ \\{a_i, b_i, c_i\}
* p_i ≠ p_{(i mod n) + 1}.
In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements i,i+1 adjacent for i<n and also elements 1 and n) will have equal value.
It can be proved that in the given constraints solution always exists. You don't need to minimize/maximize anything, you need to find any proper sequence.
Input
The first line of input contains one integer t (1 ≤ t ≤ 100): the number of test cases.
The first line of each test case contains one integer n (3 ≤ n ≤ 100): the number of elements in the given sequences.
The second line contains n integers a_1, a_2, …, a_n (1 ≤ a_i ≤ 100).
The third line contains n integers b_1, b_2, …, b_n (1 ≤ b_i ≤ 100).
The fourth line contains n integers c_1, c_2, …, c_n (1 ≤ c_i ≤ 100).
It is guaranteed that a_i ≠ b_i, a_i ≠ c_i, b_i ≠ c_i for all i.
Output
For each test case, print n integers: p_1, p_2, …, p_n (p_i ∈ \\{a_i, b_i, c_i\}, p_i ≠ p_{i mod n + 1}).
If there are several solutions, you can print any.
Example
Input
5
3
1 1 1
2 2 2
3 3 3
4
1 2 1 2
2 1 2 1
3 4 3 4
7
1 3 3 1 1 1 1
2 4 4 3 2 2 4
4 2 2 2 4 4 2
3
1 2 1
2 3 3
3 1 2
10
1 1 1 2 2 2 3 3 3 1
2 2 2 3 3 3 1 1 1 2
3 3 3 1 1 1 2 2 2 3
Output
1 2 3
1 2 1 2
1 3 4 3 2 4 2
1 3 2
1 2 3 1 2 3 1 2 3 2
Note
In the first test case p = [1, 2, 3].
It is a correct answer, because:
* p_1 = 1 = a_1, p_2 = 2 = b_2, p_3 = 3 = c_3
* p_1 ≠ p_2 , p_2 ≠ p_3 , p_3 ≠ p_1
All possible correct answers to this test case are: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].
In the second test case p = [1, 2, 1, 2].
In this sequence p_1 = a_1, p_2 = a_2, p_3 = a_3, p_4 = a_4. Also we can see, that no two adjacent elements of the sequence are equal.
In the third test case p = [1, 3, 4, 3, 2, 4, 2].
In this sequence p_1 = a_1, p_2 = a_2, p_3 = b_3, p_4 = b_4, p_5 = b_5, p_6 = c_6, p_7 = c_7. Also we can see, that no two adjacent elements of the sequence are equal. | import sys
from sys import stdin,stdout
import math
import random
import heapq
from collections import Counter
from functools import lru_cache
#@lru_cache(maxsize=None) #for optimizing the execution time of callable objects/functions(placed above callable functions)
try:
for _ in range(int(input())):
n=int(input())
a=[int(i) for i in input().split()]
b=[int(i) for i in input().split()]
c=[int(i) for i in input().split()]
ans=[]
ans.append(a[0])
for i in range(1,n):
tem=[a[i],b[i],c[i]]
for j in tem:
if j!=ans[-1]:
ans.append(j)
break
if ans[0]==ans[-1]:
ans.pop()
tem=[a[-1],b[-1],c[-1]]
#print(tem)
for i in tem:
if i!=ans[0] and i!=ans[-1]:
ans.append(i)
break
print(*ans)
else:
print(*ans)
except EOFError as e:
print(e)
| {
"input": [
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 2\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 2 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 4 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 3 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 2\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 5 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 0\n7\n2 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 6 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 0\n7\n2 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 1 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 4 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 6 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n2 1 1 2 2 2 3 3 3 1\n2 2 2 6 3 3 1 1 1 2\n3 3 5 1 1 1 2 3 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 0 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 5 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 4\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 1 4 3 2 2 4\n5 3 2 4 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n3 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 4 3\n4\n2 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 5 4 3 2 2 4\n4 3 3 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 4 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 0 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 3 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 5 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 4 2 4\n5 3 2 2 7 4 2\n3\n1 2 1\n0 3 4\n3 1 2\n10\n2 1 1 2 2 4 6 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 4\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 1 4 3 2 2 4\n5 4 2 4 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 1 3 3 3 1\n3 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 4 2 4\n5 3 2 2 7 4 2\n3\n1 2 1\n0 3 8\n3 1 2\n10\n2 1 1 2 2 4 6 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 4\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 1 4 3 2 2 4\n5 4 2 4 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 1 3 3 3 1\n3 2 2 3 3 3 1 2 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 4 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 6\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 8 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 3 2 4\n4 2 2 2 4 4 2\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n4 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 2 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 3 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 2\n4 2 2 2 4 4 2\n3\n1 2 1\n2 6 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 5 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 1\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n4 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 5 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n4 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 6 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 3 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 5 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 1\n4 2 2 2 4 4 2\n3\n1 2 1\n2 6 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 2 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 5 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n3 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 1\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 2\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n6 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n3 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 0\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 2 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 2 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n4 3 3\n2 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 5 1 1 1 2 3 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 5 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 4 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 2 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 0 5 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n3 2 2\n3 3 3\n4\n1 2 1 2\n0 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 1\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n6 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 1 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 4 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n3 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 2 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 2 3 1 1 2 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 3\n3\n1 2 1\n4 3 3\n2 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 6 3 3 1 1 1 2\n3 3 5 1 1 1 2 3 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 5 4 3 2 2 4\n4 3 3 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 4 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 0 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n3 2 2\n3 3 3\n4\n1 2 1 2\n0 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 1\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 2 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 2\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 5 3 1\n2 2 2 3 3 3 1 1 1 2\n2 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n6 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n1 3 2 2 4 4 2\n3\n1 2 1\n0 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 1 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 1 4 3 2 2 4\n5 3 2 4 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n3 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 4 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 5 4 3 2 2 4\n4 3 3 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 4 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 2\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 2\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 5 3 1\n2 2 2 3 3 3 1 1 1 2\n2 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n4 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 0\n7\n2 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 1 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 4 2 4\n5 3 2 2 7 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 6 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 4\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 1 4 3 2 2 4\n5 4 2 4 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n3 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 4 3\n4\n2 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 5 4 3 2 2 4\n4 3 1 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 4 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 0 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 2 2 2 4\n4 3 2 2 4 4 2\n3\n1 3 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 5 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 0 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 2 2 2 4\n4 3 2 2 4 4 2\n3\n1 3 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 5 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 6 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 0 2 1\n3 4 3 4\n7\n1 3 4 1 1 1 1\n2 4 4 2 2 2 4\n4 3 2 2 4 4 2\n3\n1 3 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 5 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 6 1 1 1 2 2 4 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 1 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 4\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 2\n4 2 0 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 1 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 3 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 0 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 0 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 2\n4 2 2 2 4 4 2\n3\n1 2 1\n2 6 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 0 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n2 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 5 3 2 2 4\n4 2 2 2 4 4 1\n3\n1 2 2\n2 3 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 2 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 1 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n1 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 4 3\n",
"5\n3\n1 1 1\n2 2 2\n3 1 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 3 3 3 1\n2 4 2 3 3 3 1 1 1 2\n3 3 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n5 3 2 2 4 4 2\n3\n1 2 1\n0 3 6\n3 1 2\n10\n2 1 1 2 2 4 6 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 4 0 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 2 2 2 4\n4 2 2 2 4 4 2\n3\n1 2 1\n2 2 3\n3 1 2\n10\n1 1 1 2 2 2 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 1 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 2\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 5 4 2\n3\n1 2 1\n2 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 3 2 1 1 2 2 2 3\n",
"5\n3\n1 1 1\n2 2 2\n3 3 3\n4\n1 2 1 3\n2 1 2 1\n3 4 3 4\n7\n1 3 3 1 1 1 1\n2 4 4 3 2 2 4\n4 3 2 2 4 4 2\n3\n1 2 1\n4 3 3\n3 1 2\n10\n1 1 1 2 2 4 3 3 3 1\n2 2 2 3 3 3 1 1 1 2\n3 3 4 1 1 1 2 2 2 3\n"
],
"output": [
"1 2 3\n1 2 1 2\n1 3 4 1 2 1 4\n1 2 3\n1 2 1 2 3 2 3 1 3 2\n",
"1 2 3\n1 2 1 2\n1 3 4 1 2 1 4\n1 2 3\n1 2 1 2 3 2 3 1 3 2\n",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 2 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 4 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 5 3 2 ",
"1 2 3 1 2 1 2 2 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 6 3 1 3 ",
"1 2 3 1 2 1 2 2 3 4 1 2 1 4 1 2 6 2 1 2 3 1 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 4 1 4 1 2 6 2 1 2 3 2 4 6 3 1 3 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 2 1 2 6 2 3 1 3 1 3 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 5 3 1 2 ",
"1 2 3 1 2 1 4 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 2 1 2 1 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 3 2 1 2 1 2 3 4 5 3 1 2 ",
"1 2 3 1 2 1 2 1 3 4 1 4 1 4 1 2 4 2 1 2 3 2 4 6 3 1 3 ",
"1 2 3 1 2 1 4 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 1 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 4 1 4 1 2 8 2 1 2 3 2 4 6 3 1 3 ",
"1 2 3 1 2 1 4 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 1 3 2 3 2 ",
"1 2 3 1 4 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 6 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 8 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 3 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 2 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 2 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 2 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 5 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 5 3 2 ",
"1 2 3 1 2 1 2 2 3 4 1 2 1 4 1 2 6 2 1 2 3 1 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 4 1 4 1 2 6 2 1 2 3 2 4 6 3 1 3 ",
"1 2 3 1 2 1 4 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 2 1 2 1 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 3 2 1 2 1 2 3 4 5 3 1 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 3 2 1 2 1 2 3 4 5 3 1 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 3 2 1 2 1 2 3 4 5 3 1 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 2 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 2 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 2 1 2 1 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 5 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 3 1 3 1 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 6 2 1 2 3 2 4 6 3 1 3 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 2 3 1 3 2 ",
"1 2 3 1 2 1 2 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 ",
"1 2 3 1 2 1 3 1 3 4 1 2 1 4 1 2 3 1 2 1 2 3 4 3 1 3 2 "
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given three sequences: a_1, a_2, …, a_n; b_1, b_2, …, b_n; c_1, c_2, …, c_n.
For each i, a_i ≠ b_i, a_i ≠ c_i, b_i ≠ c_i.
Find a sequence p_1, p_2, …, p_n, that satisfy the following conditions:
* p_i ∈ \\{a_i, b_i, c_i\}
* p_i ≠ p_{(i mod n) + 1}.
In other words, for each element, you need to choose one of the three possible values, such that no two adjacent elements (where we consider elements i,i+1 adjacent for i<n and also elements 1 and n) will have equal value.
It can be proved that in the given constraints solution always exists. You don't need to minimize/maximize anything, you need to find any proper sequence.
Input
The first line of input contains one integer t (1 ≤ t ≤ 100): the number of test cases.
The first line of each test case contains one integer n (3 ≤ n ≤ 100): the number of elements in the given sequences.
The second line contains n integers a_1, a_2, …, a_n (1 ≤ a_i ≤ 100).
The third line contains n integers b_1, b_2, …, b_n (1 ≤ b_i ≤ 100).
The fourth line contains n integers c_1, c_2, …, c_n (1 ≤ c_i ≤ 100).
It is guaranteed that a_i ≠ b_i, a_i ≠ c_i, b_i ≠ c_i for all i.
Output
For each test case, print n integers: p_1, p_2, …, p_n (p_i ∈ \\{a_i, b_i, c_i\}, p_i ≠ p_{i mod n + 1}).
If there are several solutions, you can print any.
Example
Input
5
3
1 1 1
2 2 2
3 3 3
4
1 2 1 2
2 1 2 1
3 4 3 4
7
1 3 3 1 1 1 1
2 4 4 3 2 2 4
4 2 2 2 4 4 2
3
1 2 1
2 3 3
3 1 2
10
1 1 1 2 2 2 3 3 3 1
2 2 2 3 3 3 1 1 1 2
3 3 3 1 1 1 2 2 2 3
Output
1 2 3
1 2 1 2
1 3 4 3 2 4 2
1 3 2
1 2 3 1 2 3 1 2 3 2
Note
In the first test case p = [1, 2, 3].
It is a correct answer, because:
* p_1 = 1 = a_1, p_2 = 2 = b_2, p_3 = 3 = c_3
* p_1 ≠ p_2 , p_2 ≠ p_3 , p_3 ≠ p_1
All possible correct answers to this test case are: [1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1].
In the second test case p = [1, 2, 1, 2].
In this sequence p_1 = a_1, p_2 = a_2, p_3 = a_3, p_4 = a_4. Also we can see, that no two adjacent elements of the sequence are equal.
In the third test case p = [1, 3, 4, 3, 2, 4, 2].
In this sequence p_1 = a_1, p_2 = a_2, p_3 = b_3, p_4 = b_4, p_5 = b_5, p_6 = c_6, p_7 = c_7. Also we can see, that no two adjacent elements of the sequence are equal.
### Input:
5
3
1 1 1
2 2 2
3 3 3
4
1 2 1 2
2 1 2 1
3 4 3 4
7
1 3 3 1 1 1 1
2 4 4 3 2 2 4
4 2 2 2 4 4 2
3
1 2 1
2 3 3
3 1 2
10
1 1 1 2 2 2 3 3 3 1
2 2 2 3 3 3 1 1 1 2
3 3 3 1 1 1 2 2 2 3
### Output:
1 2 3
1 2 1 2
1 3 4 1 2 1 4
1 2 3
1 2 1 2 3 2 3 1 3 2
### Input:
5
3
1 1 1
2 2 2
3 3 3
4
1 2 1 2
2 1 2 1
3 4 3 4
7
1 3 3 1 1 1 1
2 4 4 3 2 2 4
4 2 2 2 4 4 2
3
1 2 1
2 3 3
3 1 2
10
1 1 1 2 2 2 3 3 3 1
2 2 2 3 3 3 1 1 1 2
3 3 3 1 1 1 2 2 2 3
### Output:
1 2 3
1 2 1 2
1 3 4 1 2 1 4
1 2 3
1 2 1 2 3 2 3 1 3 2
### Code:
import sys
from sys import stdin,stdout
import math
import random
import heapq
from collections import Counter
from functools import lru_cache
#@lru_cache(maxsize=None) #for optimizing the execution time of callable objects/functions(placed above callable functions)
try:
for _ in range(int(input())):
n=int(input())
a=[int(i) for i in input().split()]
b=[int(i) for i in input().split()]
c=[int(i) for i in input().split()]
ans=[]
ans.append(a[0])
for i in range(1,n):
tem=[a[i],b[i],c[i]]
for j in tem:
if j!=ans[-1]:
ans.append(j)
break
if ans[0]==ans[-1]:
ans.pop()
tem=[a[-1],b[-1],c[-1]]
#print(tem)
for i in tem:
if i!=ans[0] and i!=ans[-1]:
ans.append(i)
break
print(*ans)
else:
print(*ans)
except EOFError as e:
print(e)
|
1428_D. Bouncing Boomerangs_1233 | To improve the boomerang throwing skills of the animals, Zookeeper has set up an n × n grid with some targets, where each row and each column has at most 2 targets each. The rows are numbered from 1 to n from top to bottom, and the columns are numbered from 1 to n from left to right.
For each column, Zookeeper will throw a boomerang from the bottom of the column (below the grid) upwards. When the boomerang hits any target, it will bounce off, make a 90 degree turn to the right and fly off in a straight line in its new direction. The boomerang can hit multiple targets and does not stop until it leaves the grid.
<image>
In the above example, n=6 and the black crosses are the targets. The boomerang in column 1 (blue arrows) bounces 2 times while the boomerang in column 3 (red arrows) bounces 3 times.
The boomerang in column i hits exactly a_i targets before flying out of the grid. It is known that a_i ≤ 3.
However, Zookeeper has lost the original positions of the targets. Thus, he asks you to construct a valid configuration of targets that matches the number of hits for each column, or tell him that no such configuration exists. If multiple valid configurations exist, you may print any of them.
Input
The first line contains a single integer n (1 ≤ n ≤ 10^5).
The next line contains n integers a_1,a_2,…,a_n (0 ≤ a_i ≤ 3).
Output
If no configuration of targets exist, print -1.
Otherwise, on the first line print a single integer t (0 ≤ t ≤ 2n): the number of targets in your configuration.
Then print t lines with two spaced integers each per line. Each line should contain two integers r and c (1 ≤ r,c ≤ n), where r is the target's row and c is the target's column. All targets should be different.
Every row and every column in your configuration should have at most two targets each.
Examples
Input
6
2 0 3 0 1 1
Output
5
2 1
2 5
3 3
3 6
5 6
Input
1
0
Output
0
Input
6
3 2 2 2 1 1
Output
-1
Note
For the first test, the answer configuration is the same as in the picture from the statement.
For the second test, the boomerang is not supposed to hit anything, so we can place 0 targets.
For the third test, the following configuration of targets matches the number of hits, but is not allowed as row 3 has 4 targets.
<image>
It can be shown for this test case that no valid configuration of targets will result in the given number of target hits. | n, *a = map(int, open(0).read().split())
now = 1
heights = [[] for _ in range(n)]
st0 = []
st1 = []
failed = False
for i in range(n - 1, -1, -1):
if a[i] == 1:
heights[i].append(now)
st0.append((now, i))
now += 1
elif a[i] == 2:
if len(st0):
h, j = st0.pop()
heights[i].append(h)
st1.append(i)
else:
failed = True
break
elif a[i] == 3:
if len(st1):
j = st1.pop()
heights[i].append(now)
heights[j].append(now)
st1.append(i)
now += 1
elif len(st0):
_, j = st0.pop()
heights[i].append(now)
heights[j].append(now)
st1.append(i)
now += 1
else:
failed = True
break
if failed:
print("-1")
else:
ans = []
for i in range(n):
for j in heights[i]:
ans.append(str(n - j + 1) + ' ' + str(i + 1))
print(len(ans), *ans, sep='\n') | {
"input": [
"1\n0\n",
"6\n2 0 3 0 1 1\n",
"6\n3 2 2 2 1 1\n",
"6\n0 1 3 2 1 2\n",
"4\n1 2 3 1\n",
"4\n1 1 1 2\n",
"4\n3 3 2 1\n",
"4\n1 2 1 1\n",
"4\n1 1 2 1\n",
"1\n3\n",
"6\n1 3 2 0 3 1\n",
"4\n1 3 2 1\n",
"4\n2 3 1 1\n",
"4\n3 1 1 1\n",
"4\n3 2 3 1\n",
"4\n2 1 2 1\n",
"6\n0 2 1 3 2 3\n",
"4\n1 3 3 1\n",
"4\n2 3 3 1\n",
"4\n1 2 1 2\n",
"6\n2 0 3 2 1 0\n",
"4\n2 1 1 2\n",
"4\n2 3 2 1\n",
"4\n2 2 1 2\n",
"6\n0 0 1 3 2 3\n",
"4\n2 1 2 3\n",
"4\n2 2 2 1\n",
"6\n0 0 0 2 1 0\n",
"1\n1\n",
"4\n2 1 3 1\n",
"5\n2 3 1 2 1\n",
"4\n3 1 0 0\n",
"6\n0 2 3 1 0 0\n",
"4\n3 1 2 1\n",
"4\n3 2 1 1\n",
"3\n3 2 1\n",
"4\n3 1 3 1\n",
"6\n0 1 2 0 3 1\n",
"4\n1 3 1 1\n",
"4\n1 2 2 1\n",
"4\n1 1 1 1\n",
"4\n2 2 1 1\n",
"4\n2 1 1 1\n",
"6\n0 0 2 1 0 3\n",
"4\n1 1 1 3\n",
"4\n2 2 3 1\n",
"6\n0 2 0 3 1 0\n",
"1\n2\n",
"4\n3 1 1 2\n",
"4\n3 2 2 1\n",
"4\n3 3 3 1\n",
"4\n3 3 1 1\n",
"6\n2 0 3 0 1 1\n",
"4\n1 1 3 1\n",
"6\n0 1 3 2 2 2\n",
"4\n0 2 1 1\n",
"4\n3 1 1 0\n",
"4\n1 2 1 0\n",
"6\n0 0 0 2 1 1\n",
"4\n1 1 1 0\n",
"4\n0 2 0 1\n",
"4\n3 3 0 1\n",
"6\n2 1 3 0 1 1\n",
"6\n3 2 0 2 1 1\n",
"4\n1 1 0 0\n",
"4\n2 1 1 0\n",
"6\n0 0 0 2 0 1\n",
"5\n2 3 0 1 1\n",
"4\n0 1 0 0\n",
"6\n0 0 0 0 0 1\n",
"4\n2 0 1 0\n",
"4\n0 1 0 1\n",
"3\n0 1 0\n",
"4\n2 0 1 1\n",
"4\n1 1 2 2\n",
"4\n1 1 2 0\n",
"4\n3 2 2 0\n",
"6\n0 1 1 3 2 3\n",
"4\n2 3 3 2\n",
"4\n2 1 2 2\n",
"4\n2 3 3 0\n",
"4\n3 2 1 2\n",
"6\n0 0 1 0 2 3\n",
"4\n2 1 2 0\n",
"4\n2 2 2 0\n",
"5\n2 3 0 2 1\n",
"4\n3 2 0 0\n",
"6\n0 2 3 2 0 0\n",
"4\n0 2 2 1\n",
"3\n2 2 1\n",
"4\n3 1 3 2\n",
"6\n-1 1 2 0 3 1\n",
"4\n1 2 1 3\n",
"6\n1 2 0 3 1 0\n",
"4\n3 1 1 3\n",
"4\n3 4 2 0\n",
"6\n1 1 3 2 1 2\n",
"4\n1 1 0 2\n",
"4\n6 2 2 0\n",
"6\n0 1 1 2 2 3\n",
"4\n2 3 1 2\n",
"4\n2 4 3 0\n",
"4\n0 1 1 2\n",
"6\n0 -1 1 0 2 3\n",
"4\n0 2 3 1\n",
"3\n2 2 0\n",
"4\n4 1 3 2\n",
"4\n2 2 1 0\n",
"4\n0 2 0 0\n",
"4\n1 2 2 3\n",
"6\n1 2 0 2 1 0\n",
"4\n3 1 0 2\n",
"4\n2 3 0 1\n",
"6\n2 1 3 2 1 2\n",
"4\n0 1 0 2\n",
"4\n6 2 2 1\n",
"6\n0 1 1 1 2 3\n",
"4\n2 4 1 2\n",
"4\n2 0 3 0\n",
"4\n0 0 1 2\n",
"4\n-1 2 3 1\n",
"3\n0 2 0\n",
"4\n4 2 3 2\n",
"4\n1 2 0 0\n",
"4\n1 2 4 3\n",
"6\n0 2 0 2 1 0\n",
"4\n4 1 0 2\n",
"4\n2 3 1 0\n",
"6\n2 1 2 2 1 2\n",
"4\n-1 1 0 2\n",
"4\n6 2 3 1\n",
"6\n0 1 1 1 4 3\n",
"4\n2 6 1 2\n",
"4\n0 0 2 2\n",
"4\n4 2 5 2\n",
"6\n0 2 0 2 2 0\n"
],
"output": [
"0\n\n",
"5\n6 6\n5 5\n4 3\n4 5\n6 1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"6\n1 1\n1 2\n2 2\n2 3\n3 3\n3 4\n",
"4\n4 4\n3 3\n3 2\n2 1\n",
"4\n1 1\n2 2\n3 3\n3 4\n",
"-1\n",
"-1\n",
"5\n1 1\n2 2\n2 3\n3 3\n3 4\n",
"5\n4 4\n3 3\n2 2\n2 3\n4 1\n",
"5\n1 1\n1 2\n2 2\n3 3\n4 4\n",
"-1\n",
"4\n4 4\n4 3\n3 2\n3 1\n",
"-1\n",
"6\n4 4\n3 3\n3 4\n2 2\n2 3\n1 1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"2\n6 5\n6 4\n",
"1\n1 1\n",
"5\n4 4\n3 3\n3 4\n2 2\n2 1\n",
"6\n5 5\n5 4\n4 3\n3 2\n3 4\n4 1\n",
"3\n1 1\n1 2\n2 2\n",
"-1\n",
"5\n1 1\n1 2\n2 2\n3 3\n3 4\n",
"5\n1 1\n1 2\n2 2\n2 3\n3 4\n",
"4\n1 1\n1 2\n2 2\n2 3\n",
"6\n4 4\n3 3\n3 4\n2 2\n1 1\n1 3\n",
"-1\n",
"5\n1 1\n2 2\n2 3\n3 3\n4 4\n",
"-1\n",
"4\n4 4\n3 3\n2 2\n1 1\n",
"4\n4 4\n3 3\n3 2\n4 1\n",
"4\n4 4\n3 3\n2 2\n2 1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"7\n1 1\n1 2\n2 2\n2 3\n3 3\n3 4\n4 4\n",
"6\n1 1\n1 2\n2 2\n2 3\n3 3\n4 4\n",
"5\n6 6\n5 5\n4 3\n4 5\n6 1\n",
"5\n1 1\n2 2\n3 3\n3 4\n4 4\n",
"-1\n",
"3\n4 4\n3 3\n3 2\n",
"4\n4 3\n3 2\n2 1\n2 2\n",
"3\n4 3\n4 2\n3 1\n",
"3\n6 6\n5 5\n5 4\n",
"3\n4 3\n3 2\n2 1\n",
"2\n4 4\n4 2\n",
"5\n4 4\n3 2\n3 4\n2 1\n2 2\n",
"6\n6 6\n5 5\n4 3\n4 5\n3 2\n3 1\n",
"6\n6 6\n5 5\n5 4\n6 2\n4 1\n4 2\n",
"2\n4 2\n3 1\n",
"3\n4 3\n3 2\n3 1\n",
"2\n6 6\n6 4\n",
"5\n5 5\n4 4\n3 2\n3 4\n5 1\n",
"1\n4 2\n",
"1\n6 6\n",
"2\n4 3\n4 1\n",
"2\n4 4\n3 2\n",
"1\n3 2\n",
"3\n4 4\n3 3\n3 1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
To improve the boomerang throwing skills of the animals, Zookeeper has set up an n × n grid with some targets, where each row and each column has at most 2 targets each. The rows are numbered from 1 to n from top to bottom, and the columns are numbered from 1 to n from left to right.
For each column, Zookeeper will throw a boomerang from the bottom of the column (below the grid) upwards. When the boomerang hits any target, it will bounce off, make a 90 degree turn to the right and fly off in a straight line in its new direction. The boomerang can hit multiple targets and does not stop until it leaves the grid.
<image>
In the above example, n=6 and the black crosses are the targets. The boomerang in column 1 (blue arrows) bounces 2 times while the boomerang in column 3 (red arrows) bounces 3 times.
The boomerang in column i hits exactly a_i targets before flying out of the grid. It is known that a_i ≤ 3.
However, Zookeeper has lost the original positions of the targets. Thus, he asks you to construct a valid configuration of targets that matches the number of hits for each column, or tell him that no such configuration exists. If multiple valid configurations exist, you may print any of them.
Input
The first line contains a single integer n (1 ≤ n ≤ 10^5).
The next line contains n integers a_1,a_2,…,a_n (0 ≤ a_i ≤ 3).
Output
If no configuration of targets exist, print -1.
Otherwise, on the first line print a single integer t (0 ≤ t ≤ 2n): the number of targets in your configuration.
Then print t lines with two spaced integers each per line. Each line should contain two integers r and c (1 ≤ r,c ≤ n), where r is the target's row and c is the target's column. All targets should be different.
Every row and every column in your configuration should have at most two targets each.
Examples
Input
6
2 0 3 0 1 1
Output
5
2 1
2 5
3 3
3 6
5 6
Input
1
0
Output
0
Input
6
3 2 2 2 1 1
Output
-1
Note
For the first test, the answer configuration is the same as in the picture from the statement.
For the second test, the boomerang is not supposed to hit anything, so we can place 0 targets.
For the third test, the following configuration of targets matches the number of hits, but is not allowed as row 3 has 4 targets.
<image>
It can be shown for this test case that no valid configuration of targets will result in the given number of target hits.
### Input:
1
0
### Output:
0
### Input:
6
2 0 3 0 1 1
### Output:
5
6 6
5 5
4 3
4 5
6 1
### Code:
n, *a = map(int, open(0).read().split())
now = 1
heights = [[] for _ in range(n)]
st0 = []
st1 = []
failed = False
for i in range(n - 1, -1, -1):
if a[i] == 1:
heights[i].append(now)
st0.append((now, i))
now += 1
elif a[i] == 2:
if len(st0):
h, j = st0.pop()
heights[i].append(h)
st1.append(i)
else:
failed = True
break
elif a[i] == 3:
if len(st1):
j = st1.pop()
heights[i].append(now)
heights[j].append(now)
st1.append(i)
now += 1
elif len(st0):
_, j = st0.pop()
heights[i].append(now)
heights[j].append(now)
st1.append(i)
now += 1
else:
failed = True
break
if failed:
print("-1")
else:
ans = []
for i in range(n):
for j in heights[i]:
ans.append(str(n - j + 1) + ' ' + str(i + 1))
print(len(ans), *ans, sep='\n') |
1451_D. Circle Game_1237 | Utkarsh is forced to play yet another one of Ashish's games. The game progresses turn by turn and as usual, Ashish moves first.
Consider the 2D plane. There is a token which is initially at (0,0). In one move a player must increase either the x coordinate or the y coordinate of the token by exactly k. In doing so, the player must ensure that the token stays within a (Euclidean) distance d from (0,0).
In other words, if after a move the coordinates of the token are (p,q), then p^2 + q^2 ≤ d^2 must hold.
The game ends when a player is unable to make a move. It can be shown that the game will end in a finite number of moves. If both players play optimally, determine who will win.
Input
The first line contains a single integer t (1 ≤ t ≤ 100) — the number of test cases.
The only line of each test case contains two space separated integers d (1 ≤ d ≤ 10^5) and k (1 ≤ k ≤ d).
Output
For each test case, if Ashish wins the game, print "Ashish", otherwise print "Utkarsh" (without the quotes).
Example
Input
5
2 1
5 2
10 3
25 4
15441 33
Output
Utkarsh
Ashish
Utkarsh
Utkarsh
Ashish
Note
In the first test case, one possible sequence of moves can be
(0, 0) \xrightarrow{Ashish } (0, 1) \xrightarrow{Utkarsh } (0, 2).
Ashish has no moves left, so Utkarsh wins.
<image> | import sys
input = lambda:sys.stdin.readline().strip()
t = int(input())
while t:
t-=1
d,k = map(int,input().split())
x = 0
y = 0
while 1:
if x<=y and (x+k)*(x+k)+y*y<=d*d:
x+=k
elif x>y and (y+k)*(y+k)+x*x<=d*d:
y+=k
else:
break
if x==y:
print("Utkarsh")
else:
print("Ashish")
| {
"input": [
"5\n2 1\n5 2\n10 3\n25 4\n15441 33\n",
"5\n2 1\n5 2\n10 3\n25 4\n25479 33\n",
"5\n2 1\n9 1\n10 3\n25 4\n25479 33\n",
"5\n1 1\n9 1\n10 3\n46 4\n25479 33\n",
"5\n2 1\n5 1\n10 3\n25 3\n25479 33\n",
"5\n2 1\n9 1\n10 3\n25 4\n25479 57\n",
"5\n2 1\n9 1\n11 3\n25 4\n25479 57\n",
"5\n2 1\n4 1\n10 3\n46 4\n25479 47\n",
"5\n2 1\n4 1\n10 3\n55 4\n25479 47\n",
"5\n4 1\n4 1\n10 3\n55 4\n25479 53\n",
"5\n4 1\n4 1\n20 3\n55 4\n25479 53\n",
"5\n4 1\n6 1\n20 3\n55 4\n25479 53\n",
"5\n4 1\n6 1\n11 3\n31 4\n25479 53\n",
"5\n4 1\n6 1\n11 3\n58 4\n15769 53\n",
"5\n4 1\n2 2\n11 1\n58 4\n12041 53\n",
"5\n4 1\n2 2\n9 1\n58 4\n12041 53\n",
"5\n4 1\n2 2\n9 1\n58 10\n14195 53\n",
"5\n16 1\n2 2\n9 4\n58 19\n14195 55\n",
"5\n22 1\n2 2\n9 1\n26 20\n14195 66\n",
"5\n22 1\n2 1\n9 1\n27 20\n14195 36\n",
"5\n2 1\n5 2\n10 4\n25 4\n25479 33\n",
"5\n1 1\n9 1\n10 3\n46 4\n25479 60\n",
"5\n2 1\n9 1\n11 3\n33 4\n25479 57\n",
"5\n2 1\n4 1\n15 3\n55 4\n25479 47\n",
"5\n3 1\n6 1\n20 3\n55 4\n25479 53\n",
"5\n4 2\n6 1\n11 3\n58 4\n25479 53\n",
"5\n4 1\n11 1\n11 3\n58 4\n15769 53\n",
"5\n2 1\n3 1\n10 3\n46 7\n25479 33\n",
"5\n2 1\n9 1\n10 3\n9 4\n33374 57\n",
"5\n4 1\n4 1\n20 3\n55 4\n768 53\n",
"5\n22 1\n2 1\n9 1\n27 20\n14195 22\n",
"5\n2 2\n9 2\n11 3\n33 4\n25479 57\n",
"5\n2 1\n5 1\n10 3\n25 4\n25479 33\n",
"5\n2 1\n9 1\n10 3\n46 4\n25479 33\n",
"5\n1 1\n9 1\n10 3\n46 6\n25479 33\n",
"5\n2 1\n5 2\n10 3\n25 4\n15441 60\n",
"5\n2 1\n4 1\n10 3\n46 4\n25479 33\n",
"5\n2 1\n5 2\n10 3\n38 4\n15441 60\n",
"5\n2 1\n1 1\n10 3\n25 3\n25479 33\n",
"5\n2 1\n9 1\n20 3\n25 4\n25479 57\n",
"5\n2 1\n9 2\n20 3\n25 4\n25479 57\n",
"5\n2 1\n4 1\n10 3\n55 4\n25479 53\n",
"5\n4 1\n6 1\n11 3\n55 4\n25479 53\n",
"5\n4 1\n6 1\n11 3\n58 4\n25479 53\n",
"5\n4 1\n2 1\n11 3\n58 4\n15769 53\n",
"5\n4 1\n2 1\n11 2\n58 4\n15769 53\n",
"5\n4 1\n2 1\n11 4\n58 4\n15769 53\n",
"5\n4 1\n2 1\n11 4\n58 4\n12041 53\n",
"5\n4 1\n2 1\n11 1\n58 4\n12041 53\n",
"5\n4 1\n2 2\n9 1\n58 7\n12041 53\n",
"5\n4 1\n2 2\n9 1\n58 10\n12041 53\n",
"5\n4 1\n2 2\n9 1\n58 10\n12663 53\n",
"5\n2 1\n2 2\n9 1\n58 10\n12663 53\n",
"5\n8 1\n2 2\n9 1\n58 10\n14195 53\n",
"5\n8 1\n2 2\n9 2\n58 10\n14195 53\n",
"5\n8 1\n2 2\n9 2\n58 19\n14195 53\n",
"5\n8 1\n2 2\n9 2\n58 19\n14195 55\n",
"5\n16 1\n2 2\n9 2\n58 19\n14195 55\n",
"5\n16 1\n2 2\n9 6\n58 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n58 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n107 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n65 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n56 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n34 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n34 20\n14195 55\n",
"5\n16 1\n2 2\n9 1\n34 20\n14195 66\n",
"5\n16 1\n2 2\n9 1\n26 20\n14195 66\n",
"5\n22 1\n2 2\n9 1\n26 20\n14195 36\n",
"5\n22 1\n2 2\n9 1\n27 20\n14195 36\n",
"5\n2 1\n4 2\n10 3\n25 4\n15441 33\n",
"5\n2 1\n9 1\n10 3\n24 4\n25479 33\n",
"5\n2 1\n3 1\n10 3\n46 4\n25479 33\n",
"5\n1 1\n9 1\n10 3\n46 6\n47353 33\n",
"5\n2 1\n5 3\n10 3\n25 4\n15441 60\n",
"5\n2 1\n5 1\n10 3\n46 3\n25479 33\n",
"5\n2 1\n9 1\n10 3\n25 4\n33374 57\n",
"5\n2 1\n8 1\n10 3\n46 4\n25479 33\n",
"5\n2 1\n5 2\n10 3\n38 4\n2501 60\n",
"5\n2 1\n1 1\n10 3\n25 5\n25479 33\n",
"5\n2 1\n4 1\n10 1\n46 4\n25479 47\n",
"5\n2 1\n9 1\n20 5\n25 4\n25479 57\n",
"5\n2 1\n6 2\n20 3\n25 4\n25479 57\n",
"5\n2 1\n4 1\n10 3\n55 4\n25479 76\n",
"5\n4 1\n4 1\n20 3\n55 4\n3193 53\n",
"5\n4 1\n12 1\n11 3\n55 4\n25479 53\n",
"5\n4 1\n6 1\n11 3\n22 4\n25479 53\n",
"5\n4 1\n2 1\n11 3\n58 4\n15769 7\n",
"5\n4 1\n2 1\n11 2\n58 4\n16476 53\n",
"5\n4 1\n2 1\n11 4\n58 8\n15769 53\n",
"5\n4 1\n2 1\n11 4\n58 4\n21825 53\n",
"5\n4 2\n2 1\n11 1\n58 4\n12041 53\n",
"5\n4 1\n2 1\n11 1\n44 4\n12041 53\n",
"5\n6 1\n2 2\n9 1\n58 4\n12041 53\n",
"5\n4 1\n2 1\n9 1\n58 7\n12041 53\n",
"5\n4 1\n2 2\n9 1\n58 10\n15256 53\n",
"5\n4 1\n2 2\n9 1\n61 10\n12663 53\n",
"5\n8 1\n3 2\n9 1\n58 10\n14195 53\n",
"5\n8 1\n2 2\n9 2\n58 10\n14637 53\n",
"5\n8 1\n2 2\n9 2\n58 19\n1308 53\n",
"5\n8 1\n2 2\n9 1\n58 19\n14195 55\n",
"5\n16 1\n2 2\n9 2\n41 19\n14195 55\n",
"5\n16 1\n2 2\n9 4\n58 19\n14195 5\n",
"5\n16 1\n2 2\n9 6\n58 19\n7829 55\n",
"5\n16 1\n2 2\n9 1\n37 19\n14195 55\n",
"5\n16 1\n3 2\n9 1\n65 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n56 1\n14195 55\n",
"5\n16 1\n2 2\n9 1\n39 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n34 20\n14195 91\n",
"5\n16 1\n2 2\n9 1\n34 20\n14195 34\n",
"5\n16 1\n2 2\n9 1\n44 20\n14195 66\n",
"5\n22 1\n2 2\n9 1\n27 20\n19573 36\n",
"5\n22 1\n2 1\n9 1\n27 20\n14195 31\n",
"5\n3 1\n4 2\n10 3\n25 4\n15441 33\n",
"5\n2 1\n9 1\n20 3\n24 4\n25479 33\n",
"5\n1 1\n9 1\n10 3\n46 6\n47353 25\n",
"5\n2 2\n5 1\n10 3\n46 3\n25479 33\n",
"5\n2 1\n8 1\n10 4\n46 4\n25479 33\n",
"5\n3 1\n1 1\n10 3\n25 5\n25479 33\n",
"5\n2 1\n9 2\n11 3\n33 4\n25479 57\n",
"5\n2 1\n4 1\n10 1\n46 5\n25479 47\n",
"5\n2 1\n9 1\n20 5\n25 4\n46349 57\n",
"5\n2 1\n6 2\n20 3\n25 7\n25479 57\n",
"5\n2 1\n4 1\n10 3\n55 4\n30159 76\n",
"5\n3 1\n6 1\n20 3\n55 4\n50296 53\n",
"5\n4 2\n12 1\n11 3\n55 4\n25479 53\n",
"5\n8 1\n6 1\n11 3\n22 4\n25479 53\n",
"5\n4 4\n6 1\n11 3\n58 4\n25479 53\n",
"5\n4 1\n11 1\n6 3\n58 4\n15769 53\n",
"5\n4 1\n2 1\n11 2\n58 4\n15769 7\n",
"5\n4 1\n2 1\n11 2\n58 2\n16476 53\n",
"5\n2 1\n2 1\n11 4\n58 8\n15769 53\n",
"5\n4 1\n2 1\n11 4\n58 4\n5538 53\n",
"5\n4 2\n2 1\n11 1\n58 8\n12041 53\n",
"5\n4 1\n2 1\n11 1\n44 4\n12041 54\n",
"5\n6 1\n2 2\n9 1\n58 4\n4776 53\n",
"5\n4 1\n2 1\n17 1\n58 7\n12041 53\n",
"5\n2 1\n2 2\n9 1\n58 10\n15256 53\n",
"5\n7 1\n2 2\n9 1\n61 10\n12663 53\n",
"5\n8 1\n6 2\n9 1\n58 10\n14195 53\n",
"5\n11 1\n2 2\n9 2\n58 10\n14637 53\n",
"5\n8 1\n2 2\n9 2\n58 19\n1308 39\n",
"5\n8 1\n2 2\n9 1\n58 19\n7578 55\n",
"5\n16 1\n2 2\n9 2\n41 13\n14195 55\n",
"5\n16 1\n2 2\n9 4\n112 19\n14195 5\n",
"5\n10 1\n3 2\n9 1\n65 19\n14195 55\n",
"5\n16 1\n2 2\n9 1\n56 2\n14195 55\n",
"5\n16 1\n2 2\n15 1\n39 19\n14195 55\n",
"5\n16 1\n4 2\n9 1\n34 20\n14195 91\n",
"5\n16 1\n2 2\n9 1\n34 32\n14195 34\n",
"5\n16 1\n2 2\n9 1\n25 20\n14195 66\n",
"5\n22 1\n2 2\n9 1\n27 20\n19573 32\n",
"5\n3 1\n4 2\n10 3\n25 4\n7906 33\n",
"5\n2 1\n1 1\n20 3\n24 4\n25479 33\n",
"5\n1 1\n3 1\n10 3\n46 7\n25479 33\n",
"5\n1 1\n9 2\n10 3\n46 6\n47353 25\n",
"5\n2 2\n5 2\n10 3\n46 3\n25479 33\n",
"5\n2 1\n9 1\n10 3\n9 4\n33374 5\n",
"5\n2 1\n8 1\n10 4\n46 4\n25479 58\n",
"5\n3 1\n1 1\n10 3\n22 5\n25479 33\n",
"5\n2 1\n4 1\n10 1\n46 9\n25479 47\n",
"5\n2 1\n9 1\n20 5\n25 4\n46349 19\n",
"5\n2 1\n4 1\n10 3\n57 4\n30159 76\n",
"5\n3 1\n6 1\n20 1\n55 4\n50296 53\n",
"5\n4 2\n12 1\n11 3\n14 4\n25479 53\n",
"5\n8 1\n6 1\n11 4\n22 4\n25479 53\n",
"5\n4 4\n6 1\n11 4\n58 4\n25479 53\n",
"5\n4 1\n11 1\n4 3\n58 4\n15769 53\n",
"5\n4 2\n2 1\n11 2\n58 4\n15769 7\n",
"5\n4 1\n2 1\n11 2\n21 2\n16476 53\n",
"5\n4 1\n3 1\n11 4\n58 4\n5538 53\n",
"5\n4 1\n2 1\n11 1\n44 4\n15275 54\n",
"5\n6 1\n3 2\n9 1\n58 4\n4776 53\n",
"5\n4 2\n2 1\n17 1\n58 7\n12041 53\n",
"5\n2 1\n2 2\n9 1\n58 10\n10904 53\n",
"5\n7 1\n2 2\n9 1\n61 19\n12663 53\n",
"5\n8 1\n6 2\n13 1\n58 10\n14195 53\n",
"5\n11 1\n2 2\n9 2\n58 10\n14637 38\n",
"5\n8 1\n2 2\n9 2\n58 19\n2050 39\n",
"5\n16 1\n2 2\n9 2\n41 24\n14195 55\n",
"5\n16 1\n2 2\n9 4\n112 19\n2238 5\n",
"5\n16 2\n2 2\n9 1\n56 2\n14195 55\n",
"5\n16 1\n4 2\n9 1\n34 20\n27663 91\n",
"5\n16 1\n4 2\n9 1\n34 32\n14195 34\n",
"5\n16 1\n2 2\n9 1\n36 20\n14195 66\n",
"5\n28 1\n2 2\n9 1\n27 20\n19573 32\n",
"5\n22 1\n2 1\n9 1\n35 20\n14195 22\n",
"5\n3 1\n4 2\n10 2\n25 4\n7906 33\n",
"5\n2 1\n1 1\n20 3\n19 4\n25479 33\n",
"5\n1 1\n3 1\n10 3\n84 7\n25479 33\n",
"5\n2 2\n3 2\n10 3\n46 3\n25479 33\n",
"5\n2 1\n9 1\n13 3\n9 4\n33374 5\n",
"5\n2 1\n8 1\n10 4\n46 4\n50507 58\n",
"5\n2 2\n9 2\n11 3\n33 4\n39110 57\n",
"5\n2 1\n4 1\n10 1\n46 11\n25479 47\n",
"5\n2 1\n9 1\n20 5\n22 4\n46349 19\n",
"5\n2 1\n4 2\n10 3\n57 4\n30159 76\n",
"5\n3 1\n6 1\n22 1\n55 4\n50296 53\n",
"5\n4 1\n12 1\n11 3\n14 4\n25479 53\n",
"5\n4 4\n6 1\n11 4\n58 2\n25479 53\n",
"5\n4 2\n2 1\n6 2\n58 4\n15769 7\n",
"5\n1 1\n2 1\n11 2\n21 2\n16476 53\n"
],
"output": [
"\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Ashish\nAshish\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nAshish\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nAshish\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nAshish\nAshish\nAshish\nUtkarsh\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nAshish\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nAshish\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Ashish\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Ashish\nAshish\nUtkarsh\nAshish\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nUtkarsh\nUtkarsh\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nAshish\nAshish\n",
"Utkarsh\nAshish\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Utkarsh\nAshish\nUtkarsh\nAshish\nUtkarsh\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Utkarsh\nUtkarsh\nAshish\nAshish\nUtkarsh\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nAshish\nAshish\n",
"Utkarsh\nUtkarsh\nUtkarsh\nUtkarsh\nAshish\n",
"Ashish\nUtkarsh\nAshish\nUtkarsh\nAshish\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Utkarsh is forced to play yet another one of Ashish's games. The game progresses turn by turn and as usual, Ashish moves first.
Consider the 2D plane. There is a token which is initially at (0,0). In one move a player must increase either the x coordinate or the y coordinate of the token by exactly k. In doing so, the player must ensure that the token stays within a (Euclidean) distance d from (0,0).
In other words, if after a move the coordinates of the token are (p,q), then p^2 + q^2 ≤ d^2 must hold.
The game ends when a player is unable to make a move. It can be shown that the game will end in a finite number of moves. If both players play optimally, determine who will win.
Input
The first line contains a single integer t (1 ≤ t ≤ 100) — the number of test cases.
The only line of each test case contains two space separated integers d (1 ≤ d ≤ 10^5) and k (1 ≤ k ≤ d).
Output
For each test case, if Ashish wins the game, print "Ashish", otherwise print "Utkarsh" (without the quotes).
Example
Input
5
2 1
5 2
10 3
25 4
15441 33
Output
Utkarsh
Ashish
Utkarsh
Utkarsh
Ashish
Note
In the first test case, one possible sequence of moves can be
(0, 0) \xrightarrow{Ashish } (0, 1) \xrightarrow{Utkarsh } (0, 2).
Ashish has no moves left, so Utkarsh wins.
<image>
### Input:
5
2 1
5 2
10 3
25 4
15441 33
### Output:
Utkarsh
Ashish
Utkarsh
Utkarsh
Ashish
### Input:
5
2 1
5 2
10 3
25 4
25479 33
### Output:
Utkarsh
Ashish
Utkarsh
Utkarsh
Ashish
### Code:
import sys
input = lambda:sys.stdin.readline().strip()
t = int(input())
while t:
t-=1
d,k = map(int,input().split())
x = 0
y = 0
while 1:
if x<=y and (x+k)*(x+k)+y*y<=d*d:
x+=k
elif x>y and (y+k)*(y+k)+x*x<=d*d:
y+=k
else:
break
if x==y:
print("Utkarsh")
else:
print("Ashish")
|
1475_D. Cleaning the Phone_1241 | Polycarp often uses his smartphone. He has already installed n applications on it. Application with number i takes up a_i units of memory.
Polycarp wants to free at least m units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system — he assigned an integer b_i to each application:
* b_i = 1 — regular application;
* b_i = 2 — important application.
According to this rating system, his phone has b_1 + b_2 + … + b_n convenience points.
Polycarp believes that if he removes applications with numbers i_1, i_2, …, i_k, then he will free a_{i_1} + a_{i_2} + … + a_{i_k} units of memory and lose b_{i_1} + b_{i_2} + … + b_{i_k} convenience points.
For example, if n=5, m=7, a=[5, 3, 2, 1, 4], b=[2, 1, 1, 2, 1], then Polycarp can uninstall the following application sets (not all options are listed below):
* applications with numbers 1, 4 and 5. In this case, it will free a_1+a_4+a_5=10 units of memory and lose b_1+b_4+b_5=5 convenience points;
* applications with numbers 1 and 3. In this case, it will free a_1+a_3=7 units of memory and lose b_1+b_3=3 convenience points.
* applications with numbers 2 and 5. In this case, it will free a_2+a_5=7 memory units and lose b_2+b_5=2 convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least m units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases. Then t test cases follow.
The first line of each test case contains two integers n and m (1 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 10^9) — the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains n integers a_1, a_2, …, a_n (1 ≤ a_i ≤ 10^9) — the number of memory units used by applications.
The third line of each test case contains n integers b_1, b_2, …, b_n (1 ≤ b_i ≤ 2) — the convenience points of each application.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output on a separate line:
* -1, if there is no set of applications, removing which will free at least m units of memory;
* the minimum number of convenience points that Polycarp will lose if such a set exists.
Example
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
Note
In the first test case, it is optimal to remove applications with numbers 2 and 5, freeing 7 units of memory. b_2+b_5=2.
In the second test case, by removing the only application, Polycarp will be able to clear only 2 of memory units out of the 3 needed.
In the third test case, it is optimal to remove applications with numbers 1, 2, 3 and 4, freeing 10 units of memory. b_1+b_2+b_3+b_4=6.
In the fourth test case, it is optimal to remove applications with numbers 1, 3 and 4, freeing 12 units of memory. b_1+b_3+b_4=4.
In the fifth test case, it is optimal to remove applications with numbers 1 and 2, freeing 5 units of memory. b_1+b_2=3. | #lösningsmängd är nedåtbegränsad och ordnad. -> optimal minsta existerar i kontext.
#Vet att det är sant att lösning består av x stna 1-cost x tillhör [0..all(1-cost)]
#för x stna 1-cost bestäms y stna 2-cost entydligt.
#itererar alla x, försök i varje steg reducera y från mx(2-cost)
#same hold tru if conv points 1 and 3?
#4 number sum in list eq. x?
#scaleas upp till 3? hör med markus
#n2 , likt hitta tre tal vars summa är...
#mot knapsack beroende på m
for _ in range(int(input())):
n,m = map(int,input().split())
memoryCost = list(map(int,input().split()))
convPoints = list(map(int,input().split()))
cost1 = list()
cost2 = list()
for mem,conv in zip(memoryCost,convPoints):
if conv == 1:
cost1.append(mem)
else:
cost2.append(mem)
cost1.sort(reverse=True)
cost2.sort(reverse=True)
#vi ska ha x stna 1-cost. Då följer y-stna 2-cost. (reducerat)
#börja med alla 2-cost och iterera alla 0-n stna 1-cost
memory = sum(cost2)
convP = 2*(len(cost2))
twoCostPointer = (len(cost2))-1
ans = float("inf")
#få till 2 extra iter
for x in range(-1,len(cost1)):
#add x, remove maximalt med 2cost
if x >= 0:
convP += 1
memory += cost1[x]
while(twoCostPointer >= 0 and memory - cost2[twoCostPointer] >= m):
memory -= cost2[twoCostPointer]
twoCostPointer -= 1
convP -= 2
#if
if memory >= m:
ans = min(ans,convP)
print(ans if ans != float("inf") else -1)
'''
1
5 7
5 3 2 1 4
2 1 1 2 1
''' | {
"input": [
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 10 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 2\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 26\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 5\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 6\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 6\n2 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 1 1 2\n2 1 2 1\n",
"5\n5 7\n11 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 4 2\n1 2 1 2 1\n4 9\n5 1 3 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 1 1 1 1 1 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n1 1 1 2\n2 1 2 1\n",
"5\n5 7\n11 3 2 1 2\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n11 3 2 0 2\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n2 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 3\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 5\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 2 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 3\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 6\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 2\n5 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 6\n2 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 5 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 1 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n1 1 1 3\n2 1 2 1\n",
"5\n5 7\n11 3 2 0 2\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 4\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 2 4\n1 2 1 2\n4 1\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n9 3 2 1 2\n2 1 1 2 1\n1 1\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 5\n1 1 2 2 2\n4 10\n5 1 3 4\n1 2 2 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n4 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 7\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n9 3 2 1 2\n2 1 1 2 1\n1 1\n2\n1\n5 9\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 2 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n8 0 3 4\n1 2 1 2\n4 5\n3 0 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 5 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 5 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n4 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 7\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 10 2 1 3\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 3\n1 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 5 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 9\n3 2 1 2\n1 1 2 1\n",
"5\n5 1\n1 5 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n4 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 7\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 9\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 4 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n4 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 8 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n4 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 2\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 1 2\n1 2 1 2 1\n4 9\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 1 2 1\n4 10\n7 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 2\n1 1 2 2 1\n4 10\n2 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n6 1 3 4\n1 2 1 2\n4 5\n1 1 1 2\n2 1 2 1\n",
"1\n17 4\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 25\n1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2\n",
"5\n5 12\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n2 1 3 4\n1 2 1 2\n4 5\n6 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 5 2 2 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 2\n5 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 6\n2 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 2 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 3\n1 2 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 0 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n2 2 1 2\n2 2 2 1\n",
"5\n5 7\n5 3 2 1 2\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 5\n1 1 2 2 2\n4 10\n5 1 3 4\n1 2 2 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n12 4 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n1 1 1 3\n2 1 2 1\n",
"5\n5 7\n11 3 2 0 0\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 2\n1 1 2 2 1\n4 4\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 5 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n2 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n2 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 2 4\n2 1 1 2 1\n1 3\n1\n1\n5 8\n3 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"5\n5 13\n6 4 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n4 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 5 3\n1 1 2 2 1\n4 3\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n2 3 2 1 4\n2 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 2\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n0 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 1 1 2\n2 1 2 2\n",
"5\n5 7\n5 5 2 2 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n2 2 1 2\n2 1 2 1\n",
"1\n17 40\n1 0 1 1 1 0 1 2 1 1 1 1 1 1 6 8 17\n1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 2 3 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n2 2 1 2\n2 2 2 1\n",
"5\n5 3\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 6\n1 1 2 2 1\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 7 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 5 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n2 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n3 4 5 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 9\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 4 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n2 2 1 2\n4 9\n2 2 1 4\n1 1 2 1\n",
"5\n5 13\n6 4 2 2 2\n2 1 1 2 1\n1 1\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n4 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 1 2\n2 1 1 2 1\n1 3\n4\n1\n5 10\n2 3 2 3 2\n1 1 1 2 1\n4 10\n3 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 5\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n9 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 32\n1 1 1 1 1 1 0 1 1 0 2 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n11 3 2 0 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 7 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 1\n2 3 2 1 4\n2 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 2\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 40\n1 0 1 1 1 0 1 2 1 1 1 1 1 1 9 8 17\n1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 2 3 3 2\n1 1 2 2 1\n4 10\n2 1 3 4\n1 2 1 2\n4 5\n2 2 1 2\n2 2 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 0 1 1 1 1 1 1 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 0 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 2 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 1 1 1 1 1 1 1 1 6 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 2 1 1 1 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 1 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 2 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n2 1 1 1 1 1 0 1 1 1 1 1 1 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 3 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 1 1 1 1 1 1 1 1 6 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 1 1 0 1 2 1 1 1 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 26\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 17\n1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n6 3 2 1 0\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 2 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 1 1 0 1 2 1 1 1 1 1 1 6 8 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 26\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 17\n1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 0 1 1 1 1 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 26\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 6 25\n1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2\n",
"5\n5 7\n11 3 2 0 2\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 2 1 2 0 1 1 1 1 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 2\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 2 1 2 0 1 1 1 1 1 1 1 6 6 31\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n11 3 2 0 2\n1 2 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n2 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 3\n0 3 3 3 11\n1 1 2 2 2\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 1 2 1 1 1 1 1 1 1 1 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 6 10 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 3\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n0 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 2 1 2 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 1\n2\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 0 1 2\n1 1 2 1\n",
"1\n17 24\n1 1 1 1 1 1 0 1 1 1 1 1 1 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n2 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 10 17\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 5 2 2 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n2 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 2 1 1 1 1 6 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 2 2 1\n",
"5\n5 7\n5 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 0\n2 1 2 1\n",
"1\n17 26\n1 1 1 1 1 1 1 1 1 1 3 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 2 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n8 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n2 1 1 1 1 1 0 1 1 1 1 1 2 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 2 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 1 1 1 1 1 1 1 1 10 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 0 1 1 0 1 2 1 1 1 1 1 1 6 6 17\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 26\n1 1 1 1 1 1 1 1 1 1 2 1 2 1 6 6 17\n1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n6 3 3 1 0\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 2 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n4 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 1 0 2 1 1 1 1 1 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 1 1 0 1 2 1 1 1 1 1 1 6 8 17\n1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2\n",
"1\n17 26\n1 1 0 1 1 1 1 1 1 1 2 1 1 1 6 6 17\n1 1 1 2 1 2 1 1 1 1 1 1 2 1 1 2 2\n",
"1\n17 20\n1 1 1 1 1 2 0 1 1 1 1 1 1 1 11 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 2 1 2 0 1 1 2 1 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 2 1 2 0 1 1 1 1 1 1 1 6 6 31\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 20\n1 1 1 1 2 1 1 1 1 1 0 1 1 1 6 10 10\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 5 2 1 3\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"5\n5 7\n6 3 2 1 2\n2 2 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 0 1 2\n1 1 2 1\n",
"1\n17 24\n1 1 1 1 1 1 0 1 1 1 1 1 1 1 6 10 10\n1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 20\n1 1 0 1 1 1 1 1 1 1 1 1 1 1 2 10 17\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n6 3 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 3 2\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 2 2 1\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 5 2 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n8 6 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 3\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 6\n1 1 2 2 1\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 1 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 2 1 2 1 1 1 1 1 1 1 1 10 6 17\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 1 0 2 1 1 1 1 1 1 1 1 6 6 31\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 1 1 0 1 2 0 1 1 1 1 1 6 8 17\n1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 2\n",
"5\n5 7\n6 4 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n1 1 1 3\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 0 1 1 1 1 2 1 1 11 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n11 3 2 0 0\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 4\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 7\n1 3 2 1 2\n1 1 1 2 1\n1 3\n3\n1\n5 3\n2 3 3 3 11\n1 1 2 2 1\n4 10\n5 0 2 4\n1 2 1 2\n4 1\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n1 1 1 2 1 2 0 1 1 2 2 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 2 1 2 0 1 1 1 1 1 1 1 6 6 31\n1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 5 2 1 3\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 3\n1 2 1 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n3 2 1 2\n2 1 2 1\n",
"1\n17 20\n0 1 0 1 1 1 1 1 1 1 1 1 1 1 2 10 17\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 20\n1 1 1 1 1 1 1 1 1 2 1 1 1 1 3 6 17\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n8 6 4 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 3 3\n1 1 2 2 1\n4 10\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"5\n5 3\n1 3 2 1 2\n2 1 1 2 1\n1 3\n3\n1\n5 10\n2 3 3 3 6\n1 1 2 2 1\n4 10\n5 0 2 4\n1 2 1 2\n4 5\n3 2 1 0\n1 1 2 1\n",
"5\n5 7\n5 3 3 1 4\n2 1 2 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 0 2 1 0 1 1 1 1 1 1 6 6 31\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n2 4 2 1 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 3 4 3\n1 1 2 2 1\n4 10\n5 1 3 4\n1 2 1 2\n4 5\n1 1 1 3\n2 1 2 1\n",
"1\n17 20\n1 1 1 1 1 2 0 1 1 1 1 2 1 1 11 6 31\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2\n",
"5\n5 7\n11 3 2 0 0\n1 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 4 1 3\n1 1 2 2 1\n4 4\n5 0 3 4\n1 2 1 2\n4 5\n3 2 1 2\n1 1 2 1\n",
"1\n17 20\n2 1 1 2 1 2 0 1 1 2 2 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n0 1 0 1 1 1 1 1 1 1 1 2 1 1 2 10 17\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"5\n5 7\n5 3 3 2 4\n2 1 2 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 0 1 0 2 1 0 1 1 1 1 1 1 6 6 31\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 1 1 2 0 1 1 1 1 1 1 1 11 6 31\n1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2\n",
"1\n17 20\n2 1 1 4 1 2 0 1 1 2 2 1 1 1 6 6 31\n1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n5 3 3 2 4\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 0 1 0 2 1 0 1 1 1 1 1 1 6 9 31\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n2 1 1 4 1 2 0 1 1 2 2 1 1 1 6 6 31\n1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n6 3 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 2 4\n2 1 1 2 1\n1 3\n1\n1\n5 10\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 0 1 0 2 1 0 1 1 1 1 1 1 6 9 31\n1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 20\n2 1 1 4 1 2 -1 1 1 2 2 1 1 1 6 6 31\n1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n6 4 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 2 1\n4 10\n5 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n",
"5\n5 7\n5 3 3 2 4\n2 1 1 2 1\n1 3\n1\n1\n5 8\n2 3 2 3 2\n1 2 1 2 1\n4 9\n5 1 2 4\n1 2 1 2\n4 5\n3 0 1 2\n2 1 2 1\n",
"1\n17 20\n1 1 0 1 0 2 1 0 1 1 1 1 1 1 6 9 31\n2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2\n",
"1\n17 20\n2 1 1 4 1 1 -1 1 1 2 2 1 1 1 6 6 31\n1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n2 1 1 4 1 1 -1 1 1 2 2 1 1 1 6 9 31\n1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2\n",
"1\n17 20\n1 1 1 4 1 1 -1 1 1 2 2 1 1 1 6 9 31\n1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2\n",
"5\n5 7\n6 8 2 2 2\n2 1 1 2 1\n1 3\n2\n1\n5 10\n2 3 10 2 3\n1 1 2 1 1\n4 10\n4 1 3 1\n1 2 1 2\n4 9\n2 2 1 2\n1 1 2 1\n"
],
"output": [
"\n2\n-1\n6\n4\n3\n",
"4\n",
"2\n-1\n5\n4\n3\n",
"3\n",
"2\n-1\n6\n4\n3\n",
"3\n-1\n5\n4\n3\n",
"4\n",
"3\n-1\n5\n4\n2\n",
"3\n1\n5\n4\n2\n",
"2\n-1\n6\n3\n3\n",
"5\n",
"3\n-1\n3\n4\n3\n",
"3\n-1\n4\n4\n2\n",
"3\n1\n3\n4\n2\n",
"3\n-1\n2\n4\n3\n",
"3\n-1\n4\n4\n3\n",
"2\n-1\n4\n4\n2\n",
"3\n1\n1\n4\n2\n",
"2\n-1\n5\n3\n3\n",
"2\n",
"3\n-1\n4\n4\n6\n",
"1\n-1\n4\n4\n2\n",
"1\n-1\n4\n5\n2\n",
"3\n-1\n6\n4\n3\n",
"3\n-1\n3\n5\n3\n",
"1\n1\n3\n4\n2\n",
"1\n-1\n2\n4\n3\n",
"2\n-1\n4\n4\n3\n",
"3\n-1\n4\n4\n4\n",
"1\n-1\n4\n1\n2\n",
"3\n1\n1\n4\n1\n",
"2\n1\n5\n4\n2\n",
"3\n-1\n4\n5\n3\n",
"3\n1\n1\n4\n3\n",
"2\n1\n4\n4\n2\n",
"3\n1\n5\n2\n2\n",
"3\n-1\n4\n6\n2\n",
"2\n1\n1\n4\n3\n",
"1\n-1\n5\n4\n3\n",
"3\n-1\n4\n6\n-1\n",
"1\n1\n1\n4\n3\n",
"3\n-1\n2\n6\n-1\n",
"3\n-1\n2\n-1\n-1\n",
"1\n-1\n2\n-1\n-1\n",
"3\n-1\n6\n4\n2\n",
"2\n-1\n7\n3\n3\n",
"2\n-1\n6\n2\n3\n",
"3\n-1\n5\n6\n3\n",
"3\n-1\n4\n3\n6\n",
"1\n",
"4\n-1\n5\n4\n3\n",
"2\n-1\n6\n4\n2\n",
"2\n-1\n7\n4\n3\n",
"1\n-1\n2\n6\n3\n",
"3\n1\n6\n4\n2\n",
"3\n-1\n5\n4\n5\n",
"2\n-1\n4\n5\n3\n",
"2\n-1\n4\n4\n4\n",
"1\n-1\n5\n1\n2\n",
"3\n-1\n4\n7\n2\n",
"3\n-1\n6\n3\n3\n",
"3\n-1\n2\n7\n-1\n",
"2\n-1\n4\n3\n3\n",
"5\n-1\n2\n-1\n-1\n",
"3\n-1\n4\n1\n3\n",
"2\n1\n1\n4\n2\n",
"3\n-1\n6\n4\n4\n",
"2\n-1\n7\n4\n4\n",
"13\n",
"3\n-1\n6\n4\n5\n",
"1\n1\n3\n4\n1\n",
"3\n-1\n4\n7\n3\n",
"3\n-1\n3\n6\n-1\n",
"3\n-1\n6\n2\n3\n",
"3\n-1\n2\n7\n5\n",
"5\n1\n2\n-1\n-1\n",
"3\n1\n5\n4\n3\n",
"3\n-1\n5\n2\n3\n",
"7\n",
"2\n-1\n3\n4\n2\n",
"1\n1\n1\n4\n2\n",
"10\n",
"3\n-1\n6\n6\n5\n",
"3\n",
"2\n-1\n6\n4\n3\n",
"3\n-1\n5\n4\n3\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n5\n4\n2\n",
"3\n1\n5\n4\n2\n",
"4\n",
"2\n-1\n5\n4\n3\n",
"4\n",
"2\n-1\n6\n4\n3\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n5\n4\n2\n",
"4\n",
"2\n-1\n6\n3\n3\n",
"3\n",
"3\n",
"5\n",
"3\n-1\n5\n4\n2\n",
"3\n",
"5\n",
"3\n1\n1\n4\n2\n",
"2\n",
"3\n",
"1\n-1\n4\n4\n2\n",
"3\n1\n1\n4\n2\n",
"2\n",
"3\n1\n1\n4\n2\n",
"2\n",
"1\n-1\n4\n5\n2\n",
"3\n1\n1\n4\n2\n",
"4\n",
"2\n-1\n5\n4\n3\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n6\n4\n3\n",
"3\n",
"3\n1\n5\n4\n2\n",
"3\n1\n5\n4\n2\n",
"5\n",
"2\n-1\n6\n4\n3\n",
"4\n",
"2\n-1\n6\n4\n3\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n5\n4\n3\n",
"4\n",
"3\n-1\n5\n4\n2\n",
"2\n-1\n4\n4\n2\n",
"4\n",
"2\n-1\n6\n3\n3\n",
"3\n",
"3\n",
"5\n",
"3\n-1\n5\n4\n2\n",
"3\n1\n1\n4\n2\n",
"2\n",
"3\n",
"5\n",
"2\n",
"2\n",
"2\n",
"4\n",
"2\n-1\n6\n4\n3\n",
"3\n1\n5\n4\n2\n",
"5\n",
"4\n",
"3\n",
"3\n-1\n5\n4\n3\n",
"3\n-1\n4\n4\n2\n",
"2\n-1\n4\n4\n2\n",
"1\n1\n3\n4\n2\n",
"2\n-1\n6\n3\n3\n",
"3\n",
"2\n",
"3\n",
"3\n-1\n4\n4\n4\n",
"2\n",
"1\n-1\n4\n1\n2\n",
"3\n1\n1\n4\n1\n",
"2\n",
"2\n",
"2\n-1\n5\n4\n3\n",
"4\n",
"3\n",
"2\n-1\n4\n4\n2\n",
"1\n1\n3\n4\n2\n",
"2\n-1\n6\n3\n3\n",
"2\n",
"3\n-1\n4\n4\n4\n",
"2\n",
"1\n-1\n4\n1\n2\n",
"2\n",
"4\n",
"2\n-1\n6\n3\n3\n",
"2\n",
"2\n",
"2\n",
"2\n-1\n6\n3\n3\n",
"2\n",
"2\n",
"3\n-1\n2\n6\n-1\n",
"2\n-1\n6\n3\n3\n",
"2\n",
"2\n",
"3\n-1\n2\n6\n-1\n",
"2\n-1\n5\n3\n3\n",
"2\n",
"2\n",
"2\n",
"2\n",
"1\n-1\n2\n-1\n-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Polycarp often uses his smartphone. He has already installed n applications on it. Application with number i takes up a_i units of memory.
Polycarp wants to free at least m units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system — he assigned an integer b_i to each application:
* b_i = 1 — regular application;
* b_i = 2 — important application.
According to this rating system, his phone has b_1 + b_2 + … + b_n convenience points.
Polycarp believes that if he removes applications with numbers i_1, i_2, …, i_k, then he will free a_{i_1} + a_{i_2} + … + a_{i_k} units of memory and lose b_{i_1} + b_{i_2} + … + b_{i_k} convenience points.
For example, if n=5, m=7, a=[5, 3, 2, 1, 4], b=[2, 1, 1, 2, 1], then Polycarp can uninstall the following application sets (not all options are listed below):
* applications with numbers 1, 4 and 5. In this case, it will free a_1+a_4+a_5=10 units of memory and lose b_1+b_4+b_5=5 convenience points;
* applications with numbers 1 and 3. In this case, it will free a_1+a_3=7 units of memory and lose b_1+b_3=3 convenience points.
* applications with numbers 2 and 5. In this case, it will free a_2+a_5=7 memory units and lose b_2+b_5=2 convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least m units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
Input
The first line contains one integer t (1 ≤ t ≤ 10^4) — the number of test cases. Then t test cases follow.
The first line of each test case contains two integers n and m (1 ≤ n ≤ 2 ⋅ 10^5, 1 ≤ m ≤ 10^9) — the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains n integers a_1, a_2, …, a_n (1 ≤ a_i ≤ 10^9) — the number of memory units used by applications.
The third line of each test case contains n integers b_1, b_2, …, b_n (1 ≤ b_i ≤ 2) — the convenience points of each application.
It is guaranteed that the sum of n over all test cases does not exceed 2 ⋅ 10^5.
Output
For each test case, output on a separate line:
* -1, if there is no set of applications, removing which will free at least m units of memory;
* the minimum number of convenience points that Polycarp will lose if such a set exists.
Example
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
Note
In the first test case, it is optimal to remove applications with numbers 2 and 5, freeing 7 units of memory. b_2+b_5=2.
In the second test case, by removing the only application, Polycarp will be able to clear only 2 of memory units out of the 3 needed.
In the third test case, it is optimal to remove applications with numbers 1, 2, 3 and 4, freeing 10 units of memory. b_1+b_2+b_3+b_4=6.
In the fourth test case, it is optimal to remove applications with numbers 1, 3 and 4, freeing 12 units of memory. b_1+b_3+b_4=4.
In the fifth test case, it is optimal to remove applications with numbers 1 and 2, freeing 5 units of memory. b_1+b_2=3.
### Input:
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
### Output:
2
-1
6
4
3
### Input:
1
17 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 10 10
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
### Output:
4
### Code:
#lösningsmängd är nedåtbegränsad och ordnad. -> optimal minsta existerar i kontext.
#Vet att det är sant att lösning består av x stna 1-cost x tillhör [0..all(1-cost)]
#för x stna 1-cost bestäms y stna 2-cost entydligt.
#itererar alla x, försök i varje steg reducera y från mx(2-cost)
#same hold tru if conv points 1 and 3?
#4 number sum in list eq. x?
#scaleas upp till 3? hör med markus
#n2 , likt hitta tre tal vars summa är...
#mot knapsack beroende på m
for _ in range(int(input())):
n,m = map(int,input().split())
memoryCost = list(map(int,input().split()))
convPoints = list(map(int,input().split()))
cost1 = list()
cost2 = list()
for mem,conv in zip(memoryCost,convPoints):
if conv == 1:
cost1.append(mem)
else:
cost2.append(mem)
cost1.sort(reverse=True)
cost2.sort(reverse=True)
#vi ska ha x stna 1-cost. Då följer y-stna 2-cost. (reducerat)
#börja med alla 2-cost och iterera alla 0-n stna 1-cost
memory = sum(cost2)
convP = 2*(len(cost2))
twoCostPointer = (len(cost2))-1
ans = float("inf")
#få till 2 extra iter
for x in range(-1,len(cost1)):
#add x, remove maximalt med 2cost
if x >= 0:
convP += 1
memory += cost1[x]
while(twoCostPointer >= 0 and memory - cost2[twoCostPointer] >= m):
memory -= cost2[twoCostPointer]
twoCostPointer -= 1
convP -= 2
#if
if memory >= m:
ans = min(ans,convP)
print(ans if ans != float("inf") else -1)
'''
1
5 7
5 3 2 1 4
2 1 1 2 1
''' |
1500_B. Two chandeliers_1244 | Vasya is a CEO of a big construction company. And as any other big boss he has a spacious, richly furnished office with two crystal chandeliers. To stay motivated Vasya needs the color of light at his office to change every day. That's why he ordered both chandeliers that can change its color cyclically. For example: red – brown – yellow – red – brown – yellow and so on.
There are many chandeliers that differs in color set or order of colors. And the person responsible for the light made a critical mistake — they bought two different chandeliers.
Since chandeliers are different, some days they will have the same color, but some days — different. Of course, it looks poor and only annoys Vasya. As a result, at the k-th time when chandeliers will light with different colors, Vasya will become very angry and, most probably, will fire the person who bought chandeliers.
Your task is to calculate the day, when it happens (counting from the day chandeliers were installed). You can think that Vasya works every day without weekends and days off.
Input
The first line contains three integers n, m and k (1 ≤ n, m ≤ 500 000; 1 ≤ k ≤ 10^{12}) — the number of colors in the first and the second chandeliers and how many times colors should differ to anger Vasya.
The second line contains n different integers a_i (1 ≤ a_i ≤ 2 ⋅ max(n, m)) that describe the first chandelier's sequence of colors.
The third line contains m different integers b_j (1 ≤ b_i ≤ 2 ⋅ max(n, m)) that describe the second chandelier's sequence of colors.
At the i-th day, the first chandelier has a color a_x, where x = ((i - 1) mod n) + 1) and the second one has a color b_y, where y = ((i - 1) mod m) + 1).
It's guaranteed that sequence a differs from sequence b, so there are will be days when colors of chandeliers differs.
Output
Print the single integer — the index of day when Vasya will become angry.
Examples
Input
4 2 4
4 2 3 1
2 1
Output
5
Input
3 8 41
1 3 2
1 6 4 3 5 7 2 8
Output
47
Input
1 2 31
1
1 2
Output
62
Note
In the first example, the chandeliers will have different colors at days 1, 2, 3 and 5. That's why the answer is 5. | def main():
n, m, k = list(map(lambda x: int(x), str(input()).split(' ')))
a = list(map(lambda x: int(x), str(input()).split(' ')))
b = list(map(lambda x: int(x), str(input()).split(' ')))
if n < m:
print(solve(m, n, k, b, a))
return
print(solve(n, m, k, a, b))
def solve(n, m, k, a, b):
# n >= m
d = gcd(n, m)
x, y = 0, 0
# x * n - y * m = d
for i in range(1, m):
if (i * n - d) % m == 0:
x = i
y = (i * n - d) // m
if y == 0:
x += 1
y += 1
break
# print(x, y, d)
common = {}
common_count = 0
colors = {}
for i in range(len(a)):
colors[a[i]] = i
for i in range(len(b)):
if b[i] in colors and (colors[b[i]] - i) % d == 0:
common[colors[b[i]]] = i
common_count += 1
# where the common indices meet
com = []
for key, val in common.items():
z = (val - key) // d
# z * x * n - z * y * m = v - k
com.append(int(((z * x) % (m // d)) * n + key))
new_k = k % (m * n // d - common_count)
s = (k // (m * n // d - common_count)) * m * n // d
if new_k == 0:
new_k = m * n // d - common_count
s -= m * n // d
com = sorted(com)
cur = -1
# print(com, s, new_k, common_count, m * n // d - common_count)
for c in com:
if new_k < c - cur:
s += new_k
return s
new_k -= (c - cur - 1)
s += (c - cur)
cur = c
return s + new_k
def gcd(n, m):
if n == m:
return n
if n < m:
return gcd(m, n)
if n % m == 0:
return m
return gcd(m, n % m)
if __name__ == "__main__":
main() | {
"input": [
"3 8 41\n1 3 2\n1 6 4 3 5 7 2 8\n",
"1 2 31\n1\n1 2\n",
"4 2 4\n4 2 3 1\n2 1\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"2 2 2\n2 1\n1 2\n",
"10 15 100\n1 4 8 10 9 3 6 5 7 2\n5 11 10 12 2 9 15 13 7 4 8 14 6 1 3\n",
"1 2 1\n1\n2 1\n",
"20 1 100\n1 9 19 13 7 4 12 14 20 2 8 3 5 17 6 18 15 16 11 10\n1\n",
"13 17 100\n7 15 21 29 9 11 34 12 24 25 1 18 6\n27 25 19 9 7 34 6 11 21 29 12 18 1 2 15 24 20\n",
"10 10 10\n2 7 10 4 1 5 9 8 6 3\n9 7 6 2 4 10 1 3 5 8\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 15 100\n1 4 8 10 9 3 6 5 7 1\n5 11 10 12 2 9 15 13 7 4 8 14 6 1 3\n",
"1 2 1\n2\n2 1\n",
"13 17 100\n7 15 21 29 9 11 34 12 24 25 1 18 6\n27 25 19 9 4 34 6 11 21 29 12 18 1 2 15 24 20\n",
"10 10 10\n2 7 10 4 1 5 9 8 6 3\n9 3 6 2 4 10 1 3 5 8\n",
"1 2 23\n1\n1 2\n",
"4 2 4\n4 2 3 1\n3 1\n",
"13 17 100\n7 15 21 29 9 11 34 12 24 25 1 18 6\n7 25 19 9 4 34 6 22 21 29 12 18 1 2 15 24 20\n",
"4 2 4\n4 4 2 1\n3 1\n",
"4 2 2\n3 7 2 1\n3 1\n",
"10 15 100\n1 4 8 10 9 3 6 5 14 1\n5 11 10 12 2 9 15 13 7 4 8 14 6 1 3\n",
"4 2 4\n6 2 3 1\n3 2\n",
"4 2 4\n4 6 2 1\n4 1\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"10 15 100\n1 4 8 10 9 3 6 5 7 2\n5 11 10 12 2 9 15 21 7 4 8 14 6 1 3\n",
"10 10 10\n2 7 10 4 1 5 9 8 6 3\n9 7 6 3 4 10 1 3 5 8\n",
"10 10 9\n4 7 10 4 1 5 9 8 1 3\n9 3 6 2 4 10 1 3 5 8\n",
"4 2 3\n3 7 2 1\n3 2\n",
"20 101 110\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 4 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 52 6 15 99 79 16 22 56 19 60 61 85 28 109 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 162 70 83 97 11 34 73 51 89 68 32 74 42 30 6 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 15 100\n1 4 8 10 13 3 6 5 7 1\n5 11 10 12 2 9 15 13 7 4 8 14 6 1 3\n",
"13 17 100\n7 15 21 29 9 11 34 12 24 25 1 18 6\n27 25 19 9 4 34 6 22 21 29 12 18 1 2 15 24 20\n",
"10 10 10\n4 7 10 4 1 5 9 8 6 3\n9 3 6 2 4 10 1 3 5 8\n",
"4 2 4\n4 4 3 1\n3 1\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n4 7 10 4 1 5 9 8 1 3\n9 3 6 2 4 10 1 3 5 8\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n4 7 10 3 1 5 9 8 1 3\n9 3 6 2 4 10 1 3 5 8\n",
"4 2 4\n4 7 2 1\n3 1\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n4 7 10 3 1 5 9 8 1 3\n9 3 6 2 4 10 1 3 10 8\n",
"4 2 2\n4 7 2 1\n3 1\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"10 10 10\n4 7 10 3 2 5 9 8 1 3\n9 3 6 2 4 10 1 3 10 8\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"4 2 2\n6 7 2 1\n3 1\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 99 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"13 17 100\n7 15 21 29 9 11 34 12 24 25 1 18 6\n27 25 19 9 7 34 6 3 21 29 12 18 1 2 15 24 20\n",
"4 2 4\n6 2 3 1\n3 1\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 185 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"13 17 100\n7 15 21 29 9 11 34 12 24 25 1 18 6\n27 25 19 9 4 34 6 11 21 29 12 18 1 2 15 8 20\n",
"10 15 100\n1 4 8 18 13 3 6 5 7 1\n5 11 10 12 2 9 15 13 7 4 8 14 6 1 3\n",
"10 10 10\n8 7 10 4 1 5 9 8 6 3\n9 3 6 2 4 10 1 3 5 8\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 47 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"4 2 4\n4 6 2 1\n3 1\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 5 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n4 7 10 3 1 5 11 8 1 3\n9 3 6 2 4 10 1 3 5 8\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 187 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"10 10 10\n4 7 10 3 2 5 9 8 1 3\n9 3 6 2 4 10 1 3 10 16\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 105 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 58 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 2 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 5 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 88 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 147 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 12\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n8 7 10 4 1 5 3 8 6 3\n9 3 6 2 4 10 1 3 5 8\n",
"20 100 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 47 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 57 6 15 187 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"10 10 10\n4 7 10 3 2 5 9 15 1 3\n9 3 6 2 4 10 1 3 10 16\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 15 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 105 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 100 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 173 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 5 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 106 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 88 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 89 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 75 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 33 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 12\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 18 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 54 35 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n8 7 16 4 1 5 3 8 6 3\n9 3 6 2 4 10 1 3 5 8\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 99 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 57 6 15 187 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 8 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 100 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 5 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 173 95 62 55 24 91 54 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 5 17 13 6 8 5 2 15 7 27 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 106 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 88 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 89 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 75 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 16\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 33 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 12\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 18 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 12 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 54 35 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 30 58 78 50 62 55 24 91 35 33 3 29 10\n",
"10 10 10\n8 7 16 4 1 5 3 8 6 3\n9 3 6 2 4 4 1 3 5 8\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 83 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 57 6 15 187 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 8 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 133 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 100 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 5 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 67 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 14 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 3 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 171 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 173 95 62 55 24 91 54 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 5 17 13 6 8 5 2 15 7 27 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 3 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 106 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 4 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 56 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 89 11 34 73 51 89 68 27 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 13 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 75 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 16\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 37 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 33 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 12\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 18 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 63 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 12 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 110 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 54 35 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 67 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 43 90 86 7 20 87 154 59 49 80 82 40 18 9 1 2 67 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 30 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 83 79 16 22 56 35 60 102 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 57 6 15 187 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 8 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 52 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 100 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 5 82 25 18 9 1 2 67 6 26 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 67 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 47 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 14 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 3 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 32 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 83 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 171 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 173 95 62 55 24 91 54 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 20 12 18 5 17 13 6 8 5 2 15 7 27 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 3 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 106 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 41 38 63 57 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 4 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 56 93 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 89 11 34 73 51 89 68 27 74 42 30 4 32 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 13 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 75 35 60 44 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 16\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 37 59 49 80 82 19 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 33 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 12\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 16 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 18 36 47 160 35 27 45 12 72 44 52 75 26 31 14 47 63 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 12 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 110 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 62 55 24 54 50 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 52 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 43 90 86 7 20 87 154 59 49 80 82 40 18 9 1 2 71 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 30 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 83 79 16 22 56 35 60 102 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 131 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 57 6 15 187 79 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 37 27 45 8 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 52 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 40 17 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 100 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 110 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 5 82 25 18 9 1 2 67 6 26 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 67 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 47 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 14 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 64 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 110 41 38 63 84 96 21 57 93 13 43 90 86 3 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 32 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 83 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 8 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 171 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 173 95 62 55 24 91 54 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 20 12 18 5 17 13 6 8 5 2 6 7 27 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 3 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 106 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 41 38 63 57 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 4 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 1 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 56 93 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 22 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 9 47 81 95 70 83 89 11 34 73 51 89 68 27 74 42 30 4 32 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 3 43 90 86 13 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 75 35 60 44 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 16\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 37 59 49 80 82 19 18 9 1 2 111 6 11 34 70 16 16 16 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 33 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 110 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 91 55 24 54 50 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 4 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 52 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 25 90 86 7 20 87 154 59 49 80 82 40 18 9 1 2 71 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 30 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 100 13 43 90 86 7 20 87 88 59 49 80 82 40 18 9 1 2 67 12 15 83 79 16 22 56 35 60 102 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 131 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 100 100\n1 16 21 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 110 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 5 82 25 18 9 1 2 67 6 26 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 67 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 47 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 14 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 64 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 2 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 110 41 38 63 84 96 21 57 93 13 43 90 86 3 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 32 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 92 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 101 41 38 63 84 96 21 57 83 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 8 34 70 16 22 56 35 60 61 85 28 65 8 10 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 171 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 173 95 62 55 24 91 54 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 20 12 18 5 17 13 6 8 5 2 6 7 27 9 11\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 67 6 3 34 70 16 22 56 6 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 106 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 41 38 63 57 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 4 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 9 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 1 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 56 93 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 70 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 22 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 58 26 31 9 47 81 95 70 83 89 11 34 73 51 89 68 27 74 42 30 4 32 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 2 63 84 96 21 57 93 3 43 90 86 13 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 16 75 35 60 44 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 16\n69 18 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 37 59 49 80 82 19 18 9 1 2 111 6 11 34 70 16 16 16 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 35 33 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 32 93 95 62 81 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 110 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 41 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 91 55 24 54 50 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 4 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 52 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 162 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 33 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 25 90 86 7 20 87 154 59 49 80 82 40 18 9 1 2 71 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 30 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 100 13 43 90 86 7 20 87 82 59 49 80 82 40 18 9 1 2 67 12 15 83 79 16 22 56 35 60 102 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 131 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 100 100\n1 16 21 3 19 13 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 53 101 110 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 5 82 25 18 9 1 2 67 6 26 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 67 37 27 32 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 47 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 14 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 64 42 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 2 77 76 54 92 5 71 66 94 18 58 93 50 62 10 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 110 41 38 63 84 96 21 57 93 13 43 90 86 3 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 32 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 92 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 76 38 63 57 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 4 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 9 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 1 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 56 93 13 43 90 86 7 20 87 21 59 97 80 82 25 3 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 70 27 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 22 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 1 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 58 26 31 9 47 81 95 70 83 89 11 34 73 51 89 68 27 74 42 30 4 32 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 2 63 84 96 21 57 93 3 43 90 86 13 20 87 21 59 49 80 82 25 18 9 1 2 111 6 1 34 70 16 16 75 35 60 44 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 4 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 110 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 41 36 47 160 35 27 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 91 55 24 54 50 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 4 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 52 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 162 70 83 97 11 34 73 51 89 68 32 74 42 30 6 77 76 54 92 5 33 66 94 17 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 14 33 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 89 101 100 41 38 63 84 185 21 57 93 13 25 90 86 7 20 87 154 59 49 80 82 40 18 9 1 2 71 10 15 99 79 16 22 56 19 60 61 85 28 65 8 6 46 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 31 14 47 81 153 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 94 30 58 78 50 62 55 24 91 35 33 3 29 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 3 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 100 13 43 90 86 7 20 87 82 59 49 80 82 40 18 9 1 2 67 12 15 83 79 16 22 56 35 60 102 85 28 65 8 6 46 39 25 48 65 47 98 37 27 45 12 72 44 52 75 26 31 14 47 81 95 70 34 97 11 34 73 51 89 68 32 74 42 30 4 131 76 54 92 5 71 66 94 17 58 93 50 62 55 24 91 35 33 3 29 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 18 11\n69 18 101 100 41 38 63 47 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 14 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 98 64 42 45 12 72 44 52 75 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 2 77 76 54 92 5 71 66 94 18 58 93 50 62 4 24 91 35 33 3 2 10\n",
"20 101 101\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 15 11\n69 18 101 110 41 38 63 84 96 21 57 93 13 43 90 86 3 20 87 88 59 49 80 82 25 18 9 1 2 67 6 15 34 70 16 22 56 35 60 100 85 28 65 8 6 46 39 25 48 36 47 160 37 13 45 12 72 27 52 75 26 31 14 47 81 95 70 83 97 11 32 73 51 89 68 32 74 42 30 4 77 76 54 92 5 71 66 92 18 58 93 50 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 10 12 18 4 17 13 6 8 5 2 15 7 16 10 11\n69 18 101 100 76 38 63 57 96 21 57 93 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 111 6 11 34 70 16 22 4 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 108 44 52 75 26 31 14 47 81 95 70 9 97 11 34 73 51 89 68 32 74 42 30 4 77 76 54 92 1 71 66 94 35 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 8 8 12 18 4 17 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 56 93 13 43 90 86 7 20 87 21 59 97 80 82 25 3 9 1 2 111 6 11 34 70 16 22 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 70 21 45 12 72 44 52 147 26 31 14 47 81 95 70 133 97 11 34 73 51 89 68 32 74 22 30 4 77 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 1 13 6 8 5 2 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 89 13 43 90 86 7 20 87 21 59 97 80 82 25 18 9 1 2 111 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 58 26 31 9 47 81 95 70 83 89 11 34 73 51 89 120 27 74 42 30 4 32 76 54 92 5 71 66 94 18 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 2 15 7 16 9 11\n69 18 101 100 41 2 63 84 96 21 57 93 3 43 90 86 13 20 87 21 59 49 80 82 25 18 9 1 2 111 6 1 34 70 16 16 75 35 60 44 85 28 65 8 6 46 39 25 48 36 47 160 37 27 45 12 72 44 52 143 26 31 14 47 81 95 70 83 97 11 34 73 51 89 68 32 74 42 30 5 77 76 54 92 5 71 66 94 16 58 93 95 62 55 24 91 35 33 3 2 10\n",
"20 101 100\n1 16 20 3 19 8 12 18 4 17 13 6 14 5 4 15 7 16 9 11\n69 18 101 100 41 38 63 84 96 21 57 170 13 43 90 86 7 20 87 21 59 49 80 82 25 18 9 1 2 110 6 11 34 70 16 16 56 35 60 61 85 28 65 8 6 46 39 25 41 36 47 160 35 4 45 12 72 44 52 75 26 31 14 68 81 183 70 83 97 11 34 73 51 89 68 32 74 42 30 4 77 38 54 92 5 71 66 94 18 58 93 95 91 55 24 54 50 33 3 2 10\n",
"20 101 100\n1 14 20 3 19 10 12 18 4 17 13 6 8 5 4 3 7 16 9 11\n69 53 101 100 41 38 63 84 96 21 57 93 13 43 90 86 7 20 87 88 59 49 80 82 40 18 11 1 2 52 6 15 99 79 16 22 56 19 60 61 85 28 65 8 23 47 39 25 48 36 64 98 37 27 45 12 72 44 52 75 26 58 14 47 81 162 70 83 97 11 34 73 51 89 68 32 74 42 30 6 77 76 54 92 5 33 66 94 17 65 78 50 62 55 24 91 35 33 3 29 10\n"
],
"output": [
"\n47\n",
"\n62\n",
"\n5\n",
"101\n",
"2\n",
"107\n",
"1\n",
"106\n",
"105\n",
"11\n",
"101\n",
"104\n",
"2\n",
"105\n",
"10\n",
"46\n",
"6\n",
"106\n",
"5\n",
"3\n",
"100\n",
"8\n",
"7\n",
"102\n",
"107\n",
"11\n",
"9\n",
"4\n",
"111\n",
"101\n",
"104\n",
"105\n",
"10\n",
"6\n",
"101\n",
"10\n",
"101\n",
"10\n",
"5\n",
"101\n",
"10\n",
"2\n",
"101\n",
"10\n",
"101\n",
"2\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"105\n",
"6\n",
"101\n",
"105\n",
"104\n",
"10\n",
"101\n",
"5\n",
"101\n",
"10\n",
"101\n",
"101\n",
"10\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"10\n",
"101\n",
"101\n",
"101\n",
"10\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"10\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"10\n",
"101\n",
"101\n",
"101\n",
"102\n",
"100\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"100\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"102\n",
"100\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"100\n",
"102\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"102\n",
"100\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"100\n",
"102\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"102\n",
"100\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"100\n",
"102\n",
"101\n",
"101\n",
"101\n",
"101\n",
"101\n",
"102\n",
"101\n",
"101\n",
"101\n",
"101\n",
"100\n",
"101\n",
"101\n",
"101\n",
"100\n",
"102\n",
"101\n",
"101\n",
"101\n",
"101\n",
"100\n",
"101\n",
"101\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Vasya is a CEO of a big construction company. And as any other big boss he has a spacious, richly furnished office with two crystal chandeliers. To stay motivated Vasya needs the color of light at his office to change every day. That's why he ordered both chandeliers that can change its color cyclically. For example: red – brown – yellow – red – brown – yellow and so on.
There are many chandeliers that differs in color set or order of colors. And the person responsible for the light made a critical mistake — they bought two different chandeliers.
Since chandeliers are different, some days they will have the same color, but some days — different. Of course, it looks poor and only annoys Vasya. As a result, at the k-th time when chandeliers will light with different colors, Vasya will become very angry and, most probably, will fire the person who bought chandeliers.
Your task is to calculate the day, when it happens (counting from the day chandeliers were installed). You can think that Vasya works every day without weekends and days off.
Input
The first line contains three integers n, m and k (1 ≤ n, m ≤ 500 000; 1 ≤ k ≤ 10^{12}) — the number of colors in the first and the second chandeliers and how many times colors should differ to anger Vasya.
The second line contains n different integers a_i (1 ≤ a_i ≤ 2 ⋅ max(n, m)) that describe the first chandelier's sequence of colors.
The third line contains m different integers b_j (1 ≤ b_i ≤ 2 ⋅ max(n, m)) that describe the second chandelier's sequence of colors.
At the i-th day, the first chandelier has a color a_x, where x = ((i - 1) mod n) + 1) and the second one has a color b_y, where y = ((i - 1) mod m) + 1).
It's guaranteed that sequence a differs from sequence b, so there are will be days when colors of chandeliers differs.
Output
Print the single integer — the index of day when Vasya will become angry.
Examples
Input
4 2 4
4 2 3 1
2 1
Output
5
Input
3 8 41
1 3 2
1 6 4 3 5 7 2 8
Output
47
Input
1 2 31
1
1 2
Output
62
Note
In the first example, the chandeliers will have different colors at days 1, 2, 3 and 5. That's why the answer is 5.
### Input:
3 8 41
1 3 2
1 6 4 3 5 7 2 8
### Output:
47
### Input:
1 2 31
1
1 2
### Output:
62
### Code:
def main():
n, m, k = list(map(lambda x: int(x), str(input()).split(' ')))
a = list(map(lambda x: int(x), str(input()).split(' ')))
b = list(map(lambda x: int(x), str(input()).split(' ')))
if n < m:
print(solve(m, n, k, b, a))
return
print(solve(n, m, k, a, b))
def solve(n, m, k, a, b):
# n >= m
d = gcd(n, m)
x, y = 0, 0
# x * n - y * m = d
for i in range(1, m):
if (i * n - d) % m == 0:
x = i
y = (i * n - d) // m
if y == 0:
x += 1
y += 1
break
# print(x, y, d)
common = {}
common_count = 0
colors = {}
for i in range(len(a)):
colors[a[i]] = i
for i in range(len(b)):
if b[i] in colors and (colors[b[i]] - i) % d == 0:
common[colors[b[i]]] = i
common_count += 1
# where the common indices meet
com = []
for key, val in common.items():
z = (val - key) // d
# z * x * n - z * y * m = v - k
com.append(int(((z * x) % (m // d)) * n + key))
new_k = k % (m * n // d - common_count)
s = (k // (m * n // d - common_count)) * m * n // d
if new_k == 0:
new_k = m * n // d - common_count
s -= m * n // d
com = sorted(com)
cur = -1
# print(com, s, new_k, common_count, m * n // d - common_count)
for c in com:
if new_k < c - cur:
s += new_k
return s
new_k -= (c - cur - 1)
s += (c - cur)
cur = c
return s + new_k
def gcd(n, m):
if n == m:
return n
if n < m:
return gcd(m, n)
if n % m == 0:
return m
return gcd(m, n % m)
if __name__ == "__main__":
main() |
1525_D. Armchairs_1248 | There are n armchairs, numbered from 1 to n from left to right. Some armchairs are occupied by people (at most one person per armchair), others are not. The number of occupied armchairs is not greater than n/2.
For some reason, you would like to tell people to move from their armchairs to some other ones. If the i-th armchair is occupied by someone and the j-th armchair is not, you can tell the person sitting in the i-th armchair to move to the j-th armchair. The time it takes a person to move from the i-th armchair to the j-th one is |i - j| minutes. You may perform this operation any number of times, but these operations must be done sequentially, i. e. you cannot tell a person to move until the person you asked to move in the last operation has finished moving to their destination armchair.
You want to achieve the following situation: every seat that was initially occupied must be free. What is the minimum time you need to do it?
Input
The first line contains one integer n (2 ≤ n ≤ 5000) — the number of armchairs.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i ≤ 1). a_i = 1 means that the i-th armchair is initially occupied, a_i = 0 means that it is initially free. The number of occupied armchairs is at most n/2.
Output
Print one integer — the minimum number of minutes you have to spend to achieve the following situation: every seat that was initially occupied must be free.
Examples
Input
7
1 0 0 1 0 0 1
Output
3
Input
6
1 1 1 0 0 0
Output
9
Input
5
0 0 0 0 0
Output
0
Note
In the first test, you can perform the following sequence:
1. ask a person to move from armchair 1 to armchair 2, it takes 1 minute;
2. ask a person to move from armchair 7 to armchair 6, it takes 1 minute;
3. ask a person to move from armchair 4 to armchair 5, it takes 1 minute.
In the second test, you can perform the following sequence:
1. ask a person to move from armchair 1 to armchair 4, it takes 3 minutes;
2. ask a person to move from armchair 2 to armchair 6, it takes 4 minutes;
3. ask a person to move from armchair 4 to armchair 5, it takes 1 minute;
4. ask a person to move from armchair 3 to armchair 4, it takes 1 minute.
In the third test, no seat is occupied so your goal is achieved instantly. | import sys
input = sys.stdin.buffer.readline
import math
n=int(input())
arr=[int(x) for x in input().split()]
h=[]
v=[]
for i in range(n):
if arr[i]:
v.append(i)
else:
h.append(i)
hh=len(h)
vv=len(v)
dp=[[0 for j in range(hh+1)] for i in range(vv+1)]
for i in range(1,vv+1):
dp[i][0]=math.inf
for i in range(1,vv+1):
for j in range(1,hh+1):
dp[i][j]=min(dp[i-1][j-1]+abs(v[i-1]-h[j-1]),dp[i][j-1])
print(dp[vv][hh]) | {
"input": [
"6\n1 1 1 0 0 0\n",
"5\n0 0 0 0 0\n",
"7\n1 0 0 1 0 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"2\n1 0\n",
"2\n0 0\n",
"100\n1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 1 1 0 0 0 0 1\n",
"5\n0 0 0 1 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 0 0\n",
"4\n1 1 0 0\n",
"2\n0 1\n",
"5\n0 0 1 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"4\n0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0\n",
"100\n1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0\n",
"100\n1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0\n",
"100\n1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 0 1 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"100\n1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 1 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"5\n0 0 0 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"5\n0 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"4\n0 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"5\n1 0 0 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"6\n1 0 1 0 0 0\n",
"5\n1 0 0 0 0\n",
"7\n1 0 0 0 0 0 1\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0\n",
"4\n0 1 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"5\n1 0 1 0 0\n",
"7\n1 0 0 0 1 0 1\n",
"100\n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"4\n0 0 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0 0 0 0\n",
"7\n1 0 0 0 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"7\n1 0 1 0 1 0 0\n",
"4\n1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"4\n0 1 1 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0\n",
"5\n0 0 1 0 0\n",
"7\n1 0 0 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"5\n0 1 0 1 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0\n",
"4\n0 0 1 1\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0\n",
"7\n1 0 0 1 0 1 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n",
"100\n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0\n",
"4\n1 0 0 1\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n1 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
"100\n0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0\n"
],
"output": [
"\n9\n",
"\n0\n",
"\n3\n",
"10\n",
"1\n",
"0\n",
"482\n",
"4\n",
"0\n",
"191\n",
"40\n",
"4\n",
"1\n",
"2\n",
"3\n",
"4\n",
"11\n",
"212\n",
"153\n",
"194\n",
"5\n",
"215\n",
"211\n",
"230\n",
"39\n",
"12\n",
"218\n",
"255\n",
"42\n",
"6\n",
"214\n",
"219\n",
"0\n",
"164\n",
"254\n",
"281\n",
"197\n",
"138\n",
"277\n",
"40\n",
"174\n",
"208\n",
"259\n",
"166\n",
"202\n",
"7\n",
"130\n",
"253\n",
"143\n",
"41\n",
"256\n",
"183\n",
"245\n",
"8\n",
"360\n",
"220\n",
"257\n",
"180\n",
"290\n",
"9\n",
"92\n",
"207\n",
"10\n",
"81\n",
"244\n",
"80\n",
"79\n",
"86\n",
"152\n",
"204\n",
"249\n",
"15\n",
"217\n",
"252\n",
"148\n",
"171\n",
"198\n",
"93\n",
"324\n",
"221\n",
"131\n",
"50\n",
"284\n",
"282\n",
"264\n",
"76\n",
"141\n",
"155\n",
"344\n",
"291\n",
"226\n",
"38\n",
"51\n",
"279\n",
"13\n",
"1\n",
"1\n",
"2\n",
"1\n",
"1\n",
"3\n",
"2\n",
"11\n",
"1\n",
"2\n",
"2\n",
"4\n",
"2\n",
"4\n",
"3\n",
"3\n",
"5\n",
"4\n",
"5\n",
"11\n",
"1\n",
"2\n",
"1\n",
"2\n",
"5\n",
"211\n",
"4\n",
"3\n",
"2\n",
"3\n",
"5\n",
"3\n",
"3\n",
"4\n",
"4\n",
"5\n",
"2\n",
"2\n",
"3\n",
"5\n",
"1\n",
"6\n",
"215\n",
"3\n",
"39\n",
"2\n",
"4\n",
"3\n",
"1\n",
"5\n",
"2\n",
"6\n",
"11\n",
"1\n",
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"2\n",
"211\n",
"2\n",
"4\n",
"12\n",
"5\n",
"6\n",
"3\n",
"218\n",
"4\n",
"4\n",
"6\n",
"5\n",
"12\n",
"2\n",
"6\n",
"5\n",
"4\n",
"4\n",
"5\n",
"5\n",
"4\n",
"6\n",
"2\n",
"3\n",
"5\n",
"6\n",
"5\n",
"6\n",
"7\n",
"3\n",
"6\n",
"5\n",
"5\n",
"6\n",
"2\n",
"3\n",
"6\n",
"143\n",
"8\n",
"7\n",
"4\n",
"5\n",
"9\n",
"259\n",
"5\n",
"6\n",
"10\n",
"230\n",
"6\n",
"7\n",
"1\n",
"202\n",
"2\n",
"12\n",
"3\n",
"6\n",
"4\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are n armchairs, numbered from 1 to n from left to right. Some armchairs are occupied by people (at most one person per armchair), others are not. The number of occupied armchairs is not greater than n/2.
For some reason, you would like to tell people to move from their armchairs to some other ones. If the i-th armchair is occupied by someone and the j-th armchair is not, you can tell the person sitting in the i-th armchair to move to the j-th armchair. The time it takes a person to move from the i-th armchair to the j-th one is |i - j| minutes. You may perform this operation any number of times, but these operations must be done sequentially, i. e. you cannot tell a person to move until the person you asked to move in the last operation has finished moving to their destination armchair.
You want to achieve the following situation: every seat that was initially occupied must be free. What is the minimum time you need to do it?
Input
The first line contains one integer n (2 ≤ n ≤ 5000) — the number of armchairs.
The second line contains n integers a_1, a_2, ..., a_n (0 ≤ a_i ≤ 1). a_i = 1 means that the i-th armchair is initially occupied, a_i = 0 means that it is initially free. The number of occupied armchairs is at most n/2.
Output
Print one integer — the minimum number of minutes you have to spend to achieve the following situation: every seat that was initially occupied must be free.
Examples
Input
7
1 0 0 1 0 0 1
Output
3
Input
6
1 1 1 0 0 0
Output
9
Input
5
0 0 0 0 0
Output
0
Note
In the first test, you can perform the following sequence:
1. ask a person to move from armchair 1 to armchair 2, it takes 1 minute;
2. ask a person to move from armchair 7 to armchair 6, it takes 1 minute;
3. ask a person to move from armchair 4 to armchair 5, it takes 1 minute.
In the second test, you can perform the following sequence:
1. ask a person to move from armchair 1 to armchair 4, it takes 3 minutes;
2. ask a person to move from armchair 2 to armchair 6, it takes 4 minutes;
3. ask a person to move from armchair 4 to armchair 5, it takes 1 minute;
4. ask a person to move from armchair 3 to armchair 4, it takes 1 minute.
In the third test, no seat is occupied so your goal is achieved instantly.
### Input:
6
1 1 1 0 0 0
### Output:
9
### Input:
5
0 0 0 0 0
### Output:
0
### Code:
import sys
input = sys.stdin.buffer.readline
import math
n=int(input())
arr=[int(x) for x in input().split()]
h=[]
v=[]
for i in range(n):
if arr[i]:
v.append(i)
else:
h.append(i)
hh=len(h)
vv=len(v)
dp=[[0 for j in range(hh+1)] for i in range(vv+1)]
for i in range(1,vv+1):
dp[i][0]=math.inf
for i in range(1,vv+1):
for j in range(1,hh+1):
dp[i][j]=min(dp[i-1][j-1]+abs(v[i-1]-h[j-1]),dp[i][j-1])
print(dp[vv][hh]) |
157_A. Game Outcome_1252 | Sherlock Holmes and Dr. Watson played some game on a checkered board n × n in size. During the game they put numbers on the board's squares by some tricky rules we don't know. However, the game is now over and each square of the board contains exactly one number. To understand who has won, they need to count the number of winning squares. To determine if the particular square is winning you should do the following. Calculate the sum of all numbers on the squares that share this column (including the given square) and separately calculate the sum of all numbers on the squares that share this row (including the given square). A square is considered winning if the sum of the column numbers is strictly greater than the sum of the row numbers.
<image>
For instance, lets game was ended like is shown in the picture. Then the purple cell is winning, because the sum of its column numbers equals 8 + 3 + 6 + 7 = 24, sum of its row numbers equals 9 + 5 + 3 + 2 = 19, and 24 > 19.
Input
The first line contains an integer n (1 ≤ n ≤ 30). Each of the following n lines contain n space-separated integers. The j-th number on the i-th line represents the number on the square that belongs to the j-th column and the i-th row on the board. All number on the board are integers from 1 to 100.
Output
Print the single number — the number of the winning squares.
Examples
Input
1
1
Output
0
Input
2
1 2
3 4
Output
2
Input
4
5 7 8 4
9 5 3 2
1 6 6 4
9 5 7 3
Output
6
Note
In the first example two upper squares are winning.
In the third example three left squares in the both middle rows are winning:
5 7 8 4
9 5 3 2
1 6 6 4
9 5 7 3
| n = int(input())
r = lambda : list(map(int, input().split()))
arr = []
for i in range(n):
a = r()
arr.append(a)
row = [sum(i) for i in arr]
col = []
for i in range(n):
c = 0
for j in range(n): c+=arr[j][i]
col.append(c)
ans = 0
for i in range(n):
for j in range(n):
if row[i] < col[j]: ans+=1
print(ans)
| {
"input": [
"1\n1\n",
"2\n1 2\n3 4\n",
"4\n5 7 8 4\n9 5 3 2\n1 6 6 4\n9 5 7 3\n",
"9\n53 80 94 41 58 49 88 24 42\n85 11 32 64 40 56 63 95 73\n17 85 60 41 13 71 54 67 87\n38 14 21 81 66 59 52 33 86\n29 34 46 18 19 80 10 44 51\n4 27 65 75 77 21 15 49 50\n35 68 86 98 98 62 69 52 71\n43 28 56 91 89 21 14 57 79\n27 27 29 26 15 76 21 70 78\n",
"4\n89 79 14 89\n73 24 58 89\n62 88 69 65\n58 92 18 83\n",
"4\n1 2 3 4\n8 7 6 5\n9 10 11 12\n16 15 14 13\n",
"1\n31\n",
"1\n53\n",
"5\n42 74 45 85 14\n68 94 11 3 89\n68 67 97 62 66\n65 76 96 18 84\n61 98 28 94 74\n",
"1\n92\n",
"9\n33 80 34 56 56 33 27 74 57\n14 69 78 44 56 70 26 73 47\n13 42 17 33 78 83 94 70 37\n96 78 92 6 16 68 8 31 46\n67 97 21 10 44 64 15 77 28\n34 44 83 96 63 52 29 27 79\n23 23 57 54 35 16 5 64 36\n29 71 36 78 47 81 72 97 36\n24 83 70 58 36 82 42 44 26\n",
"5\n61 45 70 19 48\n52 29 98 21 74\n21 66 12 6 55\n62 75 66 62 57\n94 74 9 86 24\n",
"2\n7 3\n9 5\n",
"5\n99 77 32 20 49\n93 81 63 7 58\n37 1 17 35 53\n18 94 38 80 23\n91 50 42 61 63\n",
"7\n62 73 50 63 66 92 2\n27 13 83 84 88 81 47\n60 41 25 2 68 32 60\n7 94 18 98 41 25 72\n69 37 4 10 82 49 91\n76 26 67 27 30 49 18\n44 78 6 1 41 94 80\n",
"2\n1 1\n1 1\n",
"3\n1 2 3\n1 1 1\n1 1 1\n",
"5\n23 70 5 36 69\n83 18 19 98 40\n84 91 18 51 35\n17 18 35 47 59\n29 72 35 87 27\n",
"3\n1 2 3\n4 5 6\n7 8 9\n",
"12\n8 42 23 20 39 5 23 86 26 65 93 82\n48 35 12 4 59 19 19 28 38 81 97 99\n93 24 31 44 97 50 44 99 50 7 10 64\n79 43 65 29 84 43 46 41 89 16 6 1\n34 90 33 1 7 12 46 84 67 30 1 58\n58 21 100 66 56 22 7 24 72 73 86 37\n2 17 85 6 2 73 85 44 43 79 34 65\n3 53 29 76 87 2 27 19 11 42 71 38\n69 82 73 52 44 23 92 10 13 72 59 16\n73 32 37 93 21 94 43 39 27 53 14 15\n86 16 90 91 14 50 73 61 77 36 93 90\n22 56 30 52 81 70 12 92 75 27 38 12\n",
"5\n1 98 22 9 39\n10 9 44 49 66\n79 17 23 8 47\n59 69 72 47 14\n94 91 98 19 54\n",
"5\n4 91 100 8 48\n78 56 61 49 83\n12 21 95 77 78\n40 20 91 79 25\n32 88 94 28 55\n",
"7\n80 81 45 81 72 19 65\n31 24 15 52 47 1 14\n81 35 42 24 96 59 46\n16 2 59 56 60 98 76\n20 95 10 68 68 56 93\n60 16 68 77 89 52 43\n11 22 43 36 99 2 11\n",
"3\n4 3 2\n2 2 2\n2 2 2\n",
"5\n77 44 22 21 20\n84 3 35 86 35\n97 50 1 44 92\n4 88 56 20 3\n32 56 26 17 80\n",
"9\n40 70 98 28 44 78 15 73 20\n25 74 46 3 27 59 33 96 19\n100 47 99 68 68 67 66 87 31\n26 39 8 91 58 20 91 69 81\n77 43 90 60 17 91 78 85 68\n41 46 47 50 96 18 69 81 26\n10 58 2 36 54 64 69 10 65\n6 86 26 7 88 20 43 92 59\n61 76 13 23 49 28 22 79 8\n",
"3\n1 2 3\n3 1 2\n2 3 1\n",
"3\n41 94 58\n73 61 8\n34 88 89\n",
"8\n44 74 25 81 32 33 55 58\n36 13 28 28 20 65 87 58\n8 35 52 59 34 15 33 16\n2 22 42 29 11 66 30 72\n33 47 8 61 31 64 59 63\n79 36 38 42 12 21 92 36\n56 47 44 6 6 1 37 2\n79 88 79 53 50 69 94 39\n",
"2\n73 99\n13 100\n",
"4\n81 100 38 54\n8 64 39 59\n6 12 53 65\n79 50 99 71\n",
"9\n57 70 94 69 77 59 88 63 83\n6 79 46 5 9 43 20 39 48\n46 35 58 22 17 3 81 82 34\n77 10 40 53 71 84 14 58 56\n6 92 77 81 13 20 77 29 40\n59 53 3 97 21 97 22 11 64\n52 91 82 20 6 3 99 17 44\n79 25 43 69 85 55 95 61 31\n89 24 50 84 54 93 54 60 87\n",
"9\n53 138 94 41 58 49 88 24 42\n85 11 32 64 40 56 63 95 73\n17 85 60 41 13 71 54 67 87\n38 14 21 81 66 59 52 33 86\n29 34 46 18 19 80 10 44 51\n4 27 65 75 77 21 15 49 50\n35 68 86 98 98 62 69 52 71\n43 28 56 91 89 21 14 57 79\n27 27 29 26 15 76 21 70 78\n",
"4\n89 79 14 89\n73 24 58 89\n62 88 69 65\n58 92 18 5\n",
"1\n16\n",
"5\n42 74 45 85 14\n62 94 11 3 89\n68 67 97 62 66\n65 76 96 18 84\n61 98 28 94 74\n",
"9\n33 80 34 56 56 33 27 74 57\n14 69 78 44 56 70 26 73 47\n13 42 17 33 78 83 94 70 37\n96 78 92 6 16 68 8 31 46\n67 97 21 10 44 64 15 77 28\n34 44 83 96 63 52 29 27 79\n23 23 13 54 35 16 5 64 36\n29 71 36 78 47 81 72 97 36\n24 83 70 58 36 82 42 44 26\n",
"2\n7 3\n9 10\n",
"5\n99 77 32 20 49\n93 81 63 7 58\n37 1 17 35 53\n18 94 38 80 23\n91 46 42 61 63\n",
"7\n62 73 50 63 66 92 2\n27 13 83 84 88 81 47\n60 41 32 2 68 32 60\n7 94 18 98 41 25 72\n69 37 4 10 82 49 91\n76 26 67 27 30 49 18\n44 78 6 1 41 94 80\n",
"2\n0 1\n1 1\n",
"3\n1 2 3\n1 0 1\n1 1 1\n",
"3\n1 2 3\n4 10 6\n7 8 9\n",
"12\n8 42 23 20 39 5 23 86 26 65 93 82\n48 35 12 4 59 19 19 28 38 81 97 99\n93 24 31 44 97 50 44 99 50 7 10 64\n79 43 65 29 84 43 46 41 89 16 6 1\n34 90 33 1 7 12 46 84 67 30 1 58\n58 21 100 66 56 22 7 24 72 73 86 37\n2 17 85 6 2 73 85 44 43 79 34 65\n3 53 42 76 87 2 27 19 11 42 71 38\n69 82 73 52 44 23 92 10 13 72 59 16\n73 32 37 93 21 94 43 39 27 53 14 15\n86 16 90 91 14 50 73 61 77 36 93 90\n22 56 30 52 81 70 12 92 75 27 38 12\n",
"5\n4 91 100 8 48\n78 56 61 49 83\n12 21 95 77 78\n40 20 91 79 25\n32 88 120 28 55\n",
"7\n80 81 45 81 72 19 65\n31 24 15 52 47 1 14\n81 35 42 24 96 59 46\n16 2 59 56 60 98 76\n20 95 10 68 68 56 93\n60 16 68 77 89 100 43\n11 22 43 36 99 2 11\n",
"9\n40 70 98 28 44 78 15 73 20\n25 83 46 3 27 59 33 96 19\n100 47 99 68 68 67 66 87 31\n26 39 8 91 58 20 91 69 81\n77 43 90 60 17 91 78 85 68\n41 46 47 50 96 18 69 81 26\n10 58 2 36 54 64 69 10 65\n6 86 26 7 88 20 43 92 59\n61 76 13 23 49 28 22 79 8\n",
"8\n44 74 25 81 32 33 55 58\n36 13 28 28 20 65 87 58\n8 35 52 59 34 15 33 16\n2 22 42 29 11 66 30 72\n33 47 8 61 31 64 59 63\n79 36 38 62 12 21 92 36\n56 47 44 6 6 1 37 2\n79 88 79 53 50 69 94 39\n",
"9\n57 70 94 69 77 59 88 63 83\n6 79 46 5 9 43 6 39 48\n46 35 58 22 17 3 81 82 34\n77 10 40 53 71 84 14 58 56\n6 92 77 81 13 20 77 29 40\n59 53 3 97 21 97 22 11 64\n52 91 82 20 6 3 99 17 44\n79 25 43 69 85 55 95 61 31\n89 24 50 84 54 93 54 60 87\n",
"4\n5 7 8 4\n9 5 3 2\n1 6 5 4\n9 5 7 3\n",
"9\n53 138 94 41 58 49 88 24 42\n85 11 32 64 40 23 63 95 73\n17 85 60 41 13 71 54 67 87\n38 14 21 81 66 59 52 33 86\n29 34 46 18 19 80 10 44 51\n4 27 65 75 77 21 15 49 50\n35 68 86 98 98 62 69 52 71\n43 28 56 91 89 21 14 57 79\n27 27 29 26 15 76 21 70 78\n",
"12\n8 42 23 20 39 5 23 86 26 85 93 82\n48 35 12 4 59 19 19 28 38 81 97 99\n93 24 31 44 97 50 44 99 50 7 10 64\n79 43 65 29 84 43 46 41 89 16 6 1\n34 90 33 1 7 12 46 84 67 30 1 58\n58 21 100 66 56 22 7 24 72 73 86 37\n2 17 85 6 2 73 85 44 43 79 34 65\n3 53 42 76 87 2 27 19 11 42 71 38\n69 82 73 52 44 23 92 10 13 72 59 16\n73 32 37 93 21 94 43 39 27 53 14 15\n86 16 90 91 14 50 73 61 77 36 93 90\n22 56 30 52 81 70 12 92 75 27 38 12\n",
"3\n41 18 58\n73 61 16\n34 88 89\n",
"4\n5 3 8 4\n9 5 3 2\n1 6 5 4\n9 5 7 3\n",
"9\n53 138 94 41 58 49 88 24 42\n85 11 32 64 40 23 63 95 73\n20 85 60 41 13 71 54 67 87\n38 14 21 81 66 59 52 33 86\n29 34 46 18 19 80 10 44 51\n4 27 65 75 77 21 15 49 50\n35 68 86 98 98 62 69 52 71\n43 28 56 91 89 21 14 57 79\n27 27 29 26 15 76 21 70 78\n",
"9\n33 102 34 56 56 33 27 74 57\n14 69 78 44 56 70 26 73 47\n13 42 17 33 78 83 94 70 37\n96 78 92 6 16 68 8 31 46\n67 97 21 10 44 64 15 77 28\n34 44 83 96 63 52 29 27 79\n23 23 13 54 35 16 5 64 36\n29 71 36 78 47 81 72 97 36\n24 83 70 58 36 82 11 44 26\n",
"5\n99 77 32 20 49\n93 81 63 7 58\n37 1 17 35 53\n18 94 38 80 23\n30 46 2 61 63\n",
"7\n62 73 50 63 66 92 2\n27 13 83 84 88 81 47\n60 41 32 0 68 32 60\n7 94 18 98 41 25 72\n69 37 4 10 82 49 91\n76 26 67 27 30 88 18\n44 78 6 1 41 94 80\n",
"4\n1 2 4 4\n8 7 6 5\n9 10 11 12\n16 15 14 13\n",
"1\n10\n",
"1\n63\n",
"5\n61 45 70 19 48\n52 29 98 21 74\n21 66 12 6 55\n62 75 66 62 57\n94 74 8 86 24\n",
"5\n23 70 5 36 69\n83 18 19 98 40\n84 91 18 51 35\n3 18 35 47 59\n29 72 35 87 27\n",
"5\n1 98 22 9 39\n10 9 44 49 66\n79 17 23 8 71\n59 69 72 47 14\n94 91 98 19 54\n",
"3\n4 4 2\n2 2 2\n2 2 2\n",
"5\n77 44 22 21 20\n84 3 35 167 35\n97 50 1 44 92\n4 88 56 20 3\n32 56 26 17 80\n",
"3\n1 2 3\n3 1 2\n2 3 2\n",
"3\n41 94 58\n73 61 16\n34 88 89\n",
"2\n73 99\n13 101\n",
"4\n81 100 38 54\n8 64 39 19\n6 12 53 65\n79 50 99 71\n",
"1\n0\n",
"2\n1 2\n3 7\n",
"4\n1 79 14 89\n73 24 58 89\n62 88 69 65\n58 92 18 5\n",
"4\n1 2 4 4\n8 7 6 3\n9 10 11 12\n16 15 14 13\n",
"1\n27\n",
"1\n20\n",
"5\n42 74 45 85 14\n62 94 11 3 89\n68 67 105 62 66\n65 76 96 18 84\n61 98 28 94 74\n",
"1\n49\n",
"9\n33 102 34 56 56 33 27 74 57\n14 69 78 44 56 70 26 73 47\n13 42 17 33 78 83 94 70 37\n96 78 92 6 16 68 8 31 46\n67 97 21 10 44 64 15 77 28\n34 44 83 96 63 52 29 27 79\n23 23 13 54 35 16 5 64 36\n29 71 36 78 47 81 72 97 36\n24 83 70 58 36 82 42 44 26\n",
"5\n64 45 70 19 48\n52 29 98 21 74\n21 66 12 6 55\n62 75 66 62 57\n94 74 9 86 24\n",
"2\n7 4\n9 10\n",
"5\n99 77 32 20 49\n93 81 63 7 58\n37 1 17 35 53\n18 94 38 80 23\n30 46 42 61 63\n",
"7\n62 73 50 63 66 92 2\n27 13 83 84 88 81 47\n60 41 32 0 68 32 60\n7 94 18 98 41 25 72\n69 37 4 10 82 49 91\n76 26 67 27 30 49 18\n44 78 6 1 41 94 80\n",
"2\n0 1\n1 0\n",
"3\n1 2 3\n1 0 1\n2 1 1\n",
"5\n23 70 5 36 69\n83 18 19 98 40\n84 91 18 88 35\n3 18 35 47 59\n29 72 35 87 27\n",
"3\n2 2 3\n4 10 6\n7 8 9\n",
"5\n1 98 22 9 39\n10 9 44 49 66\n79 17 23 8 65\n59 69 72 47 14\n94 91 98 19 54\n",
"5\n4 91 100 8 48\n78 56 61 49 83\n12 21 95 77 78\n40 20 91 79 25\n7 88 120 28 55\n",
"7\n80 81 45 81 72 19 65\n31 24 11 52 47 1 14\n81 35 42 24 96 59 46\n16 2 59 56 60 98 76\n20 95 10 68 68 56 93\n60 16 68 77 89 100 43\n11 22 43 36 99 2 11\n",
"3\n4 4 2\n2 2 2\n2 3 2\n",
"5\n77 44 22 21 20\n84 5 35 167 35\n97 50 1 44 92\n4 88 56 20 3\n32 56 26 17 80\n",
"9\n40 70 98 28 44 78 15 73 20\n25 83 68 3 27 59 33 96 19\n100 47 99 68 68 67 66 87 31\n26 39 8 91 58 20 91 69 81\n77 43 90 60 17 91 78 85 68\n41 46 47 50 96 18 69 81 26\n10 58 2 36 54 64 69 10 65\n6 86 26 7 88 20 43 92 59\n61 76 13 23 49 28 22 79 8\n",
"3\n1 2 3\n3 1 4\n2 3 2\n",
"8\n44 74 25 81 32 33 55 58\n36 13 28 28 20 65 87 58\n8 35 52 59 34 15 33 16\n2 22 42 29 11 66 30 72\n33 47 8 61 31 64 59 63\n79 36 38 62 12 21 92 36\n56 47 44 5 6 1 37 2\n79 88 79 53 50 69 94 39\n",
"2\n73 99\n13 111\n",
"4\n59 100 38 54\n8 64 39 19\n6 12 53 65\n79 50 99 71\n",
"9\n57 70 94 69 77 59 88 63 83\n6 79 46 5 9 43 6 39 48\n46 35 58 22 17 3 81 82 34\n77 10 40 53 71 84 14 58 56\n6 92 77 81 13 20 77 29 40\n59 53 3 97 21 97 22 11 64\n52 91 82 20 6 0 99 17 44\n79 25 43 69 85 55 95 61 31\n89 24 50 84 54 93 54 60 87\n",
"1\n2\n",
"2\n1 2\n3 13\n",
"4\n1 79 26 89\n73 24 58 89\n62 88 69 65\n58 92 18 5\n",
"4\n0 2 4 4\n8 7 6 3\n9 10 11 12\n16 15 14 13\n",
"1\n43\n",
"1\n4\n",
"5\n42 74 45 85 14\n62 94 11 3 89\n68 75 105 62 66\n65 76 96 18 84\n61 98 28 94 74\n",
"1\n70\n",
"5\n64 45 70 19 48\n52 29 98 21 74\n21 66 12 6 55\n110 75 66 62 57\n94 74 9 86 24\n",
"2\n7 4\n17 10\n",
"2\n0 2\n1 0\n",
"3\n1 2 3\n1 0 1\n2 1 2\n",
"5\n23 70 5 36 69\n83 18 19 98 40\n84 68 18 88 35\n3 18 35 47 59\n29 72 35 87 27\n"
],
"output": [
"0\n",
"2\n",
"6\n",
"40\n",
"10\n",
"8\n",
"0\n",
"0\n",
"12\n",
"0\n",
"41\n",
"13\n",
"2\n",
"12\n",
"26\n",
"0\n",
"4\n",
"13\n",
"4\n",
"77\n",
"13\n",
"10\n",
"21\n",
"4\n",
"13\n",
"44\n",
"0\n",
"5\n",
"31\n",
"2\n",
"8\n",
"46\n",
"40\n",
"8\n",
"0\n",
"13\n",
"37\n",
"2\n",
"11\n",
"26\n",
"1\n",
"4\n",
"3\n",
"77\n",
"10\n",
"21\n",
"43\n",
"31\n",
"45\n",
"6\n",
"41\n",
"76\n",
"5\n",
"7\n",
"42\n",
"39\n",
"12\n",
"27\n",
"8\n",
"0\n",
"0\n",
"13\n",
"13\n",
"13\n",
"4\n",
"13\n",
"2\n",
"4\n",
"2\n",
"8\n",
"0\n",
"2\n",
"8\n",
"8\n",
"0\n",
"0\n",
"13\n",
"0\n",
"37\n",
"13\n",
"2\n",
"11\n",
"26\n",
"0\n",
"4\n",
"13\n",
"3\n",
"13\n",
"10\n",
"21\n",
"4\n",
"13\n",
"43\n",
"3\n",
"31\n",
"2\n",
"8\n",
"45\n",
"0\n",
"2\n",
"7\n",
"8\n",
"0\n",
"0\n",
"13\n",
"0\n",
"13\n",
"2\n",
"1\n",
"4\n",
"11\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Sherlock Holmes and Dr. Watson played some game on a checkered board n × n in size. During the game they put numbers on the board's squares by some tricky rules we don't know. However, the game is now over and each square of the board contains exactly one number. To understand who has won, they need to count the number of winning squares. To determine if the particular square is winning you should do the following. Calculate the sum of all numbers on the squares that share this column (including the given square) and separately calculate the sum of all numbers on the squares that share this row (including the given square). A square is considered winning if the sum of the column numbers is strictly greater than the sum of the row numbers.
<image>
For instance, lets game was ended like is shown in the picture. Then the purple cell is winning, because the sum of its column numbers equals 8 + 3 + 6 + 7 = 24, sum of its row numbers equals 9 + 5 + 3 + 2 = 19, and 24 > 19.
Input
The first line contains an integer n (1 ≤ n ≤ 30). Each of the following n lines contain n space-separated integers. The j-th number on the i-th line represents the number on the square that belongs to the j-th column and the i-th row on the board. All number on the board are integers from 1 to 100.
Output
Print the single number — the number of the winning squares.
Examples
Input
1
1
Output
0
Input
2
1 2
3 4
Output
2
Input
4
5 7 8 4
9 5 3 2
1 6 6 4
9 5 7 3
Output
6
Note
In the first example two upper squares are winning.
In the third example three left squares in the both middle rows are winning:
5 7 8 4
9 5 3 2
1 6 6 4
9 5 7 3
### Input:
1
1
### Output:
0
### Input:
2
1 2
3 4
### Output:
2
### Code:
n = int(input())
r = lambda : list(map(int, input().split()))
arr = []
for i in range(n):
a = r()
arr.append(a)
row = [sum(i) for i in arr]
col = []
for i in range(n):
c = 0
for j in range(n): c+=arr[j][i]
col.append(c)
ans = 0
for i in range(n):
for j in range(n):
if row[i] < col[j]: ans+=1
print(ans)
|
178_A1. Educational Game_1256 | The Smart Beaver from ABBYY began to develop a new educational game for children. The rules of the game are fairly simple and are described below.
The playing field is a sequence of n non-negative integers ai numbered from 1 to n. The goal of the game is to make numbers a1, a2, ..., ak (i.e. some prefix of the sequence) equal to zero for some fixed k (k < n), and this should be done in the smallest possible number of moves.
One move is choosing an integer i (1 ≤ i ≤ n) such that ai > 0 and an integer t (t ≥ 0) such that i + 2t ≤ n. After the values of i and t have been selected, the value of ai is decreased by 1, and the value of ai + 2t is increased by 1. For example, let n = 4 and a = (1, 0, 1, 2), then it is possible to make move i = 3, t = 0 and get a = (1, 0, 0, 3) or to make move i = 1, t = 1 and get a = (0, 0, 2, 2) (the only possible other move is i = 1, t = 0).
You are given n and the initial sequence ai. The task is to calculate the minimum number of moves needed to make the first k elements of the original sequence equal to zero for each possible k (1 ≤ k < n).
Input
The first input line contains a single integer n. The second line contains n integers ai (0 ≤ ai ≤ 104), separated by single spaces.
The input limitations for getting 20 points are:
* 1 ≤ n ≤ 300
The input limitations for getting 50 points are:
* 1 ≤ n ≤ 2000
The input limitations for getting 100 points are:
* 1 ≤ n ≤ 105
Output
Print exactly n - 1 lines: the k-th output line must contain the minimum number of moves needed to make the first k elements of the original sequence ai equal to zero.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.
Examples
Input
4
1 0 1 2
Output
1
1
3
Input
8
1 2 3 4 5 6 7 8
Output
1
3
6
10
16
24
40 | n = int(input())
a = [int(t) for t in input().split()]
c = 0
for i in range(n - 1):
if a[i] > 0:
c += a[i]
print(c)
j = 0
while 2 ** j + i < n:
j += 1
a[2 ** (j - 1) + i] += a[i]
a[i] = 0
else:
print(c) | {
"input": [
"8\n1 2 3 4 5 6 7 8\n",
"4\n1 0 1 2\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 29 33 19 85 92 91 66 83 39 100 53 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 29 33 19 85 92 91 66 83 39 100 53 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96\n",
"30\n8 17 20 15 18 15 20 10 5 13 5 4 15 9 11 14 18 15 7 16 18 9 17 7 10 9 5 13 17 16\n",
"5\n4 1 4 7 6\n",
"9\n13 13 7 11 3 9 3 5 5\n",
"120\n242 524 420 973 816 432 247 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 223 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 710 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 661 943 134\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 40 33 19 85 92 91 66 83 39 100 53 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 29 33 19 85 92 91 66 83 39 000 53 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96\n",
"30\n8 17 33 15 18 15 20 10 5 13 5 4 15 9 11 14 18 15 7 16 18 9 17 7 10 9 5 13 17 16\n",
"5\n4 1 1 7 6\n",
"9\n13 13 7 11 3 9 3 5 4\n",
"120\n242 524 420 973 816 432 247 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 223 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 661 943 134\n",
"8\n1 2 5 4 5 6 7 8\n",
"4\n0 0 1 2\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 29 33 19 85 92 91 66 83 39 000 53 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"30\n8 17 33 10 18 15 20 10 5 13 5 4 15 9 11 14 18 15 7 16 18 9 17 7 10 9 5 13 17 16\n",
"9\n13 13 7 11 3 9 1 5 4\n",
"120\n242 524 420 973 816 432 247 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 661 943 134\n",
"80\n72 66 82 46 44 22 63 120 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 29 33 19 85 92 91 66 83 39 000 53 20 99 11 81 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"5\n4 1 1 12 2\n",
"9\n13 13 8 11 3 9 1 5 4\n",
"8\n1 2 5 4 5 6 6 12\n",
"80\n72 66 82 46 44 22 63 120 71 65 5 30 45 84 29 73 9 90 25 19 26 15 12 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 29 33 19 85 92 91 66 83 39 000 53 20 99 11 81 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"5\n4 1 0 12 2\n",
"9\n13 13 8 11 3 9 2 5 4\n",
"120\n242 524 420 973 816 432 247 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 5 4 5 6 6 12\n",
"80\n72 66 82 46 44 22 63 120 71 65 5 30 45 84 29 73 9 90 25 19 26 15 10 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 29 33 19 85 92 91 66 83 39 000 53 20 99 15 81 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"5\n4 1 0 1 2\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 5 7 5 6 6 12\n",
"80\n72 66 82 46 44 22 63 120 71 65 5 30 45 84 29 73 9 90 25 19 26 15 10 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 88 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 29 33 19 85 92 91 66 83 39 000 83 20 99 15 81 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"5\n4 2 0 1 2\n",
"9\n13 13 8 10 3 9 2 5 5\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 368 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 5 7 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 9 90 25 19 26 15 10 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 88 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 29 33 19 85 92 91 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"5\n8 2 0 1 2\n",
"9\n13 13 8 12 3 9 2 5 5\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 368 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 5 14 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 19 26 15 10 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 88 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 39 33 19 85 92 91 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 88 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"9\n10 13 8 12 3 9 2 5 5\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 368 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 5 10 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 19 26 15 10 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 39 33 19 85 92 91 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 98 57 95 20 28 70 66 75 12 54 96\n",
"9\n10 13 8 12 3 9 1 5 5\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 8 10 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 26 26 15 10 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 39 33 19 85 92 91 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 12 54 96\n",
"9\n10 13 8 12 3 3 2 5 5\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 582 943 149\n",
"8\n0 2 4 10 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 26 26 15 18 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 90 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 12 54 96\n",
"9\n10 13 8 20 3 3 2 5 5\n",
"120\n242 524 420 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"8\n1 2 4 10 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 39 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 45 84 29 73 9 17 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 12 54 96\n",
"9\n10 10 8 20 3 3 2 5 5\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"8\n1 2 7 10 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 38 84 29 73 9 17 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 12 54 96\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 1085 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"8\n1 4 7 10 5 6 1 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 84 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 103 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 38 84 29 73 9 17 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 3 54 96\n",
"9\n10 10 8 20 3 3 2 2 7\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 1085 863 580 992 861 779 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"8\n1 4 7 10 5 6 2 12\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 146 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 103 99 42 142 26 71 58 49 76 32 128 13 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 38 84 29 73 9 17 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 19 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 3 54 96\n",
"9\n10 17 8 20 3 3 2 2 7\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 106 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 23 305 116 220 1085 863 580 992 861 779 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"80\n72 66 82 36 44 22 63 120 71 65 5 30 45 146 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 103 99 42 142 26 71 58 49 76 32 128 23 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 38 84 29 73 9 22 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 120 26 41 50 51 21 72 19 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 3 54 96\n",
"9\n10 17 8 20 3 3 1 2 7\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 366 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 106 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 37 305 116 220 1085 863 580 992 861 779 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"80\n72 66 82 36 73 22 63 120 71 65 5 30 45 146 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 103 99 42 142 26 71 58 49 76 32 128 23 32 98 57 95 20 36 70 66 75 12 54 96\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 38 84 29 73 9 22 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 64 26 41 50 51 21 72 19 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 3 54 96\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 359 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 106 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 37 305 116 220 1085 863 580 992 861 779 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"8\n1 4 7 10 5 9 2 7\n",
"80\n72 66 82 36 73 22 63 120 71 65 5 30 45 146 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 103 99 42 142 26 71 58 49 76 32 128 23 26 98 57 95 20 36 70 66 75 12 54 96\n",
"120\n242 524 262 973 816 432 210 666 134 849 145 359 608 930 613 315 863 628 97 109 65 192 741 314 736 17 872 971 106 648 333 771 171 327 782 837 303 393 292 287 730 834 794 868 540 251 789 893 37 305 116 220 1085 863 580 992 861 779 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 387 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 157 235 246 533 177 12 764 334 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 685 943 149\n",
"80\n72 66 82 36 73 22 63 120 71 65 5 30 45 19 29 73 4 90 25 26 45 15 18 40 33 19 85 92 91 66 83 36 100 73 20 99 11 81 26 41 36 51 21 72 28 100 34 3 24 58 11 85 73 18 4 45 103 99 42 142 26 71 58 49 76 32 128 23 26 98 57 95 20 36 70 66 75 12 54 96\n",
"5\n4 1 1 7 2\n",
"8\n1 2 5 4 5 6 7 12\n",
"120\n242 524 420 973 816 432 247 666 134 849 145 366 608 930 613 315 863 628 97 109 65 704 741 314 736 17 872 971 559 648 333 771 171 327 782 837 303 393 292 339 730 834 794 868 540 251 789 893 23 305 116 220 699 863 580 992 861 393 98 253 544 171 336 207 348 496 316 285 286 727 613 616 304 811 592 916 91 554 962 950 475 473 806 510 986 254 290 351 143 537 573 949 256 216 235 246 533 177 12 764 543 689 490 386 849 694 386 693 134 416 293 589 171 76 527 324 782 661 943 149\n",
"9\n13 13 8 11 3 9 2 5 5\n",
"9\n10 10 8 20 3 3 2 5 7\n",
"8\n1 4 7 10 5 6 2 9\n",
"8\n1 4 7 10 5 6 2 7\n",
"9\n10 17 8 20 3 3 1 2 8\n",
"80\n72 66 82 46 44 22 63 92 71 65 5 30 38 84 29 73 9 22 25 19 52 15 12 39 33 19 85 92 115 66 83 39 000 83 20 99 15 64 26 41 50 51 21 72 19 100 34 3 24 58 11 85 73 18 4 45 90 99 42 85 26 71 58 49 76 32 168 13 40 195 57 95 20 28 70 66 75 3 54 20\n",
"9\n10 17 8 20 3 3 1 2 12\n"
],
"output": [
"1\n3\n6\n10\n16\n24\n40\n",
"1\n1\n3\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1114\n1147\n1166\n1251\n1343\n1434\n1500\n1583\n1622\n1722\n1775\n1795\n1894\n1905\n1986\n2012\n2053\n2089\n2140\n2161\n2233\n2261\n2361\n2395\n2398\n2431\n2579\n2615\n2719\n2818\n2851\n2867\n2941\n3064\n3182\n3309\n3486\n3603\n3740\n3881\n3969\n4250\n4549\n4775\n5037\n5231\n5465\n5627\n5929\n6460\n7029\n7478\n8085\n9075\n10211\n12070\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1114\n1147\n1166\n1251\n1343\n1434\n1500\n1583\n1622\n1722\n1775\n1795\n1894\n1905\n1986\n2012\n2053\n2089\n2140\n2161\n2233\n2261\n2361\n2395\n2398\n2431\n2579\n2615\n2719\n2818\n2851\n2867\n2941\n3064\n3182\n3309\n3486\n3603\n3740\n3881\n3969\n4250\n4549\n4775\n5037\n5231\n5465\n5627\n5929\n6460\n7029\n7478\n8085\n9075\n10211\n12070\n",
"8\n25\n45\n60\n78\n93\n113\n123\n128\n141\n146\n150\n165\n174\n185\n199\n225\n257\n284\n315\n351\n375\n423\n454\n495\n549\n634\n713\n907\n",
"4\n5\n9\n17\n",
"13\n26\n33\n44\n47\n69\n79\n117\n",
"242\n766\n1186\n2159\n2975\n3407\n3654\n4320\n4454\n5303\n5448\n5814\n6422\n7352\n7965\n8280\n9143\n9771\n9868\n9977\n10042\n10746\n11487\n11801\n12537\n12554\n13426\n14397\n14956\n15604\n15827\n16598\n16769\n17096\n17878\n18715\n19018\n19411\n19703\n20042\n20772\n21606\n22400\n23268\n23808\n24059\n24848\n25741\n25764\n26069\n26185\n26405\n27104\n27967\n28547\n29539\n30400\n30793\n30891\n31144\n31688\n31859\n32195\n32402\n32992\n34012\n34748\n36006\n37108\n38267\n39127\n40409\n40847\n42507\n43244\n44526\n45225\n46709\n48284\n49549\n50887\n51988\n52891\n53510\n54561\n55519\n56550\n57215\n58955\n60075\n61618\n63791\n65150\n66185\n66979\n68203\n69497\n71021\n72551\n75410\n77358\n79599\n81241\n83248\n87005\n91313\n94773\n99789\n102521\n105707\n109158\n113129\n119712\n127026\n133562\n142600\n156395\n171618\n199596\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1125\n1158\n1177\n1262\n1354\n1445\n1511\n1594\n1633\n1733\n1786\n1806\n1905\n1916\n1997\n2023\n2064\n2100\n2151\n2172\n2244\n2272\n2372\n2406\n2409\n2442\n2590\n2626\n2730\n2829\n2862\n2878\n2963\n3086\n3204\n3331\n3508\n3625\n3762\n3903\n3991\n4272\n4571\n4797\n5059\n5253\n5487\n5649\n5962\n6493\n7062\n7511\n8118\n9108\n10244\n12103\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1114\n1147\n1166\n1251\n1343\n1434\n1500\n1583\n1622\n1622\n1675\n1695\n1794\n1805\n1886\n1912\n1953\n1989\n2040\n2061\n2133\n2161\n2261\n2295\n2298\n2331\n2479\n2515\n2619\n2718\n2751\n2767\n2841\n2964\n3082\n3209\n3386\n3503\n3640\n3781\n3869\n4050\n4349\n4575\n4837\n5031\n5265\n5427\n5729\n6160\n6729\n7178\n7785\n8675\n9811\n11570\n",
"8\n25\n58\n73\n91\n106\n126\n136\n141\n154\n159\n163\n178\n187\n198\n212\n238\n270\n310\n341\n377\n401\n449\n480\n521\n575\n673\n752\n959\n",
"4\n5\n6\n14\n",
"13\n26\n33\n44\n47\n69\n79\n117\n",
"242\n766\n1186\n2159\n2975\n3407\n3654\n4320\n4454\n5303\n5448\n5814\n6422\n7352\n7965\n8280\n9143\n9771\n9868\n9977\n10042\n10746\n11487\n11801\n12537\n12554\n13426\n14397\n14956\n15604\n15827\n16598\n16769\n17096\n17878\n18715\n19018\n19411\n19703\n20042\n20772\n21606\n22400\n23268\n23808\n24059\n24848\n25741\n25764\n26069\n26185\n26405\n27104\n27967\n28547\n29539\n30400\n30793\n30891\n31144\n31688\n31859\n32195\n32402\n32992\n34012\n34748\n36006\n37108\n38267\n39127\n40409\n40847\n42507\n43244\n44526\n45225\n46709\n48284\n49549\n50887\n51988\n52891\n53510\n54561\n55519\n56550\n57215\n58955\n59902\n61445\n63618\n64977\n66012\n66806\n68030\n69324\n70848\n72378\n75237\n77185\n79426\n81068\n83075\n86832\n90967\n94427\n99443\n102175\n105361\n108812\n112783\n119366\n126507\n133043\n142081\n155876\n170926\n198904\n",
"1\n3\n8\n12\n18\n26\n44\n",
"0\n0\n1\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1125\n1158\n1177\n1262\n1354\n1445\n1511\n1594\n1633\n1733\n1806\n1826\n1925\n1936\n2017\n2043\n2084\n2120\n2171\n2192\n2264\n2292\n2392\n2426\n2429\n2462\n2610\n2646\n2750\n2849\n2882\n2898\n2983\n3106\n3224\n3351\n3528\n3645\n3782\n3923\n4011\n4292\n4611\n4837\n5099\n5293\n5527\n5689\n6002\n6533\n7122\n7571\n8178\n9168\n10324\n12183\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1114\n1147\n1166\n1251\n1343\n1434\n1500\n1583\n1622\n1622\n1675\n1695\n1794\n1805\n1886\n1912\n1953\n1989\n2040\n2061\n2133\n2161\n2261\n2295\n2298\n2331\n2479\n2515\n2619\n2718\n2751\n2767\n2841\n2964\n3082\n3209\n3386\n3503\n3640\n3781\n3869\n4050\n4349\n4575\n4837\n5031\n5265\n5427\n5729\n6160\n6721\n7170\n7777\n8667\n9795\n11554\n",
"8\n25\n58\n68\n86\n101\n121\n131\n136\n149\n154\n158\n173\n182\n193\n207\n233\n265\n305\n331\n367\n391\n439\n470\n511\n565\n663\n737\n944\n",
"13\n26\n33\n44\n47\n69\n77\n115\n",
"242\n766\n1186\n2159\n2975\n3407\n3654\n4320\n4454\n5303\n5448\n5814\n6422\n7352\n7965\n8280\n9143\n9771\n9868\n9977\n10042\n10746\n11487\n11801\n12537\n12554\n13426\n14397\n14956\n15604\n15937\n16708\n16879\n17206\n17988\n18825\n19128\n19521\n19813\n20152\n20882\n21716\n22510\n23378\n23918\n24169\n24958\n25851\n25874\n26179\n26295\n26515\n27214\n28077\n28657\n29649\n30510\n30903\n31001\n31254\n31798\n31969\n32305\n32512\n33102\n34122\n34858\n36116\n37218\n38377\n39237\n40519\n40957\n42617\n43354\n44636\n45335\n46819\n48394\n49659\n50997\n52098\n53001\n53620\n54671\n55629\n56660\n57325\n59065\n60012\n61555\n63728\n65087\n66122\n67026\n68250\n69544\n71068\n72598\n75457\n77405\n79646\n81288\n83295\n87052\n91187\n94647\n99663\n102395\n105581\n109142\n113113\n119696\n126837\n133373\n142411\n156206\n171256\n199344\n",
"72\n138\n220\n266\n310\n332\n395\n515\n586\n651\n656\n686\n731\n815\n844\n917\n926\n1016\n1041\n1060\n1086\n1101\n1113\n1153\n1186\n1205\n1290\n1382\n1473\n1539\n1622\n1661\n1761\n1834\n1854\n1953\n1964\n2045\n2071\n2112\n2148\n2199\n2220\n2292\n2320\n2420\n2454\n2457\n2490\n2638\n2674\n2778\n2877\n2910\n2926\n3011\n3134\n3252\n3379\n3556\n3673\n3810\n3951\n4039\n4320\n4639\n4865\n5127\n5321\n5555\n5717\n6058\n6589\n7178\n7627\n8234\n9224\n10380\n12239\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1058\n1073\n1085\n1114\n1147\n1166\n1251\n1343\n1434\n1500\n1583\n1622\n1622\n1675\n1695\n1794\n1805\n1886\n1912\n1953\n2003\n2054\n2075\n2147\n2175\n2275\n2309\n2312\n2345\n2493\n2529\n2633\n2732\n2765\n2781\n2855\n2978\n3096\n3223\n3400\n3517\n3654\n3795\n3883\n4064\n4363\n4589\n4851\n5045\n5279\n5441\n5743\n6188\n6749\n7198\n7805\n8709\n9837\n11610\n",
"4\n5\n6\n19\n",
"13\n26\n34\n45\n48\n70\n79\n117\n",
"1\n3\n8\n12\n18\n26\n43\n",
"72\n138\n220\n266\n310\n332\n395\n515\n586\n651\n656\n686\n731\n815\n844\n917\n926\n1016\n1041\n1060\n1086\n1101\n1113\n1153\n1186\n1205\n1290\n1382\n1473\n1539\n1622\n1661\n1761\n1834\n1854\n1953\n1964\n2045\n2071\n2112\n2148\n2199\n2220\n2292\n2320\n2420\n2454\n2457\n2490\n2638\n2674\n2778\n2877\n2910\n2926\n3011\n3134\n3252\n3379\n3556\n3673\n3810\n3951\n4039\n4320\n4639\n4865\n5127\n5313\n5547\n5709\n6050\n6581\n7170\n7619\n8226\n9208\n10364\n12215\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1140\n1173\n1192\n1277\n1369\n1460\n1526\n1609\n1648\n1648\n1701\n1721\n1820\n1831\n1912\n1938\n1979\n2029\n2080\n2101\n2173\n2201\n2301\n2335\n2338\n2371\n2519\n2555\n2659\n2784\n2817\n2833\n2907\n3030\n3148\n3275\n3452\n3569\n3706\n3847\n3935\n4116\n4415\n4641\n4903\n5123\n5357\n5519\n5821\n6266\n6827\n7276\n7883\n8813\n9941\n11740\n",
"4\n5\n5\n18\n",
"13\n26\n34\n45\n48\n70\n80\n118\n",
"242\n766\n1186\n2159\n2975\n3407\n3654\n4320\n4454\n5303\n5448\n5814\n6422\n7352\n7965\n8280\n9143\n9771\n9868\n9977\n10042\n10746\n11487\n11801\n12537\n12554\n13426\n14397\n14956\n15604\n15937\n16708\n16879\n17206\n17988\n18825\n19128\n19521\n19813\n20152\n20882\n21716\n22510\n23378\n23918\n24169\n24958\n25851\n25874\n26179\n26295\n26515\n27214\n28077\n28657\n29649\n30510\n30903\n31001\n31254\n31798\n31969\n32305\n32512\n33102\n34122\n34858\n36116\n37218\n38377\n39237\n40519\n40957\n42617\n43354\n44636\n45335\n46819\n48394\n49659\n50997\n52098\n53001\n53620\n54671\n55629\n56660\n57325\n59065\n60012\n61555\n63728\n65087\n66122\n67026\n68250\n69544\n71068\n72598\n75457\n77405\n79646\n81288\n83295\n87052\n91187\n94647\n99663\n102395\n105581\n109142\n113113\n119696\n126837\n133373\n142411\n156206\n171177\n199265\n",
"0\n2\n7\n11\n16\n24\n40\n",
"72\n138\n220\n266\n310\n332\n395\n515\n586\n651\n656\n686\n731\n815\n844\n917\n926\n1016\n1041\n1060\n1086\n1101\n1111\n1151\n1184\n1203\n1288\n1380\n1471\n1537\n1620\n1659\n1759\n1832\n1852\n1951\n1962\n2043\n2069\n2110\n2146\n2197\n2218\n2290\n2318\n2418\n2452\n2455\n2488\n2636\n2672\n2776\n2875\n2908\n2922\n3007\n3130\n3248\n3375\n3552\n3669\n3806\n3947\n4035\n4316\n4635\n4861\n5123\n5309\n5543\n5703\n6044\n6575\n7164\n7613\n8220\n9202\n10358\n12207\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1140\n1173\n1192\n1277\n1369\n1460\n1526\n1609\n1648\n1648\n1701\n1721\n1820\n1835\n1916\n1942\n1983\n2033\n2084\n2105\n2177\n2205\n2305\n2339\n2342\n2375\n2523\n2559\n2663\n2788\n2821\n2837\n2911\n3034\n3152\n3279\n3456\n3573\n3710\n3851\n3939\n4120\n4419\n4645\n4907\n5131\n5365\n5527\n5829\n6274\n6835\n7284\n7891\n8825\n9953\n11756\n",
"4\n5\n5\n7\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10709\n11450\n11764\n12500\n12517\n13389\n14360\n14919\n15567\n15900\n16671\n16842\n17169\n17951\n18788\n19091\n19484\n19776\n20115\n20845\n21679\n22473\n23341\n23881\n24132\n24921\n25814\n25837\n26142\n26258\n26478\n27177\n28040\n28620\n29612\n30473\n30866\n30964\n31217\n31761\n31932\n32268\n32475\n33065\n34085\n34821\n36079\n37181\n38340\n39163\n40445\n40883\n42543\n43280\n44562\n45261\n46745\n48320\n49585\n50923\n52024\n52927\n53546\n54597\n55555\n56586\n57251\n58991\n59938\n61481\n63654\n65013\n66048\n66952\n68176\n69470\n70994\n72524\n75383\n77331\n79572\n81177\n83184\n86941\n91076\n94536\n99552\n102284\n105470\n109031\n113002\n119585\n126726\n133262\n142300\n156095\n171066\n199117\n",
"0\n2\n7\n14\n19\n27\n43\n",
"72\n138\n220\n266\n310\n332\n395\n515\n586\n651\n656\n686\n731\n815\n844\n917\n926\n1016\n1041\n1060\n1086\n1101\n1111\n1151\n1184\n1203\n1288\n1380\n1471\n1537\n1620\n1659\n1759\n1832\n1852\n1951\n1962\n2043\n2069\n2110\n2146\n2197\n2218\n2290\n2318\n2418\n2452\n2455\n2488\n2636\n2672\n2776\n2875\n2908\n2922\n3007\n3130\n3248\n3375\n3609\n3726\n3863\n4004\n4092\n4373\n4692\n4918\n5180\n5366\n5600\n5760\n6101\n6632\n7221\n7670\n8334\n9316\n10472\n12321\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1140\n1173\n1192\n1277\n1369\n1460\n1526\n1609\n1648\n1648\n1731\n1751\n1850\n1865\n1946\n1972\n2013\n2063\n2114\n2135\n2207\n2235\n2335\n2369\n2372\n2405\n2553\n2589\n2693\n2818\n2851\n2867\n2941\n3064\n3182\n3309\n3486\n3603\n3740\n3881\n3969\n4150\n4479\n4705\n4967\n5191\n5425\n5587\n5889\n6334\n6925\n7374\n7981\n8915\n10073\n11876\n",
"4\n6\n6\n9\n",
"13\n26\n34\n44\n47\n69\n79\n116\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10373\n11114\n11428\n12164\n12181\n13053\n14024\n14583\n15231\n15564\n16335\n16506\n16833\n17615\n18452\n18755\n19148\n19440\n19779\n20509\n21343\n22137\n23005\n23545\n23796\n24585\n25478\n25501\n25806\n25922\n26142\n26841\n27704\n28284\n29276\n30137\n30530\n30628\n30881\n31425\n31596\n31932\n32139\n32729\n33749\n34485\n35743\n36845\n38004\n38827\n40109\n40547\n42207\n42944\n44226\n44925\n46409\n47984\n49249\n50587\n51688\n52591\n53210\n54261\n54883\n55914\n56579\n58319\n59266\n60809\n62982\n64341\n65376\n66280\n67504\n68798\n70322\n71852\n74711\n76659\n78900\n80505\n82512\n86269\n90404\n93864\n98880\n101612\n104798\n108359\n112330\n118913\n126054\n132590\n141628\n155423\n170058\n198109\n",
"0\n2\n7\n14\n19\n27\n38\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n916\n1006\n1031\n1050\n1076\n1091\n1101\n1141\n1174\n1193\n1278\n1370\n1461\n1527\n1610\n1649\n1749\n1822\n1842\n1941\n1952\n2033\n2059\n2100\n2136\n2187\n2208\n2280\n2308\n2408\n2442\n2445\n2478\n2626\n2662\n2766\n2865\n2898\n2912\n2997\n3120\n3238\n3365\n3599\n3716\n3853\n3994\n4082\n4363\n4682\n4908\n5160\n5346\n5580\n5740\n6081\n6612\n7201\n7650\n8304\n9286\n10442\n12291\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1140\n1173\n1192\n1277\n1369\n1460\n1526\n1609\n1648\n1648\n1731\n1751\n1850\n1865\n1985\n2011\n2052\n2102\n2153\n2174\n2246\n2274\n2374\n2408\n2411\n2444\n2592\n2628\n2732\n2857\n2890\n2906\n2980\n3103\n3221\n3348\n3525\n3642\n3779\n3920\n4008\n4189\n4518\n4744\n5006\n5230\n5503\n5665\n5967\n6412\n7003\n7452\n8059\n8993\n10190\n11993\n",
"8\n10\n10\n13\n",
"13\n26\n34\n46\n49\n71\n81\n120\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10373\n11114\n11428\n12164\n12181\n13053\n14024\n14583\n15231\n15564\n16335\n16506\n16833\n17615\n18452\n18755\n19148\n19440\n19727\n20457\n21291\n22085\n22953\n23493\n23744\n24533\n25426\n25449\n25754\n25870\n26090\n26789\n27652\n28232\n29224\n30085\n30478\n30576\n30829\n31373\n31544\n31880\n32087\n32677\n33697\n34433\n35691\n36793\n37952\n38775\n40057\n40495\n42155\n42892\n44174\n44873\n46357\n47932\n49197\n50535\n51636\n52539\n53158\n54209\n54831\n55862\n56527\n58267\n59214\n60757\n62930\n64289\n65324\n66228\n67452\n68746\n70270\n71800\n74659\n76607\n78848\n80453\n82408\n86165\n90300\n93760\n98776\n101508\n104694\n108255\n112226\n118809\n125950\n132486\n141524\n155319\n169954\n198005\n",
"0\n2\n7\n21\n26\n34\n45\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1045\n1071\n1086\n1096\n1136\n1169\n1188\n1273\n1365\n1456\n1522\n1605\n1644\n1744\n1817\n1837\n1936\n1947\n2028\n2054\n2095\n2131\n2182\n2203\n2275\n2303\n2403\n2437\n2440\n2468\n2616\n2652\n2756\n2855\n2888\n2902\n2987\n3110\n3228\n3355\n3589\n3706\n3843\n3984\n4072\n4348\n4667\n4893\n5145\n5331\n5565\n5725\n6066\n6592\n7181\n7630\n8284\n9261\n10417\n12261\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1150\n1183\n1202\n1287\n1379\n1470\n1536\n1619\n1658\n1658\n1741\n1761\n1860\n1875\n1995\n2021\n2062\n2112\n2163\n2184\n2256\n2284\n2384\n2418\n2421\n2454\n2602\n2638\n2742\n2867\n2900\n2916\n3000\n3123\n3241\n3368\n3545\n3662\n3799\n3940\n4028\n4209\n4538\n4764\n5026\n5250\n5523\n5685\n5997\n6442\n7033\n7482\n8089\n9023\n10220\n12023\n",
"10\n23\n31\n43\n46\n68\n78\n117\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10373\n11114\n11428\n12164\n12181\n13053\n14024\n14583\n15231\n15564\n16335\n16506\n16833\n17615\n18452\n18755\n19148\n19440\n19727\n20457\n21291\n22085\n22953\n23493\n23744\n24533\n25426\n25449\n25754\n25870\n26090\n26789\n27652\n28232\n29224\n30085\n30478\n30576\n30829\n31373\n31544\n31880\n32087\n32677\n33697\n34433\n35691\n36793\n37952\n38775\n40057\n40495\n42155\n42892\n44174\n44873\n46357\n47932\n49197\n50535\n51636\n52539\n53158\n54209\n54831\n55862\n56527\n58267\n59214\n60757\n62930\n64289\n65265\n66169\n67393\n68687\n70211\n71741\n74600\n76548\n78789\n80394\n82349\n86106\n90241\n93701\n98717\n101449\n104576\n108137\n112108\n118691\n125832\n132368\n141406\n155201\n169777\n197828\n",
"0\n2\n7\n17\n22\n30\n41\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1045\n1071\n1086\n1096\n1136\n1169\n1188\n1273\n1365\n1456\n1522\n1605\n1644\n1744\n1817\n1837\n1936\n1947\n2028\n2054\n2095\n2131\n2182\n2203\n2275\n2303\n2403\n2437\n2440\n2468\n2616\n2652\n2756\n2855\n2888\n2902\n2987\n3110\n3228\n3355\n3589\n3706\n3843\n3984\n4072\n4348\n4667\n4933\n5185\n5371\n5605\n5765\n6106\n6632\n7221\n7710\n8364\n9341\n10497\n12381\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1150\n1183\n1202\n1287\n1379\n1470\n1536\n1619\n1658\n1658\n1741\n1761\n1860\n1875\n1995\n2021\n2062\n2112\n2163\n2184\n2256\n2284\n2384\n2418\n2421\n2454\n2602\n2638\n2742\n2867\n2900\n2916\n3000\n3123\n3241\n3368\n3545\n3662\n3799\n3940\n4028\n4209\n4538\n4844\n5106\n5330\n5603\n5765\n6077\n6522\n7113\n7642\n8249\n9183\n10380\n12263\n",
"10\n23\n31\n43\n46\n68\n77\n116\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10197\n10938\n11252\n11988\n12005\n12877\n13848\n14407\n15055\n15388\n16159\n16330\n16657\n17439\n18276\n18579\n18972\n19264\n19551\n20281\n21115\n21909\n22777\n23317\n23568\n24357\n25250\n25273\n25578\n25694\n25914\n26613\n27476\n28056\n29048\n29909\n30302\n30400\n30653\n31197\n31368\n31704\n31911\n32501\n33521\n34257\n35515\n36617\n37776\n38599\n39881\n40319\n41979\n42716\n43998\n44697\n46181\n47756\n49021\n50359\n51460\n52363\n52982\n54033\n54479\n55510\n56175\n57915\n58862\n60405\n62578\n63937\n64913\n65817\n67041\n68335\n69859\n71389\n74248\n76196\n78437\n80042\n81997\n85754\n89889\n93349\n98365\n101097\n104224\n107785\n111756\n118339\n125480\n132016\n141054\n154849\n169249\n197300\n",
"0\n2\n10\n20\n25\n33\n47\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1052\n1078\n1093\n1103\n1143\n1176\n1195\n1280\n1372\n1463\n1529\n1612\n1651\n1751\n1824\n1844\n1943\n1954\n2035\n2061\n2102\n2138\n2189\n2210\n2282\n2310\n2410\n2444\n2447\n2475\n2623\n2659\n2770\n2869\n2902\n2916\n3001\n3124\n3242\n3369\n3603\n3720\n3857\n3998\n4086\n4362\n4681\n4947\n5206\n5392\n5626\n5786\n6127\n6653\n7242\n7731\n8392\n9369\n10525\n12409\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1150\n1183\n1202\n1287\n1379\n1470\n1536\n1619\n1658\n1658\n1741\n1761\n1860\n1875\n1995\n2021\n2062\n2112\n2163\n2184\n2256\n2284\n2384\n2418\n2421\n2454\n2602\n2638\n2742\n2867\n2900\n2916\n3000\n3123\n3241\n3368\n3545\n3662\n3799\n3940\n4028\n4209\n4538\n4844\n5106\n5330\n5700\n5862\n6174\n6619\n7210\n7739\n8346\n9280\n10574\n12457\n",
"10\n23\n31\n43\n46\n62\n72\n105\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10197\n10938\n11252\n11988\n12005\n12877\n13848\n14407\n15055\n15388\n16159\n16330\n16657\n17439\n18276\n18579\n18972\n19264\n19551\n20281\n21115\n21909\n22777\n23317\n23568\n24357\n25250\n25273\n25578\n25694\n25914\n26613\n27476\n28056\n29048\n29909\n30302\n30400\n30653\n31197\n31368\n31704\n31911\n32501\n33521\n34257\n35515\n36617\n37776\n38599\n39881\n40319\n41979\n42511\n43793\n44492\n45976\n47551\n48816\n50154\n51255\n52158\n52777\n53828\n54274\n55305\n55970\n57710\n58657\n60200\n62373\n63732\n64708\n65612\n66836\n68130\n69654\n71184\n74043\n75991\n78232\n79837\n81792\n85549\n89684\n92939\n97955\n100687\n103814\n107375\n111346\n117929\n125070\n131401\n140439\n154234\n168634\n196480\n",
"0\n2\n6\n16\n21\n29\n39\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1052\n1078\n1093\n1111\n1151\n1184\n1203\n1288\n1380\n1471\n1537\n1620\n1659\n1759\n1832\n1852\n1951\n1962\n2043\n2069\n2110\n2146\n2197\n2218\n2290\n2318\n2418\n2452\n2455\n2483\n2631\n2667\n2778\n2877\n2910\n2932\n3017\n3140\n3258\n3385\n3619\n3736\n3873\n4014\n4102\n4378\n4697\n4963\n5222\n5408\n5642\n5810\n6151\n6677\n7266\n7755\n8416\n9393\n10549\n12441\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n988\n1013\n1032\n1084\n1099\n1111\n1150\n1183\n1202\n1287\n1379\n1494\n1560\n1643\n1682\n1682\n1765\n1785\n1884\n1899\n2019\n2045\n2086\n2136\n2187\n2208\n2280\n2308\n2408\n2442\n2445\n2478\n2626\n2662\n2766\n2891\n2924\n2940\n3024\n3147\n3265\n3392\n3569\n3710\n3847\n3988\n4076\n4257\n4586\n4892\n5154\n5378\n5748\n5910\n6222\n6667\n7258\n7787\n8394\n9352\n10646\n12553\n",
"10\n23\n31\n51\n54\n70\n80\n121\n",
"242\n766\n1186\n2159\n2975\n3407\n3617\n4283\n4417\n5266\n5411\n5777\n6385\n7315\n7928\n8243\n9106\n9734\n9831\n9940\n10005\n10197\n10938\n11252\n11988\n12005\n12877\n13848\n14407\n15055\n15388\n16159\n16330\n16657\n17439\n18276\n18579\n18972\n19264\n19551\n20281\n21115\n21909\n22777\n23317\n23568\n24357\n25250\n25273\n25578\n25694\n25914\n26613\n27476\n28056\n29048\n29909\n30302\n30400\n30653\n31197\n31368\n31704\n31911\n32501\n33521\n34257\n35515\n36617\n37776\n38599\n39881\n40319\n41979\n42511\n43793\n44492\n45976\n47551\n48816\n50154\n51255\n52158\n52777\n53828\n54274\n55305\n55970\n57710\n58657\n60200\n62373\n63732\n64708\n65612\n66836\n68130\n69654\n71184\n74043\n75991\n78232\n79837\n81792\n85549\n89684\n92939\n97955\n100687\n103814\n107375\n111346\n117929\n125070\n131401\n140439\n154234\n168737\n196583\n",
"1\n3\n7\n17\n23\n31\n42\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1052\n1097\n1112\n1130\n1170\n1203\n1222\n1307\n1399\n1490\n1556\n1639\n1678\n1778\n1851\n1871\n1970\n1981\n2062\n2088\n2129\n2165\n2216\n2237\n2309\n2337\n2437\n2471\n2474\n2502\n2650\n2686\n2797\n2915\n2948\n2970\n3055\n3178\n3296\n3423\n3657\n3774\n3911\n4052\n4140\n4416\n4735\n5001\n5260\n5465\n5699\n5867\n6208\n6734\n7323\n7812\n8473\n9469\n10625\n12536\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n703\n787\n816\n889\n898\n915\n940\n959\n1011\n1026\n1038\n1077\n1110\n1129\n1214\n1306\n1421\n1487\n1570\n1609\n1609\n1692\n1712\n1811\n1826\n1946\n1972\n2013\n2063\n2114\n2135\n2207\n2235\n2335\n2369\n2372\n2405\n2480\n2516\n2620\n2745\n2778\n2794\n2878\n3001\n3119\n3246\n3423\n3564\n3701\n3842\n3930\n4111\n4367\n4673\n4935\n5159\n5529\n5691\n6003\n6448\n6966\n7495\n8102\n9060\n10281\n12188\n",
"10\n20\n28\n48\n51\n64\n74\n112\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5619\n6227\n7157\n7770\n8085\n8948\n9576\n9673\n9782\n9847\n10039\n10780\n11094\n11830\n11847\n12719\n13690\n14249\n14897\n15230\n16001\n16172\n16499\n17281\n18118\n18421\n18814\n19106\n19393\n20123\n20957\n21751\n22619\n23159\n23410\n24199\n25092\n25115\n25420\n25536\n25756\n26455\n27318\n27898\n28890\n29751\n30144\n30242\n30495\n31039\n31210\n31546\n31753\n32343\n33363\n33941\n35199\n36301\n37460\n38283\n39565\n40003\n41663\n42195\n43477\n44176\n45660\n47235\n48500\n49838\n50939\n51842\n52461\n53512\n53958\n54989\n55654\n57394\n58341\n59884\n62057\n63416\n64392\n65296\n66520\n67814\n69338\n70710\n73569\n75517\n77758\n79363\n81318\n85075\n89210\n92465\n97481\n100213\n103340\n106901\n110872\n117455\n124596\n130769\n139807\n153602\n168105\n195793\n",
"1\n3\n10\n20\n26\n34\n48\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1052\n1097\n1112\n1130\n1170\n1203\n1222\n1307\n1399\n1490\n1556\n1639\n1675\n1775\n1848\n1868\n1967\n1978\n2059\n2085\n2126\n2162\n2213\n2234\n2306\n2334\n2434\n2468\n2471\n2499\n2647\n2683\n2794\n2912\n2945\n2967\n3052\n3175\n3293\n3420\n3654\n3771\n3908\n4049\n4134\n4410\n4729\n4995\n5254\n5459\n5693\n5861\n6202\n6728\n7317\n7806\n8467\n9463\n10619\n12530\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n696\n780\n809\n882\n891\n908\n933\n952\n1004\n1019\n1031\n1070\n1103\n1122\n1207\n1299\n1414\n1480\n1563\n1602\n1602\n1685\n1705\n1804\n1819\n1939\n1965\n2006\n2056\n2107\n2128\n2200\n2228\n2328\n2362\n2365\n2398\n2473\n2509\n2613\n2738\n2771\n2787\n2871\n2994\n3112\n3239\n3416\n3557\n3694\n3835\n3923\n4104\n4360\n4666\n4928\n5152\n5522\n5684\n5996\n6441\n6959\n7488\n8095\n9046\n10267\n12167\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5619\n6227\n7157\n7770\n8085\n8948\n9576\n9673\n9782\n9847\n10039\n10780\n11094\n11830\n11847\n12719\n13690\n14249\n14897\n15230\n16001\n16172\n16499\n17281\n18118\n18421\n18814\n19106\n19393\n20123\n20957\n21751\n22619\n23159\n23410\n24199\n25092\n25115\n25420\n25536\n25756\n26841\n27704\n28284\n29276\n30137\n30530\n30628\n30881\n31425\n31596\n31932\n32139\n32729\n33749\n34327\n35585\n36687\n37846\n38669\n39951\n40389\n42049\n42581\n43863\n44562\n46046\n47621\n48886\n50224\n51325\n52228\n52847\n53898\n54344\n55375\n56040\n57780\n58727\n60270\n62443\n63802\n64778\n65682\n66906\n68200\n69724\n71096\n73955\n75903\n78144\n79749\n81704\n85461\n89596\n92851\n97867\n100599\n103726\n107287\n111258\n117841\n124982\n131155\n140193\n154374\n168877\n196951\n",
"1\n5\n12\n22\n28\n38\n52\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n805\n834\n907\n911\n1001\n1026\n1052\n1097\n1112\n1130\n1170\n1203\n1222\n1307\n1399\n1490\n1556\n1639\n1675\n1775\n1848\n1868\n1967\n1978\n2059\n2085\n2126\n2162\n2213\n2234\n2306\n2334\n2434\n2468\n2471\n2499\n2647\n2683\n2794\n2912\n2945\n2967\n3052\n3188\n3306\n3433\n3667\n3784\n3921\n4062\n4147\n4423\n4742\n5008\n5267\n5472\n5706\n5874\n6215\n6754\n7343\n7832\n8493\n9502\n10658\n12582\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n696\n780\n809\n882\n891\n908\n933\n952\n1004\n1019\n1031\n1070\n1103\n1122\n1207\n1299\n1414\n1480\n1563\n1602\n1602\n1685\n1705\n1804\n1819\n1939\n1965\n2006\n2056\n2107\n2128\n2200\n2228\n2328\n2362\n2365\n2398\n2473\n2509\n2613\n2738\n2771\n2787\n2871\n2994\n3112\n3239\n3416\n3557\n3694\n3835\n3923\n4104\n4360\n4666\n4928\n5152\n5522\n5684\n5996\n6441\n6959\n7488\n8095\n9046\n10258\n12158\n",
"10\n20\n28\n48\n51\n64\n74\n109\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5619\n6227\n7157\n7770\n8085\n8948\n9576\n9673\n9782\n9847\n10039\n10780\n11094\n11830\n11847\n12719\n13690\n14249\n14897\n15230\n16001\n16172\n16499\n17281\n18118\n18421\n18814\n19106\n19393\n20123\n20957\n21751\n22619\n23159\n23410\n24199\n25092\n25115\n25420\n25536\n25756\n26841\n27704\n28284\n29276\n30137\n30916\n31014\n31267\n31811\n31982\n32318\n32525\n33115\n34135\n34713\n35971\n37073\n38232\n39055\n40337\n40775\n42435\n42967\n44249\n44948\n46432\n48007\n49272\n50610\n51711\n52614\n53233\n54284\n54730\n55761\n56426\n58166\n59499\n61042\n63215\n64574\n65550\n66454\n67678\n68972\n70496\n71868\n74727\n76675\n78916\n80521\n82476\n86233\n90754\n94009\n99025\n101757\n104884\n108445\n112416\n118999\n126526\n132699\n141737\n155918\n170807\n198881\n",
"1\n5\n12\n22\n28\n38\n53\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n867\n896\n969\n973\n1063\n1088\n1114\n1159\n1174\n1192\n1232\n1265\n1284\n1369\n1461\n1552\n1618\n1701\n1737\n1837\n1910\n1930\n2029\n2040\n2121\n2147\n2188\n2224\n2275\n2296\n2368\n2396\n2496\n2530\n2533\n2561\n2709\n2745\n2856\n2974\n3007\n3029\n3114\n3250\n3368\n3495\n3729\n3846\n3983\n4124\n4209\n4485\n4804\n5070\n5329\n5534\n5768\n5936\n6277\n6816\n7405\n7894\n8555\n9564\n10782\n12706\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n696\n780\n809\n882\n891\n908\n933\n952\n1004\n1019\n1031\n1070\n1103\n1122\n1207\n1299\n1414\n1480\n1563\n1602\n1602\n1685\n1705\n1804\n1819\n1939\n1965\n2006\n2056\n2107\n2128\n2200\n2219\n2319\n2353\n2356\n2389\n2464\n2500\n2604\n2729\n2762\n2778\n2862\n2985\n3103\n3230\n3407\n3548\n3685\n3826\n3914\n4095\n4351\n4657\n4919\n5143\n5513\n5675\n5987\n6432\n6950\n7479\n8086\n9028\n10240\n12131\n",
"10\n27\n35\n55\n58\n78\n88\n130\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5619\n6227\n7157\n7770\n8085\n8948\n9576\n9673\n9782\n9847\n10039\n10780\n11094\n11830\n11847\n12719\n13690\n13796\n14444\n14777\n15548\n15719\n16046\n16828\n17665\n17968\n18361\n18653\n18940\n19670\n20504\n21298\n22166\n22706\n22957\n23746\n24639\n24662\n24967\n25083\n25303\n26388\n27251\n27831\n28823\n29684\n30463\n30561\n30814\n31358\n31529\n31865\n32072\n32662\n33682\n34260\n35518\n36620\n37779\n38602\n39884\n40322\n41982\n42514\n43796\n44495\n45979\n47554\n48819\n50157\n51258\n52161\n52780\n53831\n54277\n55308\n55973\n57713\n59046\n60589\n62762\n63668\n64644\n65548\n66772\n68066\n69590\n70962\n73821\n75769\n78010\n79615\n81570\n85327\n89848\n93103\n98119\n100398\n103525\n107086\n111057\n117640\n125167\n131340\n140378\n154106\n168995\n196616\n",
"72\n138\n220\n256\n300\n322\n385\n505\n576\n641\n646\n676\n721\n867\n896\n969\n973\n1063\n1088\n1114\n1159\n1174\n1192\n1232\n1265\n1284\n1369\n1461\n1552\n1618\n1701\n1737\n1837\n1910\n1930\n2029\n2040\n2121\n2147\n2188\n2224\n2275\n2296\n2368\n2396\n2496\n2530\n2533\n2561\n2709\n2745\n2856\n2974\n3007\n3029\n3114\n3250\n3368\n3495\n3729\n3846\n3983\n4124\n4209\n4485\n4804\n5070\n5339\n5544\n5778\n5946\n6287\n6826\n7415\n7904\n8575\n9584\n10802\n12726\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n696\n780\n809\n882\n891\n913\n938\n957\n1009\n1024\n1036\n1075\n1108\n1127\n1212\n1304\n1419\n1485\n1568\n1607\n1607\n1690\n1710\n1809\n1824\n1944\n1970\n2011\n2061\n2112\n2133\n2205\n2224\n2324\n2358\n2361\n2394\n2474\n2510\n2614\n2739\n2772\n2788\n2872\n2995\n3113\n3240\n3417\n3558\n3695\n3836\n3924\n4105\n4366\n4672\n4934\n5158\n5528\n5690\n6002\n6447\n6970\n7499\n8106\n9048\n10265\n12156\n",
"10\n27\n35\n55\n58\n78\n87\n129\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5619\n6227\n7157\n7770\n8085\n8948\n9576\n9673\n9782\n9847\n10039\n10780\n11094\n11830\n11847\n12719\n13690\n13796\n14444\n14777\n15548\n15719\n16046\n16828\n17665\n17968\n18361\n18653\n18940\n19670\n20504\n21298\n22166\n22706\n22957\n23746\n24639\n24676\n24981\n25097\n25317\n26402\n27265\n27845\n28837\n29698\n30477\n30575\n30828\n31372\n31543\n31879\n32086\n32676\n33696\n34274\n35532\n36634\n37793\n38616\n39898\n40336\n41996\n42528\n43810\n44509\n45993\n47568\n48833\n50171\n51272\n52175\n52794\n53845\n54291\n55322\n55987\n57727\n59060\n60603\n62776\n63682\n64658\n65562\n66786\n68080\n69604\n70976\n73835\n75783\n78024\n79629\n81584\n85341\n89862\n93117\n98133\n100412\n103539\n107100\n111071\n117668\n125195\n131368\n140406\n154148\n169037\n196672\n",
"72\n138\n220\n256\n329\n351\n414\n534\n605\n670\n675\n705\n750\n896\n925\n998\n1002\n1092\n1117\n1143\n1188\n1203\n1221\n1261\n1294\n1313\n1398\n1490\n1581\n1647\n1730\n1766\n1866\n1939\n1959\n2058\n2069\n2150\n2176\n2217\n2253\n2304\n2325\n2397\n2425\n2525\n2559\n2562\n2590\n2738\n2774\n2885\n3003\n3036\n3058\n3143\n3279\n3397\n3524\n3758\n3875\n4012\n4153\n4238\n4514\n4833\n5099\n5368\n5602\n5836\n6004\n6345\n6884\n7473\n7962\n8633\n9671\n10889\n12842\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n696\n780\n809\n882\n891\n913\n938\n957\n1009\n1024\n1036\n1075\n1108\n1127\n1212\n1304\n1419\n1485\n1568\n1607\n1607\n1690\n1710\n1809\n1824\n1888\n1914\n1955\n2005\n2056\n2077\n2149\n2168\n2268\n2302\n2305\n2338\n2418\n2454\n2558\n2683\n2716\n2732\n2816\n2939\n3057\n3184\n3361\n3502\n3639\n3780\n3868\n4049\n4310\n4616\n4878\n5102\n5416\n5578\n5890\n6335\n6858\n7387\n7994\n8936\n10097\n11988\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5612\n6220\n7150\n7763\n8078\n8941\n9569\n9666\n9775\n9840\n10032\n10773\n11087\n11823\n11840\n12712\n13683\n13789\n14437\n14770\n15541\n15712\n16039\n16821\n17658\n17961\n18354\n18646\n18933\n19663\n20497\n21291\n22159\n22699\n22950\n23739\n24632\n24669\n24974\n25090\n25310\n26395\n27258\n27838\n28830\n29691\n30470\n30568\n30821\n31365\n31536\n31872\n32079\n32669\n33689\n34267\n35525\n36627\n37786\n38609\n39891\n40329\n41989\n42521\n43796\n44495\n45979\n47554\n48819\n50157\n51258\n52161\n52780\n53831\n54277\n55308\n55973\n57713\n59046\n60589\n62762\n63668\n64644\n65548\n66772\n68066\n69590\n70962\n73821\n75769\n78010\n79615\n81570\n85327\n89848\n93103\n98112\n100391\n103518\n107079\n111050\n117647\n125174\n131347\n140378\n154120\n169009\n196644\n",
"1\n5\n12\n22\n28\n41\n56\n",
"72\n138\n220\n256\n329\n351\n414\n534\n605\n670\n675\n705\n750\n896\n925\n998\n1002\n1092\n1117\n1143\n1188\n1203\n1221\n1261\n1294\n1313\n1398\n1490\n1581\n1647\n1730\n1766\n1866\n1939\n1959\n2058\n2069\n2150\n2176\n2217\n2253\n2304\n2325\n2397\n2425\n2525\n2559\n2562\n2590\n2738\n2774\n2885\n3003\n3036\n3058\n3143\n3279\n3397\n3524\n3758\n3875\n4012\n4153\n4238\n4514\n4833\n5099\n5368\n5596\n5830\n5998\n6339\n6878\n7467\n7956\n8627\n9659\n10877\n12824\n",
"242\n766\n1028\n2001\n2817\n3249\n3459\n4125\n4259\n5108\n5253\n5612\n6220\n7150\n7763\n8078\n8941\n9569\n9666\n9775\n9840\n10032\n10773\n11087\n11823\n11840\n12712\n13683\n13789\n14437\n14770\n15541\n15712\n16039\n16821\n17658\n17961\n18354\n18646\n18933\n19663\n20497\n21291\n22159\n22699\n22950\n23739\n24632\n24669\n24974\n25090\n25310\n26395\n27258\n27838\n28830\n29691\n30470\n30568\n30821\n31365\n31536\n31872\n32079\n32669\n33689\n34267\n35525\n36627\n37786\n38609\n39891\n40329\n41989\n42521\n43796\n44495\n45979\n47554\n48819\n50157\n51258\n52161\n52780\n53831\n54277\n55308\n55973\n57713\n59046\n60589\n62762\n63668\n64644\n65548\n66772\n68066\n69590\n70962\n73821\n75560\n77801\n79406\n81361\n85118\n89639\n92894\n97903\n100182\n103309\n106870\n110841\n117438\n124965\n131138\n140169\n153702\n168591\n196017\n",
"72\n138\n220\n256\n329\n351\n414\n534\n605\n670\n675\n705\n750\n769\n798\n871\n875\n965\n990\n1016\n1061\n1076\n1094\n1134\n1167\n1186\n1271\n1363\n1454\n1520\n1603\n1639\n1739\n1812\n1832\n1931\n1942\n2023\n2049\n2090\n2126\n2177\n2198\n2270\n2298\n2398\n2432\n2435\n2463\n2611\n2647\n2758\n2876\n2909\n2931\n3016\n3152\n3270\n3397\n3631\n3748\n3885\n4026\n4111\n4387\n4706\n4972\n5241\n5469\n5703\n5871\n6212\n6751\n7340\n7829\n8500\n9532\n10623\n12570\n",
"4\n5\n6\n14\n",
"1\n3\n8\n12\n18\n26\n44\n",
"242\n766\n1186\n2159\n2975\n3407\n3654\n4320\n4454\n5303\n5448\n5814\n6422\n7352\n7965\n8280\n9143\n9771\n9868\n9977\n10042\n10746\n11487\n11801\n12537\n12554\n13426\n14397\n14956\n15604\n15937\n16708\n16879\n17206\n17988\n18825\n19128\n19521\n19813\n20152\n20882\n21716\n22510\n23378\n23918\n24169\n24958\n25851\n25874\n26179\n26295\n26515\n27214\n28077\n28657\n29649\n30510\n30903\n31001\n31254\n31798\n31969\n32305\n32512\n33102\n34122\n34858\n36116\n37218\n38377\n39237\n40519\n40957\n42617\n43354\n44636\n45335\n46819\n48394\n49659\n50997\n52098\n53001\n53620\n54671\n55629\n56660\n57325\n59065\n60012\n61555\n63728\n65087\n66122\n67026\n68250\n69544\n71068\n72598\n75457\n77405\n79646\n81288\n83295\n87052\n91187\n94647\n99663\n102395\n105581\n109142\n113113\n119696\n126837\n133373\n142411\n156206\n171256\n199344\n",
"13\n26\n34\n45\n48\n70\n80\n118\n",
"10\n20\n28\n48\n51\n64\n74\n112\n",
"1\n5\n12\n22\n28\n38\n53\n",
"1\n5\n12\n22\n28\n38\n53\n",
"10\n27\n35\n55\n58\n78\n87\n129\n",
"72\n138\n220\n266\n310\n332\n395\n487\n558\n623\n628\n658\n696\n780\n809\n882\n891\n913\n938\n957\n1009\n1024\n1036\n1075\n1108\n1127\n1212\n1304\n1419\n1485\n1568\n1607\n1607\n1690\n1710\n1809\n1824\n1888\n1914\n1955\n2005\n2056\n2077\n2149\n2168\n2268\n2302\n2305\n2338\n2418\n2454\n2558\n2683\n2716\n2732\n2816\n2939\n3057\n3184\n3361\n3502\n3639\n3780\n3868\n4049\n4310\n4616\n4878\n5102\n5416\n5578\n5890\n6335\n6858\n7387\n7994\n8936\n10097\n11988\n",
"10\n27\n35\n55\n58\n78\n87\n129\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
The Smart Beaver from ABBYY began to develop a new educational game for children. The rules of the game are fairly simple and are described below.
The playing field is a sequence of n non-negative integers ai numbered from 1 to n. The goal of the game is to make numbers a1, a2, ..., ak (i.e. some prefix of the sequence) equal to zero for some fixed k (k < n), and this should be done in the smallest possible number of moves.
One move is choosing an integer i (1 ≤ i ≤ n) such that ai > 0 and an integer t (t ≥ 0) such that i + 2t ≤ n. After the values of i and t have been selected, the value of ai is decreased by 1, and the value of ai + 2t is increased by 1. For example, let n = 4 and a = (1, 0, 1, 2), then it is possible to make move i = 3, t = 0 and get a = (1, 0, 0, 3) or to make move i = 1, t = 1 and get a = (0, 0, 2, 2) (the only possible other move is i = 1, t = 0).
You are given n and the initial sequence ai. The task is to calculate the minimum number of moves needed to make the first k elements of the original sequence equal to zero for each possible k (1 ≤ k < n).
Input
The first input line contains a single integer n. The second line contains n integers ai (0 ≤ ai ≤ 104), separated by single spaces.
The input limitations for getting 20 points are:
* 1 ≤ n ≤ 300
The input limitations for getting 50 points are:
* 1 ≤ n ≤ 2000
The input limitations for getting 100 points are:
* 1 ≤ n ≤ 105
Output
Print exactly n - 1 lines: the k-th output line must contain the minimum number of moves needed to make the first k elements of the original sequence ai equal to zero.
Please do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.
Examples
Input
4
1 0 1 2
Output
1
1
3
Input
8
1 2 3 4 5 6 7 8
Output
1
3
6
10
16
24
40
### Input:
8
1 2 3 4 5 6 7 8
### Output:
1
3
6
10
16
24
40
### Input:
4
1 0 1 2
### Output:
1
1
3
### Code:
n = int(input())
a = [int(t) for t in input().split()]
c = 0
for i in range(n - 1):
if a[i] > 0:
c += a[i]
print(c)
j = 0
while 2 ** j + i < n:
j += 1
a[2 ** (j - 1) + i] += a[i]
a[i] = 0
else:
print(c) |
19_B. Checkout Assistant_1260 | Bob came to a cash & carry store, put n items into his trolley, and went to the checkout counter to pay. Each item is described by its price ci and time ti in seconds that a checkout assistant spends on this item. While the checkout assistant is occupied with some item, Bob can steal some other items from his trolley. To steal one item Bob needs exactly 1 second. What is the minimum amount of money that Bob will have to pay to the checkout assistant? Remember, please, that it is Bob, who determines the order of items for the checkout assistant.
Input
The first input line contains number n (1 ≤ n ≤ 2000). In each of the following n lines each item is described by a pair of numbers ti, ci (0 ≤ ti ≤ 2000, 1 ≤ ci ≤ 109). If ti is 0, Bob won't be able to steal anything, while the checkout assistant is occupied with item i.
Output
Output one number — answer to the problem: what is the minimum amount of money that Bob will have to pay.
Examples
Input
4
2 10
0 20
1 5
1 3
Output
8
Input
3
0 1
0 10
0 100
Output
111 | n=int(input())
ar=[float('inf')]*(n+1)
ar[0]=0
for i in range(n):
t,c=map(int,input().split())
for j in range(n-1,-1,-1):
w=min(j+t+1,n)
ar[w]=min(ar[w],ar[j]+c)
print(ar[n])
| {
"input": [
"4\n2 10\n0 20\n1 5\n1 3\n",
"3\n0 1\n0 10\n0 100\n",
"5\n0 968804136\n0 736567537\n2 343136264\n0 259899572\n1 425744418\n",
"5\n0 51690939\n0 62436494\n0 39009053\n0 70426298\n0 631569476\n",
"5\n5 491957578\n4 747764103\n3 446810728\n4 896625835\n4 190748656\n",
"2\n2 87623264\n0 864627704\n",
"10\n3 512981548\n0 214269975\n2 603901234\n3 772872647\n0 224281389\n4 561877930\n1 809519308\n4 883486551\n1 114469023\n2 184038037\n",
"5\n4 33400980\n2 410698581\n4 794747123\n0 301889198\n3 219919361\n",
"2\n0 861438648\n1 469893784\n",
"2\n0 635254032\n0 75159864\n",
"5\n0 968804136\n0 736567537\n2 343136264\n0 259899572\n1 103950505\n",
"5\n0 51690939\n0 62436494\n0 39009053\n0 70426298\n0 799933987\n",
"5\n5 491957578\n4 747764103\n3 446810728\n4 896625835\n4 33558766\n",
"2\n2 123040534\n0 864627704\n",
"10\n3 512981548\n0 214269975\n2 603901234\n3 772872647\n0 224281389\n4 561877930\n1 809519308\n4 1128067436\n1 114469023\n2 184038037\n",
"5\n4 15419518\n2 410698581\n4 794747123\n0 301889198\n3 219919361\n",
"2\n0 861438648\n1 631594951\n",
"2\n0 635254032\n0 134646445\n",
"4\n2 10\n0 0\n1 5\n1 3\n",
"5\n0 968804136\n0 736567537\n2 116381581\n0 259899572\n1 103950505\n",
"5\n0 51690939\n0 62436494\n0 39009053\n0 70426298\n0 1372806192\n",
"10\n3 512981548\n0 214269975\n2 603901234\n3 772872647\n0 224281389\n4 561877930\n1 809519308\n4 1128067436\n1 40056209\n2 184038037\n",
"2\n0 158610850\n0 134646445\n",
"4\n2 1\n0 0\n1 5\n1 3\n",
"10\n3 512981548\n0 214269975\n2 603901234\n3 772872647\n0 224281389\n4 544111689\n1 809519308\n4 1128067436\n1 40056209\n2 184038037\n",
"10\n3 512981548\n0 214269975\n2 603901234\n3 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1128067436\n1 40056209\n2 184038037\n",
"2\n1 1522651002\n1 612262323\n",
"5\n5 491957578\n1 1041170864\n3 446810728\n4 896625835\n4 2177645\n",
"2\n1 1522651002\n1 1002823702\n",
"2\n1 551083777\n1 1002823702\n",
"4\n2 0\n0 0\n1 5\n2 3\n",
"5\n5 491957578\n2 1041170864\n3 360748231\n4 896625835\n1 2177645\n",
"2\n1 946947494\n1 1002823702\n",
"5\n5 491957578\n2 1041170864\n4 360748231\n4 896625835\n1 2177645\n",
"5\n5 222326297\n2 1041170864\n4 360748231\n4 896625835\n1 2177645\n",
"5\n5 491957578\n4 1036171349\n3 446810728\n4 896625835\n4 33558766\n",
"5\n4 15419518\n2 410698581\n4 794747123\n0 301889198\n3 318920043\n",
"2\n0 1522651002\n1 631594951\n",
"5\n5 491957578\n1 1036171349\n3 446810728\n4 896625835\n4 33558766\n",
"5\n4 15419518\n2 410698581\n4 794747123\n0 301889198\n3 160154711\n",
"2\n1 1522651002\n1 631594951\n",
"4\n2 1\n0 0\n1 5\n2 3\n",
"5\n5 491957578\n1 1041170864\n3 446810728\n4 896625835\n4 33558766\n",
"5\n4 15419518\n2 410698581\n4 794747123\n0 336918934\n3 160154711\n",
"4\n2 1\n0 0\n1 5\n4 3\n",
"10\n3 512981548\n0 163778639\n2 603901234\n3 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1128067436\n1 40056209\n2 184038037\n",
"5\n4 15419518\n2 182823038\n4 794747123\n0 336918934\n3 160154711\n",
"2\n0 1522651002\n1 612262323\n",
"4\n2 1\n1 0\n1 5\n4 3\n",
"5\n5 491957578\n2 1041170864\n3 446810728\n4 896625835\n4 2177645\n",
"10\n3 512981548\n0 163778639\n2 603901234\n3 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1651150053\n1 40056209\n2 184038037\n",
"5\n4 15419518\n2 182823038\n8 794747123\n0 336918934\n3 160154711\n",
"4\n2 1\n1 0\n1 5\n2 3\n",
"5\n5 491957578\n2 1041170864\n3 360748231\n4 896625835\n4 2177645\n",
"10\n3 512981548\n0 163778639\n2 603901234\n3 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1651150053\n1 40056209\n2 291657563\n",
"5\n4 15419518\n2 182823038\n8 841611853\n0 336918934\n3 160154711\n",
"10\n3 512981548\n0 163778639\n2 603901234\n3 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1651150053\n1 40056209\n2 483276873\n",
"5\n4 15419518\n2 182823038\n8 841611853\n0 127971438\n3 160154711\n",
"4\n2 0\n1 0\n1 5\n2 3\n",
"10\n3 512981548\n0 163778639\n2 603901234\n2 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1651150053\n1 40056209\n2 483276873\n",
"5\n4 15419518\n2 182823038\n8 841611853\n0 127971438\n4 160154711\n",
"2\n1 946947494\n0 1002823702\n",
"4\n2 0\n1 0\n1 8\n2 3\n",
"10\n3 512981548\n0 163778639\n3 603901234\n2 772872647\n0 224281389\n8 544111689\n1 809519308\n4 1651150053\n1 40056209\n2 483276873\n",
"5\n4 15419518\n2 182823038\n8 407482685\n0 127971438\n4 160154711\n",
"2\n1 946947494\n0 149372550\n",
"4\n2 0\n1 0\n0 8\n2 3\n",
"5\n5 222326297\n2 1041170864\n4 360748231\n0 896625835\n1 2177645\n",
"10\n3 512981548\n0 163778639\n3 603901234\n2 772872647\n1 224281389\n8 544111689\n1 809519308\n4 1651150053\n1 40056209\n2 483276873\n",
"5\n4 15419518\n2 182823038\n8 407482685\n0 127971438\n4 34895028\n",
"2\n1 946947494\n0 211360858\n",
"4\n2 0\n1 0\n0 8\n0 3\n"
],
"output": [
"8",
"111",
"768880682",
"855132260",
"190748656",
"87623264",
"860384990",
"33400980",
"469893784",
"710413896",
"447086769\n",
"1023496771\n",
"33558766\n",
"123040534\n",
"860384990\n",
"15419518\n",
"631594951\n",
"769900477\n",
"8\n",
"220332086\n",
"1596368976\n",
"785972176\n",
"293257295\n",
"1\n",
"768205935\n",
"584167898\n",
"612262323\n",
"2177645\n",
"1002823702\n",
"551083777\n",
"0\n",
"362925876\n",
"946947494\n",
"360748231\n",
"222326297\n",
"33558766\n",
"15419518\n",
"631594951\n",
"33558766\n",
"15419518\n",
"631594951\n",
"1\n",
"33558766\n",
"15419518\n",
"1\n",
"584167898\n",
"15419518\n",
"612262323\n",
"1\n",
"2177645\n",
"584167898\n",
"15419518\n",
"1\n",
"2177645\n",
"584167898\n",
"15419518\n",
"584167898\n",
"15419518\n",
"0\n",
"584167898\n",
"15419518\n",
"946947494\n",
"0\n",
"584167898\n",
"15419518\n",
"946947494\n",
"0\n",
"222326297\n",
"584167898\n",
"15419518\n",
"946947494\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Bob came to a cash & carry store, put n items into his trolley, and went to the checkout counter to pay. Each item is described by its price ci and time ti in seconds that a checkout assistant spends on this item. While the checkout assistant is occupied with some item, Bob can steal some other items from his trolley. To steal one item Bob needs exactly 1 second. What is the minimum amount of money that Bob will have to pay to the checkout assistant? Remember, please, that it is Bob, who determines the order of items for the checkout assistant.
Input
The first input line contains number n (1 ≤ n ≤ 2000). In each of the following n lines each item is described by a pair of numbers ti, ci (0 ≤ ti ≤ 2000, 1 ≤ ci ≤ 109). If ti is 0, Bob won't be able to steal anything, while the checkout assistant is occupied with item i.
Output
Output one number — answer to the problem: what is the minimum amount of money that Bob will have to pay.
Examples
Input
4
2 10
0 20
1 5
1 3
Output
8
Input
3
0 1
0 10
0 100
Output
111
### Input:
4
2 10
0 20
1 5
1 3
### Output:
8
### Input:
3
0 1
0 10
0 100
### Output:
111
### Code:
n=int(input())
ar=[float('inf')]*(n+1)
ar[0]=0
for i in range(n):
t,c=map(int,input().split())
for j in range(n-1,-1,-1):
w=min(j+t+1,n)
ar[w]=min(ar[w],ar[j]+c)
print(ar[n])
|
223_C. Partial Sums_1264 | You've got an array a, consisting of n integers. The array elements are indexed from 1 to n. Let's determine a two step operation like that:
1. First we build by the array a an array s of partial sums, consisting of n elements. Element number i (1 ≤ i ≤ n) of array s equals <image>. The operation x mod y means that we take the remainder of the division of number x by number y.
2. Then we write the contents of the array s to the array a. Element number i (1 ≤ i ≤ n) of the array s becomes the i-th element of the array a (ai = si).
You task is to find array a after exactly k described operations are applied.
Input
The first line contains two space-separated integers n and k (1 ≤ n ≤ 2000, 0 ≤ k ≤ 109). The next line contains n space-separated integers a1, a2, ..., an — elements of the array a (0 ≤ ai ≤ 109).
Output
Print n integers — elements of the array a after the operations are applied to it. Print the elements in the order of increasing of their indexes in the array a. Separate the printed numbers by spaces.
Examples
Input
3 1
1 2 3
Output
1 3 6
Input
5 0
3 14 15 92 6
Output
3 14 15 92 6 | n, k = map(int, input().split())
num = list(map(int, input().split()))
MOD = 10 ** 9 + 7
cf = [1]
for i in range(1, 2020):
cf.append((cf[-1] * (k + i - 1) * pow(i, MOD - 2, MOD)) % MOD)
ans = [0 for i in range(n)]
for i in range(n):
for j in range(i + 1):
ans[i] = (ans[i] + cf[i - j] * num[j]) % MOD
print(' '.join(map(str, ans)))
# Made By Mostafa_Khaled | {
"input": [
"5 0\n3 14 15 92 6\n",
"3 1\n1 2 3\n",
"10 1000000\n1 2 3 4 84 5 6 7 8 9\n",
"1 1\n3\n",
"13 666\n84 89 29 103 128 233 190 122 117 208 119 97 200\n",
"1 0\n0\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42\n",
"4 1\n3 20 3 4\n",
"1 0\n123\n",
"17 239\n663 360 509 307 311 501 523 370 302 601 541 42 328 200 196 110 573\n",
"1 1\n0\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42\n",
"5 20\n11 5 6 8 11\n",
"10 1000000\n1 2 3 4 8 5 6 7 8 9\n",
"13 666\n84 89 29 103 128 233 190 122 117 208 119 97 334\n",
"1 2\n0\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 30\n",
"4 1\n5 20 3 4\n",
"1 0\n201\n",
"17 239\n663 360 509 307 311 501 523 370 302 601 1047 42 328 200 196 110 573\n",
"1 1\n1\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 14 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42\n",
"5 20\n11 5 6 4 11\n",
"5 0\n2 14 15 92 6\n",
"3 1\n2 2 3\n",
"10 1000010\n1 2 3 4 8 5 6 7 8 9\n",
"13 666\n84 89 29 53 128 233 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 43 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 30\n",
"4 1\n5 20 3 7\n",
"17 239\n663 360 509 307 311 501 523 370 302 48 1047 42 328 200 196 110 573\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 14 17 42 42 42 42 42 42 42 42 42 42 42 42 42 42\n",
"5 20\n11 0 6 4 11\n",
"5 0\n0 14 15 92 6\n",
"3 0\n2 2 3\n",
"10 0000010\n1 2 3 4 8 5 6 7 8 9\n",
"13 666\n84 89 29 53 128 321 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 74 42 42 42 42 42 42 42 42 42 42 43 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 30\n",
"4 0\n5 20 3 7\n",
"17 239\n663 360 509 391 311 501 523 370 302 48 1047 42 328 200 196 110 573\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 14 17 42 10 42 42 42 42 42 42 42 42 42 42 42 42\n",
"5 34\n11 0 6 4 11\n",
"5 0\n0 14 15 11 6\n",
"3 0\n3 2 3\n",
"10 0000010\n1 2 3 1 8 5 6 7 8 9\n",
"13 666\n84 26 29 53 128 321 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 74 42 42 42 42 42 42 7 42 42 42 43 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 30\n",
"17 239\n663 360 509 391 311 501 523 370 302 48 1047 42 328 200 196 110 1083\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 24 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 14 17 42 10 42 42 42 42 42 42 42 42 42 42 42 42\n",
"5 0\n0 14 27 11 6\n",
"10 0000010\n1 2 3 1 8 5 6 7 15 9\n",
"13 666\n46 26 29 53 128 321 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 74 42 42 42 42 42 42 7 42 42 42 43 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 1\n",
"17 239\n663 360 509 391 311 501 202 370 302 48 1047 42 328 200 196 110 1083\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 24 42 42 42 42 42 42 42 42 42 42 83 42 42 42 42 14 17 42 10 42 42 42 42 42 42 42 42 42 42 42 42\n",
"5 0\n0 14 27 16 6\n",
"10 0000010\n1 2 3 1 14 5 6 7 15 9\n",
"13 666\n46 26 37 53 128 321 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 74 42 42 42 42 42 42 7 42 42 42 83 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 1\n",
"17 239\n663 360 509 281 311 501 202 370 302 48 1047 42 328 200 196 110 1083\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 24 42 42 42 42 42 42 42 42 42 42 83 42 42 42 42 14 17 42 10 42 42 57 42 42 42 42 42 42 42 42 42\n",
"5 0\n0 14 35 16 6\n",
"10 0000010\n1 2 3 1 27 5 6 7 15 9\n",
"13 666\n46 45 37 53 128 321 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 74 42 42 42 77 42 42 7 42 42 42 83 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 1\n",
"17 239\n663 360 509 281 311 501 202 370 481 48 1047 42 328 200 196 110 1083\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 24 42 42 42 42 42 42 42 42 42 42 83 42 42 42 42 14 17 42 10 42 42 57 42 42 23 42 42 42 42 42 42\n",
"5 0\n0 14 35 16 1\n",
"10 0000010\n1 2 3 1 27 3 6 7 15 9\n",
"13 666\n46 45 37 53 128 56 190 122 117 208 119 97 334\n",
"42 42\n42 42 42 74 42 42 42 77 42 42 7 42 42 64 83 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 1\n",
"17 239\n663 360 509 281 311 501 202 370 481 48 1051 42 328 200 196 110 1083\n",
"42 42\n42 42 42 42 42 42 42 42 42 42 24 42 42 52 42 42 42 42 42 42 42 83 42 42 42 42 14 17 42 10 42 42 57 42 42 23 42 42 42 42 42 42\n",
"5 0\n0 14 35 5 1\n",
"1 1\n201\n"
],
"output": [
"3 14 15 92 6 ",
"1 3 6 ",
"1 1000002 2496503 504322849 591771075 387496712 683276420 249833545 23968189 474356595 ",
"3 ",
"84 56033 18716627 174151412 225555860 164145872 451267967 434721493 224270207 253181081 361500071 991507723 152400567 ",
"0 ",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773014 214937435 654148201 446749626 489165413 202057369 926377846 779133524 993842970 721730118 484757814 939150939 225471671 20649822 51624555 850529088 441269800 845570818 580382507 773596603 435098280 957216216 73968454 779554271 588535300 530034849 736571438 149644609 ",
"3 23 26 30 ",
"123 ",
"663 158817 19101389 537972231 259388293 744981080 6646898 234671418 400532510 776716020 52125061 263719534 192023697 446278138 592149678 33061993 189288187 ",
"0 ",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773014 214937435 654148201 446749626 489165413 202057369 926377846 779133524 993842970 721730118 484757814 939150939 225471671 20649822 51624555 850529088 441269800 845570818 580382507 773596603 435098280 957216216 73968454 779554271 588535300 530034849 736571438 149644609 ",
"11 225 2416 18118 106536 ",
"1 1000002 2496503 504322849 591770999 311496712 645542420 224765591 516711096 649261079\n",
"84 56033 18716627 174151412 225555860 164145872 451267967 434721493 224270207 253181081 361500071 991507723 152400701\n",
"0\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773014 214937435 654148201 446749626 489165413 202057369 926377846 779133524 993842970 721730118 484757814 939150939 225471671 20649822 51624555 850529088 441269800 845570818 580382507 773596603 435098280 957216216 73968454 779554271 588535300 530034849 736571438 149644597\n",
"5 25 28 32\n",
"201\n",
"663 158817 19101389 537972231 259388293 744981080 6646898 234671418 400532510 776716020 52125567 263840468 206535777 612081891 123276661 845833532 908663880\n",
"1\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773014 214937435 654148201 446749626 489165413 202057369 926377846 779133524 993842970 721730118 484757814 939150939 225471643 20648646 51599271 850158256 437097940 807189706 279730463 711982601 807712523 805073106 298038600 475158588 660787710 599391012 366184931 166868326\n",
"11 225 2416 18114 106456\n",
"2 14 15 92 6\n",
"2 4 7\n",
"1 1000012 12496578 584288209 992308274 231197244 45948862 595982554 504118493 649422819\n",
"84 56033 18716627 174151362 225522560 153040322 978432188 852936841 265126447 488937224 994089645 958105263 95372047\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773015 214937477 654149104 446762870 489314408 203428123 937115419 852762596 444821029 227163797 262469593 342879352 8605512 196744246 600566934 99913950 642203391 531108945 271868595 957236889 95201146 763234207 745747255 344503962 868607390 469425161 195769547 454291698\n",
"5 25 28 35\n",
"663 158817 19101389 537972231 259388293 744981080 6646898 234671418 400532510 776715467 51993400 247980428 932445911 529644690 916828726 116950611 397761820\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773014 214937435 654148201 446749626 489165413 202057369 926377846 779133524 993842970 721730118 484757814 939150939 225471643 20648621 51598221 850135681 436766840 803464831 245461613 443543276 966985737 530621533 662196541 32364071 567577280 21044945 963824366 443308949\n",
"11 220 2316 17064 98756\n",
"0 14 15 92 6\n",
"2 2 3\n",
"1 12 78 364 1368 4397 12530 32418 77441 172965\n",
"84 56033 18716627 174151362 225522560 153040410 978490796 872482609 617317427 392878216 122182657 783174453 302014406\n",
"42 1806 39732 596012 6855114 64454334 515827312 612592347 592767274 120720140 797142882 828904127 463105338 571970234 660082364 275220438 289170630 12918872 469630160 633302993 874335553 980317482 321310139 350455586 55045347 839800837 86995722 159051063 661056932 794253564 390910553 126137310 880557763 264467905 260382873 608805018 702481803 896124293 980697244 986950684 638120645 689705818\n",
"5 20 3 7\n",
"663 158817 19101389 537972315 259408369 747390200 200179538 943396061 444549919 900090088 370105107 279915350 475548761 198595447 604895912 951683704 899146814\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012592 397606113 289227498 685193257 740773014 214937435 654148201 446749626 489165413 202057369 926377846 779133524 993842970 721730118 484757814 939150939 225471643 20648621 51598221 850135649 436765496 803435935 245037805 438775436 923121609 187019197 306066251 601066064 393699440 134267968 44515010 383025988\n",
"11 374 6551 78748 730212\n",
"0 14 15 11 6\n",
"3 2 3\n",
"1 12 78 361 1338 4232 11870 30273 71435 157950\n",
"84 55970 18674669 160158369 109749473 39991744 829969657 429535344 94380281 150791115 770326558 32887459 648014009\n",
"42 1806 39732 596012 6855114 64454334 515827312 612592347 592767274 120720140 797142847 828902657 463073733 571506694 654867539 227244048 913355582 435901373 685397962 943124109 654423232 849822880 911625655 187150788 842062222 111330478 54320086 165216541 459043775 366843596 287310159 915507583 368299889 491228615 457859793 730144084 630547855 233475828 454884963 821196910 645836716 352788303\n",
"663 158817 19101389 537972315 259408369 747390200 200179538 943396061 444549919 900090088 370105107 279915350 475548761 198595447 604895912 951683704 899147324\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012574 397605357 289211244 684954865 738091104 190263863 460871887 121426337 371560281 104251084 927565796 512022013 897433804 552030507 603795062 450223325 608667033 680962300 604848602 544610522 554913866 295112069 153019471 269680942 881824024 277993574 40500219 117418281 808995986 791880318 934197567 352611267\n",
"0 14 27 11 6\n",
"1 12 78 361 1338 4232 11870 30273 71442 158020\n",
"46 30662 10234451 280803175 787593140 871042492 769144324 590303418 868994417 827449343 444756626 479680872 937942218\n",
"42 1806 39732 596012 6855114 64454334 515827312 612592347 592767274 120720140 797142847 828902657 463073733 571506694 654867539 227244048 913355582 435901373 685397962 943124109 654423232 849822880 911625655 187150788 842062222 111330478 54320086 165216541 459043775 366843596 287310159 915507583 368299889 491228615 457859793 730144084 630547855 233475828 454884963 821196910 645836716 352788274\n",
"663 158817 19101389 537972315 259408369 747390200 200179217 943319342 435343639 160518928 626050242 718848827 325510033 947240009 125716029 911969229 914228351\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012574 397605357 289211244 684954865 738091104 190263863 460871887 121426337 371560281 104251084 927565796 512022054 897435526 552067530 604338066 456332120 664867947 121202786 623640533 34711095 277694845 181295071 705884579 378168486 101695352 784630959 265279778 355695456 916059284 142810010 463449237 416828871\n",
"0 14 27 16 6\n",
"1 12 78 361 1344 4292 12200 31593 75732 170032\n",
"46 30662 10234459 280808503 789370028 266696213 942229870 783766421 671273433 846235012 650101021 968805460 953851677\n",
"42 1806 39732 596012 6855114 64454334 515827312 612592347 592767274 120720140 797142847 828902657 463073733 571506694 654867579 227245728 913391702 436431133 691357762 997954269 83926145 794985739 950748169 404498088 950533445 260467166 379673789 208993452 416738781 342238286 324653743 337032747 27743493 836840006 861974531 970863780 501699706 831463594 657768486 396809404 13761223 538672230\n",
"663 158817 19101389 537972205 259382079 744235400 946743624 610465647 258654174 308480736 804713487 962743574 352399154 214090200 438961380 937913996 876700387\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012574 397605357 289211244 684954865 738091104 190263863 460871887 121426337 371560281 104251084 927565796 512022054 897435526 552067530 604338066 456332120 664867947 121202786 623640533 34711095 277694845 181295071 705884594 378169116 101708897 784829619 267514703 376256766 77122872 247246083 228120178 998334112\n",
"0 14 35 16 6\n",
"1 12 78 361 1357 4422 12915 34453 85027 196058\n",
"46 30681 10247113 285028612 729047625 427774383 526704496 314179084 590889396 458927944 311771907 131590419 230454967\n",
"42 1806 39732 596012 6855114 64454334 515827312 612592382 592768744 120751745 797606387 834117482 511050123 947321749 231885078 11477926 603570586 656343454 821852364 407638753 247230943 7968864 679218521 437173724 944367967 462480323 807083757 312593846 627368515 854496160 97893033 139555827 906404434 908773954 524622989 496676054 667453480 823747523 994686001 9152477 841439641 423256962\n",
"663 158817 19101389 537972205 259382079 744235400 946743624 610465647 258654353 308523517 809847207 375152407 303133799 819793968 70914437 56271075 16180750\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012574 397605357 289211244 684954865 738091104 190263863 460871887 121426337 371560281 104251084 927565796 512022054 897435526 552067530 604338066 456332120 664867947 121202786 623640533 34711095 277694845 181295071 705884594 378169116 101708897 784829600 267513905 376239609 76871236 244415178 202075852 794320225\n",
"0 14 35 16 1\n",
"1 12 78 361 1357 4420 12895 34343 84587 194628\n",
"46 30681 10247113 285028612 729047625 427774118 526528006 255319669 484859747 475469273 528309979 681097972 983179691\n",
"42 1806 39732 596012 6855114 64454334 515827312 612592382 592768744 120751745 797606387 834117482 511050123 947321771 231886002 11497792 603861954 659621344 852008952 643865359 867070520 929486253 798759536 546832897 826393144 691424860 681161057 389326100 113835591 275035127 179731876 352249812 946490698 431037055 257018819 275809571 96346745 985333461 661272872 111510959 543675814 582338966\n",
"663 158817 19101389 537972205 259382079 744235400 946743624 610465647 258654353 308523517 809847211 375153363 303248519 829009808 628472757 153605238 974436691\n",
"42 1806 39732 595980 6853770 64425438 515403504 607824507 548903146 777117811 441012574 397605357 289211244 684954875 738091524 190272893 461004327 122916287 385267821 211626814 663856509 21802679 951772351 329185334 641622238 287670544 425812173 610626541 117489202 44046991 133076136 96155972 542287440 979197804 161888821 502617561 917010850 176960488 470774363 836396310 248546841 230266586\n",
"0 14 35 5 1\n",
"201\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You've got an array a, consisting of n integers. The array elements are indexed from 1 to n. Let's determine a two step operation like that:
1. First we build by the array a an array s of partial sums, consisting of n elements. Element number i (1 ≤ i ≤ n) of array s equals <image>. The operation x mod y means that we take the remainder of the division of number x by number y.
2. Then we write the contents of the array s to the array a. Element number i (1 ≤ i ≤ n) of the array s becomes the i-th element of the array a (ai = si).
You task is to find array a after exactly k described operations are applied.
Input
The first line contains two space-separated integers n and k (1 ≤ n ≤ 2000, 0 ≤ k ≤ 109). The next line contains n space-separated integers a1, a2, ..., an — elements of the array a (0 ≤ ai ≤ 109).
Output
Print n integers — elements of the array a after the operations are applied to it. Print the elements in the order of increasing of their indexes in the array a. Separate the printed numbers by spaces.
Examples
Input
3 1
1 2 3
Output
1 3 6
Input
5 0
3 14 15 92 6
Output
3 14 15 92 6
### Input:
5 0
3 14 15 92 6
### Output:
3 14 15 92 6
### Input:
3 1
1 2 3
### Output:
1 3 6
### Code:
n, k = map(int, input().split())
num = list(map(int, input().split()))
MOD = 10 ** 9 + 7
cf = [1]
for i in range(1, 2020):
cf.append((cf[-1] * (k + i - 1) * pow(i, MOD - 2, MOD)) % MOD)
ans = [0 for i in range(n)]
for i in range(n):
for j in range(i + 1):
ans[i] = (ans[i] + cf[i - j] * num[j]) % MOD
print(' '.join(map(str, ans)))
# Made By Mostafa_Khaled |
248_A. Cupboards_1268 | One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house.
Karlsson's gaze immediately fell on n wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find.
And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open.
Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds t, in which he is able to bring all the cupboard doors in the required position.
Your task is to write a program that will determine the required number of seconds t.
Input
The first input line contains a single integer n — the number of cupboards in the kitchen (2 ≤ n ≤ 104). Then follow n lines, each containing two integers li and ri (0 ≤ li, ri ≤ 1). Number li equals one, if the left door of the i-th cupboard is opened, otherwise number li equals zero. Similarly, number ri equals one, if the right door of the i-th cupboard is opened, otherwise number ri equals zero.
The numbers in the lines are separated by single spaces.
Output
In the only output line print a single integer t — the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs.
Examples
Input
5
0 1
1 0
0 1
1 1
0 1
Output
3 | k = int(input())
lo=ro=rc=lc=0
for _ in range(k):
n , m = map(int,input().split())
if(n==0):
lo+=1
else:
lc=lc+1
if(m==0):
ro+=1
else :
rc=rc+1
print(min(lo,lc)+min(ro,rc))
| {
"input": [
"5\n0 1\n1 0\n0 1\n1 1\n0 1\n",
"8\n0 1\n1 0\n0 1\n1 1\n0 1\n1 0\n0 1\n1 0\n",
"8\n1 0\n1 0\n1 0\n0 1\n0 1\n1 1\n1 1\n0 1\n",
"2\n0 0\n0 0\n",
"3\n0 1\n1 1\n1 1\n",
"5\n1 0\n1 0\n1 0\n0 1\n0 1\n",
"15\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n0 0\n",
"8\n0 1\n1 0\n0 1\n1 1\n0 0\n1 0\n0 1\n1 0\n",
"3\n0 1\n1 1\n1 0\n",
"8\n0 1\n1 1\n0 1\n1 1\n0 1\n1 0\n0 1\n1 0\n",
"5\n0 1\n1 0\n0 1\n1 1\n0 0\n",
"5\n0 1\n0 0\n0 1\n1 1\n0 0\n",
"2\n0 0\n0 1\n",
"3\n1 1\n1 1\n1 1\n",
"8\n0 1\n1 0\n0 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"8\n0 1\n0 1\n0 1\n1 1\n0 1\n1 0\n0 1\n1 0\n",
"3\n0 0\n1 1\n1 0\n",
"5\n0 1\n0 0\n1 1\n1 1\n0 0\n",
"5\n0 1\n0 0\n1 1\n1 1\n0 1\n",
"5\n0 1\n0 0\n0 1\n1 1\n0 1\n",
"3\n0 1\n1 0\n1 0\n",
"5\n1 1\n0 0\n0 1\n1 1\n0 0\n",
"5\n0 1\n0 0\n1 1\n1 0\n0 1\n",
"5\n0 1\n0 0\n0 0\n1 1\n0 1\n",
"5\n0 1\n1 0\n1 1\n1 1\n0 0\n",
"5\n0 1\n0 0\n1 1\n1 0\n1 1\n",
"5\n0 1\n0 1\n0 0\n1 1\n0 1\n",
"3\n1 1\n0 1\n1 1\n",
"8\n0 1\n1 0\n1 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"5\n0 0\n1 0\n1 1\n1 1\n0 0\n",
"8\n0 1\n0 0\n1 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"8\n0 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"8\n0 1\n0 1\n1 0\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"8\n0 1\n1 0\n0 1\n1 1\n0 1\n1 0\n0 1\n0 0\n",
"5\n1 0\n1 0\n1 0\n0 0\n0 1\n",
"5\n0 1\n1 1\n1 1\n1 1\n0 1\n",
"5\n1 1\n0 0\n0 1\n1 1\n1 0\n",
"5\n0 1\n0 0\n1 1\n1 0\n1 0\n",
"2\n1 0\n0 1\n",
"3\n1 1\n1 0\n1 1\n",
"8\n0 1\n1 1\n0 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"5\n0 1\n1 1\n0 0\n1 1\n0 1\n",
"8\n0 1\n0 0\n1 1\n1 1\n0 0\n1 0\n1 1\n1 1\n",
"8\n0 1\n0 1\n1 1\n1 1\n0 0\n1 0\n0 0\n1 1\n",
"8\n0 1\n0 1\n1 0\n1 1\n0 0\n1 0\n0 1\n1 0\n",
"8\n0 1\n1 0\n0 0\n1 1\n0 1\n1 0\n0 1\n0 0\n",
"5\n0 1\n1 1\n1 1\n1 1\n1 1\n",
"5\n0 1\n1 0\n1 1\n1 0\n1 0\n",
"2\n1 0\n0 0\n",
"8\n0 1\n0 0\n1 1\n1 1\n0 0\n1 0\n1 1\n1 0\n",
"8\n0 1\n0 1\n1 1\n1 1\n0 0\n1 1\n0 0\n1 1\n",
"8\n0 1\n0 1\n1 0\n0 1\n0 0\n1 0\n0 1\n1 0\n",
"5\n0 1\n1 1\n1 1\n1 1\n1 0\n",
"8\n0 0\n0 0\n1 1\n1 1\n0 0\n1 0\n1 1\n1 0\n",
"8\n1 1\n0 1\n1 0\n0 1\n0 0\n1 0\n0 1\n1 0\n",
"8\n1 1\n0 0\n1 0\n0 1\n0 0\n1 0\n0 1\n1 0\n",
"8\n0 1\n1 0\n0 1\n0 1\n0 1\n1 0\n0 1\n1 0\n",
"5\n1 0\n1 0\n1 0\n1 1\n0 1\n",
"5\n1 1\n1 1\n0 1\n1 1\n0 1\n",
"3\n0 1\n1 1\n0 0\n",
"5\n0 1\n0 0\n0 0\n1 1\n1 1\n",
"2\n0 1\n0 1\n",
"8\n1 1\n1 0\n0 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"5\n0 0\n0 0\n1 1\n1 0\n1 1\n",
"3\n1 1\n0 1\n1 0\n",
"8\n0 1\n0 1\n1 1\n1 0\n0 0\n1 0\n0 1\n1 1\n",
"8\n0 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 1\n1 1\n",
"8\n0 1\n0 1\n1 0\n1 1\n0 0\n0 0\n0 1\n1 1\n",
"5\n1 0\n1 0\n1 0\n1 0\n0 1\n",
"5\n0 0\n1 1\n1 1\n1 1\n1 1\n",
"5\n0 1\n0 0\n1 1\n1 1\n1 0\n",
"2\n1 0\n1 0\n",
"5\n0 1\n1 1\n0 0\n1 1\n0 0\n",
"8\n0 1\n0 1\n1 0\n1 1\n0 0\n1 0\n0 0\n1 1\n",
"8\n0 1\n0 1\n1 0\n1 1\n0 0\n1 0\n1 1\n1 0\n",
"8\n0 1\n1 0\n0 0\n1 1\n0 1\n0 0\n0 1\n0 0\n",
"8\n0 0\n0 0\n0 1\n1 1\n0 0\n1 0\n1 1\n1 0\n",
"8\n1 1\n0 1\n1 0\n0 1\n0 0\n1 1\n0 1\n1 0\n",
"8\n0 1\n0 0\n0 1\n0 1\n0 1\n1 0\n0 1\n1 0\n",
"8\n0 1\n0 1\n0 1\n1 1\n0 1\n1 0\n1 1\n1 0\n",
"5\n0 1\n0 0\n0 1\n1 1\n1 1\n",
"2\n0 1\n1 1\n",
"8\n1 0\n1 0\n0 1\n1 1\n0 0\n1 0\n0 1\n1 1\n",
"5\n0 0\n1 0\n1 1\n1 0\n1 1\n",
"3\n1 1\n1 1\n1 0\n",
"8\n0 1\n0 1\n1 1\n1 0\n0 0\n0 0\n0 0\n1 1\n",
"8\n0 1\n0 0\n1 0\n1 1\n0 0\n0 0\n0 1\n1 1\n",
"5\n0 1\n0 1\n0 0\n1 1\n0 0\n",
"8\n0 1\n1 1\n1 0\n1 1\n0 0\n1 0\n0 0\n1 1\n",
"8\n1 1\n0 1\n1 0\n0 1\n0 0\n1 1\n0 0\n1 0\n",
"8\n0 1\n0 0\n0 0\n0 1\n0 1\n1 0\n0 1\n1 0\n",
"2\n0 0\n1 1\n",
"8\n1 0\n1 0\n0 0\n1 1\n0 0\n1 0\n0 1\n1 1\n"
],
"output": [
"3\n",
"7\n",
"6\n",
"0\n",
"1\n",
"4\n",
"0\n",
"8\n",
"2\n",
"6\n",
"4\n",
"3\n",
"1\n",
"0\n",
"7\n",
"5\n",
"2\n",
"4\n",
"3\n",
"2\n",
"2\n",
"4\n",
"4\n",
"3\n",
"4\n",
"4\n",
"2\n",
"1\n",
"6\n",
"4\n",
"7\n",
"6\n",
"7\n",
"6\n",
"3\n",
"2\n",
"4\n",
"4\n",
"2\n",
"1\n",
"6\n",
"3\n",
"6\n",
"7\n",
"8\n",
"7\n",
"1\n",
"3\n",
"1\n",
"7\n",
"6\n",
"7\n",
"2\n",
"6\n",
"8\n",
"7\n",
"6\n",
"3\n",
"2\n",
"2\n",
"4\n",
"0\n",
"6\n",
"4\n",
"2\n",
"7\n",
"6\n",
"6\n",
"2\n",
"2\n",
"4\n",
"0\n",
"4\n",
"8\n",
"7\n",
"6\n",
"7\n",
"7\n",
"5\n",
"6\n",
"3\n",
"1\n",
"7\n",
"3\n",
"1\n",
"7\n",
"7\n",
"3\n",
"7\n",
"8\n",
"6\n",
"2\n",
"6\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
One foggy Stockholm morning, Karlsson decided to snack on some jam in his friend Lillebror Svantenson's house. Fortunately for Karlsson, there wasn't anybody in his friend's house. Karlsson was not going to be hungry any longer, so he decided to get some food in the house.
Karlsson's gaze immediately fell on n wooden cupboards, standing in the kitchen. He immediately realized that these cupboards have hidden jam stocks. Karlsson began to fly greedily around the kitchen, opening and closing the cupboards' doors, grab and empty all the jars of jam that he could find.
And now all jars of jam are empty, Karlsson has had enough and does not want to leave traces of his stay, so as not to let down his friend. Each of the cupboards has two doors: the left one and the right one. Karlsson remembers that when he rushed to the kitchen, all the cupboards' left doors were in the same position (open or closed), similarly, all the cupboards' right doors were in the same position (open or closed). Karlsson wants the doors to meet this condition as well by the time the family returns. Karlsson does not remember the position of all the left doors, also, he cannot remember the position of all the right doors. Therefore, it does not matter to him in what position will be all left or right doors. It is important to leave all the left doors in the same position, and all the right doors in the same position. For example, all the left doors may be closed, and all the right ones may be open.
Karlsson needs one second to open or close a door of a cupboard. He understands that he has very little time before the family returns, so he wants to know the minimum number of seconds t, in which he is able to bring all the cupboard doors in the required position.
Your task is to write a program that will determine the required number of seconds t.
Input
The first input line contains a single integer n — the number of cupboards in the kitchen (2 ≤ n ≤ 104). Then follow n lines, each containing two integers li and ri (0 ≤ li, ri ≤ 1). Number li equals one, if the left door of the i-th cupboard is opened, otherwise number li equals zero. Similarly, number ri equals one, if the right door of the i-th cupboard is opened, otherwise number ri equals zero.
The numbers in the lines are separated by single spaces.
Output
In the only output line print a single integer t — the minimum number of seconds Karlsson needs to change the doors of all cupboards to the position he needs.
Examples
Input
5
0 1
1 0
0 1
1 1
0 1
Output
3
### Input:
5
0 1
1 0
0 1
1 1
0 1
### Output:
3
### Input:
8
0 1
1 0
0 1
1 1
0 1
1 0
0 1
1 0
### Output:
7
### Code:
k = int(input())
lo=ro=rc=lc=0
for _ in range(k):
n , m = map(int,input().split())
if(n==0):
lo+=1
else:
lc=lc+1
if(m==0):
ro+=1
else :
rc=rc+1
print(min(lo,lc)+min(ro,rc))
|
272_B. Dima and Sequence_1272 | Dima got into number sequences. Now he's got sequence a1, a2, ..., an, consisting of n positive integers. Also, Dima has got a function f(x), which can be defined with the following recurrence:
* f(0) = 0;
* f(2·x) = f(x);
* f(2·x + 1) = f(x) + 1.
Dima wonders, how many pairs of indexes (i, j) (1 ≤ i < j ≤ n) are there, such that f(ai) = f(aj). Help him, count the number of such pairs.
Input
The first line contains integer n (1 ≤ n ≤ 105). The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 109).
The numbers in the lines are separated by single spaces.
Output
In a single line print the answer to the problem.
Please, don't use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
1 2 4
Output
3
Input
3
5 3 1
Output
1
Note
In the first sample any pair (i, j) will do, so the answer is 3.
In the second sample only pair (1, 2) will do. | def f(x):
return str(bin(x)).count('1')
n = int(input())
a = list(map(int, input().split()))
ans = [f(x) for x in a]
s = set(ans)
counts = {x:ans.count(x) for x in s}
ans = 0
for i in counts:
ans += (counts[i]*(counts[i]-1))//2
print(ans) | {
"input": [
"3\n1 2 4\n",
"3\n5 3 1\n",
"6\n396640239 62005863 473635171 329666981 510631133 207643327\n",
"4\n363034183 741262741 657823174 453546052\n",
"2\n7 1\n",
"1\n1\n",
"2\n1 1\n",
"8\n851991424 32517099 310793856 776130403 342626527 58796623 49544509 517126753\n",
"8\n7 1 2 7 6 8 6 5\n",
"2\n469264357 996569493\n",
"7\n481003311 553247971 728349004 258700257 916143165 398096105 412826266\n",
"6\n773209925 62005863 473635171 329666981 510631133 207643327\n",
"1\n2\n",
"7\n481003311 553247971 728349004 258700257 916143165 138445907 412826266\n",
"3\n1 1 4\n",
"7\n481003311 180197148 728349004 258700257 916143165 34179068 568037265\n",
"7\n481003311 180197148 728349004 258700257 916143165 24029675 568037265\n",
"7\n481003311 180197148 728349004 258700257 916143165 26705756 568037265\n",
"4\n363034183 761466960 657823174 453546052\n",
"2\n2 1\n",
"8\n851991424 32517099 310793856 771296843 342626527 58796623 49544509 517126753\n",
"2\n425800479 996569493\n",
"6\n773209925 35419457 473635171 329666981 510631133 207643327\n",
"4\n363034183 761466960 657823174 171535199\n",
"1\n3\n",
"2\n4 1\n",
"8\n851991424 32517099 310793856 440880219 342626527 58796623 49544509 517126753\n",
"2\n60780481 996569493\n",
"7\n481003311 553247971 728349004 258700257 916143165 34179068 412826266\n",
"6\n965185156 35419457 473635171 329666981 510631133 207643327\n",
"4\n363034183 761466960 657823174 333097968\n",
"1\n5\n",
"8\n851991424 58687854 310793856 440880219 342626527 58796623 49544509 517126753\n",
"2\n60780481 1016459657\n",
"7\n481003311 435730861 728349004 258700257 916143165 34179068 412826266\n",
"6\n965185156 35419457 473635171 457870383 510631133 207643327\n",
"4\n52674711 761466960 657823174 333097968\n",
"1\n6\n",
"8\n851991424 58687854 310793856 288710434 342626527 58796623 49544509 517126753\n",
"2\n60780481 804147783\n",
"7\n481003311 180197148 728349004 258700257 916143165 34179068 412826266\n",
"6\n626899147 35419457 473635171 457870383 510631133 207643327\n",
"4\n1028202 761466960 657823174 333097968\n",
"1\n7\n",
"8\n851991424 58687854 310793856 288710434 342626527 58796623 14549368 517126753\n",
"2\n60780481 651466505\n",
"6\n626899147 35419457 473635171 457870383 506174386 207643327\n",
"8\n851991424 58687854 310793856 288710434 342626527 49507379 14549368 517126753\n",
"2\n51960337 651466505\n",
"6\n626899147 35419457 473635171 457870383 663418062 207643327\n",
"8\n851991424 58687854 310793856 288710434 342626527 41578389 14549368 517126753\n",
"2\n51960337 991606139\n",
"6\n626899147 35419457 473635171 457870383 518510874 207643327\n",
"8\n851991424 58687854 310793856 288710434 342626527 77874462 14549368 517126753\n",
"7\n481003311 180197148 728349004 258700257 916143165 39334435 568037265\n",
"6\n626899147 62272727 473635171 457870383 518510874 207643327\n",
"8\n851991424 58687854 310793856 39236011 342626527 77874462 14549368 517126753\n",
"7\n481003311 180197148 728349004 258700257 916143165 39334435 256135693\n",
"6\n658119008 62272727 473635171 457870383 518510874 207643327\n",
"8\n851991424 58687854 310793856 39236011 106976552 77874462 14549368 517126753\n",
"6\n658119008 62272727 762372629 457870383 518510874 207643327\n",
"8\n851991424 58687854 310793856 53788156 106976552 77874462 14549368 517126753\n",
"6\n658119008 62272727 762372629 457870383 518510874 381582072\n",
"8\n851991424 58687854 310793856 17294012 106976552 77874462 14549368 517126753\n",
"6\n658119008 62272727 762372629 156818938 518510874 381582072\n",
"8\n851991424 58687854 310793856 8547996 106976552 77874462 14549368 517126753\n",
"6\n658119008 62272727 762372629 68031847 518510874 381582072\n",
"8\n851991424 58687854 310793856 8547996 106976552 77874462 23614760 517126753\n",
"6\n658119008 62272727 762372629 68031847 752002831 381582072\n",
"8\n851991424 58687854 473591941 8547996 106976552 77874462 23614760 517126753\n",
"6\n291668267 62272727 762372629 68031847 752002831 381582072\n",
"8\n851991424 58687854 473591941 8547996 106976552 77874462 24687213 517126753\n",
"6\n291668267 62272727 762372629 75566839 752002831 381582072\n",
"8\n851991424 57723474 473591941 8547996 106976552 77874462 24687213 517126753\n",
"8\n851991424 57723474 473591941 8547996 183940637 77874462 24687213 517126753\n",
"8\n851991424 57723474 473591941 8547996 183940637 77874462 24687213 167352897\n",
"8\n851991424 57723474 473591941 8547996 183940637 77874462 24687213 300045002\n",
"8\n851991424 57723474 473591941 8547996 183940637 39654128 24687213 300045002\n",
"8\n851991424 57723474 473591941 8547996 183940637 31167807 24687213 300045002\n",
"8\n851991424 57723474 473591941 8547996 183940637 45100236 24687213 300045002\n",
"8\n851991424 57723474 473591941 8547996 183940637 28009783 24687213 300045002\n",
"8\n851991424 57723474 630146460 8547996 183940637 28009783 24687213 300045002\n",
"8\n851991424 49770965 630146460 8547996 183940637 28009783 24687213 300045002\n"
],
"output": [
"3",
"1",
"2",
"1",
"0",
"0",
"1",
"2",
"7",
"0",
"2",
"1\n",
"0\n",
"2\n",
"3\n",
"4\n",
"7\n",
"5\n",
"1\n",
"1\n",
"1\n",
"0\n",
"1\n",
"1\n",
"0\n",
"1\n",
"2\n",
"1\n",
"2\n",
"3\n",
"1\n",
"0\n",
"2\n",
"0\n",
"3\n",
"2\n",
"0\n",
"0\n",
"3\n",
"0\n",
"2\n",
"1\n",
"1\n",
"0\n",
"3\n",
"0\n",
"2\n",
"2\n",
"0\n",
"2\n",
"4\n",
"0\n",
"1\n",
"3\n",
"4\n",
"1\n",
"3\n",
"2\n",
"1\n",
"3\n",
"1\n",
"3\n",
"0\n",
"3\n",
"0\n",
"5\n",
"0\n",
"5\n",
"1\n",
"3\n",
"1\n",
"2\n",
"1\n",
"2\n",
"2\n",
"3\n",
"3\n",
"4\n",
"3\n",
"3\n",
"2\n",
"2\n",
"2\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Dima got into number sequences. Now he's got sequence a1, a2, ..., an, consisting of n positive integers. Also, Dima has got a function f(x), which can be defined with the following recurrence:
* f(0) = 0;
* f(2·x) = f(x);
* f(2·x + 1) = f(x) + 1.
Dima wonders, how many pairs of indexes (i, j) (1 ≤ i < j ≤ n) are there, such that f(ai) = f(aj). Help him, count the number of such pairs.
Input
The first line contains integer n (1 ≤ n ≤ 105). The second line contains n positive integers a1, a2, ..., an (1 ≤ ai ≤ 109).
The numbers in the lines are separated by single spaces.
Output
In a single line print the answer to the problem.
Please, don't use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.
Examples
Input
3
1 2 4
Output
3
Input
3
5 3 1
Output
1
Note
In the first sample any pair (i, j) will do, so the answer is 3.
In the second sample only pair (1, 2) will do.
### Input:
3
1 2 4
### Output:
3
### Input:
3
5 3 1
### Output:
1
### Code:
def f(x):
return str(bin(x)).count('1')
n = int(input())
a = list(map(int, input().split()))
ans = [f(x) for x in a]
s = set(ans)
counts = {x:ans.count(x) for x in s}
ans = 0
for i in counts:
ans += (counts[i]*(counts[i]-1))//2
print(ans) |
319_B. Psychos in a Line_1278 | There are n psychos standing in a line. Each psycho is assigned a unique integer from 1 to n. At each step every psycho who has an id greater than the psycho to his right (if exists) kills his right neighbor in the line. Note that a psycho might kill and get killed at the same step.
You're given the initial arrangement of the psychos in the line. Calculate how many steps are needed to the moment of time such, that nobody kills his neighbor after that moment. Look notes to understand the statement more precise.
Input
The first line of input contains integer n denoting the number of psychos, (1 ≤ n ≤ 105). In the second line there will be a list of n space separated distinct integers each in range 1 to n, inclusive — ids of the psychos in the line from left to right.
Output
Print the number of steps, so that the line remains the same afterward.
Examples
Input
10
10 9 7 8 6 5 3 4 2 1
Output
2
Input
6
1 2 3 4 5 6
Output
0
Note
In the first sample line of the psychos transforms as follows: [10 9 7 8 6 5 3 4 2 1] → [10 8 4] → [10]. So, there are two steps. | n, t = int(input()), list(map(int, input().split()))
p, s, r = [0] * n, [0] * n, t[0]
for i in range(n - 1):
j = i + 1
x = t[j]
if x > r: r = x
else:
while t[i] < x: s[j], i = max(s[j], s[i]), p[i]
p[j] = i
s[j] += 1
print(max(s))
# Made By Mostafa_Khaled | {
"input": [
"6\n1 2 3 4 5 6\n",
"10\n10 9 7 8 6 5 3 4 2 1\n",
"2\n1 2\n",
"100\n61 96 25 10 50 71 38 77 76 75 59 100 89 66 6 99 2 13 3 23 91 93 22 92 4 86 90 44 39 31 9 47 28 95 18 54 1 73 94 78 60 20 42 84 97 83 16 81 67 64 74 46 82 5 88 80 14 48 53 79 30 11 62 21 41 70 63 58 51 56 57 17 87 72 27 85 68 49 52 8 12 98 43 37 35 69 55 32 26 40 29 65 19 24 34 33 15 45 36 7\n",
"1\n1\n",
"6\n6 5 4 3 2 1\n",
"15\n15 9 5 10 7 11 14 6 2 3 12 1 8 13 4\n",
"2\n2 1\n",
"10\n10 7 4 2 5 8 9 6 3 1\n"
],
"output": [
"0\n",
"2\n",
"0\n",
"8\n",
"0\n",
"1\n",
"4\n",
"1\n",
"4\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are n psychos standing in a line. Each psycho is assigned a unique integer from 1 to n. At each step every psycho who has an id greater than the psycho to his right (if exists) kills his right neighbor in the line. Note that a psycho might kill and get killed at the same step.
You're given the initial arrangement of the psychos in the line. Calculate how many steps are needed to the moment of time such, that nobody kills his neighbor after that moment. Look notes to understand the statement more precise.
Input
The first line of input contains integer n denoting the number of psychos, (1 ≤ n ≤ 105). In the second line there will be a list of n space separated distinct integers each in range 1 to n, inclusive — ids of the psychos in the line from left to right.
Output
Print the number of steps, so that the line remains the same afterward.
Examples
Input
10
10 9 7 8 6 5 3 4 2 1
Output
2
Input
6
1 2 3 4 5 6
Output
0
Note
In the first sample line of the psychos transforms as follows: [10 9 7 8 6 5 3 4 2 1] → [10 8 4] → [10]. So, there are two steps.
### Input:
6
1 2 3 4 5 6
### Output:
0
### Input:
10
10 9 7 8 6 5 3 4 2 1
### Output:
2
### Code:
n, t = int(input()), list(map(int, input().split()))
p, s, r = [0] * n, [0] * n, t[0]
for i in range(n - 1):
j = i + 1
x = t[j]
if x > r: r = x
else:
while t[i] < x: s[j], i = max(s[j], s[i]), p[i]
p[j] = i
s[j] += 1
print(max(s))
# Made By Mostafa_Khaled |
343_B. Alternating Current_1282 | Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again.
The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view):
<image>
Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut.
To understand the problem better please read the notes to the test samples.
Input
The single line of the input contains a sequence of characters "+" and "-" of length n (1 ≤ n ≤ 100000). The i-th (1 ≤ i ≤ n) position of the sequence contains the character "+", if on the i-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise.
Output
Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled.
Examples
Input
-++-
Output
Yes
Input
+-
Output
No
Input
++
Output
Yes
Input
-
Output
No
Note
The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses.
In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled:
<image>
In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher:
<image>
In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:
<image> | list_inp=input()
stack_jud=[]
for i in list_inp:
if len(stack_jud)>0:
if stack_jud[-1]==i:stack_jud.pop()
else: stack_jud.append(i)
else: stack_jud.append(i)
if stack_jud==[]:print ('Yes')
else:print ('No')
| {
"input": [
"-++-\n",
"++\n",
"+-\n",
"-\n",
"+-+--+-+\n",
"+-+--+\n",
"+-+++-\n",
"+++-\n",
"-++-+--++--+-++-\n",
"-+++--\n",
"-+--+-\n",
"+-++-+\n",
"+++---+++---\n",
"+-+-\n",
"-+-+-+\n",
"+++---\n",
"++--++\n",
"+---+\n",
"--++-+\n",
"-+\n",
"-+-\n",
"--\n",
"-+++++\n",
"+-+-++\n",
"+++\n",
"-+-+-+-+-+-+-++-+-+-+-+-+-+-\n",
"-++\n",
"+--+--+------+++++++-+-+++--++---+--+-+---+--+++-+++-------+++++-+-++++--+-+-+++++++----+----+++----+-+++-+++-----+++-+-++-+-+++++-+--++----+--+-++-----+-+-++++---+++---+-+-+-++++--+--+++---+++++-+---+-----+++-++--+++---++-++-+-+++-+-+-+---+++--+--++++-+-+--++-------+--+---++-----+++--+-+++--++-+-+++-++--+++-++++++++++-++-++++++-+++--+--++-+++--+++-++++----+++---+-+----++++-+-+\n",
"++-+\n",
"-+-+-++-+-+-\n",
"-+-++-+-+-\n",
"-+-++--+++-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-+-++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---++----+++-++++--++-++-\n",
"-+-----++++--++-+-++\n",
"+\n",
"+-----+-++---+------+++-++++\n",
"+---++--++\n",
"-++-+--+\n",
"-+-+--\n",
"+-+-+-+-+--+-+-+-+-++--++--+\n",
"++-+-+-+-+--+\n",
"--+\n",
"+---+-+-\n",
"-+-++-+-\n",
"-++--+--+++-+-+-+-+-\n",
"--+++\n",
"+--+-+\n",
"+--+--+------+++++++-+-+++--++---+--+-+---+--+++-+++-------+++++-+-++++--+-+-+++++++----+----+++----+-+++-+++-----+++-+-++-+-+++++-+--++----+--+-++-----+-+-++++---+++---+-+-+-++++--+--+++---+++++-+---+-----+++-++--+++---++-++-+-+++-+-+-+---+++--+--++++-+-+--++-------+--+---++-----+++--+-+++--++-+-++++++--+++-++++++++++-++-++++++-+++--+--++-+++--+++-++++----+++---+------++++-+-+\n",
"-+++-+\n",
"+-++\n",
"---+++---+++\n",
"-+-+\n",
"+-+-+-\n",
"+---,\n",
",-+\n",
"++-+-+\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-+-++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---++----+++-++++--++-++-\n",
"-+--+-++\n",
"++-+-+-+-+-,+\n",
"-+-+---+\n",
"-++-+\n",
"+---++\n",
",---+\n",
"+-,\n",
"+-+-++++------+---+++----++++-+++--+++-++--+--+++-++++++-++-++++++++++-+++--++++++-+-++--+++-+--+++-----++---+--+-------++--+-+-++++--+--+++---+-+-+-+++-+-++-++---+++--++-+++-----+---+-+++++---+++--+--++++-+-+-+---+++---++++-+-+-----++-+--+----++--+-+++++-+-++-+-+++-----+++-+++-+----+++----+----+++++++-+-+--++++-+-+++++-------+++-+++--+---+-+--+---++--+++-+-+++++++------+--+--+\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-+,++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---++----+++-++++--++-++-\n",
"-+---+++\n",
"++-+,+-+-+-,+\n",
"+-++-\n",
"*---+\n",
"*-,\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---++----+++-++++--++-++-\n",
"+++---+-\n",
"++-+,+-+-+-,,\n",
"+-++,\n",
"-*,\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++---++--+++++-+--++--+-+--++-----+--+-++---+++---+*----+++-++++--++-++-\n",
"+++-+---\n",
",,-+-+-+,+-++\n",
"+-,+,\n",
",*-\n",
"-++-++--++++-+++----*+---+++---++-+--+-----++--+-+--++--+-+++++--++---++++++-+-+-++++-+--+--+--+-++++-++---+-+++-+++-+-+--+----+--+---++++-*++--++-+-\n",
"++-+,+-+-+.,,\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++,--++--+++++-+--++--+-+--++-----+--+-++---+++---+*----+++-++++--++-++-\n",
"++-+,+-+-+,.,\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++,--++--+++++-+--++--+-+--++-----+--+-++---+++---+*----+*+-++++--++-++-\n",
"++++,--+-+,.,\n",
"-+-++--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++,--++--+++++-+--++--+-,--++-----+--+-++---+++---+*----+*+-++++--++-++-\n",
",++++--+-+,.,\n",
"-+-+*--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++,--++--+++++-+--++--+-,--++-----+--+-++---+++---+*----+++-++++--++-++-\n",
",.,+-+--++++,\n",
"-+-+*--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-++++-+-+-++++++,--+,--+++++-+--++--+-,--++-----+--+-++---+++---+*----+++-++++--++-++-\n",
",++++,-+-+,.,\n",
"-++-++--++++-+++----*+---+++---++-+--+-----++--,-+--++--+-+++++--,+--,++++++-+-+-++++-+--+--+--+-++++-++---+-+++-+++-+-+--+----+--+---++++-*++--*+-+-\n",
",.,+-+-,++++,\n",
"-++-++--++++-+++----*+---+++---++-+--+--+--++--,-+--++--+-+++++--,+--,++++++-+-+--+++-+--+--+--+-++++-++---+-+++-+++-+-+--+----+--+---++++-*++--*+-+-\n",
",.++-,-,++++,\n",
"-+-+*--++*-++++---+--+----+--+-+-+++-+++-+---++-++++-+--+--+--+-+++--+-+-++++++,--+,--+++++-+--++--+-,--++--+--+--+-++---+++---+*----+++-++++--++-++-\n",
",.++-,-,+++*,\n",
"-+-+*--++*-++++---+--+----+--+-+-+++-+++-+---+,-++++-+--+--+--+-+++--+-+-++++++,--+,--+++++-+--++--+-,--++--+--+--+-++---+++---+*----+++-++++--++-++-\n",
",.++-,-,*++*,\n",
"-+-+*--++*-++++---+--+----+--+-+-+++-+++-+---+,-++++-+--+--+--+-+++--,-+-++++++,--+,--+++++-+--++--+-,--++--+--+--+-++---+++---+*----+++-++++--++-++-\n",
",.++-,-,*,+*,\n",
"-+-+*--++*-++++---+--+----+--+-+-+++-+++-+---+,-++++-+--+-,+--+-+++--,-+-++++++---+,--+++++-+--++--+-,--++--+--+--+-++---+++---+*----+++-++++--++-++-\n",
",.++-+-,*,+*,\n",
"++-+*--++*-++++---+--+----+--+-+-+++-+++-+---+,-++++-+--+-,+--+-+++--,-+-++++++---+,--+++++-+--++--+-,---+--+--+--+-++---+++---+*----+++-++++--++-++-\n",
",*+,*,-+-++.,\n"
],
"output": [
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Mad scientist Mike has just finished constructing a new device to search for extraterrestrial intelligence! He was in such a hurry to launch it for the first time that he plugged in the power wires without giving it a proper glance and started experimenting right away. After a while Mike observed that the wires ended up entangled and now have to be untangled again.
The device is powered by two wires "plus" and "minus". The wires run along the floor from the wall (on the left) to the device (on the right). Both the wall and the device have two contacts in them on the same level, into which the wires are plugged in some order. The wires are considered entangled if there are one or more places where one wire runs above the other one. For example, the picture below has four such places (top view):
<image>
Mike knows the sequence in which the wires run above each other. Mike also noticed that on the left side, the "plus" wire is always plugged into the top contact (as seen on the picture). He would like to untangle the wires without unplugging them and without moving the device. Determine if it is possible to do that. A wire can be freely moved and stretched on the floor, but cannot be cut.
To understand the problem better please read the notes to the test samples.
Input
The single line of the input contains a sequence of characters "+" and "-" of length n (1 ≤ n ≤ 100000). The i-th (1 ≤ i ≤ n) position of the sequence contains the character "+", if on the i-th step from the wall the "plus" wire runs above the "minus" wire, and the character "-" otherwise.
Output
Print either "Yes" (without the quotes) if the wires can be untangled or "No" (without the quotes) if the wires cannot be untangled.
Examples
Input
-++-
Output
Yes
Input
+-
Output
No
Input
++
Output
Yes
Input
-
Output
No
Note
The first testcase corresponds to the picture in the statement. To untangle the wires, one can first move the "plus" wire lower, thus eliminating the two crosses in the middle, and then draw it under the "minus" wire, eliminating also the remaining two crosses.
In the second testcase the "plus" wire makes one full revolution around the "minus" wire. Thus the wires cannot be untangled:
<image>
In the third testcase the "plus" wire simply runs above the "minus" wire twice in sequence. The wires can be untangled by lifting "plus" and moving it higher:
<image>
In the fourth testcase the "minus" wire runs above the "plus" wire once. The wires cannot be untangled without moving the device itself:
<image>
### Input:
-++-
### Output:
YES
### Input:
++
### Output:
YES
### Code:
list_inp=input()
stack_jud=[]
for i in list_inp:
if len(stack_jud)>0:
if stack_jud[-1]==i:stack_jud.pop()
else: stack_jud.append(i)
else: stack_jud.append(i)
if stack_jud==[]:print ('Yes')
else:print ('No')
|
38_C. Blinds_1289 | The blinds are known to consist of opaque horizontal stripes that can be rotated thus regulating the amount of light flowing in the room. There are n blind stripes with the width of 1 in the factory warehouse for blind production. The problem is that all of them are spare details from different orders, that is, they may not have the same length (it is even possible for them to have different lengths)
Every stripe can be cut into two or more parts. The cuttings are made perpendicularly to the side along which the length is measured. Thus the cuttings do not change the width of a stripe but each of the resulting pieces has a lesser length (the sum of which is equal to the length of the initial stripe)
After all the cuttings the blinds are constructed through consecutive joining of several parts, similar in length, along sides, along which length is measured. Also, apart from the resulting pieces an initial stripe can be used as a blind if it hasn't been cut. It is forbidden to construct blinds in any other way.
Thus, if the blinds consist of k pieces each d in length, then they are of form of a rectangle of k × d bourlemeters.
Your task is to find for what window possessing the largest possible area the blinds can be made from the given stripes if on technical grounds it is forbidden to use pieces shorter than l bourlemeter. The window is of form of a rectangle with side lengths as positive integers.
Input
The first output line contains two space-separated integers n and l (1 ≤ n, l ≤ 100). They are the number of stripes in the warehouse and the minimal acceptable length of a blind stripe in bourlemeters. The second line contains space-separated n integers ai. They are the lengths of initial stripes in bourlemeters (1 ≤ ai ≤ 100).
Output
Print the single number — the maximal area of the window in square bourlemeters that can be completely covered. If no window with a positive area that can be covered completely without breaking any of the given rules exist, then print the single number 0.
Examples
Input
4 2
1 2 3 4
Output
8
Input
5 3
5 5 7 3 1
Output
15
Input
2 3
1 2
Output
0
Note
In the first sample test the required window is 2 × 4 in size and the blinds for it consist of 4 parts, each 2 bourlemeters long. One of the parts is the initial stripe with the length of 2, the other one is a part of a cut stripe with the length of 3 and the two remaining stripes are parts of a stripe with the length of 4 cut in halves. | m, l = map(int, input().split())
a = list(map(int, input().split()))
print(max(i * sum(ai // i for ai in a) for i in range(l, 101))) | {
"input": [
"5 3\n5 5 7 3 1\n",
"4 2\n1 2 3 4\n",
"2 3\n1 2\n",
"93 10\n6 47 6 89 21 91 51 72 32 48 54 89 36 12 25 38 58 62 54 16 5 52 52 85 67 33 81 72 6 42 91 16 29 78 56 62 75 48 69 12 89 34 27 15 7 80 14 57 29 6 80 46 64 94 83 96 1 42 11 41 15 26 17 36 44 11 68 73 93 45 73 35 91 14 84 48 7 8 63 84 59 68 87 26 91 10 54 41 74 71 74 62 24\n",
"15 6\n1 6 6 5 2 10 4 4 7 8 7 3 5 1 2\n",
"65 7\n1 5 4 1 4 11 9 1 11 7 6 11 9 4 2 6 10 11 10 12 4 6 1 12 12 5 1 11 7 9 11 6 10 10 7 8 4 1 3 5 2 3 2 10 11 10 5 8 7 10 12 5 11 6 8 6 2 9 9 7 2 4 12 7 7\n",
"91 6\n4 2 4 2 6 2 4 1 2 6 5 3 3 3 3 2 5 4 2 5 3 2 1 3 5 2 4 5 1 3 3 3 6 6 5 3 4 1 5 6 2 5 2 2 5 4 1 5 4 1 2 6 1 2 3 4 3 3 3 3 2 1 4 5 1 6 5 1 6 5 3 5 6 3 3 5 4 4 5 4 5 2 5 2 3 1 5 6 6 4 2\n",
"100 17\n20 61 7 74 87 84 87 35 64 7 36 5 72 20 62 29 29 58 67 51 50 45 82 20 76 79 39 21 5 39 94 13 65 11 3 21 26 2 15 56 20 75 49 27 64 48 51 96 32 80 57 10 57 48 36 83 51 25 45 65 24 22 3 92 45 52 52 58 15 90 23 43 56 88 46 50 72 70 60 47 91 68 40 24 16 44 82 90 17 17 51 71 25 94 13 42 26 25 53 95\n",
"40 33\n33 52 83 32 59 90 25 90 38 31 60 30 76 77 9 13 48 1 55 39 84 28 58 83 12 3 77 34 33 73 15 35 29 8 3 21 63 4 21 75\n",
"96 9\n4 5 1 10 2 6 1 9 2 6 3 2 9 4 1 1 3 10 10 4 6 8 6 4 4 6 4 6 2 9 1 9 3 6 9 10 4 3 7 2 7 4 4 4 6 4 1 7 9 4 9 2 1 7 7 3 4 10 10 5 1 3 10 5 1 9 8 4 10 4 7 2 9 6 9 4 2 3 6 9 8 1 1 2 9 4 10 4 9 7 7 5 1 10 9 10\n",
"2 2\n3 3\n",
"10 2\n6 3 1 1 6 4 6 1 6 3\n",
"80 1\n7 13 38 24 17 20 11 3 25 23 36 16 41 36 18 9 33 10 37 20 8 7 42 8 17 1 39 30 39 24 36 17 8 11 3 33 23 42 36 16 36 3 30 20 29 35 43 17 32 26 33 4 41 34 9 37 14 26 6 40 16 24 8 26 16 31 11 12 18 24 42 34 24 37 5 23 32 13 8 14\n",
"10 1\n1 2 2 6 6 1 2 5 5 6\n",
"99 57\n69 27 70 70 16 66 64 35 44 1 51 38 69 17 19 35 83 7 47 4 10 22 60 64 64 56 80 54 83 34 51 42 46 51 41 75 54 10 13 44 66 46 27 79 55 13 13 40 18 12 2 33 20 13 75 45 70 75 51 39 80 25 22 27 77 52 41 83 40 33 23 76 81 21 23 59 27 74 45 68 42 20 83 50 66 58 5 8 55 62 76 81 27 52 55 67 28 65 71\n",
"35 3\n13 12 38 45 71 61 42 75 58 40 50 70 27 38 16 37 21 12 36 7 39 4 65 12 32 26 1 21 66 63 29 56 32 29 26\n",
"60 10\n42 89 35 19 51 41 31 77 10 8 73 27 47 26 66 91 43 33 74 62 77 23 5 44 18 23 74 6 51 21 30 17 31 39 74 4 55 39 3 34 21 3 18 41 61 37 31 91 69 55 75 67 77 30 11 16 35 68 62 19\n",
"85 2\n26 5 48 55 22 22 43 29 55 29 6 53 48 35 58 22 44 7 14 26 48 17 66 44 2 10 50 4 19 35 29 61 55 57 25 5 54 64 18 17 43 16 14 63 46 22 55 23 8 52 65 30 10 13 24 18 7 44 65 7 42 63 29 54 32 23 55 17 3 11 67 14 45 31 33 22 36 28 27 54 46 45 15 40 55\n",
"5 2\n2 4 1 1 3\n",
"94 12\n40 66 66 35 43 23 77 6 55 44 68 90 20 59 11 95 78 13 75 98 30 22 40 29 2 23 82 26 53 48 16 100 97 100 74 96 73 30 35 72 23 38 25 86 7 45 53 20 18 77 68 95 41 45 1 94 42 94 54 9 33 84 53 71 6 68 98 94 35 78 58 34 84 78 28 65 58 11 2 78 96 5 8 36 34 26 76 10 69 49 25 9 77 30\n",
"25 20\n10 8 4 6 12 14 19 18 19 9 21 16 16 15 10 15 12 12 18 18 9 22 12 14 14\n",
"98 14\n23 3 39 39 6 35 2 35 38 9 11 24 42 35 35 46 23 46 20 36 25 46 23 9 21 24 21 38 43 9 9 38 38 46 3 28 17 31 30 14 29 12 37 15 5 45 46 32 35 39 39 27 25 15 42 40 19 19 11 6 32 16 25 29 46 2 45 44 5 36 21 11 14 18 39 1 39 26 18 14 1 23 38 24 10 38 14 42 15 3 8 8 23 46 40 19 14 29\n",
"75 19\n3 35 38 25 5 17 12 37 26 34 20 3 30 33 16 26 16 31 17 5 13 40 4 40 16 4 24 31 39 13 12 3 25 40 21 2 27 26 21 2 18 24 24 25 18 3 15 20 5 6 23 10 16 37 20 13 39 4 6 28 9 25 14 7 6 15 34 9 4 16 36 19 17 30 33\n",
"7 4\n3 2 1 1 1 3 2\n",
"50 70\n60 21 1 35 20 10 35 59 27 12 57 67 76 49 27 72 39 47 56 36 36 13 62 16 6 16 39 46 35 9 67 59 61 52 1 44 70 40 60 3 5 2 14 29 56 32 4 28 35 73\n",
"90 3\n44 16 62 40 33 17 53 32 66 18 68 33 18 76 14 66 41 8 18 57 39 63 9 41 30 39 30 35 46 12 27 33 6 4 21 26 32 24 18 25 35 39 14 49 65 32 54 38 55 64 75 2 53 21 72 11 46 47 63 60 33 62 13 35 40 21 26 15 66 74 55 48 24 26 76 69 65 68 62 12 74 58 21 13 53 5 40 56 66 67\n",
"45 1\n1 1 2 3 1 2 3 1 1 1 1 2 2 2 2 3 1 1 2 2 3 3 2 3 3 1 3 3 3 1 2 3 2 1 2 1 1 2 1 2 1 1 2 2 2\n",
"70 12\n6 8 11 13 11 30 4 26 16 24 8 12 14 25 7 26 1 24 1 9 7 19 25 11 18 23 27 26 27 19 8 10 9 20 23 2 14 27 24 24 14 21 31 5 1 14 24 20 2 1 11 17 12 7 17 20 8 21 16 17 31 25 9 25 5 18 6 19 22 27\n",
"100 2\n2 2 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2 1 2 1 2 1 2 2 2 1 1 2 2 1 2 1 1 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1\n",
"55 12\n15 5 11 16 17 3 5 28 19 15 1 9 5 26 25 3 14 14 33 12 3 21 16 30 22 18 7 16 24 28 2 17 24 25 16 16 31 9 11 9 6 13 25 23 32 18 4 21 10 32 11 5 4 32 14\n",
"92 8\n3 4 6 9 7 9 12 12 7 4 9 1 3 9 2 12 4 5 12 2 6 5 9 9 5 2 7 5 12 2 1 7 7 11 11 1 4 10 11 7 5 6 3 5 12 2 9 1 11 1 9 11 1 9 7 9 7 8 1 5 8 8 1 8 6 6 4 5 6 10 7 9 7 1 6 2 12 11 7 6 12 11 5 11 6 10 1 9 3 9 11 9\n",
"97 28\n13 12 30 2 17 29 28 28 26 10 27 27 20 14 8 28 10 5 33 19 17 31 15 4 8 13 21 23 32 3 20 9 33 17 11 13 11 9 19 30 19 25 1 18 1 13 1 20 19 9 17 31 32 26 1 34 7 34 6 22 7 13 29 6 29 3 13 28 3 6 7 29 17 34 28 32 14 33 23 25 23 11 19 19 27 27 3 20 17 13 24 2 8 25 10 31 34\n",
"100 2\n79 84 2 24 18 95 57 79 67 60 78 85 75 23 68 68 76 30 39 31 32 81 42 90 50 33 49 9 63 18 74 46 34 55 48 41 7 75 74 90 14 90 2 49 20 29 33 65 43 7 11 12 58 45 17 100 1 28 3 12 26 94 45 5 45 19 3 28 95 11 71 68 89 47 59 5 74 92 43 100 15 63 78 85 70 38 62 100 78 76 29 69 64 2 32 68 48 61 82 100\n",
"20 2\n13 3 6 11 6 11 9 1 1 2 5 2 9 15 14 10 3 12 3 13\n",
"95 17\n1 24 17 9 41 5 39 30 6 32 17 30 27 11 13 25 22 23 12 31 19 31 35 43 8 23 39 23 39 41 10 17 25 17 38 39 37 23 37 11 6 15 43 4 15 44 44 42 29 2 14 6 1 6 31 45 26 21 14 18 15 17 23 11 39 12 16 6 11 19 15 31 18 10 33 10 2 8 21 4 26 3 42 45 16 1 11 28 43 24 18 45 25 39 9\n",
"30 15\n93 99 77 69 43 86 56 15 9 9 75 84 56 1 42 45 10 23 83 87 86 99 46 48 40 69 95 10 61 47\n",
"15 6\n1 6 6 5 2 10 4 4 14 8 7 3 5 1 2\n",
"65 7\n1 5 4 1 4 11 9 1 11 7 6 11 9 4 2 6 10 11 10 12 4 6 1 12 12 5 1 11 7 9 11 4 10 10 7 8 4 1 3 5 2 3 2 10 11 10 5 8 7 10 12 5 11 6 8 6 2 9 9 7 2 4 12 7 7\n",
"91 6\n4 2 4 2 6 2 4 1 2 6 5 3 3 3 3 2 5 4 2 5 3 2 1 3 5 2 4 5 1 3 3 3 6 6 5 3 4 1 5 6 2 5 2 2 5 4 1 5 4 1 2 6 1 2 3 4 3 3 3 3 2 2 4 5 1 6 5 1 6 5 3 5 6 3 3 5 4 4 5 4 5 2 5 2 3 1 5 6 6 4 2\n",
"100 17\n20 61 7 74 87 84 87 35 64 7 42 5 72 20 62 29 29 58 67 51 50 45 82 20 76 79 39 21 5 39 94 13 65 11 3 21 26 2 15 56 20 75 49 27 64 48 51 96 32 80 57 10 57 48 36 83 51 25 45 65 24 22 3 92 45 52 52 58 15 90 23 43 56 88 46 50 72 70 60 47 91 68 40 24 16 44 82 90 17 17 51 71 25 94 13 42 26 25 53 95\n",
"40 33\n33 52 83 32 59 90 25 90 38 31 60 30 76 77 9 13 48 1 55 39 84 28 58 83 12 3 77 34 33 73 15 35 29 8 3 21 43 4 21 75\n",
"96 9\n4 5 1 10 2 6 1 9 2 6 3 2 9 4 1 1 3 10 10 4 6 8 6 4 4 6 4 6 2 9 1 9 3 6 2 10 4 3 7 2 7 4 4 4 6 4 1 7 9 4 9 2 1 7 7 3 4 10 10 5 1 3 10 5 1 9 8 4 10 4 7 2 9 6 9 4 2 3 6 9 8 1 1 2 9 4 10 4 9 7 7 5 1 10 9 10\n",
"2 2\n3 2\n",
"80 1\n7 13 38 24 17 20 11 3 25 23 36 16 41 36 18 9 33 10 37 20 8 7 42 8 17 1 39 30 39 24 36 17 8 11 3 33 23 42 36 16 36 3 30 20 29 35 43 17 32 26 33 2 41 34 9 37 14 26 6 40 16 24 8 26 16 31 11 12 18 24 42 34 24 37 5 23 32 13 8 14\n",
"10 1\n1 2 2 6 6 1 4 5 5 6\n",
"99 57\n69 27 70 70 16 66 64 35 44 1 51 38 69 17 19 35 83 7 47 4 10 22 60 64 64 56 80 54 83 34 51 42 46 51 41 75 54 10 13 44 66 46 27 79 55 13 13 40 18 12 2 33 20 13 75 45 70 75 51 39 92 25 22 27 77 52 41 83 40 33 23 76 81 21 23 59 27 74 45 68 42 20 83 50 66 58 5 8 55 62 76 81 27 52 55 67 28 65 71\n",
"35 3\n13 12 38 45 71 65 42 75 58 40 50 70 27 38 16 37 21 12 36 7 39 4 65 12 32 26 1 21 66 63 29 56 32 29 26\n",
"60 10\n82 89 35 19 51 41 31 77 10 8 73 27 47 26 66 91 43 33 74 62 77 23 5 44 18 23 74 6 51 21 30 17 31 39 74 4 55 39 3 34 21 3 18 41 61 37 31 91 69 55 75 67 77 30 11 16 35 68 62 19\n",
"85 2\n26 5 35 55 22 22 43 29 55 29 6 53 48 35 58 22 44 7 14 26 48 17 66 44 2 10 50 4 19 35 29 61 55 57 25 5 54 64 18 17 43 16 14 63 46 22 55 23 8 52 65 30 10 13 24 18 7 44 65 7 42 63 29 54 32 23 55 17 3 11 67 14 45 31 33 22 36 28 27 54 46 45 15 40 55\n",
"5 2\n2 4 1 1 1\n",
"94 12\n40 66 66 35 43 23 77 6 55 44 68 90 20 59 11 95 78 13 75 98 30 22 40 0 2 23 82 26 53 48 16 100 97 100 74 96 73 30 35 72 23 38 25 86 7 45 53 20 18 77 68 95 41 45 1 94 42 94 54 9 33 84 53 71 6 68 98 94 35 78 58 34 84 78 28 65 58 11 2 78 96 5 8 36 34 26 76 10 69 49 25 9 77 30\n",
"98 23\n23 3 39 39 6 35 2 35 38 9 11 24 42 35 35 46 23 46 20 36 25 46 23 9 21 24 21 38 43 9 9 38 38 46 3 28 17 31 30 14 29 12 37 15 5 45 46 32 35 39 39 27 25 15 42 40 19 19 11 6 32 16 25 29 46 2 45 44 5 36 21 11 14 18 39 1 39 26 18 14 1 23 38 24 10 38 14 42 15 3 8 8 23 46 40 19 14 29\n",
"75 19\n3 35 38 25 5 17 12 37 26 34 20 3 30 33 16 26 16 31 17 5 13 40 4 40 16 4 24 31 39 13 12 3 25 40 21 2 27 26 21 2 18 24 24 25 18 3 15 20 5 6 23 3 16 37 20 13 39 4 6 28 9 25 14 7 6 15 34 9 4 16 36 19 17 30 33\n",
"50 70\n60 21 1 35 20 10 35 59 27 12 57 67 76 49 27 72 39 47 56 36 36 13 62 16 6 16 39 46 35 9 67 59 64 52 1 44 70 40 60 3 5 2 14 29 56 32 4 28 35 73\n",
"90 3\n44 16 62 40 33 17 53 32 66 18 68 33 18 76 14 66 41 8 18 57 39 63 9 41 30 39 30 35 46 12 27 33 6 4 21 26 32 24 18 25 35 39 14 49 65 61 54 38 55 64 75 2 53 21 72 11 46 47 63 60 33 62 13 35 40 21 26 15 66 74 55 48 24 26 76 69 65 68 62 12 74 58 21 13 53 5 40 56 66 67\n",
"45 1\n1 1 2 3 1 2 3 0 1 1 1 2 2 2 2 3 1 1 2 2 3 3 2 3 3 1 3 3 3 1 2 3 2 1 2 1 1 2 1 2 1 1 2 2 2\n",
"70 12\n6 8 11 13 11 30 4 26 16 24 8 12 14 25 7 26 1 24 1 9 7 19 25 11 18 23 27 26 27 19 8 10 9 20 23 2 14 27 24 24 14 21 31 5 1 14 24 20 2 1 11 17 12 7 17 20 7 21 16 17 31 25 9 25 5 18 6 19 22 27\n",
"100 2\n2 2 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 2 1 1 1 1 1 1 2 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2 1 2 1 2 0 2 2 2 1 1 2 2 1 2 1 1 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1\n",
"92 8\n3 4 6 9 7 9 12 12 7 4 9 1 3 9 2 12 4 5 12 2 6 5 9 9 5 2 7 5 12 2 1 7 2 11 11 1 4 10 11 7 5 6 3 5 12 2 9 1 11 1 9 11 1 9 7 9 7 8 1 5 8 8 1 8 6 6 4 5 6 10 7 9 7 1 6 2 12 11 7 6 12 11 5 11 6 10 1 9 3 9 11 9\n",
"97 28\n13 12 30 2 17 29 28 28 26 10 27 27 20 14 8 28 10 5 33 19 17 31 15 4 8 13 21 23 32 3 20 9 33 17 11 13 11 9 19 30 19 25 1 18 1 13 1 20 19 9 17 31 32 26 1 34 7 34 6 22 7 13 29 6 29 3 13 28 3 6 7 29 17 34 28 32 13 33 23 25 23 11 19 19 27 27 3 20 17 13 24 2 8 25 10 31 34\n",
"100 2\n79 84 2 24 18 95 57 79 67 60 78 85 75 23 68 68 76 30 39 31 32 81 42 90 50 33 49 9 63 18 74 46 34 55 48 41 7 75 74 90 14 90 2 49 20 29 33 65 43 7 11 12 58 45 17 100 1 28 3 12 26 94 45 5 45 19 3 28 95 11 54 68 89 47 59 5 74 92 43 100 15 63 78 85 70 38 62 100 78 76 29 69 64 2 32 68 48 61 82 100\n",
"20 2\n13 3 6 11 6 11 0 1 1 2 5 2 9 15 14 10 3 12 3 13\n",
"95 17\n1 24 17 9 41 5 39 30 6 32 17 30 27 11 13 25 22 23 12 31 19 31 35 43 8 23 39 23 39 41 10 17 25 17 38 39 37 23 37 11 6 15 43 4 15 84 44 42 29 2 14 6 1 6 31 45 26 21 14 18 15 17 23 11 39 12 16 6 11 19 15 31 18 10 33 10 2 8 21 4 26 3 42 45 16 1 11 28 43 24 18 45 25 39 9\n",
"30 15\n93 99 77 69 43 86 56 15 9 9 75 84 56 1 42 45 10 23 83 87 86 99 5 48 40 69 95 10 61 47\n",
"5 3\n5 5 7 5 1\n",
"15 6\n1 6 6 5 2 1 4 4 14 8 7 3 5 1 2\n",
"65 7\n1 5 4 1 4 11 9 1 11 7 6 11 9 4 2 6 10 11 10 12 4 6 1 12 12 5 1 21 7 9 11 4 10 10 7 8 4 1 3 5 2 3 2 10 11 10 5 8 7 10 12 5 11 6 8 6 2 9 9 7 2 4 12 7 7\n",
"80 1\n7 13 38 24 17 20 11 3 25 23 36 16 41 36 16 9 33 10 37 20 8 7 42 8 17 1 39 30 39 24 36 17 8 11 3 33 23 42 36 16 36 3 30 20 29 35 43 17 32 26 33 2 41 34 9 37 14 26 6 40 16 24 8 26 16 31 11 12 18 24 42 34 24 37 5 23 32 13 8 14\n",
"35 3\n13 12 38 45 71 65 42 75 93 40 50 70 27 38 16 37 21 12 36 7 39 4 65 12 32 26 1 21 66 63 29 56 32 29 26\n",
"60 10\n82 89 35 19 51 28 31 77 10 8 73 27 47 26 66 91 43 33 74 62 77 23 5 44 18 23 74 6 51 21 30 17 31 39 74 4 55 39 3 34 21 3 18 41 61 37 31 91 69 55 75 67 77 30 11 16 35 68 62 19\n",
"85 2\n26 5 35 55 22 22 43 29 55 29 6 53 48 35 58 22 44 7 14 26 48 17 66 44 2 10 50 4 19 35 29 61 55 57 7 5 54 64 18 17 43 16 14 63 46 22 55 23 8 52 65 30 10 13 24 18 7 44 65 7 42 63 29 54 32 23 55 17 3 11 67 14 45 31 33 22 36 28 27 54 46 45 15 40 55\n",
"5 2\n2 4 1 1 2\n",
"94 12\n40 66 66 35 43 23 77 6 55 44 68 90 20 59 11 95 78 13 75 98 30 22 40 0 2 23 82 26 53 48 16 100 97 100 74 96 73 30 35 72 23 38 25 86 7 45 53 20 18 77 68 95 41 45 1 94 42 94 54 9 33 84 53 71 6 68 98 94 35 78 58 34 84 78 28 65 58 11 2 78 96 5 8 36 34 26 43 10 69 49 25 9 77 30\n",
"25 20\n10 8 4 6 12 14 37 18 19 9 21 16 11 15 10 15 12 12 18 18 9 22 12 14 14\n",
"98 23\n23 3 39 39 6 35 2 35 38 9 11 24 42 35 35 46 23 46 20 36 25 46 23 9 21 24 21 38 43 9 9 38 38 46 3 28 17 53 30 14 29 12 37 15 5 45 46 32 35 39 39 27 25 15 42 40 19 19 11 6 32 16 25 29 46 2 45 44 5 36 21 11 14 18 39 1 39 26 18 14 1 23 38 24 10 38 14 42 15 3 8 8 23 46 40 19 14 29\n",
"90 3\n44 16 62 40 33 17 53 32 66 18 68 33 18 76 14 66 41 8 18 57 39 63 9 41 30 39 30 35 46 12 27 33 6 4 21 26 32 24 18 25 35 39 14 49 65 61 54 38 55 64 75 2 53 21 72 11 46 47 63 60 33 62 13 35 40 21 26 15 66 74 55 48 24 26 39 69 65 68 62 12 74 58 21 13 53 5 40 56 66 67\n",
"45 1\n1 1 2 3 1 2 3 0 1 1 1 2 2 2 2 3 1 1 2 2 3 3 2 3 3 1 3 3 3 1 2 3 2 1 2 1 0 2 1 2 1 1 2 2 2\n",
"97 28\n13 12 30 2 17 29 28 28 26 10 27 27 20 14 8 28 10 5 33 19 17 31 15 4 8 13 21 23 32 3 20 9 33 17 11 13 11 9 19 30 19 25 1 18 1 13 1 20 19 9 17 31 32 26 1 34 7 34 6 22 7 13 29 6 29 3 13 28 3 6 7 29 17 34 28 32 13 33 23 25 23 11 19 19 27 27 3 20 30 13 24 2 8 25 10 31 34\n",
"100 2\n79 84 2 24 18 95 57 79 67 60 78 85 75 23 68 68 76 30 39 31 32 81 42 90 50 33 49 9 63 18 74 46 34 55 48 41 7 75 74 90 14 90 2 49 20 29 33 65 43 7 11 12 58 45 17 100 1 28 3 12 26 94 45 5 45 19 3 28 95 11 54 68 89 47 59 5 74 92 43 100 6 63 78 85 70 38 62 100 78 76 29 69 64 2 32 68 48 61 82 100\n",
"20 2\n10 3 6 11 6 11 0 1 1 2 5 2 9 15 14 10 3 12 3 13\n",
"95 17\n1 24 17 9 41 5 39 30 6 32 17 30 27 11 13 25 22 23 12 31 19 31 35 43 8 23 39 23 39 41 10 16 25 17 38 39 37 23 37 11 6 15 43 4 15 84 44 42 29 2 14 6 1 6 31 45 26 21 14 18 15 17 23 11 39 12 16 6 11 19 15 31 18 10 33 10 2 8 21 4 26 3 42 45 16 1 11 28 43 24 18 45 25 39 9\n",
"5 3\n5 5 3 5 1\n",
"100 17\n20 61 7 74 87 84 87 35 64 7 42 5 72 20 62 29 29 58 67 51 50 45 82 20 76 79 39 21 8 39 94 13 65 11 3 21 26 2 15 56 20 75 49 27 64 48 51 96 32 80 57 10 57 48 36 83 51 25 45 65 24 22 3 92 45 52 52 58 15 90 14 43 56 88 46 50 72 70 60 47 91 68 40 24 16 44 82 90 17 17 51 71 25 94 13 42 26 25 53 95\n",
"80 1\n7 13 38 24 17 20 11 3 25 23 36 16 41 36 16 9 33 10 37 20 8 7 42 8 17 0 39 30 39 24 36 17 8 11 3 33 23 42 36 16 36 3 30 20 29 35 43 17 32 26 33 2 41 34 9 37 14 26 6 40 16 24 8 26 16 31 11 12 18 24 42 34 24 37 5 23 32 13 8 14\n",
"10 1\n1 2 1 10 6 1 4 5 5 6\n",
"25 20\n10 8 4 6 12 14 19 18 19 9 21 16 11 15 10 15 12 12 18 18 9 22 12 14 14\n",
"4 2\n1 1 3 4\n",
"91 6\n4 2 4 2 6 2 4 1 2 6 5 3 3 3 3 2 5 4 2 5 3 2 1 3 5 2 4 5 1 3 3 3 6 6 5 3 4 1 5 6 2 5 2 2 5 4 1 5 4 1 2 6 1 3 3 4 3 3 3 3 2 2 4 5 1 6 5 1 6 5 3 5 6 3 3 5 4 4 5 4 5 2 5 2 3 1 5 6 6 4 2\n",
"100 17\n20 61 7 74 87 84 87 35 64 7 42 5 72 20 62 29 29 58 67 51 50 45 82 20 76 79 39 21 8 39 94 13 65 11 3 21 26 2 15 56 20 75 49 27 64 48 51 96 32 80 57 10 57 48 36 83 51 25 45 65 24 22 3 92 45 52 52 58 15 90 23 43 56 88 46 50 72 70 60 47 91 68 40 24 16 44 82 90 17 17 51 71 25 94 13 42 26 25 53 95\n",
"40 33\n33 52 83 32 59 90 25 90 38 31 60 30 76 77 9 13 48 1 55 39 84 13 58 83 12 3 77 34 33 73 15 35 29 8 3 21 43 4 21 75\n",
"96 9\n4 5 1 10 2 6 1 9 2 6 3 2 9 4 1 1 3 10 10 4 6 8 6 4 4 6 4 6 2 9 1 9 3 6 2 10 4 3 7 2 7 4 4 4 6 4 1 7 9 4 9 2 1 7 7 3 4 10 10 5 1 3 10 5 1 9 8 4 10 4 7 2 9 6 9 4 2 3 6 9 8 1 1 2 9 4 10 4 9 0 7 5 1 10 9 10\n",
"10 1\n1 2 2 10 6 1 4 5 5 6\n",
"99 57\n69 27 70 70 16 66 64 35 44 1 51 38 69 17 19 35 83 7 47 4 10 22 60 64 64 56 80 54 83 34 51 42 46 51 41 75 54 10 13 44 66 46 27 79 55 13 13 40 18 12 2 33 20 13 75 45 70 75 51 39 92 25 22 27 77 52 41 83 40 33 23 76 81 21 23 59 27 74 45 68 42 20 83 50 66 58 5 8 22 62 76 81 27 52 55 67 28 65 71\n",
"75 19\n3 35 38 25 5 17 12 37 26 34 20 3 30 33 16 26 16 31 17 5 13 40 4 40 16 4 24 31 39 13 12 3 25 40 21 2 27 26 21 2 18 24 24 25 18 3 15 20 5 6 23 3 16 37 20 13 39 4 6 28 9 25 14 7 6 15 34 9 4 16 36 19 17 27 33\n",
"50 70\n60 13 1 35 20 10 35 59 27 12 57 67 76 49 27 72 39 47 56 36 36 13 62 16 6 16 39 46 35 9 67 59 64 52 1 44 70 40 60 3 5 2 14 29 56 32 4 28 35 73\n",
"70 12\n6 5 11 13 11 30 4 26 16 24 8 12 14 25 7 26 1 24 1 9 7 19 25 11 18 23 27 26 27 19 8 10 9 20 23 2 14 27 24 24 14 21 31 5 1 14 24 20 2 1 11 17 12 7 17 20 7 21 16 17 31 25 9 25 5 18 6 19 22 27\n",
"100 2\n2 2 1 1 1 1 1 1 1 2 2 1 1 2 2 1 1 2 1 0 1 1 1 1 2 2 2 1 1 2 1 2 1 2 2 1 1 1 1 2 1 1 1 2 2 1 1 2 1 1 2 2 2 2 2 1 2 1 2 1 1 2 1 2 2 2 2 1 2 1 2 1 2 0 2 2 2 1 1 2 2 1 2 1 1 1 1 2 1 2 2 2 1 2 1 1 1 2 2 1\n",
"92 8\n3 4 6 9 7 9 12 12 7 4 9 2 3 9 2 12 4 5 12 2 6 5 9 9 5 2 7 5 12 2 1 7 2 11 11 1 4 10 11 7 5 6 3 5 12 2 9 1 11 1 9 11 1 9 7 9 7 8 1 5 8 8 1 8 6 6 4 5 6 10 7 9 7 1 6 2 12 11 7 6 12 11 5 11 6 10 1 9 3 9 11 9\n",
"30 15\n93 99 77 69 43 86 56 15 9 9 75 84 56 1 42 45 10 23 83 87 86 99 5 48 42 69 95 10 61 47\n",
"15 6\n1 6 6 5 2 1 4 4 14 15 7 3 5 1 2\n",
"65 7\n1 5 4 1 4 11 9 1 11 7 6 11 9 4 2 6 10 11 10 12 4 6 1 12 12 5 1 21 7 9 11 4 10 10 7 8 4 1 3 5 2 3 2 9 11 10 5 8 7 10 12 5 11 6 8 6 2 9 9 7 2 4 12 7 7\n",
"91 6\n4 2 4 2 6 2 4 1 2 6 5 3 3 3 3 2 5 4 2 5 3 2 1 3 5 2 4 5 1 3 3 3 6 6 5 3 4 1 5 6 2 5 2 2 5 4 1 5 4 1 2 6 1 3 3 4 3 3 3 3 2 2 4 5 1 6 5 1 6 3 3 5 6 3 3 5 4 4 5 4 5 2 5 2 3 1 5 6 6 4 2\n",
"40 33\n33 52 83 32 59 90 25 90 38 31 60 30 76 77 9 13 48 1 55 39 84 13 58 83 5 3 77 34 33 73 15 35 29 8 3 21 43 4 21 75\n",
"96 9\n4 5 1 10 2 6 1 9 2 6 3 2 9 4 1 1 3 10 10 4 4 8 6 4 4 6 4 6 2 9 1 9 3 6 2 10 4 3 7 2 7 4 4 4 6 4 1 7 9 4 9 2 1 7 7 3 4 10 10 5 1 3 10 5 1 9 8 4 10 4 7 2 9 6 9 4 2 3 6 9 8 1 1 2 9 4 10 4 9 0 7 5 1 10 9 10\n"
],
"output": [
"15\n",
"8\n",
"0\n",
"4110\n",
"36\n",
"245\n",
"66\n",
"3961\n",
"1089\n",
"225\n",
"6\n",
"33\n",
"1810\n",
"36\n",
"2030\n",
"1236\n",
"2240\n",
"2796\n",
"8\n",
"4173\n",
"42\n",
"1876\n",
"817\n",
"0\n",
"280\n",
"3492\n",
"84\n",
"756\n",
"92\n",
"588\n",
"306\n",
"672\n",
"4978\n",
"136\n",
"1360",
"1455",
"42\n",
"245\n",
"66\n",
"3961\n",
"1089\n",
"216\n",
"4\n",
"1808\n",
"38\n",
"2030\n",
"1239\n",
"2280\n",
"2782\n",
"6\n",
"4147\n",
"1472\n",
"817\n",
"280\n",
"3522\n",
"83\n",
"756\n",
"92\n",
"306\n",
"672\n",
"4962\n",
"128\n",
"1394\n",
"1410\n",
"20\n",
"36\n",
"259\n",
"1806\n",
"1275\n",
"2260\n",
"2764\n",
"8\n",
"4121\n",
"63\n",
"1495\n",
"3486\n",
"82\n",
"700\n",
"4954\n",
"126\n",
"1377\n",
"15\n",
"3944\n",
"1805\n",
"41\n",
"42\n",
"6\n",
"66\n",
"3961\n",
"1089\n",
"216\n",
"42\n",
"2030\n",
"817\n",
"280\n",
"756\n",
"92\n",
"306\n",
"1410\n",
"42\n",
"259\n",
"66\n",
"1089\n",
"216\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
The blinds are known to consist of opaque horizontal stripes that can be rotated thus regulating the amount of light flowing in the room. There are n blind stripes with the width of 1 in the factory warehouse for blind production. The problem is that all of them are spare details from different orders, that is, they may not have the same length (it is even possible for them to have different lengths)
Every stripe can be cut into two or more parts. The cuttings are made perpendicularly to the side along which the length is measured. Thus the cuttings do not change the width of a stripe but each of the resulting pieces has a lesser length (the sum of which is equal to the length of the initial stripe)
After all the cuttings the blinds are constructed through consecutive joining of several parts, similar in length, along sides, along which length is measured. Also, apart from the resulting pieces an initial stripe can be used as a blind if it hasn't been cut. It is forbidden to construct blinds in any other way.
Thus, if the blinds consist of k pieces each d in length, then they are of form of a rectangle of k × d bourlemeters.
Your task is to find for what window possessing the largest possible area the blinds can be made from the given stripes if on technical grounds it is forbidden to use pieces shorter than l bourlemeter. The window is of form of a rectangle with side lengths as positive integers.
Input
The first output line contains two space-separated integers n and l (1 ≤ n, l ≤ 100). They are the number of stripes in the warehouse and the minimal acceptable length of a blind stripe in bourlemeters. The second line contains space-separated n integers ai. They are the lengths of initial stripes in bourlemeters (1 ≤ ai ≤ 100).
Output
Print the single number — the maximal area of the window in square bourlemeters that can be completely covered. If no window with a positive area that can be covered completely without breaking any of the given rules exist, then print the single number 0.
Examples
Input
4 2
1 2 3 4
Output
8
Input
5 3
5 5 7 3 1
Output
15
Input
2 3
1 2
Output
0
Note
In the first sample test the required window is 2 × 4 in size and the blinds for it consist of 4 parts, each 2 bourlemeters long. One of the parts is the initial stripe with the length of 2, the other one is a part of a cut stripe with the length of 3 and the two remaining stripes are parts of a stripe with the length of 4 cut in halves.
### Input:
5 3
5 5 7 3 1
### Output:
15
### Input:
4 2
1 2 3 4
### Output:
8
### Code:
m, l = map(int, input().split())
a = list(map(int, input().split()))
print(max(i * sum(ai // i for ai in a) for i in range(l, 101))) |
40_B. Repaintings_1293 | A chessboard n × m in size is given. During the zero minute we repaint all the black squares to the 0 color. During the i-th minute we repaint to the i color the initially black squares that have exactly four corner-adjacent squares painted i - 1 (all such squares are repainted simultaneously). This process continues ad infinitum. You have to figure out how many squares we repainted exactly x times.
The upper left square of the board has to be assumed to be always black. Two squares are called corner-adjacent, if they have exactly one common point.
Input
The first line contains integers n and m (1 ≤ n, m ≤ 5000). The second line contains integer x (1 ≤ x ≤ 109).
Output
Print how many squares will be painted exactly x times.
Examples
Input
3 3
1
Output
4
Input
3 3
2
Output
1
Input
1 1
1
Output
1 | import itertools
import math
n, m = [int(k) for k in input().split()]
x = int(input())
if n-2*(x-1) < 1 or m-2*(x-1) < 1:
print(0)
elif n-2*(x-1) == 1 or m-2*(x-1) == 1:
print((n+m-4*(x-1))//2)
else: print(n+m-2 - 4*(x-1))
| {
"input": [
"1 1\n1\n",
"3 3\n2\n",
"3 3\n1\n",
"2016 4549\n433\n",
"5000 1\n3\n",
"4035 369\n26\n",
"1595 2881\n710\n",
"3762 3914\n1073\n",
"4583 2774\n1206\n",
"10 10\n1\n",
"1812 240\n9\n",
"991 2301\n291\n",
"3154 527\n112\n",
"1353 2988\n589\n",
"4999 1\n7\n",
"3432 4788\n1203\n",
"3990 1800\n171\n",
"5000 5000\n1000000000\n",
"182 2314\n54\n",
"3042 1798\n93\n",
"4892 712\n340\n",
"2089 955\n476\n",
"419 4046\n174\n",
"2714 607\n189\n",
"4847 2143\n827\n",
"3287 2915\n538\n",
"3458 2220\n526\n",
"873 744\n42\n",
"4643 3755\n1381\n",
"3552 3036\n199\n",
"1 4999\n2309\n",
"1662 926\n452\n",
"1444 2646\n660\n",
"9 10\n1\n",
"188 3759\n53\n",
"2470 4895\n421\n",
"7 7\n777\n",
"4339 2062\n462\n",
"1043 49\n10\n",
"2813 3911\n560\n",
"293 2183\n60\n",
"10 10\n3\n",
"3663 2904\n1149\n",
"10 10\n2\n",
"4202 3834\n1478\n",
"126 4125\n52\n",
"2504 973\n201\n",
"10 10\n5\n",
"3122 1850\n201\n",
"3595 448\n110\n",
"1 1\n200\n",
"10 10\n4\n",
"3899 2141\n428\n",
"4273 4835\n159\n",
"3385 4978\n192\n",
"1922 109\n41\n",
"10 9\n4\n",
"1755 2051\n1\n",
"2793 4840\n901\n",
"3250 2992\n127\n",
"2828 4208\n912\n",
"1 5000\n3\n",
"8 8\n8\n",
"1 4999\n1000000\n",
"892 3996\n288\n",
"837 4874\n208\n",
"9 9\n3\n",
"2738 718\n308\n",
"4275 240\n16\n",
"4694 685\n208\n",
"3703 4549\n433\n",
"2931 2881\n710\n",
"3762 947\n1073\n",
"4583 2774\n986\n",
"7 10\n1\n",
"1833 240\n9\n",
"991 2301\n173\n",
"3154 787\n112\n",
"3990 1351\n171\n",
"3042 1798\n72\n",
"4892 712\n206\n",
"4847 2120\n827\n",
"2790 2915\n538\n",
"3458 2269\n526\n",
"873 744\n27\n",
"3552 3036\n358\n",
"2979 926\n452\n",
"6 10\n1\n",
"267 3759\n53\n",
"4339 4078\n462\n",
"31 49\n10\n",
"2813 3911\n909\n",
"10 18\n3\n",
"4293 2904\n1149\n",
"10 12\n2\n",
"4202 3834\n122\n",
"2504 1592\n201\n",
"3192 1850\n201\n",
"3595 318\n110\n",
"3899 3408\n428\n",
"4273 3181\n159\n",
"3385 4978\n58\n",
"1922 130\n41\n",
"10 9\n2\n",
"1755 2051\n2\n",
"2793 2312\n901\n",
"1353 2988\n1150\n",
"4999 1\n3\n",
"2085 5000\n1000000000\n",
"32 2314\n54\n",
"2089 494\n476\n",
"91 4046\n174\n",
"2714 607\n370\n",
"4643 2738\n1381\n",
"1 6336\n2309\n",
"1444 742\n660\n",
"2470 788\n421\n",
"7 7\n459\n",
"68 2183\n60\n",
"32 4125\n52\n",
"10 1\n5\n",
"1 0\n200\n",
"3 10\n5\n",
"3250 195\n127\n"
],
"output": [
"1\n",
"1\n",
"4\n",
"4835\n",
"0\n",
"4302\n",
"1638\n",
"3386\n",
"2535\n",
"18\n",
"2018\n",
"2130\n",
"3235\n",
"1987\n",
"0\n",
"3410\n",
"5108\n",
"0\n",
"2282\n",
"4470\n",
"4246\n",
"1142\n",
"3771\n",
"2567\n",
"3684\n",
"4052\n",
"3576\n",
"1451\n",
"2876\n",
"5794\n",
"0\n",
"782\n",
"1452\n",
"17\n",
"3737\n",
"5683\n",
"0\n",
"4555\n",
"1054\n",
"4486\n",
"2238\n",
"10\n",
"1973\n",
"14\n",
"2126\n",
"4045\n",
"2675\n",
"2\n",
"4170\n",
"3605\n",
"0\n",
"6\n",
"4330\n",
"8474\n",
"7597\n",
"1869\n",
"5\n",
"3804\n",
"4031\n",
"5736\n",
"3390\n",
"0\n",
"0\n",
"0\n",
"3738\n",
"4881\n",
"8\n",
"2226\n",
"4453\n",
"4549\n",
"6522\n",
"2974\n",
"0\n",
"3415\n",
"15\n",
"2039\n",
"2602\n",
"3495\n",
"4659\n",
"4554\n",
"4782\n",
"3661\n",
"3555\n",
"3625\n",
"1511\n",
"5158\n",
"2099\n",
"14\n",
"3816\n",
"6571\n",
"42\n",
"3090\n",
"18\n",
"2603\n",
"16\n",
"7550\n",
"3294\n",
"4240\n",
"3475\n",
"5597\n",
"6820\n",
"8133\n",
"1890\n",
"13\n",
"3800\n",
"1503\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
A chessboard n × m in size is given. During the zero minute we repaint all the black squares to the 0 color. During the i-th minute we repaint to the i color the initially black squares that have exactly four corner-adjacent squares painted i - 1 (all such squares are repainted simultaneously). This process continues ad infinitum. You have to figure out how many squares we repainted exactly x times.
The upper left square of the board has to be assumed to be always black. Two squares are called corner-adjacent, if they have exactly one common point.
Input
The first line contains integers n and m (1 ≤ n, m ≤ 5000). The second line contains integer x (1 ≤ x ≤ 109).
Output
Print how many squares will be painted exactly x times.
Examples
Input
3 3
1
Output
4
Input
3 3
2
Output
1
Input
1 1
1
Output
1
### Input:
1 1
1
### Output:
1
### Input:
3 3
2
### Output:
1
### Code:
import itertools
import math
n, m = [int(k) for k in input().split()]
x = int(input())
if n-2*(x-1) < 1 or m-2*(x-1) < 1:
print(0)
elif n-2*(x-1) == 1 or m-2*(x-1) == 1:
print((n+m-4*(x-1))//2)
else: print(n+m-2 - 4*(x-1))
|
438_A. The Child and Toy_1297 | On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of n parts and m ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part i as vi. The child spend vf1 + vf2 + ... + vfk energy for removing part i where f1, f2, ..., fk are the parts that are directly connected to the i-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all n parts.
Input
The first line contains two integers n and m (1 ≤ n ≤ 1000; 0 ≤ m ≤ 2000). The second line contains n integers: v1, v2, ..., vn (0 ≤ vi ≤ 105). Then followed m lines, each line contains two integers xi and yi, representing a rope from part xi to part yi (1 ≤ xi, yi ≤ n; xi ≠ yi).
Consider all the parts are numbered from 1 to n.
Output
Output the minimum total energy the child should spend to remove all n parts of the toy.
Examples
Input
4 3
10 20 30 40
1 4
1 2
2 3
Output
40
Input
4 4
100 100 100 100
1 2
2 3
2 4
3 4
Output
400
Input
7 10
40 10 20 10 20 80 40
1 5
4 7
4 5
5 2
5 7
6 4
1 6
1 3
4 3
1 4
Output
160
Note
One of the optimal sequence of actions in the first sample is:
* First, remove part 3, cost of the action is 20.
* Then, remove part 2, cost of the action is 10.
* Next, remove part 4, cost of the action is 10.
* At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts. | import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,copy,functools
sys.setrecursionlimit(10**7)
inf = 10**20
eps = 1.0 / 10**10
mod = 998244353
dd = [(-1,0),(0,1),(1,0),(0,-1)]
ddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]
def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def LS(): return sys.stdin.readline().split()
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def pf(s): return print(s, flush=True)
def pe(s): return print(str(s), file=sys.stderr)
def JA(a, sep): return sep.join(map(str, a))
def main():
n,m = LI()
a = LI()
aa = [LI_() for _ in range(m)]
r = 0
for b,c in aa:
r += min(a[b], a[c])
return r
print(main())
| {
"input": [
"4 4\n100 100 100 100\n1 2\n2 3\n2 4\n3 4\n",
"4 3\n10 20 30 40\n1 4\n1 2\n2 3\n",
"7 10\n40 10 20 10 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"1 0\n23333\n",
"3 3\n1 1 1\n1 2\n2 3\n3 1\n",
"5 4\n1 2 2 2 2\n1 2\n1 3\n1 4\n1 5\n",
"10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n7 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10\n",
"1 0\n40654\n",
"3 3\n1 1 0\n1 2\n2 3\n3 1\n",
"5 4\n1 2 2 2 2\n1 2\n2 3\n1 4\n1 5\n",
"4 4\n100 000 100 100\n1 2\n2 3\n2 4\n3 4\n",
"7 10\n40 10 20 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"7 10\n40 13 20 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"4 4\n110 100 100 100\n1 2\n2 3\n2 4\n3 4\n",
"4 3\n10 20 5 40\n1 4\n1 2\n2 3\n",
"5 4\n1 4 2 2 2\n1 2\n1 3\n1 4\n1 5\n",
"7 10\n40 10 20 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 2\n1 3\n4 3\n1 4\n",
"7 10\n2 13 20 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n5 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10\n",
"7 10\n40 10 20 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 2\n",
"7 10\n40 13 20 28 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"10 30\n3 12 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 10\n5 8\n9 5\n6 1\n2 1\n5 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10\n",
"7 10\n40 10 20 16 20 80 40\n1 5\n1 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 2\n",
"7 10\n40 13 20 28 16 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"7 10\n40 10 20 16 20 80 40\n1 5\n2 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 2\n",
"7 10\n40 13 20 28 16 1 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"7 10\n40 10 20 10 20 20 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"5 4\n2 2 2 2 2\n1 2\n2 3\n1 4\n1 5\n",
"7 10\n40 13 20 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 2\n4 3\n1 4\n",
"4 4\n110 100 100 000\n1 2\n2 3\n2 4\n1 4\n",
"4 3\n10 20 4 40\n1 4\n1 2\n4 3\n",
"1 0\n62008\n",
"1 0\n4702\n",
"1 0\n5105\n",
"1 0\n46084\n",
"1 0\n1302\n",
"1 0\n545\n",
"1 0\n57321\n",
"1 0\n4505\n",
"1 0\n493\n",
"1 0\n7900\n",
"4 4\n110 100 100 100\n1 2\n2 3\n2 4\n1 4\n",
"4 3\n10 20 5 40\n1 4\n1 2\n4 3\n",
"1 0\n358\n",
"7 10\n2 13 16 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n4 3\n1 4\n",
"4 3\n10 20 5 32\n1 4\n1 2\n4 3\n",
"1 0\n420\n",
"4 4\n100 100 100 100\n1 2\n1 3\n2 4\n3 4\n",
"1 0\n83281\n",
"4 4\n100 000 000 100\n1 2\n2 3\n2 4\n3 4\n",
"1 0\n1589\n",
"1 0\n149\n",
"4 3\n10 12 5 40\n1 4\n1 2\n2 3\n",
"1 0\n104470\n",
"1 0\n249\n",
"1 0\n654\n",
"7 10\n2 13 16 16 20 80 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n7 3\n1 4\n",
"4 3\n10 20 5 32\n1 4\n1 2\n1 3\n",
"1 0\n164715\n",
"1 0\n1088\n",
"1 0\n294\n",
"1 0\n100846\n",
"1 0\n1079\n",
"7 10\n2 13 16 16 20 70 40\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 6\n1 3\n7 3\n1 4\n",
"4 3\n10 39 5 32\n1 4\n1 2\n1 3\n",
"1 0\n744\n",
"1 0\n28653\n",
"10 30\n3 6 17 15 13 15 6 12 9 1\n3 8\n1 10\n4 7\n1 7\n3 7\n2 9\n8 10\n3 1\n3 4\n8 6\n10 3\n3 9\n2 3\n10 4\n2 5\n5 8\n9 5\n6 1\n2 1\n7 2\n7 6\n7 10\n4 8\n5 6\n3 6\n4 1\n8 9\n7 9\n4 2\n5 10\n",
"4 4\n100 101 100 100\n1 2\n2 3\n2 4\n3 4\n",
"1 0\n828\n",
"1 0\n54499\n",
"1 0\n764\n",
"1 0\n70991\n",
"1 0\n1667\n",
"1 0\n804\n",
"7 10\n40 10 20 16 20 80 59\n1 5\n4 7\n4 5\n5 2\n5 7\n6 4\n1 2\n1 3\n4 3\n1 4\n",
"1 0\n1765\n",
"1 0\n662\n"
],
"output": [
"400\n",
"40\n",
"160\n",
"0\n",
"3\n",
"4\n",
"188\n",
"0\n",
"1\n",
"5\n",
"100\n",
"190\n",
"193\n",
"400\n",
"25\n",
"4\n",
"160\n",
"105\n",
"188\n",
"184\n",
"237\n",
"209\n",
"208\n",
"225\n",
"178\n",
"159\n",
"140\n",
"8\n",
"186\n",
"200\n",
"24\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"400\n",
"25\n",
"0\n",
"105\n",
"25\n",
"0\n",
"400\n",
"0\n",
"0\n",
"0\n",
"0\n",
"25\n",
"0\n",
"0\n",
"0\n",
"105\n",
"25\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"105\n",
"25\n",
"0\n",
"0\n",
"193\n",
"400\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"160\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
On Children's Day, the child got a toy from Delayyy as a present. However, the child is so naughty that he can't wait to destroy the toy.
The toy consists of n parts and m ropes. Each rope links two parts, but every pair of parts is linked by at most one rope. To split the toy, the child must remove all its parts. The child can remove a single part at a time, and each remove consume an energy. Let's define an energy value of part i as vi. The child spend vf1 + vf2 + ... + vfk energy for removing part i where f1, f2, ..., fk are the parts that are directly connected to the i-th and haven't been removed.
Help the child to find out, what is the minimum total energy he should spend to remove all n parts.
Input
The first line contains two integers n and m (1 ≤ n ≤ 1000; 0 ≤ m ≤ 2000). The second line contains n integers: v1, v2, ..., vn (0 ≤ vi ≤ 105). Then followed m lines, each line contains two integers xi and yi, representing a rope from part xi to part yi (1 ≤ xi, yi ≤ n; xi ≠ yi).
Consider all the parts are numbered from 1 to n.
Output
Output the minimum total energy the child should spend to remove all n parts of the toy.
Examples
Input
4 3
10 20 30 40
1 4
1 2
2 3
Output
40
Input
4 4
100 100 100 100
1 2
2 3
2 4
3 4
Output
400
Input
7 10
40 10 20 10 20 80 40
1 5
4 7
4 5
5 2
5 7
6 4
1 6
1 3
4 3
1 4
Output
160
Note
One of the optimal sequence of actions in the first sample is:
* First, remove part 3, cost of the action is 20.
* Then, remove part 2, cost of the action is 10.
* Next, remove part 4, cost of the action is 10.
* At last, remove part 1, cost of the action is 0.
So the total energy the child paid is 20 + 10 + 10 + 0 = 40, which is the minimum.
In the second sample, the child will spend 400 no matter in what order he will remove the parts.
### Input:
4 4
100 100 100 100
1 2
2 3
2 4
3 4
### Output:
400
### Input:
4 3
10 20 30 40
1 4
1 2
2 3
### Output:
40
### Code:
import math,string,itertools,fractions,heapq,collections,re,array,bisect,sys,copy,functools
sys.setrecursionlimit(10**7)
inf = 10**20
eps = 1.0 / 10**10
mod = 998244353
dd = [(-1,0),(0,1),(1,0),(0,-1)]
ddn = [(-1,0),(-1,1),(0,1),(1,1),(1,0),(1,-1),(0,-1),(-1,-1)]
def LI(): return list(map(int, sys.stdin.readline().split()))
def LLI(): return [list(map(int, l.split())) for l in sys.stdin.readlines()]
def LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]
def LF(): return [float(x) for x in sys.stdin.readline().split()]
def LS(): return sys.stdin.readline().split()
def I(): return int(sys.stdin.readline())
def F(): return float(sys.stdin.readline())
def S(): return input()
def pf(s): return print(s, flush=True)
def pe(s): return print(str(s), file=sys.stderr)
def JA(a, sep): return sep.join(map(str, a))
def main():
n,m = LI()
a = LI()
aa = [LI_() for _ in range(m)]
r = 0
for b,c in aa:
r += min(a[b], a[c])
return r
print(main())
|
45_H. Road Problem_1300 | The Berland capital (as you very well know) contains n junctions, some pairs of which are connected by two-way roads. Unfortunately, the number of traffic jams in the capital has increased dramatically, that's why it was decided to build several new roads. Every road should connect two junctions.
The city administration noticed that in the cities of all the developed countries between any two roads one can drive along at least two paths so that the paths don't share any roads (but they may share the same junction). The administration decided to add the minimal number of roads so that this rules was fulfilled in the Berland capital as well. In the city road network should exist no more than one road between every pair of junctions before or after the reform.
Input
The first input line contains a pair of integers n, m (2 ≤ n ≤ 900, 1 ≤ m ≤ 100000), where n is the number of junctions and m is the number of roads. Each of the following m lines contains a description of a road that is given by the numbers of the connected junctions ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). The junctions are numbered from 1 to n. It is possible to reach any junction of the city from any other one moving along roads.
Output
On the first line print t — the number of added roads. Then on t lines print the descriptions of the added roads in the format of the input data. You can use any order of printing the roads themselves as well as the junctions linked by every road. If there are several solutions to that problem, print any of them.
If the capital doesn't need the reform, print the single number 0.
If there's no solution, print the single number -1.
Examples
Input
4 3
1 2
2 3
3 4
Output
1
1 4
Input
4 4
1 2
2 3
2 4
3 4
Output
1
1 3 | import sys
import threading
def main():
p = input().split()
n = int(p[0]) #number of locations
m = int(p[1]) #number of passages
if n==1: #if there's only one location, there's nothing to do
print(0)
return
if n==2: #if there's only two nodes, the only edge between them, is always a bridge
print(-1)
return
g = graph(n,m)
g.buildBridgeTree()
e = graph(len(g.bridges)+1,len(g.bridges))
e.conexions= []
e.pi=[]
e.discovery=[]
e.seen=[]
for i in range(len(g.bridges)+1):
e.conexions.append([])
e.pi.append(-1)
e.discovery.append(sys.float_info.max)
e.seen.append(False)
for i in range(len(g.bridges)):
e.conexions[g.cc[g.bridges[i][0]]].append((g.cc[g.bridges[i][1]],True))
e.conexions[g.cc[g.bridges[i][1]]].append((g.cc[g.bridges[i][0]],True))
e.bridges=g.bridges
e.bridge=g.bridge
e.cc=g.cc
e.CC=e.CC
e.CC
e.treeDiameter()
print(len(e.newEdges))
for i in range(len(e.newEdges)):
u = e.newEdges[i][0] +1
v = e.newEdges[i][1] +1
print(u, end=" ")
print(v)
class graph:
n = int() #number of nodes
edges= int() #number of edges
time = int()
conexions = [] #adjacency list
bridges=[] #are we using a removable edge or not for city i?
bridge=[]
discovery = [] #time to discover node i
seen = [] #visited or not
cc = [] #index of connected components
low = [] #low[i]=min(discovery(i),discovery(w)) w:any node discoverable from i
pi = [] #index of i's father
CC = []
newEdges = []
def __init__(self, n, m):
self.n = n
self.edges = m
for i in range(self.n):
self.conexions.append([])
self.discovery.append(sys.float_info.max)
self.low.append(sys.float_info.max)
self.seen.append(False)
self.cc.append(-1)
self.CC.append([])
self.bridge.append([])
def buildGraph(self):
#this method put every edge in the adjacency list
for i in range(self.edges):
p2=input().split()
self.conexions[int(p2[0])-1].append((int(p2[1])-1,False))
self.conexions[int(p2[1])-1].append((int(p2[0])-1,False))
def searchBridges (self):
self.time = 0
for i in range(self.n):
self.pi.append(-1)
for j in range(self.n):
self.bridge[i].append(False)
self.searchBridges_(0,-1) #we can start in any node 'cause the graph is connected
def searchBridges_(self,c,index):
self.seen[c]=True #mark as visited
self.time+=1
self.discovery[c]=self.low[c]= self.time
for i in range(len(self.conexions[c])):
pos = self.conexions[c][i][0]
if not self.seen[pos]:
self.pi[pos]=c #the node that discovered it
self.searchBridges_(pos,i) #search throw its not visited conexions
self.low[c]= min([self.low[c],self.low[pos]]) #definition of low
elif self.pi[c]!=pos: #It is not the node that discovered it
self.low[c]= min([self.low[c],self.discovery[pos]])
if self.pi[c]!=-1 and self.low[c]==self.discovery[c]: #it isn't the root and none of its connections is reacheable earlier than it
self.bridges.append((c,self.pi[c]))
self.bridge[self.pi[c]][c]=self.bridge[c][self.pi[c]]= True
for i in range(len(self.conexions[c])):
if(self.conexions[c][i][0]==self.pi[c]):
self.conexions[c][i]=(self.pi[c],True)
self.conexions[self.pi[c]][index]=(c,True)
def findCC(self):
j = 0
for i in range(self.n):
self.pi[i]=-1
self.seen[i]=False
for i in range(self.n):
if self.seen[i]==False:
self.cc[i]=j #assign the index of the new connected component
self.CC[j].append(i)
self.findCC_(i,j) #search throw its not visited conexions
j+=1 #we finished the search in the connected component
def findCC_(self, c, j):
self.seen[c]=True #mark as visited
for i in range(len(self.conexions[c])):
pos = self.conexions[c][i][0]
if(self.seen[pos]==False and self.conexions[c][i][1]==False):
self.cc[pos]=j #assign the index of the connected component
self.CC[j].append(pos)
self.pi[pos]=c #the node that discovered it
self.findCC_(pos,j) #search throw its not visited conexions
def treeDiameter(self):
while self.n>1:
for i in range(self.n):
self.seen[i]=False
self.pi[i]=-1
self.discovery[0]=0
self.treeDiameter_(0) #search the distance from this node, to the others
max = -1
maxIndex = 0
for i in range(self.n):
if self.discovery[i]>max:
max= self.discovery[i] #look for the furthest node
maxIndex=i
for i in range(self.n):
self.seen[i]=False
self.pi[i]=-1
self.discovery[maxIndex]=0
self.treeDiameter_(maxIndex) #search the distance from the furthest node, to the others
max =-1
maxIndex2=-1
for i in range(self.n):
if self.discovery[i]>max :
max= self.discovery[i] #look for the furthest node to preview furthest node, and that is the diameter in a tree
maxIndex2=i
self.ReBuildTree(maxIndex,maxIndex2)
def treeDiameter_(self, c):
self.seen[c]=True #mark as visited
for i in range(len(self.conexions[c])):
pos = self.conexions[c][i][0]
if self.seen[pos]==False:
self.pi[pos]=c #the node that discovered it
self.discovery[pos]= self.discovery[c]+1 #distance to the node who discover it + 1
#we don't have to compare and search for other paths, since it's a tree and there is only one path between two nodes.
self.treeDiameter_(pos) #search throw its not visited conex16 ions
def buildBridgeTree(self):
self.buildGraph()
self.searchBridges()
self.findCC()
def ReBuildTree(self, u, v):
find=0
for i in range(len(self.CC[u])):
for j in range(len(self.CC[v])):
if not self.bridge[self.CC[u][i]][self.CC[v][j]]:
self.newEdges.append((self.CC[u][i],self.CC[v][j]))
find=1
break
if find==1:
break
newIndex=[]
temp = v
self.conexions[u]=None
self.conexions[v]=None
while self.pi[temp]!=u:
self.conexions[self.pi[temp]]=None
temp = self.pi[temp]
r =1
for i in range(self.n):
if(self.conexions[i]!=None):
newIndex.append(r)
r+=1
else:
newIndex.append(0)
self.n=r
if self.n==1:
return
newCC=[]
self.conexions=[]
for i in range(self.n):
self.conexions.append([])
newCC.append([])
for i in range(len(self.bridges)):
len0 = len(self.CC[self.cc[self.bridges[i][0]]])
if(len0!=0):
for j in range(len0):
newCC[newIndex[self.cc[self.bridges[i][0]]]].append(self.CC[self.cc[self.bridges[i][0]]][j])
self.CC[self.cc[self.bridges[i][0]]]=[]
len1 = len(self.CC[self.cc[self.bridges[i][1]]])
if(len1!=0):
for j in range(len1):
newCC[newIndex[self.cc[self.bridges[i][1]]]].append(self.CC[self.cc[self.bridges[i][1]]][j])
self.CC[self.cc[self.bridges[i][1]]]=[]
self.conexions[newIndex[self.cc[self.bridges[i][0]]]].append((newIndex[self.cc[self.bridges[i][1]]],True))
self.conexions[newIndex[self.cc[self.bridges[i][1]]]].append((newIndex[self.cc[self.bridges[i][0]]],True))
self.CC= newCC
for i in range(len(self.cc)):
self.cc[i]=newIndex[self.cc[i]]
if __name__ == '__main__':
main() | {
"input": [
"4 4\n1 2\n2 3\n2 4\n3 4\n",
"4 3\n1 2\n2 3\n3 4\n",
"10 9\n7 9\n8 9\n8 2\n10 6\n8 3\n9 4\n2 6\n8 5\n9 1\n",
"2 1\n1 2\n",
"20 20\n1 9\n11 9\n3 5\n15 13\n1 20\n11 18\n10 6\n10 8\n10 19\n12 16\n10 3\n9 18\n8 4\n15 1\n13 16\n11 2\n7 20\n10 15\n3 17\n17 14\n",
"20 20\n2 17\n5 17\n14 4\n4 11\n5 1\n4 9\n18 16\n1 18\n13 6\n9 19\n2 7\n20 6\n11 12\n18 8\n13 3\n14 17\n18 13\n2 15\n10 8\n5 2\n",
"20 20\n1 7\n9 4\n11 16\n19 1\n8 3\n13 14\n10 1\n15 6\n10 18\n12 16\n15 11\n20 5\n17 11\n6 8\n20 16\n2 4\n5 12\n10 15\n17 14\n9 18\n",
"10 19\n3 7\n3 6\n8 1\n9 10\n1 4\n1 3\n4 3\n5 4\n7 10\n9 1\n4 2\n8 2\n9 4\n9 8\n7 6\n9 3\n8 6\n2 10\n6 2\n",
"10 13\n2 9\n9 5\n5 10\n4 8\n5 7\n6 1\n5 8\n9 7\n10 3\n7 1\n7 10\n2 1\n3 1\n",
"20 21\n19 7\n6 15\n17 3\n6 20\n10 11\n18 8\n1 9\n13 19\n4 16\n3 4\n3 16\n10 13\n2 3\n13 18\n1 17\n10 1\n18 6\n13 5\n9 12\n14 12\n2 16\n",
"10 9\n5 4\n3 10\n8 2\n10 1\n8 3\n7 9\n5 7\n8 5\n4 6\n",
"10 16\n1 3\n4 3\n6 4\n5 3\n5 4\n1 2\n9 8\n10 5\n2 6\n7 9\n7 8\n1 4\n2 3\n10 7\n1 6\n6 10\n",
"6 6\n4 2\n6 2\n5 6\n4 3\n5 1\n3 5\n",
"20 20\n19 11\n17 9\n1 12\n19 3\n19 2\n13 7\n10 6\n10 1\n10 19\n20 5\n10 18\n14 2\n1 17\n19 8\n14 4\n13 20\n2 4\n10 15\n1 13\n8 16\n",
"70 71\n56 50\n52 51\n6 5\n56 67\n29 17\n13 41\n39 10\n61 13\n3 22\n49 11\n2 20\n44 59\n30 4\n8 39\n37 26\n8 58\n21 57\n29 63\n69 24\n66 21\n44 55\n29 40\n44 37\n62 8\n53 64\n44 2\n15 28\n11 42\n67 53\n6 1\n52 14\n23 33\n59 16\n22 48\n2 34\n36 61\n61 32\n26 65\n56 49\n52 68\n6 25\n29 31\n15 12\n36 28\n37 9\n56 29\n47 43\n51 24\n68 35\n27 21\n22 52\n29 70\n43 23\n65 19\n7 36\n44 3\n17 45\n59 7\n36 6\n6 38\n14 62\n54 55\n69 51\n37 56\n52 30\n12 28\n25 60\n4 18\n37 47\n16 66\n46 57\n",
"9 8\n4 3\n6 4\n7 5\n3 8\n7 6\n4 1\n6 2\n9 1\n",
"3 2\n2 1\n3 1\n",
"50 50\n37 15\n19 9\n42 43\n5 23\n17 2\n14 37\n27 20\n37 46\n48 6\n41 10\n26 40\n45 12\n47 29\n14 5\n24 25\n50 44\n3 49\n47 38\n18 48\n50 24\n13 45\n39 50\n18 26\n11 39\n26 27\n50 4\n12 31\n40 1\n32 19\n23 2\n26 42\n39 47\n48 35\n28 21\n50 16\n40 3\n11 32\n32 34\n14 36\n8 11\n43 7\n46 21\n22 29\n16 30\n39 13\n17 5\n41 33\n26 8\n3 14\n4 41\n",
"20 20\n19 1\n11 9\n17 11\n15 12\n19 8\n11 5\n10 3\n10 16\n10 9\n7 20\n15 6\n14 2\n8 13\n15 19\n2 4\n9 18\n4 20\n10 15\n8 14\n17 18\n",
"60 66\n27 43\n37 11\n30 31\n50 53\n30 51\n13 8\n1 38\n22 57\n51 48\n10 5\n3 33\n5 60\n6 29\n58 39\n28 2\n33 36\n33 46\n41 33\n53 9\n47 40\n5 59\n20 3\n4 25\n17 57\n1 12\n55 6\n21 57\n41 28\n52 38\n23 42\n3 30\n22 21\n59 32\n49 35\n14 55\n4 32\n33 15\n59 40\n24 40\n36 16\n32 25\n37 52\n55 29\n58 45\n31 17\n20 15\n51 18\n24 47\n59 23\n34 49\n5 27\n33 39\n46 19\n1 56\n51 35\n30 50\n51 54\n5 41\n34 35\n13 26\n36 37\n10 14\n7 11\n45 39\n12 44\n59 13\n",
"20 21\n6 20\n12 19\n17 14\n12 6\n10 11\n9 16\n1 9\n13 15\n3 4\n15 19\n7 2\n10 13\n20 15\n13 5\n1 18\n10 1\n18 8\n13 17\n9 2\n17 4\n20 19\n",
"4 4\n1 2\n2 3\n2 4\n3 4\n",
"5 5\n4 2\n1 4\n3 2\n5 1\n3 5\n",
"8 14\n8 4\n3 5\n3 4\n6 3\n5 1\n1 4\n8 7\n2 4\n2 3\n2 1\n3 1\n2 6\n6 1\n2 5\n",
"60 61\n19 31\n1 56\n35 37\n1 47\n56 60\n15 31\n38 33\n26 57\n43 29\n28 22\n6 5\n56 38\n3 30\n49 17\n12 13\n20 49\n13 35\n31 16\n49 3\n15 14\n35 21\n54 4\n37 52\n12 32\n32 8\n23 2\n38 20\n50 5\n53 41\n12 45\n41 19\n40 39\n50 9\n58 27\n22 44\n10 46\n56 58\n20 12\n37 36\n15 28\n25 40\n58 11\n49 2\n22 55\n49 42\n11 43\n33 34\n34 48\n49 26\n53 4\n52 59\n49 51\n25 18\n58 24\n1 25\n16 54\n5 9\n21 7\n8 10\n56 6\n49 15\n",
"7 7\n4 6\n2 3\n2 4\n3 1\n5 2\n6 7\n4 7\n",
"20 20\n6 5\n3 17\n8 9\n6 1\n19 8\n11 18\n15 6\n15 11\n15 19\n12 16\n15 13\n7 20\n19 3\n15 14\n5 12\n14 4\n5 16\n10 15\n1 2\n8 7\n",
"70 69\n32 67\n1 57\n40 34\n44 38\n50 24\n69 5\n68 7\n19 61\n36 29\n60 6\n8 12\n32 10\n63 69\n62 39\n14 16\n40 63\n6 70\n39 58\n57 27\n9 55\n43 21\n25 15\n69 22\n30 3\n60 37\n22 50\n29 41\n37 56\n41 28\n11 19\n60 25\n50 46\n11 49\n14 2\n11 9\n40 60\n63 11\n62 1\n60 32\n15 64\n61 4\n10 66\n46 68\n32 18\n32 65\n50 62\n19 35\n40 36\n62 33\n56 31\n13 51\n17 44\n55 14\n14 47\n67 53\n46 17\n10 23\n69 45\n27 54\n60 8\n14 26\n43 52\n66 48\n26 59\n69 30\n36 43\n53 20\n56 51\n19 42\n",
"6 6\n4 6\n2 1\n3 2\n4 3\n5 6\n3 5\n",
"10 18\n6 4\n3 7\n4 9\n8 4\n3 4\n3 6\n7 5\n3 9\n10 9\n10 5\n1 2\n1 8\n8 2\n5 6\n6 9\n5 9\n3 10\n7 10\n",
"20 21\n12 6\n14 12\n5 7\n17 6\n10 11\n8 5\n13 1\n11 2\n4 16\n2 16\n3 4\n10 19\n20 15\n11 9\n13 6\n11 13\n5 15\n11 8\n9 18\n17 14\n2 3\n",
"10 16\n2 6\n3 7\n6 5\n5 9\n5 4\n1 2\n9 8\n6 4\n2 10\n3 8\n7 9\n1 4\n2 4\n10 5\n1 6\n6 10\n",
"4 3\n2 1\n3 4\n2 4\n",
"20 45\n3 9\n5 20\n2 16\n20 12\n18 11\n12 8\n15 8\n5 18\n8 7\n11 1\n5 10\n4 18\n10 17\n13 16\n10 11\n14 18\n9 4\n3 18\n12 1\n12 18\n5 1\n8 16\n8 19\n12 3\n8 6\n5 17\n19 7\n20 1\n6 19\n15 13\n10 20\n15 7\n4 1\n4 11\n2 7\n19 13\n14 20\n15 2\n17 14\n3 4\n6 13\n15 19\n13 2\n5 11\n16 7\n",
"30 29\n12 20\n18 8\n1 18\n1 27\n17 6\n28 23\n26 16\n2 9\n15 5\n24 19\n2 21\n13 11\n16 13\n27 17\n24 26\n26 7\n18 28\n24 25\n2 15\n4 29\n24 3\n8 10\n20 30\n26 4\n15 24\n2 22\n16 14\n5 1\n21 12\n",
"40 40\n4 7\n37 10\n26 14\n26 24\n39 28\n29 40\n37 39\n19 5\n3 16\n33 1\n15 20\n38 8\n7 19\n29 38\n29 37\n8 13\n33 4\n29 33\n9 18\n39 26\n8 22\n23 27\n34 15\n37 2\n27 12\n28 36\n21 32\n36 21\n30 31\n23 6\n40 11\n31 23\n30 40\n26 35\n4 17\n4 34\n11 31\n17 9\n24 3\n18 25\n",
"20 20\n1 9\n11 9\n3 5\n15 13\n1 20\n11 18\n10 6\n10 8\n10 19\n12 16\n10 3\n9 18\n8 7\n15 1\n13 16\n11 2\n7 20\n10 15\n3 17\n17 14\n",
"20 20\n2 17\n5 17\n14 4\n4 11\n5 1\n4 9\n18 13\n1 18\n13 6\n9 19\n2 7\n20 6\n11 12\n18 8\n13 3\n14 17\n18 13\n2 15\n10 8\n5 2\n",
"10 9\n9 4\n3 10\n8 2\n10 1\n8 3\n7 9\n5 7\n8 5\n4 6\n",
"10 16\n1 3\n4 3\n6 4\n5 3\n5 4\n1 2\n9 8\n10 5\n2 5\n7 9\n7 8\n1 4\n2 3\n10 7\n1 6\n6 10\n",
"6 6\n4 2\n6 2\n5 2\n4 3\n5 1\n3 5\n",
"20 20\n19 11\n17 9\n1 12\n19 3\n19 2\n13 3\n10 6\n10 1\n10 19\n20 5\n10 18\n14 2\n1 17\n19 8\n14 4\n13 20\n2 4\n10 15\n1 13\n8 16\n",
"70 71\n56 50\n52 51\n6 5\n56 67\n29 17\n13 41\n39 10\n61 13\n3 22\n49 11\n2 20\n44 59\n30 4\n8 39\n37 26\n8 58\n21 57\n29 63\n69 24\n66 21\n44 55\n29 40\n44 37\n62 8\n53 64\n44 2\n15 28\n11 42\n67 53\n6 1\n52 14\n23 33\n59 16\n22 48\n2 34\n36 61\n61 32\n26 65\n56 49\n52 68\n6 25\n29 31\n15 12\n36 28\n37 9\n56 29\n47 43\n51 24\n68 35\n27 21\n22 52\n29 70\n43 23\n65 19\n7 36\n44 3\n17 45\n59 7\n24 6\n6 38\n14 62\n54 55\n69 51\n37 56\n52 30\n12 28\n25 60\n4 18\n37 47\n16 66\n46 57\n",
"50 50\n37 15\n19 9\n42 43\n5 23\n17 2\n14 37\n27 20\n37 46\n48 6\n41 10\n26 40\n45 12\n47 29\n14 5\n24 25\n50 44\n3 49\n47 38\n18 48\n50 24\n13 45\n39 50\n18 26\n11 39\n26 27\n50 4\n12 31\n40 1\n32 19\n23 2\n26 42\n39 47\n48 35\n22 21\n50 16\n40 3\n11 32\n32 34\n14 36\n8 11\n43 7\n46 21\n22 29\n16 30\n39 13\n17 5\n41 33\n26 8\n3 14\n4 41\n",
"20 20\n19 1\n11 9\n17 11\n15 12\n19 8\n11 5\n10 5\n10 16\n10 9\n7 20\n15 6\n14 2\n8 13\n15 19\n2 4\n9 18\n4 20\n10 15\n8 14\n17 18\n",
"20 21\n6 20\n12 19\n17 14\n12 6\n10 11\n9 16\n1 9\n13 15\n3 4\n15 19\n7 2\n10 13\n20 15\n13 5\n1 18\n10 1\n18 8\n13 17\n15 2\n17 4\n20 19\n",
"4 4\n1 2\n2 3\n2 4\n4 4\n",
"60 61\n19 31\n1 56\n35 37\n1 47\n56 60\n18 31\n38 33\n26 57\n43 29\n28 22\n6 5\n56 38\n3 30\n49 17\n12 13\n20 49\n13 35\n31 16\n49 3\n15 14\n35 21\n54 4\n37 52\n12 32\n32 8\n23 2\n38 20\n50 5\n53 41\n12 45\n41 19\n40 39\n50 9\n58 27\n22 44\n10 46\n56 58\n20 12\n37 36\n15 28\n25 40\n58 11\n49 2\n22 55\n49 42\n11 43\n33 34\n34 48\n49 26\n53 4\n52 59\n49 51\n25 18\n58 24\n1 25\n16 54\n5 9\n21 7\n8 10\n56 6\n49 15\n",
"7 7\n4 6\n2 3\n2 4\n3 1\n3 2\n6 7\n4 7\n",
"20 20\n11 5\n3 17\n8 9\n6 1\n19 8\n11 18\n15 6\n15 11\n15 19\n12 16\n15 13\n7 20\n19 3\n15 14\n5 12\n14 4\n5 16\n10 15\n1 2\n8 7\n",
"70 69\n32 67\n1 57\n40 34\n44 38\n50 24\n69 5\n68 7\n19 61\n36 29\n60 6\n8 12\n32 10\n63 69\n62 39\n14 16\n40 63\n6 70\n39 58\n57 27\n9 55\n43 21\n25 15\n69 22\n30 3\n60 37\n22 50\n29 41\n37 56\n41 28\n11 19\n60 25\n50 46\n11 49\n14 2\n11 9\n40 60\n63 11\n62 1\n60 32\n15 64\n61 4\n10 66\n46 68\n32 18\n32 65\n50 62\n19 35\n40 36\n62 33\n56 31\n13 51\n17 44\n55 14\n14 47\n67 53\n46 17\n10 23\n69 45\n27 54\n60 8\n14 26\n43 52\n66 48\n26 59\n69 30\n2 43\n53 20\n56 51\n19 42\n",
"5 6\n4 6\n2 1\n3 2\n4 3\n5 6\n3 5\n",
"10 18\n6 4\n3 7\n4 9\n8 4\n3 4\n3 6\n7 5\n3 9\n10 9\n10 5\n1 2\n1 8\n8 2\n3 6\n6 9\n5 9\n3 10\n7 10\n",
"20 21\n12 6\n14 12\n5 7\n17 6\n10 11\n8 5\n13 1\n11 1\n4 16\n2 16\n3 4\n10 19\n20 15\n11 9\n13 6\n11 13\n5 15\n11 8\n9 18\n17 14\n2 3\n",
"4 3\n2 1\n4 4\n2 4\n",
"20 45\n3 9\n5 20\n2 16\n20 12\n18 11\n12 8\n15 8\n5 18\n8 7\n11 1\n5 10\n4 18\n10 17\n13 16\n10 11\n14 18\n9 4\n3 18\n12 1\n12 18\n5 1\n8 16\n8 19\n12 3\n8 6\n5 17\n19 7\n20 1\n6 19\n15 13\n10 20\n15 7\n4 1\n4 11\n2 7\n7 13\n14 20\n15 2\n17 14\n3 4\n6 13\n15 19\n13 2\n5 11\n16 7\n",
"40 40\n4 7\n37 10\n26 14\n26 24\n39 28\n29 40\n37 39\n19 5\n3 16\n33 1\n15 20\n38 8\n7 19\n29 38\n29 37\n8 13\n33 4\n29 33\n9 18\n39 26\n8 22\n23 27\n34 15\n37 2\n27 12\n28 36\n21 32\n36 21\n30 31\n23 6\n40 11\n31 23\n8 40\n26 35\n4 17\n4 34\n11 31\n17 9\n24 3\n18 25\n",
"4 3\n1 3\n2 3\n3 4\n",
"20 20\n1 9\n19 9\n3 5\n15 13\n1 20\n11 18\n10 6\n10 8\n10 19\n12 16\n10 3\n9 18\n8 7\n15 1\n13 16\n11 2\n7 20\n10 15\n3 17\n17 14\n",
"20 20\n19 11\n17 9\n1 12\n19 3\n19 2\n13 3\n10 6\n10 1\n10 19\n20 5\n10 18\n14 2\n1 17\n11 8\n14 4\n13 20\n2 4\n10 15\n1 13\n8 16\n",
"50 50\n37 15\n19 9\n42 43\n5 23\n17 2\n14 37\n27 20\n37 46\n48 6\n41 10\n26 40\n45 12\n47 29\n14 5\n24 25\n50 44\n3 49\n47 38\n18 48\n50 24\n13 45\n39 50\n18 26\n11 39\n26 27\n50 4\n12 31\n40 1\n32 19\n23 2\n26 42\n39 47\n48 35\n22 21\n50 16\n40 3\n11 32\n32 34\n14 36\n8 11\n18 7\n46 21\n22 29\n16 30\n39 13\n17 5\n41 33\n26 8\n3 14\n4 41\n",
"20 21\n6 20\n12 19\n17 14\n3 6\n10 11\n9 16\n1 9\n13 15\n3 4\n15 19\n7 2\n10 13\n20 15\n13 5\n1 18\n10 1\n18 8\n13 17\n15 2\n17 4\n20 19\n",
"4 4\n1 2\n2 3\n2 4\n4 2\n",
"60 61\n19 31\n1 56\n35 37\n1 47\n56 60\n18 31\n38 33\n26 57\n43 29\n28 22\n6 5\n56 38\n3 30\n49 17\n12 13\n20 49\n13 35\n31 16\n49 3\n15 14\n35 21\n54 4\n37 52\n12 32\n32 8\n23 2\n38 20\n50 5\n53 41\n12 45\n41 19\n40 39\n50 9\n58 27\n22 44\n10 46\n56 58\n20 12\n37 36\n15 28\n25 40\n58 11\n49 2\n32 55\n49 42\n11 43\n33 34\n34 48\n49 26\n53 4\n52 59\n49 51\n25 18\n58 24\n1 25\n16 54\n5 9\n21 7\n8 10\n56 6\n49 15\n",
"20 20\n11 5\n3 17\n8 9\n6 1\n19 8\n11 18\n15 6\n15 11\n15 19\n12 16\n16 13\n7 20\n19 3\n15 14\n5 12\n14 4\n5 16\n10 15\n1 2\n8 7\n",
"70 69\n32 67\n1 57\n40 34\n44 38\n50 24\n69 5\n68 7\n19 61\n36 29\n60 6\n8 12\n32 10\n63 69\n62 39\n14 16\n40 63\n6 70\n39 58\n57 27\n9 55\n43 21\n25 15\n69 22\n30 3\n60 37\n22 50\n29 41\n37 56\n41 28\n11 19\n60 25\n50 46\n11 49\n14 2\n11 9\n40 60\n63 11\n62 1\n60 32\n15 64\n61 4\n10 66\n46 68\n32 18\n32 65\n50 62\n32 35\n40 36\n62 33\n56 31\n13 51\n17 44\n55 14\n14 47\n67 53\n46 17\n10 23\n69 45\n27 54\n60 8\n14 26\n43 52\n66 48\n26 59\n69 30\n2 43\n53 20\n56 51\n19 42\n",
"20 21\n12 9\n14 12\n5 7\n17 6\n10 11\n8 5\n13 1\n11 1\n4 16\n2 16\n3 4\n10 19\n20 15\n11 9\n13 6\n11 13\n5 15\n11 8\n9 18\n17 14\n2 3\n",
"4 3\n4 1\n4 4\n2 4\n",
"40 40\n4 7\n37 10\n26 14\n26 24\n39 28\n29 40\n37 39\n19 5\n3 16\n33 1\n15 20\n38 8\n7 19\n29 38\n29 37\n8 13\n33 4\n29 33\n9 18\n39 26\n8 22\n23 27\n34 15\n37 2\n27 12\n28 36\n21 32\n36 21\n30 31\n23 6\n40 11\n31 23\n8 40\n26 35\n1 17\n4 34\n11 31\n17 9\n24 3\n18 25\n",
"4 0\n1 3\n2 3\n3 4\n",
"20 20\n2 9\n19 9\n3 5\n15 13\n1 20\n11 18\n10 6\n10 8\n10 19\n12 16\n10 3\n9 18\n8 7\n15 1\n13 16\n11 2\n7 20\n10 15\n3 17\n17 14\n",
"20 20\n19 11\n17 9\n1 12\n19 3\n19 2\n13 3\n10 6\n10 1\n10 19\n20 5\n10 18\n14 2\n1 17\n11 8\n14 4\n13 20\n2 4\n16 15\n1 13\n8 16\n",
"50 50\n37 15\n19 9\n42 43\n5 23\n17 2\n14 37\n27 20\n37 46\n48 6\n41 10\n26 40\n45 12\n47 29\n14 5\n24 25\n50 44\n3 49\n47 38\n18 48\n50 24\n13 45\n39 50\n18 26\n11 39\n26 27\n50 4\n12 31\n40 1\n32 19\n23 2\n26 42\n39 47\n48 35\n22 21\n50 16\n40 3\n11 32\n32 34\n14 36\n8 11\n18 7\n46 21\n22 14\n16 30\n39 13\n17 5\n41 33\n26 8\n3 14\n4 41\n",
"20 21\n6 20\n12 19\n17 14\n3 6\n10 11\n9 16\n1 9\n13 15\n3 3\n15 19\n7 2\n10 13\n20 15\n13 5\n1 18\n10 1\n18 8\n13 17\n15 2\n17 4\n20 19\n",
"60 61\n24 31\n1 56\n35 37\n1 47\n56 60\n18 31\n38 33\n26 57\n43 29\n28 22\n6 5\n56 38\n3 30\n49 17\n12 13\n20 49\n13 35\n31 16\n49 3\n15 14\n35 21\n54 4\n37 52\n12 32\n32 8\n23 2\n38 20\n50 5\n53 41\n12 45\n41 19\n40 39\n50 9\n58 27\n22 44\n10 46\n56 58\n20 12\n37 36\n15 28\n25 40\n58 11\n49 2\n32 55\n49 42\n11 43\n33 34\n34 48\n49 26\n53 4\n52 59\n49 51\n25 18\n58 24\n1 25\n16 54\n5 9\n21 7\n8 10\n56 6\n49 15\n",
"20 20\n11 5\n3 17\n11 9\n6 1\n19 8\n11 18\n15 6\n15 11\n15 19\n12 16\n16 13\n7 20\n19 3\n15 14\n5 12\n14 4\n5 16\n10 15\n1 2\n8 7\n",
"70 69\n32 67\n1 57\n40 34\n44 38\n50 24\n69 5\n68 7\n19 61\n36 29\n60 6\n8 12\n32 10\n63 69\n62 39\n14 16\n40 63\n6 70\n39 58\n57 27\n9 55\n43 21\n25 15\n69 22\n30 3\n60 37\n22 50\n29 41\n37 56\n41 28\n11 19\n60 25\n50 46\n11 49\n14 2\n11 9\n40 60\n63 11\n62 1\n60 32\n15 64\n61 4\n10 66\n46 68\n32 18\n32 65\n50 62\n32 35\n40 36\n62 33\n56 31\n13 51\n4 44\n55 14\n14 47\n67 53\n46 17\n10 23\n69 45\n27 54\n60 8\n14 26\n43 52\n66 48\n26 59\n69 30\n2 43\n53 20\n56 51\n19 42\n",
"10 18\n5 4\n3 7\n3 9\n8 4\n3 4\n3 6\n7 5\n3 9\n10 9\n10 5\n1 2\n1 8\n8 2\n3 6\n6 9\n5 9\n3 10\n7 10\n",
"4 4\n1 2\n2 3\n2 4\n1 3\n",
"20 20\n2 9\n19 9\n3 5\n15 13\n1 20\n11 18\n10 6\n10 8\n10 19\n12 16\n10 3\n9 18\n8 4\n15 1\n13 16\n11 2\n7 20\n10 15\n3 17\n17 14\n",
"20 20\n19 11\n17 9\n1 12\n19 3\n19 2\n13 3\n10 6\n16 1\n10 19\n20 5\n10 18\n14 2\n1 17\n11 8\n14 4\n13 20\n2 4\n16 15\n1 13\n8 16\n",
"50 50\n37 15\n19 9\n42 43\n5 23\n17 2\n14 37\n27 20\n37 46\n48 6\n41 10\n26 40\n45 12\n47 29\n14 5\n24 25\n50 44\n3 49\n47 38\n2 48\n50 24\n13 45\n39 50\n18 26\n11 39\n26 27\n50 4\n12 31\n40 1\n32 19\n23 2\n26 42\n39 47\n48 35\n22 21\n50 16\n40 3\n11 32\n32 34\n14 36\n8 11\n18 7\n46 21\n22 14\n16 30\n39 13\n17 5\n41 33\n26 8\n3 14\n4 41\n",
"60 61\n24 31\n1 56\n35 37\n1 47\n56 60\n18 31\n38 33\n26 57\n43 29\n28 22\n6 5\n56 38\n3 30\n49 17\n12 13\n20 49\n13 35\n31 16\n49 3\n15 14\n35 21\n54 4\n37 52\n12 32\n32 8\n23 2\n38 20\n50 5\n53 41\n12 45\n41 19\n40 39\n50 9\n58 27\n22 44\n10 46\n56 58\n20 12\n37 36\n15 28\n25 40\n58 11\n49 2\n32 55\n49 42\n11 43\n33 34\n22 48\n49 26\n53 4\n52 59\n49 51\n25 18\n58 24\n1 25\n16 54\n5 9\n21 7\n8 10\n56 6\n49 15\n",
"4 4\n1 2\n2 3\n2 4\n3 3\n",
"10 18\n6 4\n3 7\n3 9\n8 4\n3 4\n3 6\n7 5\n3 9\n10 9\n10 5\n1 2\n1 8\n8 2\n3 6\n6 9\n5 9\n3 10\n7 10\n",
"4 6\n1 2\n2 3\n2 4\n3 3\n",
"20 21\n12 9\n14 12\n5 7\n17 6\n10 11\n8 5\n13 1\n11 1\n4 16\n2 16\n3 4\n10 19\n20 15\n11 9\n8 6\n11 13\n5 15\n11 8\n9 18\n17 14\n2 3\n",
"4 3\n4 1\n4 4\n3 4\n",
"3 0\n1 3\n2 3\n3 4\n",
"20 20\n11 5\n3 17\n11 9\n6 1\n19 8\n11 18\n15 6\n15 11\n15 19\n12 16\n16 13\n7 20\n19 3\n15 14\n5 12\n14 4\n1 16\n10 15\n1 2\n8 7\n"
],
"output": [
"1\n1 3\n",
"1\n1 4\n",
"3\n7 5\n10 4\n3 1\n",
"-1\n",
"4\n2 4\n7 19\n12 5\n6 14\n",
"4\n7 16\n15 10\n12 20\n19 3\n",
"3\n7 3\n19 20\n2 13\n",
"1\n1 5\n",
"1\n4 6\n",
"4\n14 8\n2 15\n11 20\n7 5\n",
"2\n2 9\n6 1\n",
"1\n1 7\n",
"1\n1 2\n",
"6\n12 16\n6 18\n11 15\n3 9\n4 7\n16 5\n",
"15\n31 5\n70 60\n33 41\n20 32\n34 12\n48 54\n69 19\n10 9\n58 50\n35 64\n18 42\n46 45\n27 63\n38 40\n1 31\n",
"2\n8 2\n5 9\n",
"1\n2 3\n",
"10\n38 6\n31 35\n9 20\n34 7\n49 44\n15 25\n28 10\n17 33\n36 30\n1 22\n",
"4\n1 6\n13 3\n7 16\n12 5\n",
"11\n7 60\n21 25\n48 24\n18 42\n34 8\n54 26\n9 43\n19 45\n2 16\n29 44\n60 56\n",
"4\n16 20\n7 5\n8 14\n11 3\n",
"1\n1 3\n",
"0\n",
"1\n7 1\n",
"12\n60 59\n48 36\n17 7\n30 46\n23 45\n42 27\n57 29\n51 24\n16 9\n14 47\n44 39\n55 18\n",
"2\n7 5\n5 1\n",
"5\n16 17\n18 13\n9 4\n20 10\n17 2\n",
"16\n54 28\n58 21\n24 52\n5 4\n34 35\n70 42\n31 49\n13 16\n64 2\n20 47\n48 59\n23 45\n18 3\n65 7\n12 38\n28 33\n",
"1\n1 3\n",
"1\n1 3\n",
"4\n18 17\n7 19\n20 3\n1 18\n",
"1\n1 9\n",
"1\n1 3\n",
"1\n1 2\n",
"7\n10 19\n23 11\n6 14\n9 7\n30 29\n22 25\n19 3\n",
"7\n1 22\n5 10\n25 32\n20 14\n12 16\n6 35\n13 2\n",
"3\n5 2\n14 6\n12 19\n",
"4\n19 7\n20 15\n3 12\n10 19\n",
"2\n6 2\n1 6\n",
"1\n2 8\n",
"1\n1 6\n",
"5\n4 12\n16 6\n18 11\n15 5\n9 4\n",
"14\n64 5\n42 60\n45 10\n63 58\n40 35\n31 46\n70 27\n33 41\n20 32\n34 12\n48 54\n18 19\n38 9\n1 50\n",
"9\n15 6\n17 35\n36 20\n49 7\n38 44\n31 25\n9 10\n34 33\n1 30\n",
"3\n6 13\n16 7\n1 12\n",
"4\n7 16\n5 8\n14 11\n3 7\n",
"2\n4 3\n1 4\n",
"12\n59 60\n36 48\n7 17\n46 30\n45 23\n27 42\n29 57\n24 51\n9 14\n47 44\n39 55\n16 59\n",
"1\n1 7\n",
"5\n17 16\n13 18\n4 9\n10 20\n2 17\n",
"15\n28 54\n4 58\n35 24\n42 5\n49 34\n16 70\n21 31\n52 13\n47 64\n59 20\n45 48\n3 23\n7 18\n38 65\n33 12\n",
"1\n1 5\n",
"1\n8 9\n",
"3\n18 17\n7 19\n20 18\n",
"1\n1 4\n",
"1\n14 6\n",
"8\n22 5\n10 25\n32 20\n14 30\n16 12\n35 6\n2 13\n1 22\n",
"2\n4 2\n1 4\n",
"3\n14 6\n12 5\n2 14\n",
"4\n4 12\n18 6\n15 16\n9 5\n",
"10\n30 6\n15 35\n17 7\n36 20\n49 43\n38 44\n31 25\n9 10\n34 33\n1 30\n",
"4\n12 16\n14 8\n7 11\n5 12\n",
"1\n1 3\n",
"12\n36 60\n7 48\n46 17\n55 30\n45 23\n27 42\n29 57\n24 51\n9 14\n47 44\n39 59\n16 36\n",
"4\n17 13\n4 18\n10 9\n2 20\n",
"15\n12 54\n28 58\n4 24\n42 5\n49 34\n16 70\n21 31\n52 13\n47 64\n59 20\n45 48\n3 23\n7 18\n38 65\n33 35\n",
"2\n20 19\n18 7\n",
"1\n1 2\n",
"7\n10 5\n32 20\n14 30\n16 12\n35 6\n2 13\n25 22\n",
"0\n",
"3\n5 6\n14 18\n12 5\n",
"4\n5 12\n4 6\n18 15\n9 5\n",
"10\n29 6\n38 35\n31 7\n9 20\n34 43\n49 44\n15 25\n17 10\n36 33\n1 30\n",
"5\n3 16\n7 8\n5 11\n14 12\n4 3\n",
"11\n36 60\n7 48\n46 17\n55 30\n45 23\n27 42\n29 57\n39 51\n19 14\n9 44\n47 59\n",
"4\n17 13\n4 9\n10 18\n2 20\n",
"15\n12 54\n28 58\n38 24\n42 5\n49 34\n16 70\n21 31\n52 13\n47 64\n59 20\n45 48\n3 23\n7 18\n17 65\n33 35\n",
"1\n8 6\n",
"1\n3 4\n",
"4\n4 7\n18 12\n5 6\n14 4\n",
"4\n4 12\n6 15\n18 5\n9 4\n",
"10\n38 7\n31 20\n9 43\n34 44\n49 25\n15 10\n6 33\n35 30\n36 29\n1 38\n",
"12\n59 60\n36 34\n7 17\n46 30\n55 23\n45 42\n27 57\n29 51\n39 14\n19 44\n9 48\n47 59\n",
"2\n4 3\n1 4\n",
"1\n8 9\n",
"2\n4 3\n1 4\n",
"2\n20 19\n18 7\n",
"1\n1 3\n",
"0\n",
"4\n17 13\n4 9\n10 18\n2 20\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
The Berland capital (as you very well know) contains n junctions, some pairs of which are connected by two-way roads. Unfortunately, the number of traffic jams in the capital has increased dramatically, that's why it was decided to build several new roads. Every road should connect two junctions.
The city administration noticed that in the cities of all the developed countries between any two roads one can drive along at least two paths so that the paths don't share any roads (but they may share the same junction). The administration decided to add the minimal number of roads so that this rules was fulfilled in the Berland capital as well. In the city road network should exist no more than one road between every pair of junctions before or after the reform.
Input
The first input line contains a pair of integers n, m (2 ≤ n ≤ 900, 1 ≤ m ≤ 100000), where n is the number of junctions and m is the number of roads. Each of the following m lines contains a description of a road that is given by the numbers of the connected junctions ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). The junctions are numbered from 1 to n. It is possible to reach any junction of the city from any other one moving along roads.
Output
On the first line print t — the number of added roads. Then on t lines print the descriptions of the added roads in the format of the input data. You can use any order of printing the roads themselves as well as the junctions linked by every road. If there are several solutions to that problem, print any of them.
If the capital doesn't need the reform, print the single number 0.
If there's no solution, print the single number -1.
Examples
Input
4 3
1 2
2 3
3 4
Output
1
1 4
Input
4 4
1 2
2 3
2 4
3 4
Output
1
1 3
### Input:
4 4
1 2
2 3
2 4
3 4
### Output:
1
1 3
### Input:
4 3
1 2
2 3
3 4
### Output:
1
1 4
### Code:
import sys
import threading
def main():
p = input().split()
n = int(p[0]) #number of locations
m = int(p[1]) #number of passages
if n==1: #if there's only one location, there's nothing to do
print(0)
return
if n==2: #if there's only two nodes, the only edge between them, is always a bridge
print(-1)
return
g = graph(n,m)
g.buildBridgeTree()
e = graph(len(g.bridges)+1,len(g.bridges))
e.conexions= []
e.pi=[]
e.discovery=[]
e.seen=[]
for i in range(len(g.bridges)+1):
e.conexions.append([])
e.pi.append(-1)
e.discovery.append(sys.float_info.max)
e.seen.append(False)
for i in range(len(g.bridges)):
e.conexions[g.cc[g.bridges[i][0]]].append((g.cc[g.bridges[i][1]],True))
e.conexions[g.cc[g.bridges[i][1]]].append((g.cc[g.bridges[i][0]],True))
e.bridges=g.bridges
e.bridge=g.bridge
e.cc=g.cc
e.CC=e.CC
e.CC
e.treeDiameter()
print(len(e.newEdges))
for i in range(len(e.newEdges)):
u = e.newEdges[i][0] +1
v = e.newEdges[i][1] +1
print(u, end=" ")
print(v)
class graph:
n = int() #number of nodes
edges= int() #number of edges
time = int()
conexions = [] #adjacency list
bridges=[] #are we using a removable edge or not for city i?
bridge=[]
discovery = [] #time to discover node i
seen = [] #visited or not
cc = [] #index of connected components
low = [] #low[i]=min(discovery(i),discovery(w)) w:any node discoverable from i
pi = [] #index of i's father
CC = []
newEdges = []
def __init__(self, n, m):
self.n = n
self.edges = m
for i in range(self.n):
self.conexions.append([])
self.discovery.append(sys.float_info.max)
self.low.append(sys.float_info.max)
self.seen.append(False)
self.cc.append(-1)
self.CC.append([])
self.bridge.append([])
def buildGraph(self):
#this method put every edge in the adjacency list
for i in range(self.edges):
p2=input().split()
self.conexions[int(p2[0])-1].append((int(p2[1])-1,False))
self.conexions[int(p2[1])-1].append((int(p2[0])-1,False))
def searchBridges (self):
self.time = 0
for i in range(self.n):
self.pi.append(-1)
for j in range(self.n):
self.bridge[i].append(False)
self.searchBridges_(0,-1) #we can start in any node 'cause the graph is connected
def searchBridges_(self,c,index):
self.seen[c]=True #mark as visited
self.time+=1
self.discovery[c]=self.low[c]= self.time
for i in range(len(self.conexions[c])):
pos = self.conexions[c][i][0]
if not self.seen[pos]:
self.pi[pos]=c #the node that discovered it
self.searchBridges_(pos,i) #search throw its not visited conexions
self.low[c]= min([self.low[c],self.low[pos]]) #definition of low
elif self.pi[c]!=pos: #It is not the node that discovered it
self.low[c]= min([self.low[c],self.discovery[pos]])
if self.pi[c]!=-1 and self.low[c]==self.discovery[c]: #it isn't the root and none of its connections is reacheable earlier than it
self.bridges.append((c,self.pi[c]))
self.bridge[self.pi[c]][c]=self.bridge[c][self.pi[c]]= True
for i in range(len(self.conexions[c])):
if(self.conexions[c][i][0]==self.pi[c]):
self.conexions[c][i]=(self.pi[c],True)
self.conexions[self.pi[c]][index]=(c,True)
def findCC(self):
j = 0
for i in range(self.n):
self.pi[i]=-1
self.seen[i]=False
for i in range(self.n):
if self.seen[i]==False:
self.cc[i]=j #assign the index of the new connected component
self.CC[j].append(i)
self.findCC_(i,j) #search throw its not visited conexions
j+=1 #we finished the search in the connected component
def findCC_(self, c, j):
self.seen[c]=True #mark as visited
for i in range(len(self.conexions[c])):
pos = self.conexions[c][i][0]
if(self.seen[pos]==False and self.conexions[c][i][1]==False):
self.cc[pos]=j #assign the index of the connected component
self.CC[j].append(pos)
self.pi[pos]=c #the node that discovered it
self.findCC_(pos,j) #search throw its not visited conexions
def treeDiameter(self):
while self.n>1:
for i in range(self.n):
self.seen[i]=False
self.pi[i]=-1
self.discovery[0]=0
self.treeDiameter_(0) #search the distance from this node, to the others
max = -1
maxIndex = 0
for i in range(self.n):
if self.discovery[i]>max:
max= self.discovery[i] #look for the furthest node
maxIndex=i
for i in range(self.n):
self.seen[i]=False
self.pi[i]=-1
self.discovery[maxIndex]=0
self.treeDiameter_(maxIndex) #search the distance from the furthest node, to the others
max =-1
maxIndex2=-1
for i in range(self.n):
if self.discovery[i]>max :
max= self.discovery[i] #look for the furthest node to preview furthest node, and that is the diameter in a tree
maxIndex2=i
self.ReBuildTree(maxIndex,maxIndex2)
def treeDiameter_(self, c):
self.seen[c]=True #mark as visited
for i in range(len(self.conexions[c])):
pos = self.conexions[c][i][0]
if self.seen[pos]==False:
self.pi[pos]=c #the node that discovered it
self.discovery[pos]= self.discovery[c]+1 #distance to the node who discover it + 1
#we don't have to compare and search for other paths, since it's a tree and there is only one path between two nodes.
self.treeDiameter_(pos) #search throw its not visited conex16 ions
def buildBridgeTree(self):
self.buildGraph()
self.searchBridges()
self.findCC()
def ReBuildTree(self, u, v):
find=0
for i in range(len(self.CC[u])):
for j in range(len(self.CC[v])):
if not self.bridge[self.CC[u][i]][self.CC[v][j]]:
self.newEdges.append((self.CC[u][i],self.CC[v][j]))
find=1
break
if find==1:
break
newIndex=[]
temp = v
self.conexions[u]=None
self.conexions[v]=None
while self.pi[temp]!=u:
self.conexions[self.pi[temp]]=None
temp = self.pi[temp]
r =1
for i in range(self.n):
if(self.conexions[i]!=None):
newIndex.append(r)
r+=1
else:
newIndex.append(0)
self.n=r
if self.n==1:
return
newCC=[]
self.conexions=[]
for i in range(self.n):
self.conexions.append([])
newCC.append([])
for i in range(len(self.bridges)):
len0 = len(self.CC[self.cc[self.bridges[i][0]]])
if(len0!=0):
for j in range(len0):
newCC[newIndex[self.cc[self.bridges[i][0]]]].append(self.CC[self.cc[self.bridges[i][0]]][j])
self.CC[self.cc[self.bridges[i][0]]]=[]
len1 = len(self.CC[self.cc[self.bridges[i][1]]])
if(len1!=0):
for j in range(len1):
newCC[newIndex[self.cc[self.bridges[i][1]]]].append(self.CC[self.cc[self.bridges[i][1]]][j])
self.CC[self.cc[self.bridges[i][1]]]=[]
self.conexions[newIndex[self.cc[self.bridges[i][0]]]].append((newIndex[self.cc[self.bridges[i][1]]],True))
self.conexions[newIndex[self.cc[self.bridges[i][1]]]].append((newIndex[self.cc[self.bridges[i][0]]],True))
self.CC= newCC
for i in range(len(self.cc)):
self.cc[i]=newIndex[self.cc[i]]
if __name__ == '__main__':
main() |
483_B. Friends and Presents_1304 | You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.
In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.
Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.
A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.
Input
The only line contains four positive integers cnt1, cnt2, x, y (1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Output
Print a single integer — the answer to the problem.
Examples
Input
3 1 2 3
Output
5
Input
1 3 2 3
Output
4
Note
In the first sample you give the set of numbers {1, 3, 5} to the first friend and the set of numbers {2} to the second friend. Note that if you give set {1, 3, 5} to the first friend, then we cannot give any of the numbers 1, 3, 5 to the second friend.
In the second sample you give the set of numbers {3} to the first friend, and the set of numbers {1, 2, 4} to the second friend. Thus, the answer to the problem is 4. | c1,c2,x,y=map(int,input().split())
def fn(val):
f=[val//x,val//y]
both=val//(x*y)
f=[i-both for i in f]
oth=val-f[0]-f[1]-both
cnt=[c1-f[1],c2-f[0]]
if cnt[0]<0:cnt[0]=0
if cnt[1] < 0: cnt[1] = 0
return (sum(cnt)<=oth)
l=0;r=int(1e18)
while r-l>1:
m=(r+l)//2
if fn(m):
r=m
else:l=m
print(r) | {
"input": [
"3 1 2 3\n",
"1 3 2 3\n",
"1 999999999 29983 29989\n",
"9999999 10000 29983 29989\n",
"808351 17767 433 509\n",
"197 2 6361 18223\n",
"5099 2895 16273 29473\n",
"500000000 500000000 2 3\n",
"1000 9999999 29983 29989\n",
"1277613 596606 10427 29387\n",
"26941620 135675892 4093 28979\n",
"39 154 1033 18947\n",
"126 51 26249 29443\n",
"14797 3593 13147 13933\n",
"2 1 2 3\n",
"500000000 500000000 29983 29989\n",
"1513389 40825 5641 10009\n",
"1 999999999 2 3\n",
"14 179 19699 29303\n",
"8851 901 20897 26183\n",
"159606 875491 43 19121\n",
"1 2 29983 29989\n",
"11006 976 6287 9007\n",
"1 2 2 3\n",
"110 40 1567 7681\n",
"325832598 637961741 2 3\n",
"9156260 174697920 8171 29863\n",
"150064728 173287472 439 503\n",
"139694297 21147406 8819 28499\n",
"819712074 101394406 6173 7307\n",
"500000000 500000000 29959 29983\n",
"191370899 1962652 3517 24023\n",
"999999998 2 2 3\n",
"10876 8828 12487 16607\n",
"683651932 161878530 2 5\n",
"782 5750 7079 23957\n",
"1 1 2 3\n",
"999999999 1 2 3\n",
"916200 69682 2 3\n",
"67462086 313228052 15131 29027\n",
"78618222 88031575 28289 29023\n",
"1749165 72848 9743 20023\n",
"16860 2201 6427 23327\n",
"999999998 1 2 3\n",
"999999999 1 29983 29989\n",
"954386 580262 4993 15629\n",
"1 1 29983 29989\n",
"4969 694 293 2347\n",
"4901 563 1997 15053\n",
"1 999999999 37939 29989\n",
"9999999 10000 29983 24442\n",
"808351 22950 433 509\n",
"197 2 6361 11577\n",
"6602 2895 16273 29473\n",
"386271347 500000000 2 3\n",
"1277613 596606 10427 11782\n",
"26941620 135675892 312 28979\n",
"39 154 981 18947\n",
"249 51 26249 29443\n",
"14797 1370 13147 13933\n",
"2 1 4 3\n",
"500000000 336720481 29983 29989\n",
"1513389 2453 5641 10009\n",
"1 999999999 4 3\n",
"14 128 19699 29303\n",
"13630 901 20897 26183\n",
"159606 875491 43 16106\n",
"11006 336 6287 9007\n",
"1 4 2 3\n",
"110 40 2954 7681\n",
"10141207 174697920 8171 29863\n",
"150064728 173287472 325 503\n",
"139694297 21147406 8819 47230\n",
"819712074 101394406 4176 7307\n",
"500000000 155608866 29959 29983\n",
"343006390 1962652 3517 24023\n",
"999999998 2 4 3\n",
"10876 8828 17049 16607\n",
"683651932 161878530 2 3\n",
"782 5750 7079 34225\n",
"999999999 1 2 5\n",
"5216768 313228052 15131 29027\n",
"78618222 88031575 28289 21909\n",
"1749165 49064 9743 20023\n",
"2339 2201 6427 23327\n",
"596624439 2 2 3\n",
"999999999 1 29983 10727\n",
"954386 580262 4993 2704\n",
"1 1 23520 29989\n",
"4969 694 293 182\n",
"4901 563 1997 4595\n",
"3 1 4 3\n",
"941998 22950 433 509\n",
"1277613 63207 10427 11782\n",
"26941620 11020488 312 28979\n",
"14797 596 13147 13933\n",
"59693065 336720481 29983 29989\n",
"2509498 2453 5641 10009\n",
"2 128 19699 29303\n",
"13630 1140 20897 26183\n",
"204425 875491 43 16106\n",
"010 40 2954 7681\n",
"10141207 91711153 8171 29863\n",
"150064728 173287472 90 503\n",
"139694297 37976266 8819 47230\n",
"819712074 85065760 4176 7307\n",
"343006390 1962652 6170 24023\n",
"7221 8828 17049 16607\n",
"782 5930 7079 34225\n",
"5772437 313228052 15131 29027\n",
"78618222 135838290 28289 21909\n",
"2550053 49064 9743 20023\n",
"23066579 2 2 3\n",
"448407 580262 4993 2704\n",
"2 41376816 37939 29989\n",
"941998 7671 433 509\n",
"319 2 6361 7807\n",
"2074519 63207 10427 11782\n",
"26941620 11020488 410 28979\n",
"412 51 19774 29443\n",
"25284 596 13147 13933\n",
"1 2 29983 19012\n",
"1 3 4 3\n",
"2 999999999 37939 29989\n",
"9999999 10000 29983 14373\n",
"197 2 6361 7807\n",
"6602 2895 16273 52475\n",
"39 154 1745 18947\n",
"249 51 19774 29443\n",
"4 1 4 3\n",
"1 3 29983 19012\n",
"11006 336 10554 9007\n",
"500000000 155608866 29959 44710\n",
"999999998 1 4 3\n",
"2339 2201 11127 23327\n",
"1 1 23520 14242\n",
"4969 694 293 164\n",
"4901 563 809 4595\n",
"1 3 4 6\n",
"9999999 10000 46696 14373\n",
"6602 2895 20931 52475\n",
"39 154 674 18947\n"
],
"output": [
"5\n",
"4\n",
"1000033345\n",
"10009999\n",
"826121\n",
"199\n",
"7994\n",
"1199999999\n",
"10000999\n",
"1874219\n",
"162617513\n",
"193\n",
"177\n",
"18390\n",
"3\n",
"1000000001\n",
"1554214\n",
"1499999998\n",
"193\n",
"9752\n",
"1035098\n",
"3\n",
"11982\n",
"3\n",
"150\n",
"1156553206\n",
"183854180\n",
"323353664\n",
"160841703\n",
"921106500\n",
"1000000001\n",
"193333553\n",
"1999999995\n",
"19704\n",
"1367303863\n",
"6532\n",
"2\n",
"1999999997\n",
"1832399\n",
"380690138\n",
"166649797\n",
"1822013\n",
"19061\n",
"1999999995\n",
"1000033352\n",
"1534648\n",
"2\n",
"5663\n",
"5464\n",
"1000033345\n",
"10009999\n",
"831304\n",
"199\n",
"9497\n",
"1063525616\n",
"1874219\n",
"162617529\n",
"193\n",
"300\n",
"16167\n",
"3\n",
"836720481\n",
"1515842\n",
"1499999998\n",
"142\n",
"14531\n",
"1035098\n",
"11342\n",
"5\n",
"150\n",
"184839127\n",
"323354178\n",
"160841703\n",
"921106510\n",
"655608866\n",
"344969046\n",
"1333333330\n",
"19704\n",
"1367303863\n",
"6532\n",
"1999999997\n",
"318444820\n",
"166649797\n",
"1798229\n",
"4540\n",
"1193248877\n",
"1000033352\n",
"1534648\n",
"2\n",
"5663\n",
"5464\n",
"4\n",
"964952\n",
"1340820\n",
"37962112\n",
"15393\n",
"396413546\n",
"2511951\n",
"130\n",
"14770\n",
"1079917\n",
"50\n",
"101852360\n",
"323359342\n",
"177670563\n",
"904777863\n",
"344969044\n",
"16049\n",
"6712\n",
"319000489\n",
"214456512\n",
"2599117\n",
"46133157\n",
"1028669\n",
"41378195\n",
"949673\n",
"321\n",
"2137726\n",
"37962111\n",
"463\n",
"25880\n",
"3\n",
"4\n",
"1000033345\n",
"10009999\n",
"199\n",
"9497\n",
"193\n",
"300\n",
"5\n",
"4\n",
"11342\n",
"655608866\n",
"1333333330\n",
"4540\n",
"2\n",
"5663\n",
"5464\n",
"4\n",
"10009999\n",
"9497\n",
"193\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.
In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.
Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.
A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.
Input
The only line contains four positive integers cnt1, cnt2, x, y (1 ≤ cnt1, cnt2 < 109; cnt1 + cnt2 ≤ 109; 2 ≤ x < y ≤ 3·104) — the numbers that are described in the statement. It is guaranteed that numbers x, y are prime.
Output
Print a single integer — the answer to the problem.
Examples
Input
3 1 2 3
Output
5
Input
1 3 2 3
Output
4
Note
In the first sample you give the set of numbers {1, 3, 5} to the first friend and the set of numbers {2} to the second friend. Note that if you give set {1, 3, 5} to the first friend, then we cannot give any of the numbers 1, 3, 5 to the second friend.
In the second sample you give the set of numbers {3} to the first friend, and the set of numbers {1, 2, 4} to the second friend. Thus, the answer to the problem is 4.
### Input:
3 1 2 3
### Output:
5
### Input:
1 3 2 3
### Output:
4
### Code:
c1,c2,x,y=map(int,input().split())
def fn(val):
f=[val//x,val//y]
both=val//(x*y)
f=[i-both for i in f]
oth=val-f[0]-f[1]-both
cnt=[c1-f[1],c2-f[0]]
if cnt[0]<0:cnt[0]=0
if cnt[1] < 0: cnt[1] = 0
return (sum(cnt)<=oth)
l=0;r=int(1e18)
while r-l>1:
m=(r+l)//2
if fn(m):
r=m
else:l=m
print(r) |
507_B. Amr and Pins_1308 | Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius r and center in point (x, y). He wants the circle center to be in new position (x', y').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input
Input consists of 5 space-separated integers r, x, y, x' y' (1 ≤ r ≤ 105, - 105 ≤ x, y, x', y' ≤ 105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
Examples
Input
2 0 0 0 4
Output
1
Input
1 1 1 4 4
Output
3
Input
4 5 6 5 6
Output
0
Note
In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
<image> | import math #.sqrt
def ceil (a, b):
return -(-a // b)
def answer(r, x, y, xp, yp):
d = math.sqrt((xp-x)**2 + (yp-y)**2)
num_rs = ceil(d, 2*r)
return int(num_rs)
def main():
r, x, y, xp, yp = [int(i) for i in input().split()]
print(answer(r, x, y, xp, yp))
return
main() | {
"input": [
"1 1 1 4 4\n",
"2 0 0 0 4\n",
"4 5 6 5 6\n",
"1 100000 100000 100000 -100000\n",
"46456 -2621 -23623 -98302 -99305\n",
"9 20 0 40 0\n",
"100000 -100000 -100000 100000 100000\n",
"5 6 3 7 2\n",
"97741 23818 78751 97583 26933\n",
"99125 26876 -21414 14176 17443\n",
"56767 -29030 51625 79823 -56297\n",
"125 455 450 439 721\n",
"1 -3 3 2 6\n",
"8066 7339 19155 -90534 -60666\n",
"10 20 0 41 0\n",
"1 3 4 2 5\n",
"67377 -80131 -90254 -57320 14102\n",
"4 100000 -100000 100000 -99999\n",
"25 -64 -6 -56 64\n",
"100 100000 -100000 100000 -99999\n",
"25 96 13 7 2\n",
"24 130 14786 3147 2140\n",
"8 0 0 0 32\n",
"5 -1 -6 -5 1\n",
"2 7 20 13 -5\n",
"10 20 0 40 0\n",
"100000 100000 1 -100000 0\n",
"98260 13729 74998 23701 9253\n",
"125 -363 176 93 330\n",
"19312 19470 82059 58064 62231\n",
"67398 -68747 -79056 -34193 29400\n",
"1 14 30 30 14\n",
"1 100000 -100000 100000 -100000\n",
"249 -54242 -30537 -45023 -89682\n",
"91099 37184 -71137 75650 -3655\n",
"1 1 1 1 4\n",
"4 100000 -100000 100000 -100000\n",
"1 100000 100000 110000 -100000\n",
"46456 -250 -23623 -98302 -99305\n",
"10 6 3 7 2\n",
"1 -3 3 2 2\n",
"2229 7339 19155 -90534 -60666\n",
"10 20 0 82 0\n",
"4 110000 -100000 100000 -99999\n",
"24 130 14786 6148 2140\n",
"2 7 20 13 -8\n",
"1 14 30 50 14\n",
"1 100000 -1051 100000 -100000\n",
"41 -54242 -30537 -45023 -89682\n",
"1 1 1 1 1\n",
"4 100000 -55220 100000 -100000\n",
"1 100000 100000 110000 -25856\n",
"2 20 -1 40 0\n",
"2229 7339 19155 -90534 -35460\n",
"4 110000 -75871 100000 -99999\n",
"100 100000 -6068 100100 -99999\n",
"24 130 14786 6148 4076\n",
"1 100000 -1051 110000 -100000\n",
"41 -54242 -30537 -45023 -132620\n",
"4 000000 -55220 100000 -100000\n",
"1 101000 100000 110000 -25856\n",
"4 110000 -75871 110000 -99999\n",
"6 -91 -10 -56 64\n",
"101 100000 -6068 100100 -99999\n",
"24 130 14786 6148 1926\n",
"9 20 -1 40 0\n",
"100000 -100000 -100000 100000 100010\n",
"97741 23818 85422 97583 26933\n",
"99125 26876 -21414 1880 17443\n",
"56767 -29030 51625 79823 -48310\n",
"125 835 450 439 721\n",
"1 3 4 0 5\n",
"127571 -80131 -90254 -57320 14102\n",
"25 -91 -6 -56 64\n",
"100 100000 -100000 100100 -99999\n",
"25 96 13 7 3\n",
"8 -1 0 0 32\n",
"5 0 -6 -5 1\n",
"20 20 0 40 0\n",
"100000 100000 0 -100000 0\n",
"98260 13866 74998 23701 9253\n",
"208 -363 176 93 330\n",
"19312 19470 14858 58064 62231\n",
"67398 -29180 -79056 -34193 29400\n",
"18510 37184 -71137 75650 -3655\n",
"1 1 2 4 4\n",
"2 1 0 0 4\n",
"4 5 0 5 6\n",
"46456 -250 -23623 -98302 -104171\n",
"100000 -100000 -100000 100100 100010\n",
"10 6 3 1 2\n",
"97741 29870 85422 97583 26933\n",
"25830 26876 -21414 1880 17443\n",
"56767 -29030 76256 79823 -48310\n",
"125 835 450 9 721\n",
"1 -3 4 2 2\n",
"10 38 0 82 0\n",
"1 3 4 0 7\n",
"127571 -80131 -90254 -57320 3584\n",
"25 -91 -10 -56 64\n",
"25 96 4 7 3\n",
"8 -1 0 1 32\n",
"5 0 -6 -5 2\n",
"2 7 20 18 -8\n",
"20 20 -1 40 0\n",
"100010 100000 0 -100000 0\n",
"149902 13866 74998 23701 9253\n",
"208 -363 88 93 330\n",
"9361 19470 14858 58064 62231\n",
"67398 -29180 -79056 -65369 29400\n",
"1 14 31 50 14\n",
"18510 37184 -71137 24219 -3655\n",
"2 1 1 1 1\n",
"1 1 2 3 4\n",
"2 1 0 1 4\n",
"4 5 0 0 6\n",
"65444 -250 -23623 -98302 -104171\n",
"2 20 -1 40 1\n",
"100000 -100000 -100000 100100 110010\n",
"10 6 3 0 2\n",
"97741 29870 85422 97583 35793\n",
"25830 26876 -21414 1880 9060\n",
"56767 -4364 76256 79823 -48310\n",
"125 680 450 9 721\n",
"2229 7339 19155 -60114 -35460\n",
"10 38 0 63 0\n",
"1 3 4 0 11\n",
"127571 -80131 -90254 -57320 924\n",
"25 96 4 7 6\n",
"8 -1 1 1 32\n",
"5 0 -6 -5 0\n"
],
"output": [
"3\n",
"1\n",
"0\n",
"100000\n",
"2\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"3\n",
"8\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"1\n",
"2\n",
"271\n",
"2\n",
"1\n",
"7\n",
"1\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"12\n",
"0\n",
"121\n",
"1\n",
"2\n",
"0\n",
"100125\n",
"2\n",
"1\n",
"3\n",
"29\n",
"4\n",
"1251\n",
"292\n",
"8\n",
"20\n",
"49475\n",
"730\n",
"0\n",
"5598\n",
"63127\n",
"6\n",
"26\n",
"3265\n",
"470\n",
"256\n",
"49727\n",
"1250\n",
"13697\n",
"63089\n",
"3016\n",
"7\n",
"466\n",
"296\n",
"2\n",
"2\n",
"1\n",
"1\n",
"2\n",
"2\n",
"2\n",
"1\n",
"2\n",
"1\n",
"2\n",
"3\n",
"1\n",
"1\n",
"1\n",
"1\n",
"2\n",
"2\n",
"1\n",
"3\n",
"2\n",
"2\n",
"1\n",
"2\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"4\n",
"3\n",
"3\n",
"3\n",
"1\n",
"2\n",
"2\n",
"3\n",
"1\n",
"8\n",
"1\n",
"1\n",
"1\n",
"2\n",
"4\n",
"1\n",
"20\n",
"2\n",
"0\n",
"2\n",
"1\n",
"1\n",
"1\n",
"6\n",
"2\n",
"1\n",
"1\n",
"1\n",
"2\n",
"3\n",
"20\n",
"2\n",
"4\n",
"1\n",
"2\n",
"2\n",
"1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius r and center in point (x, y). He wants the circle center to be in new position (x', y').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input
Input consists of 5 space-separated integers r, x, y, x' y' (1 ≤ r ≤ 105, - 105 ≤ x, y, x', y' ≤ 105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
Examples
Input
2 0 0 0 4
Output
1
Input
1 1 1 4 4
Output
3
Input
4 5 6 5 6
Output
0
Note
In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).
<image>
### Input:
1 1 1 4 4
### Output:
3
### Input:
2 0 0 0 4
### Output:
1
### Code:
import math #.sqrt
def ceil (a, b):
return -(-a // b)
def answer(r, x, y, xp, yp):
d = math.sqrt((xp-x)**2 + (yp-y)**2)
num_rs = ceil(d, 2*r)
return int(num_rs)
def main():
r, x, y, xp, yp = [int(i) for i in input().split()]
print(answer(r, x, y, xp, yp))
return
main() |
556_C. Case of Matryoshkas_1312 | Andrewid the Android is a galaxy-famous detective. He is now investigating the case of vandalism at the exhibition of contemporary art.
The main exhibit is a construction of n matryoshka dolls that can be nested one into another. The matryoshka dolls are numbered from 1 to n. A matryoshka with a smaller number can be nested in a matryoshka with a higher number, two matryoshkas can not be directly nested in the same doll, but there may be chain nestings, for example, 1 → 2 → 4 → 5.
In one second, you can perform one of the two following operations:
* Having a matryoshka a that isn't nested in any other matryoshka and a matryoshka b, such that b doesn't contain any other matryoshka and is not nested in any other matryoshka, you may put a in b;
* Having a matryoshka a directly contained in matryoshka b, such that b is not nested in any other matryoshka, you may get a out of b.
According to the modern aesthetic norms the matryoshka dolls on display were assembled in a specific configuration, i.e. as several separate chains of nested matryoshkas, but the criminal, following the mysterious plan, took out all the dolls and assembled them into a single large chain (1 → 2 → ... → n). In order to continue the investigation Andrewid needs to know in what minimum time it is possible to perform this action.
Input
The first line contains integers n (1 ≤ n ≤ 105) and k (1 ≤ k ≤ 105) — the number of matryoshkas and matryoshka chains in the initial configuration.
The next k lines contain the descriptions of the chains: the i-th line first contains number mi (1 ≤ mi ≤ n), and then mi numbers ai1, ai2, ..., aimi — the numbers of matryoshkas in the chain (matryoshka ai1 is nested into matryoshka ai2, that is nested into matryoshka ai3, and so on till the matryoshka aimi that isn't nested into any other matryoshka).
It is guaranteed that m1 + m2 + ... + mk = n, the numbers of matryoshkas in all the chains are distinct, in each chain the numbers of matryoshkas follow in the ascending order.
Output
In the single line print the minimum number of seconds needed to assemble one large chain from the initial configuration.
Examples
Input
3 2
2 1 2
1 3
Output
1
Input
7 3
3 1 3 7
2 2 5
2 4 6
Output
10
Note
In the first sample test there are two chains: 1 → 2 and 3. In one second you can nest the first chain into the second one and get 1 → 2 → 3.
In the second sample test you need to disassemble all the three chains into individual matryoshkas in 2 + 1 + 1 = 4 seconds and then assemble one big chain in 6 seconds. | n, m = [int(x) for x in input().split()]
a = []
for i in range(m):
a.append([int(x) for x in input().split()][1:])
b = []
curt = 0
for i in a:
j = 0
b.append([])
while (j < len(i)) and (i[j] == (j + 1)):
j += 1
if j != 0:
b[-1] = [j]
b[-1] += [1] * (len(i) - j)
curt += len(b[-1])
fin = curt - 1
#print(b)
for i in b:
fin += len(i) - 1
print(fin)
| {
"input": [
"3 2\n2 1 2\n1 3\n",
"7 3\n3 1 3 7\n2 2 5\n2 4 6\n",
"100 3\n45 1 2 3 4 5 6 7 8 9 19 21 24 27 28 30 34 35 37 39 40 41 42 43 46 47 48 51 52 55 58 59 61 63 64 66 69 71 76 80 85 86 88 89 94 99\n26 10 11 15 18 23 29 31 33 36 38 44 49 54 56 60 62 65 75 78 82 83 84 95 96 97 98\n29 12 13 14 16 17 20 22 25 26 32 45 50 53 57 67 68 70 72 73 74 77 79 81 87 90 91 92 93 100\n",
"3 2\n1 2\n2 1 3\n",
"13 8\n1 5\n2 8 10\n1 13\n4 1 2 3 11\n1 7\n2 6 12\n1 4\n1 9\n",
"1 1\n1 1\n",
"100 19\n6 62 72 83 91 94 97\n3 61 84 99\n1 63\n5 46 53 56 69 78\n5 41 43 49 74 89\n5 55 57 79 85 87\n3 47 59 98\n3 64 76 82\n3 48 66 75\n2 60 88\n2 67 77\n4 40 51 73 95\n41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 44 71 81\n4 58 65 90 93\n1 100\n5 39 45 52 80 86\n2 50 68\n1 92\n4 42 54 70 96\n",
"20 6\n3 8 9 13\n3 4 14 20\n2 15 17\n3 2 5 11\n5 7 10 12 18 19\n4 1 3 6 16\n",
"5 3\n1 4\n3 1 2 3\n1 5\n",
"50 50\n1 2\n1 5\n1 28\n1 46\n1 42\n1 24\n1 3\n1 37\n1 33\n1 50\n1 23\n1 40\n1 43\n1 26\n1 49\n1 34\n1 8\n1 45\n1 15\n1 1\n1 22\n1 18\n1 27\n1 25\n1 13\n1 39\n1 38\n1 10\n1 44\n1 6\n1 17\n1 47\n1 7\n1 35\n1 20\n1 36\n1 31\n1 21\n1 32\n1 29\n1 4\n1 12\n1 19\n1 16\n1 11\n1 41\n1 9\n1 14\n1 30\n1 48\n",
"50 10\n6 17 21 31 42 45 49\n6 11 12 15 22 26 38\n3 9 29 36\n3 10 23 43\n5 14 19 28 46 48\n2 30 39\n6 13 20 24 33 37 47\n8 1 2 3 4 5 6 7 8\n7 16 18 25 27 34 40 44\n4 32 35 41 50\n",
"8 5\n2 1 2\n2 3 4\n1 5\n2 6 7\n1 8\n",
"21 13\n1 18\n2 8 13\n1 21\n1 17\n2 7 9\n1 20\n1 19\n1 4\n1 16\n2 5 6\n3 12 14 15\n3 1 2 3\n2 10 11\n",
"10 10\n1 5\n1 4\n1 10\n1 3\n1 7\n1 1\n1 8\n1 6\n1 9\n1 2\n"
],
"output": [
"1\n",
"10\n",
"180\n",
"3\n",
"13\n",
"0\n",
"106\n",
"33\n",
"2\n",
"49\n",
"75\n",
"8\n",
"24\n",
"9\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Andrewid the Android is a galaxy-famous detective. He is now investigating the case of vandalism at the exhibition of contemporary art.
The main exhibit is a construction of n matryoshka dolls that can be nested one into another. The matryoshka dolls are numbered from 1 to n. A matryoshka with a smaller number can be nested in a matryoshka with a higher number, two matryoshkas can not be directly nested in the same doll, but there may be chain nestings, for example, 1 → 2 → 4 → 5.
In one second, you can perform one of the two following operations:
* Having a matryoshka a that isn't nested in any other matryoshka and a matryoshka b, such that b doesn't contain any other matryoshka and is not nested in any other matryoshka, you may put a in b;
* Having a matryoshka a directly contained in matryoshka b, such that b is not nested in any other matryoshka, you may get a out of b.
According to the modern aesthetic norms the matryoshka dolls on display were assembled in a specific configuration, i.e. as several separate chains of nested matryoshkas, but the criminal, following the mysterious plan, took out all the dolls and assembled them into a single large chain (1 → 2 → ... → n). In order to continue the investigation Andrewid needs to know in what minimum time it is possible to perform this action.
Input
The first line contains integers n (1 ≤ n ≤ 105) and k (1 ≤ k ≤ 105) — the number of matryoshkas and matryoshka chains in the initial configuration.
The next k lines contain the descriptions of the chains: the i-th line first contains number mi (1 ≤ mi ≤ n), and then mi numbers ai1, ai2, ..., aimi — the numbers of matryoshkas in the chain (matryoshka ai1 is nested into matryoshka ai2, that is nested into matryoshka ai3, and so on till the matryoshka aimi that isn't nested into any other matryoshka).
It is guaranteed that m1 + m2 + ... + mk = n, the numbers of matryoshkas in all the chains are distinct, in each chain the numbers of matryoshkas follow in the ascending order.
Output
In the single line print the minimum number of seconds needed to assemble one large chain from the initial configuration.
Examples
Input
3 2
2 1 2
1 3
Output
1
Input
7 3
3 1 3 7
2 2 5
2 4 6
Output
10
Note
In the first sample test there are two chains: 1 → 2 and 3. In one second you can nest the first chain into the second one and get 1 → 2 → 3.
In the second sample test you need to disassemble all the three chains into individual matryoshkas in 2 + 1 + 1 = 4 seconds and then assemble one big chain in 6 seconds.
### Input:
3 2
2 1 2
1 3
### Output:
1
### Input:
7 3
3 1 3 7
2 2 5
2 4 6
### Output:
10
### Code:
n, m = [int(x) for x in input().split()]
a = []
for i in range(m):
a.append([int(x) for x in input().split()][1:])
b = []
curt = 0
for i in a:
j = 0
b.append([])
while (j < len(i)) and (i[j] == (j + 1)):
j += 1
if j != 0:
b[-1] = [j]
b[-1] += [1] * (len(i) - j)
curt += len(b[-1])
fin = curt - 1
#print(b)
for i in b:
fin += len(i) - 1
print(fin)
|
582_A. GCD Table_1316 | The GCD table G of size n × n for an array of positive integers a of length n is defined by formula
<image>
Let us remind you that the greatest common divisor (GCD) of two positive integers x and y is the greatest integer that is divisor of both x and y, it is denoted as <image>. For example, for array a = {4, 3, 6, 2} of length 4 the GCD table will look as follows:
<image>
Given all the numbers of the GCD table G, restore array a.
Input
The first line contains number n (1 ≤ n ≤ 500) — the length of array a. The second line contains n2 space-separated numbers — the elements of the GCD table of G for array a.
All the numbers in the table are positive integers, not exceeding 109. Note that the elements are given in an arbitrary order. It is guaranteed that the set of the input data corresponds to some array a.
Output
In the single line print n positive integers — the elements of array a. If there are multiple possible solutions, you are allowed to print any of them.
Examples
Input
4
2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2
Output
4 3 6 2
Input
1
42
Output
42
Input
2
1 1 1 1
Output
1 1 | import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
##########################################################
# from collections import Counter
# from fractions import Fraction
# s=iter(input())
# for _ in range(int(input())):
# from collections import deque
# n=int(input())
# arr=list(map(int,input().split()))
# ls=list(map(int,input().split()))
# for i in range(m):
# for i in range(int(input())):
# arr = list(map(int, input().split()))
# for i in range(int(input())):
# for _ in range(int(input())):
# n, k = map(int, input().split())
def gcd(a,b):
if b==0:
return a
return gcd(b,a%b)
n = int(input())
arr = sorted(list(map(int, input().split())))[::-1]
if arr==[1]*n**2:
print("1 "*(n))
else:
d={}
ans=[]
for i in range(n*n):
if arr[i] in d:
d[arr[i]]+=1
else:
d[arr[i]]=1
for i in arr:
if d[i]>0:
ans.append(i)
for j in ans:
d[gcd(i,j)]-=2
#ans=" ".join(ans)
print(*ans) | {
"input": [
"4\n2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2\n",
"1\n42\n",
"2\n1 1 1 1\n",
"3\n121339 121339 121339 55451923 531222142 121339 121339 435485671 121339\n",
"3\n1 7 923264237 374288891 7 524125987 1 1 1\n",
"5\n2029 6087 2029 2029 6087 2029 527243766 4058 2029 2029 2029 2029 2029 2029 2029 2029 165353355 4058 2029 731472761 739767313 2029 2029 2029 585281282\n",
"3\n1 716963379 1 1 205 1 1 964 1\n",
"4\n1 1 1 1 1 702209411 496813081 673102149 1 1 561219907 1 1 1 1 1\n",
"3\n5993 781145599 54740062 5993 5993 267030101 5993 5993 5993\n",
"5\n4 4 4 4 4 4 4 4 4 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1\n",
"4\n1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3\n",
"5\n1 161 1 534447872 161 233427865 1 7 7 73701396 1 401939237 4 1 1 1 1 1 7 115704211 1 4 1 7 1\n",
"5\n27 675 1 1 347621274 5 2 13 189 738040275 5 1 189 13 1 959752125 770516962 769220855 5 5 2 675 1 1 27\n",
"4\n700521 233507 759364764 467014 468181535 233507 233507 890362191 233507 700521 467014 233507 946637378 233507 233507 233507\n",
"5\n1 1 1 1 1 9 564718673 585325539 1 1 3 1 9 1 1 365329221 3 291882089 3 1 412106895 1 1 1 3\n",
"2\n54748096 1 641009859 1\n",
"4\n1 188110 607844 2 1 1 695147 1 1 1 143380513 1 1 1 1 2\n",
"4\n2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2\n",
"3\n484799 1 1 744137 1 1 909312183 1 1\n",
"5\n2 11 1 1 2 4 2 1 181951 4 345484316 2 4 4 4 2 1 140772746 1 634524 4 521302304 1 2 11\n",
"6\n1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 6\n",
"4\n67025 13405 1915 1915 1915 1915 5745 676469920 53620 5745 660330300 67025 53620 380098775 533084295 13405\n",
"4\n3 1 96256522 120 360284388 3 3 2 2 2 3 12 12 2 1 198192381\n",
"5\n537163 537163 537163 537163 537163 537163 1074326 537163 537163 537163 515139317 1074326 537163 537163 537163 539311652 321760637 170817834 537163 537163 537163 537163 537163 537163 392666153\n",
"4\n1 1 1 1 1 1 1 1 1 1 1 1 3 3 6 3\n",
"1\n53\n",
"1\n77\n",
"1\n20\n",
"1\n10\n",
"1\n11\n",
"1\n18\n",
"1\n36\n",
"1\n14\n",
"1\n15\n",
"1\n16\n",
"1\n17\n",
"1\n23\n",
"1\n6\n",
"1\n8\n",
"1\n5\n",
"1\n3\n",
"1\n1\n",
"1\n2\n",
"3\n484799 1 1 744137 1 1 778251039 1 1\n",
"1\n4\n",
"1\n39\n",
"1\n144\n",
"1\n9\n",
"1\n-1\n",
"1\n-2\n",
"1\n7\n",
"1\n52\n",
"1\n25\n",
"1\n29\n",
"1\n19\n",
"1\n27\n",
"1\n-4\n",
"1\n12\n",
"1\n21\n",
"1\n-6\n",
"1\n-3\n",
"1\n-12\n",
"1\n34\n",
"3\n484799 1 1 744137 1 1 1294221218 1 1\n",
"1\n-8\n",
"1\n-5\n",
"1\n197\n",
"1\n-7\n",
"1\n13\n",
"1\n-10\n",
"1\n31\n",
"1\n26\n",
"1\n-13\n",
"1\n55\n",
"1\n28\n",
"1\n47\n",
"1\n-11\n",
"1\n-16\n",
"1\n-9\n",
"1\n30\n",
"1\n-15\n",
"1\n-27\n",
"1\n-14\n",
"1\n-18\n",
"1\n298\n",
"1\n-21\n",
"1\n-22\n",
"1\n-19\n",
"1\n45\n",
"1\n57\n",
"1\n-34\n",
"1\n58\n",
"1\n-28\n",
"1\n87\n",
"1\n-20\n",
"1\n-38\n",
"1\n-26\n",
"1\n22\n",
"1\n-25\n",
"1\n-23\n",
"1\n-24\n",
"1\n-37\n",
"1\n366\n",
"1\n-35\n",
"1\n-17\n",
"1\n-29\n",
"1\n43\n",
"1\n88\n",
"1\n-33\n",
"1\n83\n",
"1\n-47\n",
"1\n67\n",
"1\n-56\n",
"1\n-55\n",
"1\n41\n",
"1\n-45\n",
"1\n-75\n",
"1\n-51\n",
"1\n-32\n",
"1\n-74\n",
"1\n139\n",
"1\n-61\n",
"1\n-48\n",
"1\n-54\n"
],
"output": [
"6 4 3 2 ",
"42 ",
"1 1 ",
"531222142 435485671 55451923 ",
"923264237 524125987 374288891 ",
"739767313 731472761 585281282 527243766 165353355 ",
"716963379 964 205 ",
"702209411 673102149 561219907 496813081 ",
"781145599 267030101 54740062 ",
"4 4 4 2 1 ",
"3 3 1 1 ",
"534447872 401939237 233427865 115704211 73701396 ",
"959752125 770516962 769220855 738040275 347621274 ",
"946637378 890362191 759364764 468181535 ",
"585325539 564718673 412106895 365329221 291882089 ",
"641009859 54748096 ",
"143380513 695147 607844 188110 ",
"6 4 3 2 ",
"909312183 744137 484799 ",
"521302304 345484316 140772746 634524 181951 ",
"6 6 6 3 3 1 ",
"676469920 660330300 533084295 380098775 ",
"360284388 198192381 96256522 120 ",
"539311652 515139317 392666153 321760637 170817834 ",
"6 3 1 1\n",
"53\n",
"77\n",
"20\n",
"10\n",
"11\n",
"18\n",
"36\n",
"14\n",
"15\n",
"16\n",
"17\n",
"23\n",
"6\n",
"8\n",
"5\n",
"3\n",
"1\n",
"2\n",
"778251039 744137 484799\n",
"4\n",
"39\n",
"144\n",
"9\n",
"-1\n",
"-2\n",
"7\n",
"52\n",
"25\n",
"29\n",
"19\n",
"27\n",
"-4\n",
"12\n",
"21\n",
"-6\n",
"-3\n",
"-12\n",
"34\n",
"1294221218 744137 484799\n",
"-8\n",
"-5\n",
"197\n",
"-7\n",
"13\n",
"-10\n",
"31\n",
"26\n",
"-13\n",
"55\n",
"28\n",
"47\n",
"-11\n",
"-16\n",
"-9\n",
"30\n",
"-15\n",
"-27\n",
"-14\n",
"-18\n",
"298\n",
"-21\n",
"-22\n",
"-19\n",
"45\n",
"57\n",
"-34\n",
"58\n",
"-28\n",
"87\n",
"-20\n",
"-38\n",
"-26\n",
"22\n",
"-25\n",
"-23\n",
"-24\n",
"-37\n",
"366\n",
"-35\n",
"-17\n",
"-29\n",
"43\n",
"88\n",
"-33\n",
"83\n",
"-47\n",
"67\n",
"-56\n",
"-55\n",
"41\n",
"-45\n",
"-75\n",
"-51\n",
"-32\n",
"-74\n",
"139\n",
"-61\n",
"-48\n",
"-54\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
The GCD table G of size n × n for an array of positive integers a of length n is defined by formula
<image>
Let us remind you that the greatest common divisor (GCD) of two positive integers x and y is the greatest integer that is divisor of both x and y, it is denoted as <image>. For example, for array a = {4, 3, 6, 2} of length 4 the GCD table will look as follows:
<image>
Given all the numbers of the GCD table G, restore array a.
Input
The first line contains number n (1 ≤ n ≤ 500) — the length of array a. The second line contains n2 space-separated numbers — the elements of the GCD table of G for array a.
All the numbers in the table are positive integers, not exceeding 109. Note that the elements are given in an arbitrary order. It is guaranteed that the set of the input data corresponds to some array a.
Output
In the single line print n positive integers — the elements of array a. If there are multiple possible solutions, you are allowed to print any of them.
Examples
Input
4
2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2
Output
4 3 6 2
Input
1
42
Output
42
Input
2
1 1 1 1
Output
1 1
### Input:
4
2 1 2 3 4 3 2 6 1 1 2 2 1 2 3 2
### Output:
6 4 3 2
### Input:
1
42
### Output:
42
### Code:
import os
import sys
from io import BytesIO, IOBase
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
##########################################################
# from collections import Counter
# from fractions import Fraction
# s=iter(input())
# for _ in range(int(input())):
# from collections import deque
# n=int(input())
# arr=list(map(int,input().split()))
# ls=list(map(int,input().split()))
# for i in range(m):
# for i in range(int(input())):
# arr = list(map(int, input().split()))
# for i in range(int(input())):
# for _ in range(int(input())):
# n, k = map(int, input().split())
def gcd(a,b):
if b==0:
return a
return gcd(b,a%b)
n = int(input())
arr = sorted(list(map(int, input().split())))[::-1]
if arr==[1]*n**2:
print("1 "*(n))
else:
d={}
ans=[]
for i in range(n*n):
if arr[i] in d:
d[arr[i]]+=1
else:
d[arr[i]]=1
for i in arr:
if d[i]>0:
ans.append(i)
for j in ans:
d[gcd(i,j)]-=2
#ans=" ".join(ans)
print(*ans) |
604_A. Uncowed Forces_1320 | Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score.
Codeforces scores are computed as follows: If the maximum point value of a problem is x, and Kevin submitted correctly at minute m but made w wrong submissions, then his score on that problem is <image>. His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack.
All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer.
Input
The first line of the input contains five space-separated integers m1, m2, m3, m4, m5, where mi (0 ≤ mi ≤ 119) is the time of Kevin's last submission for problem i. His last submission is always correct and gets accepted.
The second line contains five space-separated integers w1, w2, w3, w4, w5, where wi (0 ≤ wi ≤ 10) is Kevin's number of wrong submissions on problem i.
The last line contains two space-separated integers hs and hu (0 ≤ hs, hu ≤ 20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively.
Output
Print a single integer, the value of Kevin's final score.
Examples
Input
20 40 60 80 100
0 1 2 3 4
1 0
Output
4900
Input
119 119 119 119 119
0 0 0 0 0
10 0
Output
4930
Note
In the second sample, Kevin takes 119 minutes on all of the problems. Therefore, he gets <image> of the points on each problem. So his score from solving problems is <image>. Adding in 10·100 = 1000 points from hacks, his total score becomes 3930 + 1000 = 4930. | t=list(map(int,input().split()))
w=list(map(int,input().split()))
q,z=map(int,input().split())
c=0
v=0
for i in range(500,3000,500):
x=(1-(t[v]/250))*i-50*w[v]
a=max(0.3*i,x)
c=c+a
v=v+1
f=q*100-z*50
dp=c+f
print(int(dp))
| {
"input": [
"20 40 60 80 100\n0 1 2 3 4\n1 0\n",
"119 119 119 119 119\n0 0 0 0 0\n10 0\n",
"36 102 73 101 19\n5 9 2 2 6\n4 13\n",
"119 0 0 0 0\n2 0 0 0 0\n5 5\n",
"0 0 119 0 0\n0 0 2 0 0\n5 5\n",
"0 0 0 0 0\n10 10 10 10 10\n0 20\n",
"0 46 86 72 40\n1 5 5 5 9\n6 5\n",
"45 45 75 36 76\n6 2 2 0 0\n8 17\n",
"119 119 119 119 119\n10 10 10 10 10\n0 20\n",
"79 112 37 36 116\n2 8 4 7 5\n4 12\n",
"0 0 0 119 0\n0 0 0 2 0\n5 5\n",
"78 96 6 97 62\n7 7 9 2 9\n10 3\n",
"95 28 3 31 115\n1 9 0 7 3\n10 13\n",
"0 0 0 119 0\n0 0 0 10 0\n5 5\n",
"0 119 0 0 0\n0 10 0 0 0\n5 5\n",
"0 0 119 0 0\n0 0 10 0 0\n0 0\n",
"10 53 101 62 1\n8 0 9 7 9\n0 11\n",
"55 66 75 44 47\n6 0 6 6 10\n19 0\n",
"47 11 88 5 110\n6 10 4 2 3\n10 6\n",
"94 18 24 91 105\n2 0 7 10 3\n1 4\n",
"119 0 0 0 0\n0 0 0 0 0\n4 9\n",
"119 0 0 0 0\n10 0 0 0 0\n5 5\n",
"45 17 116 58 3\n8 8 7 6 4\n3 19\n",
"5 44 61 103 92\n9 0 10 4 8\n15 7\n",
"0 0 0 0 0\n0 0 0 0 0\n0 0\n",
"3 6 13 38 60\n6 10 10 3 8\n9 9\n",
"102 83 26 6 11\n3 4 1 8 3\n17 14\n",
"19 12 0 113 77\n3 0 10 9 2\n8 6\n",
"57 51 76 45 96\n1 0 4 3 6\n12 15\n",
"70 84 31 57 2\n7 0 0 2 7\n12 5\n",
"53 34 53 107 81\n4 3 1 10 8\n7 7\n",
"0 0 0 0 119\n0 0 0 0 10\n5 5\n",
"0 119 0 0 0\n0 2 0 0 0\n5 5\n",
"103 110 101 97 70\n4 2 1 0 5\n7 5\n",
"109 83 5 114 104\n6 0 3 9 5\n5 2\n",
"98 15 116 43 55\n4 3 0 9 3\n10 7\n",
"66 109 22 22 62\n3 1 5 4 5\n10 5\n",
"7 54 39 102 31\n6 0 2 10 1\n18 3\n",
"86 10 66 80 55\n0 2 5 10 5\n15 6\n",
"0 26 99 108 35\n0 4 3 0 10\n9 5\n",
"47 16 44 78 111\n7 9 8 0 2\n1 19\n",
"64 17 86 59 45\n8 0 10 2 2\n4 4\n",
"0 0 0 0 119\n0 0 0 0 2\n5 5\n",
"21 44 11 68 75\n6 2 4 8 4\n2 8\n",
"96 104 9 94 84\n6 10 7 8 3\n14 11\n",
"16 112 50 114 68\n1 4 8 4 9\n19 11\n",
"115 53 96 62 110\n7 8 1 7 9\n7 16\n",
"114 4 45 78 113\n0 4 8 10 2\n10 12\n",
"89 24 51 49 84\n5 6 2 2 9\n2 14\n",
"113 107 59 50 56\n3 7 10 6 3\n10 12\n",
"71 42 60 20 7\n7 1 1 10 6\n1 7\n",
"40 115 93 107 113\n5 7 2 6 8\n6 17\n",
"0 0 0 0 0\n0 0 0 0 0\n20 0\n",
"56 56 96 105 107\n4 9 10 4 8\n2 1\n",
"98 118 117 86 4\n2 10 9 7 5\n11 15\n",
"97 17 43 84 58\n2 8 3 8 6\n10 7\n",
"113 37 4 84 66\n2 0 10 3 0\n20 19\n",
"36 102 73 101 19\n5 9 2 4 6\n4 13\n",
"0 0 119 0 1\n0 0 2 0 0\n5 5\n",
"0 0 0 0 0\n10 10 10 10 6\n0 20\n",
"0 46 86 72 40\n2 5 5 5 9\n6 5\n",
"45 45 75 36 76\n6 2 1 0 0\n8 17\n",
"78 119 119 119 119\n10 10 10 10 10\n0 20\n",
"79 211 37 36 116\n2 8 4 7 5\n4 12\n",
"0 0 0 119 0\n0 1 0 2 0\n5 5\n",
"78 96 6 97 62\n7 7 9 2 1\n10 3\n",
"95 2 3 31 115\n1 9 0 7 3\n10 13\n",
"0 0 0 119 0\n0 0 0 10 0\n5 10\n",
"0 119 0 0 0\n0 8 0 0 0\n5 5\n",
"17 53 101 62 1\n8 0 9 7 9\n0 11\n",
"55 66 75 44 47\n8 0 6 6 10\n19 0\n",
"47 11 88 5 110\n6 10 4 0 3\n10 6\n",
"94 18 24 91 105\n2 0 0 10 3\n1 4\n",
"218 0 0 0 0\n0 0 0 0 0\n4 9\n",
"119 0 0 0 0\n5 0 0 0 0\n5 5\n",
"45 17 116 58 3\n8 8 7 6 8\n3 19\n",
"5 44 61 103 92\n9 0 10 4 8\n15 8\n",
"0 1 0 0 0\n0 0 0 0 0\n0 0\n",
"3 6 13 38 60\n1 10 10 3 8\n9 9\n",
"102 83 26 2 11\n3 4 1 8 3\n17 14\n",
"19 12 0 113 77\n3 0 10 1 2\n8 6\n",
"57 51 76 45 96\n0 0 4 3 6\n12 15\n",
"66 84 31 57 2\n7 0 0 2 7\n12 5\n",
"53 59 53 107 81\n4 3 1 10 8\n7 7\n",
"0 0 0 0 119\n0 0 0 1 10\n5 5\n",
"0 119 0 0 1\n0 2 0 0 0\n5 5\n",
"103 100 101 97 70\n4 2 1 0 5\n7 5\n",
"109 83 5 114 104\n6 0 3 9 5\n4 2\n",
"98 15 116 43 55\n5 3 0 9 3\n10 7\n",
"66 109 22 22 62\n3 1 5 4 5\n6 5\n",
"7 54 39 102 31\n6 0 2 10 0\n18 3\n",
"86 6 66 80 55\n0 2 5 10 5\n15 6\n",
"47 16 10 78 111\n7 9 8 0 2\n1 19\n",
"64 17 86 59 45\n8 0 10 2 2\n4 3\n",
"0 0 0 0 232\n0 0 0 0 2\n5 5\n",
"21 44 11 68 118\n6 2 4 8 4\n2 8\n",
"96 104 9 94 84\n6 10 7 8 3\n15 11\n",
"16 112 50 114 68\n1 4 8 4 9\n29 11\n",
"115 53 96 62 110\n7 8 1 7 9\n2 16\n",
"114 4 45 78 113\n0 4 16 10 2\n10 12\n",
"89 23 51 49 84\n5 6 2 2 9\n2 14\n",
"113 54 59 50 56\n3 7 10 6 3\n10 12\n",
"71 42 60 20 7\n7 0 1 10 6\n1 7\n",
"40 115 93 107 216\n5 7 2 6 8\n6 17\n",
"0 0 0 0 0\n0 0 0 0 0\n20 1\n",
"56 56 96 105 107\n4 9 16 4 8\n2 1\n",
"98 118 117 86 4\n2 10 9 7 5\n11 1\n",
"97 17 43 84 58\n2 8 3 2 6\n10 7\n",
"113 37 0 84 66\n2 0 10 3 0\n20 19\n",
"20 40 1 80 100\n0 1 2 3 4\n1 0\n",
"140 119 119 119 119\n0 0 0 0 0\n10 0\n",
"36 102 73 101 19\n5 9 2 4 4\n4 13\n",
"0 0 0 0 0\n10 10 10 4 6\n0 20\n",
"0 46 86 72 40\n2 5 5 1 9\n6 5\n",
"45 45 75 36 76\n6 2 0 0 0\n8 17\n",
"79 211 73 36 116\n2 8 4 7 5\n4 12\n",
"78 96 6 97 62\n7 7 9 2 1\n17 3\n",
"95 2 3 31 115\n1 4 0 7 3\n10 13\n",
"0 0 0 119 0\n0 0 0 10 0\n5 20\n",
"0 119 1 0 0\n0 8 0 0 0\n5 5\n",
"17 53 101 62 1\n8 0 9 7 9\n0 2\n",
"55 66 75 44 47\n8 0 6 2 10\n19 0\n",
"47 18 88 5 110\n6 10 4 0 3\n10 6\n",
"94 18 17 91 105\n2 0 0 10 3\n1 4\n",
"218 0 1 0 0\n0 0 0 0 0\n4 9\n",
"45 17 116 58 3\n8 8 7 6 8\n3 36\n",
"5 44 61 103 34\n9 0 10 4 8\n15 8\n",
"3 6 13 38 60\n0 10 10 3 8\n9 9\n",
"102 83 26 2 6\n3 4 1 8 3\n17 14\n",
"19 12 0 113 77\n3 0 6 1 2\n8 6\n",
"57 51 76 45 96\n0 0 4 3 5\n12 15\n",
"66 84 31 57 4\n7 0 0 2 7\n12 5\n",
"53 59 53 94 81\n4 3 1 10 8\n7 7\n",
"0 0 0 0 119\n0 0 0 1 10\n6 5\n",
"0 119 0 0 1\n0 1 0 0 0\n5 5\n",
"109 15 5 114 104\n6 0 3 9 5\n4 2\n",
"98 15 116 43 18\n5 3 0 9 3\n10 7\n",
"86 109 22 22 62\n3 1 5 4 5\n6 5\n",
"7 54 39 102 20\n6 0 2 10 0\n18 3\n",
"0 26 31 108 40\n0 4 3 0 10\n9 5\n",
"64 17 86 59 45\n8 0 11 2 2\n4 3\n",
"5 44 11 68 118\n6 2 4 8 4\n2 8\n",
"96 104 9 94 84\n6 10 7 8 3\n8 11\n",
"16 64 50 114 68\n1 4 8 4 9\n29 11\n",
"114 4 45 78 61\n0 4 16 10 2\n10 12\n",
"0 26 99 108 40\n0 4 3 0 10\n9 5\n",
"78 119 176 119 119\n10 10 10 10 10\n0 20\n",
"119 0 0 0 0\n6 0 0 0 0\n5 5\n",
"204 100 101 97 70\n4 2 1 0 5\n7 5\n",
"47 16 10 78 111\n11 9 8 0 2\n1 19\n",
"115 53 96 62 110\n9 8 1 7 9\n2 16\n",
"89 23 51 49 84\n9 6 2 2 9\n2 14\n"
],
"output": [
"4900\n",
"4930\n",
"4292\n",
"7412\n",
"6936\n",
"4150\n",
"4924\n",
"5222\n",
"1310\n",
"3872\n",
"6698\n",
"4868\n",
"5132\n",
"6350\n",
"7050\n",
"6450\n",
"4032\n",
"6414\n",
"5188\n",
"4118\n",
"7212\n",
"7400\n",
"3992\n",
"4914\n",
"7500\n",
"5088\n",
"6704\n",
"5040\n",
"5156\n",
"6652\n",
"4324\n",
"6060\n",
"7174\n",
"4678\n",
"4386\n",
"5400\n",
"5854\n",
"6610\n",
"5802\n",
"5388\n",
"3288\n",
"5144\n",
"6460\n",
"4522\n",
"4754\n",
"5178\n",
"3416\n",
"4432\n",
"4066\n",
"4586\n",
"5242\n",
"2876\n",
"9500\n",
"3104\n",
"4476\n",
"5028\n",
"6070\n",
"4192\n",
"6926\n",
"4350\n",
"4874\n",
"5272\n",
"1310\n",
"3872\n",
"6648\n",
"5268\n",
"5236\n",
"6100\n",
"7050\n",
"4032\n",
"6414\n",
"5288\n",
"4468\n",
"7100\n",
"7400\n",
"3792\n",
"4864\n",
"7496\n",
"5338\n",
"6736\n",
"5440\n",
"5206\n",
"6652\n",
"4224\n",
"6010\n",
"7164\n",
"4718\n",
"4286\n",
"5400\n",
"5454\n",
"6660\n",
"5818\n",
"3492\n",
"5194\n",
"6000\n",
"4092\n",
"4854\n",
"6178\n",
"2916\n",
"4052\n",
"4070\n",
"4720\n",
"5292\n",
"2656\n",
"9450\n",
"3104\n",
"5176\n",
"5328\n",
"6094\n",
"5254\n",
"4888\n",
"4292\n",
"4650\n",
"5074\n",
"5322\n",
"3656\n",
"5968\n",
"5486\n",
"5600\n",
"7044\n",
"4482\n",
"6614\n",
"5260\n",
"4510\n",
"7094\n",
"2942\n",
"5444\n",
"5388\n",
"6786\n",
"5640\n",
"5256\n",
"6632\n",
"4328\n",
"6110\n",
"7214\n",
"4558\n",
"5770\n",
"5414\n",
"6770\n",
"5746\n",
"5160\n",
"4124\n",
"4154\n",
"6370\n",
"4572\n",
"5338\n",
"1310\n",
"7400\n",
"4718\n",
"3492\n",
"2916\n",
"4070\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Kevin Sun has just finished competing in Codeforces Round #334! The round was 120 minutes long and featured five problems with maximum point values of 500, 1000, 1500, 2000, and 2500, respectively. Despite the challenging tasks, Kevin was uncowed and bulldozed through all of them, distinguishing himself from the herd as the best cowmputer scientist in all of Bovinia. Kevin knows his submission time for each problem, the number of wrong submissions that he made on each problem, and his total numbers of successful and unsuccessful hacks. Because Codeforces scoring is complicated, Kevin wants you to write a program to compute his final score.
Codeforces scores are computed as follows: If the maximum point value of a problem is x, and Kevin submitted correctly at minute m but made w wrong submissions, then his score on that problem is <image>. His total score is equal to the sum of his scores for each problem. In addition, Kevin's total score gets increased by 100 points for each successful hack, but gets decreased by 50 points for each unsuccessful hack.
All arithmetic operations are performed with absolute precision and no rounding. It is guaranteed that Kevin's final score is an integer.
Input
The first line of the input contains five space-separated integers m1, m2, m3, m4, m5, where mi (0 ≤ mi ≤ 119) is the time of Kevin's last submission for problem i. His last submission is always correct and gets accepted.
The second line contains five space-separated integers w1, w2, w3, w4, w5, where wi (0 ≤ wi ≤ 10) is Kevin's number of wrong submissions on problem i.
The last line contains two space-separated integers hs and hu (0 ≤ hs, hu ≤ 20), denoting the Kevin's numbers of successful and unsuccessful hacks, respectively.
Output
Print a single integer, the value of Kevin's final score.
Examples
Input
20 40 60 80 100
0 1 2 3 4
1 0
Output
4900
Input
119 119 119 119 119
0 0 0 0 0
10 0
Output
4930
Note
In the second sample, Kevin takes 119 minutes on all of the problems. Therefore, he gets <image> of the points on each problem. So his score from solving problems is <image>. Adding in 10·100 = 1000 points from hacks, his total score becomes 3930 + 1000 = 4930.
### Input:
20 40 60 80 100
0 1 2 3 4
1 0
### Output:
4900
### Input:
119 119 119 119 119
0 0 0 0 0
10 0
### Output:
4930
### Code:
t=list(map(int,input().split()))
w=list(map(int,input().split()))
q,z=map(int,input().split())
c=0
v=0
for i in range(500,3000,500):
x=(1-(t[v]/250))*i-50*w[v]
a=max(0.3*i,x)
c=c+a
v=v+1
f=q*100-z*50
dp=c+f
print(int(dp))
|
626_D. Jerry's Protest_1324 | Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls, each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The winner of the game is the one who wins at least two of the three rounds.
Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls Jerry drew is strictly higher than the sum of the three balls Andrew drew?
Input
The first line of input contains a single integer n (2 ≤ n ≤ 2000) — the number of balls in the jar.
The second line contains n integers ai (1 ≤ ai ≤ 5000) — the number written on the ith ball. It is guaranteed that no two balls have the same number.
Output
Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if <image>.
Examples
Input
2
1 2
Output
0.0000000000
Input
3
1 2 10
Output
0.0740740741
Note
In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1, and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4, so Jerry never has a higher total.
In the second case, each game could've had three outcomes — 10 - 2, 10 - 1, or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in both of the first two rounds, and Jerry drew the 10 in the last round. This has probability <image>. | def main():
n = int(input())
a = list(map(int, input().split()))
max_element = max(a) + 1
#print(max_element)
diff_freq = [0 for i in range(max_element)]
for i in range(n):
for j in range(i):
diff_freq[abs(a[i] - a[j])] += 1
largest = [0 for i in range(max_element)]
for i in range(max_element - 2, 0, -1):
largest[i] = largest[i + 1] + diff_freq[i + 1]
good_ones = 0
#print('diff_freq', diff_freq)
#print('largest', largest)
for i in range(max_element):
for j in range(max_element):
if i + j < max_element:
good_ones += diff_freq[i] * diff_freq[j] * largest[i + j]
#print(good_ones)
ans = good_ones / (((n*(n - 1)) / 2) ** 3)
print(ans)
main() | {
"input": [
"3\n1 2 10\n",
"2\n1 2\n",
"11\n54 91 4 6 88 23 38 71 77 26 84\n",
"20\n11 37 81 56 61 2 26 27 59 69 24 7 71 76 45 54 89 17 95 20\n",
"13\n1 2 4 8 16 32 64 128 256 512 1024 2048 4096\n",
"11\n1 2 4 8 16 32 64 128 256 512 1024\n",
"4\n2 4 1 3\n",
"15\n1 2 3 4 5 10 20 40 80 160 320 640 1280 2560 5000\n",
"3\n1 2 3\n",
"16\n14 34 22 53 11 40 50 12 91 86 32 75 36 33 41 9\n",
"19\n55 91 63 21 30 82 14 38 9 67 50 44 90 93 68 6 73 65 29\n",
"4\n1000 5000 1001 4999\n",
"10\n1000 1001 1002 1003 1004 1005 4001 4002 4003 4004\n",
"18\n69 88 49 91 42 56 58 13 38 93 77 99 18 32 82 81 92 46\n",
"11\n54 91 4 6 88 23 38 71 77 10 84\n",
"20\n12 37 81 56 61 2 26 27 59 69 24 7 71 76 45 54 89 17 95 20\n",
"13\n1 2 4 8 16 32 64 128 467 512 1024 2048 4096\n",
"15\n1 2 3 4 5 10 20 40 80 160 352 640 1280 2560 5000\n",
"16\n14 34 23 53 11 40 50 12 91 86 32 75 36 33 41 9\n",
"19\n55 91 63 21 30 82 14 38 9 67 50 44 90 93 68 6 53 65 29\n",
"4\n1000 5000 0001 4999\n",
"10\n1000 1001 1002 1003 1752 1005 4001 4002 4003 4004\n",
"18\n69 88 49 91 42 56 58 13 38 93 63 99 18 32 82 81 92 46\n",
"3\n1 2 6\n",
"2\n1 4\n",
"11\n54 91 4 6 88 23 72 71 77 10 84\n",
"20\n12 37 81 56 61 2 36 27 59 69 24 7 71 76 45 54 89 17 95 20\n",
"13\n1 2 4 8 16 32 64 80 467 512 1024 2048 4096\n",
"15\n1 2 3 4 5 10 20 40 80 224 352 640 1280 2560 5000\n",
"16\n14 34 23 53 11 40 76 12 91 86 32 75 36 33 41 9\n",
"19\n55 91 63 21 30 82 14 38 9 67 50 44 90 93 15 6 53 65 29\n",
"18\n5 88 49 91 42 56 58 13 38 93 63 99 18 32 82 81 92 46\n",
"11\n54 16 4 6 88 23 72 71 77 10 84\n",
"20\n12 37 81 56 61 2 36 27 41 69 24 7 71 76 45 54 89 17 95 20\n",
"13\n1 2 6 8 16 32 64 80 467 512 1024 2048 4096\n",
"15\n1 2 3 4 5 10 20 40 110 224 352 640 1280 2560 5000\n",
"16\n14 34 23 53 11 40 76 12 91 86 32 149 36 33 41 9\n",
"19\n55 91 63 11 30 82 14 38 9 67 50 44 90 93 15 6 53 65 29\n",
"10\n1000 1001 1002 1003 467 1432 4001 4002 4003 4004\n",
"18\n5 88 49 91 42 56 58 13 38 93 63 99 18 32 82 81 92 7\n",
"11\n54 16 4 6 88 23 72 71 53 10 84\n",
"20\n12 37 81 25 61 2 36 27 41 69 24 7 71 76 45 54 89 17 95 20\n",
"13\n1 2 6 8 16 32 64 80 830 512 1024 2048 4096\n",
"15\n1 2 3 4 5 8 20 40 110 224 352 640 1280 2560 5000\n",
"16\n14 34 23 53 11 40 76 12 91 50 32 149 36 33 41 9\n",
"19\n55 91 63 11 30 82 14 38 9 67 50 43 90 93 15 6 53 65 29\n",
"18\n5 131 49 91 42 56 58 13 38 93 63 99 18 32 82 81 92 7\n",
"11\n45 16 4 6 88 23 72 71 53 10 84\n",
"13\n1 2 6 8 16 32 64 80 830 622 1024 2048 4096\n",
"15\n1 2 3 4 5 8 20 40 111 224 352 640 1280 2560 5000\n",
"16\n14 34 4 53 11 40 76 12 91 50 32 149 36 33 41 9\n",
"19\n55 91 63 11 30 82 14 38 9 67 50 43 90 93 15 6 53 2 29\n",
"18\n5 131 49 91 42 56 58 24 38 93 63 99 18 32 82 81 92 7\n",
"11\n45 16 4 6 88 9 72 71 53 10 84\n",
"13\n1 2 6 8 16 32 64 116 830 622 1024 2048 4096\n",
"16\n14 34 4 53 11 40 76 12 91 50 32 149 38 33 41 9\n",
"19\n55 91 63 11 30 82 8 38 9 67 50 43 90 93 15 6 53 2 29\n",
"11\n45 16 4 6 88 9 72 71 53 10 121\n",
"16\n14 34 4 53 11 45 76 12 91 50 32 149 38 33 41 9\n",
"19\n55 91 63 11 30 82 8 38 9 67 50 43 90 42 15 6 53 2 29\n",
"16\n14 34 4 53 11 45 76 15 91 50 32 149 38 33 41 9\n",
"19\n98 91 63 11 30 82 8 38 9 67 50 43 90 42 15 6 53 2 29\n",
"10\n1000 1001 1002 1003 467 1005 4001 4002 4003 4004\n",
"3\n1 2 11\n",
"2\n1 3\n",
"2\n1 7\n",
"2\n1 10\n",
"2\n2 10\n",
"2\n3 10\n",
"2\n2 9\n"
],
"output": [
"0.0740740741",
"0.0000000000",
"0.1890428249",
"0.1931218837",
"0.2881011986",
"0.2773433509",
"0.0416666667",
"0.2950679192",
"0.0000000000",
"0.2145798611",
"0.1920376960",
"0.0925925926",
"0.1796872428",
"0.1974898208",
"0.1923786627\n",
"0.1930989940\n",
"0.2840025961\n",
"0.2948977432\n",
"0.2146759259\n",
"0.1910211389\n",
"0.1250000000\n",
"0.1969272977\n",
"0.1945363732\n",
"0.0740740741\n",
"0.0000000000\n",
"0.2040871525\n",
"0.1903993293\n",
"0.2831428379\n",
"0.2944079473\n",
"0.2133101852\n",
"0.1920750944\n",
"0.1963944933\n",
"0.1965679940\n",
"0.1897442776\n",
"0.2831702321\n",
"0.2939829392\n",
"0.2386157407\n",
"0.1938880179\n",
"0.2032812071\n",
"0.1975978738\n",
"0.1937490609\n",
"0.1952323954\n",
"0.2819290615\n",
"0.2939241983\n",
"0.2401087963\n",
"0.1938696187\n",
"0.1943596354\n",
"0.1913869271\n",
"0.2812484196\n",
"0.2938706403\n",
"0.2369704861\n",
"0.1963949121\n",
"0.1939586947\n",
"0.2009196093\n",
"0.2818595222\n",
"0.2367013889\n",
"0.1970698837\n",
"0.2039128475\n",
"0.2341776620\n",
"0.1963799128\n",
"0.2339027778\n",
"0.1986112186\n",
"0.1969272977\n",
"0.0740740741\n",
"0.0000000000\n",
"0.0000000000\n",
"0.0000000000\n",
"0.0000000000\n",
"0.0000000000\n",
"0.0000000000\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Andrew and Jerry are playing a game with Harry as the scorekeeper. The game consists of three rounds. In each round, Andrew and Jerry draw randomly without replacement from a jar containing n balls, each labeled with a distinct positive integer. Without looking, they hand their balls to Harry, who awards the point to the player with the larger number and returns the balls to the jar. The winner of the game is the one who wins at least two of the three rounds.
Andrew wins rounds 1 and 2 while Jerry wins round 3, so Andrew wins the game. However, Jerry is unhappy with this system, claiming that he will often lose the match despite having the higher overall total. What is the probability that the sum of the three balls Jerry drew is strictly higher than the sum of the three balls Andrew drew?
Input
The first line of input contains a single integer n (2 ≤ n ≤ 2000) — the number of balls in the jar.
The second line contains n integers ai (1 ≤ ai ≤ 5000) — the number written on the ith ball. It is guaranteed that no two balls have the same number.
Output
Print a single real value — the probability that Jerry has a higher total, given that Andrew wins the first two rounds and Jerry wins the third. Your answer will be considered correct if its absolute or relative error does not exceed 10 - 6.
Namely: let's assume that your answer is a, and the answer of the jury is b. The checker program will consider your answer correct, if <image>.
Examples
Input
2
1 2
Output
0.0000000000
Input
3
1 2 10
Output
0.0740740741
Note
In the first case, there are only two balls. In the first two rounds, Andrew must have drawn the 2 and Jerry must have drawn the 1, and vice versa in the final round. Thus, Andrew's sum is 5 and Jerry's sum is 4, so Jerry never has a higher total.
In the second case, each game could've had three outcomes — 10 - 2, 10 - 1, or 2 - 1. Jerry has a higher total if and only if Andrew won 2 - 1 in both of the first two rounds, and Jerry drew the 10 in the last round. This has probability <image>.
### Input:
3
1 2 10
### Output:
0.0740740741
### Input:
2
1 2
### Output:
0.0000000000
### Code:
def main():
n = int(input())
a = list(map(int, input().split()))
max_element = max(a) + 1
#print(max_element)
diff_freq = [0 for i in range(max_element)]
for i in range(n):
for j in range(i):
diff_freq[abs(a[i] - a[j])] += 1
largest = [0 for i in range(max_element)]
for i in range(max_element - 2, 0, -1):
largest[i] = largest[i + 1] + diff_freq[i + 1]
good_ones = 0
#print('diff_freq', diff_freq)
#print('largest', largest)
for i in range(max_element):
for j in range(max_element):
if i + j < max_element:
good_ones += diff_freq[i] * diff_freq[j] * largest[i + j]
#print(good_ones)
ans = good_ones / (((n*(n - 1)) / 2) ** 3)
print(ans)
main() |
650_B. Image Preview_1328 | Vasya's telephone contains n photos. Photo number 1 is currently opened on the phone. It is allowed to move left and right to the adjacent photo by swiping finger over the screen. If you swipe left from the first photo, you reach photo n. Similarly, by swiping right from the last photo you reach photo 1. It takes a seconds to swipe from photo to adjacent.
For each photo it is known which orientation is intended for it — horizontal or vertical. Phone is in the vertical orientation and can't be rotated. It takes b second to change orientation of the photo.
Vasya has T seconds to watch photos. He want to watch as many photos as possible. If Vasya opens the photo for the first time, he spends 1 second to notice all details in it. If photo is in the wrong orientation, he spends b seconds on rotating it before watching it. If Vasya has already opened the photo, he just skips it (so he doesn't spend any time for watching it or for changing its orientation). It is not allowed to skip unseen photos.
Help Vasya find the maximum number of photos he is able to watch during T seconds.
Input
The first line of the input contains 4 integers n, a, b, T (1 ≤ n ≤ 5·105, 1 ≤ a, b ≤ 1000, 1 ≤ T ≤ 109) — the number of photos, time to move from a photo to adjacent, time to change orientation of a photo and time Vasya can spend for watching photo.
Second line of the input contains a string of length n containing symbols 'w' and 'h'.
If the i-th position of a string contains 'w', then the photo i should be seen in the horizontal orientation.
If the i-th position of a string contains 'h', then the photo i should be seen in vertical orientation.
Output
Output the only integer, the maximum number of photos Vasya is able to watch during those T seconds.
Examples
Input
4 2 3 10
wwhw
Output
2
Input
5 2 4 13
hhwhh
Output
4
Input
5 2 4 1000
hhwhh
Output
5
Input
3 1 100 10
whw
Output
0
Note
In the first sample test you can rotate the first photo (3 seconds), watch the first photo (1 seconds), move left (2 second), rotate fourth photo (3 seconds), watch fourth photo (1 second). The whole process takes exactly 10 seconds.
Note that in the last sample test the time is not enough even to watch the first photo, also you can't skip it. | def main():
n, a, b, t = map(int, input().split())
b += 1
l = [b if char == "w" else 1 for char in input()]
t -= sum(l) - a * (n + 2)
hi, n2 = n, n * 2
n21 = n2 + 1
lo = res = 0
l *= 2
while lo <= n and hi < n2:
t -= l[hi]
hi += 1
b = hi - n
while lo < b or (hi - lo + (hi if hi < n21 - lo else n21 - lo)) * a > t:
t += l[lo]
lo += 1
if res < hi - lo:
res = hi - lo
if res == n:
break
print(res)
if __name__ == '__main__':
main()
| {
"input": [
"5 2 4 13\nhhwhh\n",
"3 1 100 10\nwhw\n",
"5 2 4 1000\nhhwhh\n",
"4 2 3 10\nwwhw\n",
"5 2 4 12\nhhhwh\n",
"2 5 5 1000000000\nwh\n",
"16 1 1000 2100\nhhhwwwhhhwhhhwww\n",
"1 2 3 3\nw\n",
"10 2 3 32\nhhwwhwhwwh\n",
"5 2 4 13\nhhhwh\n",
"7 1 1000 13\nhhhhwhh\n",
"100 20 100 10202\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"7 1 100 8\nhhhwwwh\n",
"10 1 1000 10\nhhhhhhwwhh\n",
"12 10 10 1\nwhwhwhwhwhwh\n",
"20 10 10 1\nhwhwhwhwhwhwhwhwhhhw\n",
"5 2 4 15\nhhhwh\n",
"2 8 5 1000000000\nwh\n",
"1 3 3 3\nw\n",
"10 2 3 32\nhwwhwhwwhh\n",
"7 1 1100 13\nhhhhwhh\n",
"100 20 100 19121\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"20 3 10 1\nhwhwhwhwhwhwhwhwhhhw\n",
"5 2 1 1000\nhhwhh\n",
"10 2 3 41\nhwwhwhwwhh\n",
"5 2 4 10\nhhhwh\n",
"10 0 1100 12\nhhhhhhwhwh\n",
"7 1 100 13\nhhhwwwh\n",
"10 1 1000 19\nhhhhhhwwhh\n",
"12 8 10 1\nwhwhwhwhwhwh\n",
"2 8 2 1000000000\nwh\n",
"1 0 3 3\nw\n",
"7 1 1110 13\nhhhhwhh\n",
"100 20 100 19121\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"10 1 1100 19\nhhhhhhwwhh\n",
"100 20 110 19121\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"2 5 3 1000000000\nwh\n",
"100 20 100 17942\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"10 1 1000 13\nhhhhhhwwhh\n",
"5 2 4 1001\nhhwhh\n",
"4 2 1 10\nwwhw\n",
"2 8 3 1000000000\nwh\n",
"1 4 3 3\nw\n",
"100 20 100 25388\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"7 2 100 13\nhhhwwwh\n",
"4 8 10 1\nwhwhwhwhwhwh\n",
"5 1 1 1000\nhhwhh\n",
"100 5 100 19121\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"10 2 1100 19\nhhhhhhwwhh\n",
"100 20 110 24937\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"2 5 2 1000000000\nwh\n",
"100 37 100 17942\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"10 1 1000 13\nhhhhhhwhwh\n",
"4 2 1 12\nwwhw\n",
"2 8 3 0000000000\nwh\n",
"100 20 100 25388\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"7 2 100 13\nhwwwhhh\n",
"4 6 10 1\nwhwhwhwhwhwh\n",
"5 1 0 1000\nhhwhh\n",
"100 0 100 19121\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"10 2 1100 34\nhhhhhhwwhh\n",
"100 2 110 24937\nwwwhwhwhhhwhwwwwhwhwwwwhwwwhwhwhhwwhwhhwhwhhhwwhwhwhwwwhwwhwwwhhwwhhwhwwhwwwhhhwwwhhhhhwhhwhhwhhwwww\n",
"2 5 2 1000000000\nhw\n",
"100 37 000 17942\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"10 1 1000 12\nhhhhhhwhwh\n",
"2 4 3 0000000000\nwh\n",
"7 2 100 13\nhhwwhhw\n",
"10 1 1100 12\nhhhhhhwhwh\n",
"7 2 100 9\nhhwwhhw\n",
"7 2 110 9\nhhwwhhw\n",
"16 1 1000 2670\nhhhwwwhhhwhhhwww\n",
"1 2 5 3\nw\n",
"5 3 4 13\nhhhwh\n",
"7 2 1100 13\nhhhhwhh\n",
"100 38 100 10202\nwwwwhhwhhwhhwhhhhhwwwhhhwwwhwwhwhhwwhhwwwhwwhwwwhwhwhwwhhhwhwhhwhwwhhwhwhwwwhwwwwhwhwwwwhwhhhwhwhwww\n",
"7 1 101 8\nhhhwwwh\n",
"12 19 10 1\nwhwhwhwhwhwh\n",
"5 3 4 13\nhhwhh\n",
"3 2 100 10\nwhw\n"
],
"output": [
"4",
"0",
"5",
"2",
"4",
"2",
"5",
"0",
"7",
"4",
"6",
"100",
"4",
"5",
"0",
"1",
"4\n",
"2\n",
"0\n",
"8\n",
"6\n",
"100\n",
"1\n",
"5\n",
"9\n",
"3\n",
"7\n",
"4\n",
"8\n",
"0\n",
"2\n",
"0\n",
"6\n",
"100\n",
"8\n",
"100\n",
"2\n",
"100\n",
"6\n",
"5\n",
"3\n",
"2\n",
"0\n",
"100\n",
"4\n",
"0\n",
"5\n",
"100\n",
"6\n",
"100\n",
"2\n",
"100\n",
"6\n",
"3\n",
"0\n",
"100\n",
"4\n",
"0\n",
"5\n",
"100\n",
"8\n",
"100\n",
"2\n",
"100\n",
"6\n",
"0\n",
"2\n",
"6\n",
"2\n",
"2\n",
"5\n",
"0\n",
"3\n",
"4\n",
"100\n",
"4\n",
"0\n",
"3\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Vasya's telephone contains n photos. Photo number 1 is currently opened on the phone. It is allowed to move left and right to the adjacent photo by swiping finger over the screen. If you swipe left from the first photo, you reach photo n. Similarly, by swiping right from the last photo you reach photo 1. It takes a seconds to swipe from photo to adjacent.
For each photo it is known which orientation is intended for it — horizontal or vertical. Phone is in the vertical orientation and can't be rotated. It takes b second to change orientation of the photo.
Vasya has T seconds to watch photos. He want to watch as many photos as possible. If Vasya opens the photo for the first time, he spends 1 second to notice all details in it. If photo is in the wrong orientation, he spends b seconds on rotating it before watching it. If Vasya has already opened the photo, he just skips it (so he doesn't spend any time for watching it or for changing its orientation). It is not allowed to skip unseen photos.
Help Vasya find the maximum number of photos he is able to watch during T seconds.
Input
The first line of the input contains 4 integers n, a, b, T (1 ≤ n ≤ 5·105, 1 ≤ a, b ≤ 1000, 1 ≤ T ≤ 109) — the number of photos, time to move from a photo to adjacent, time to change orientation of a photo and time Vasya can spend for watching photo.
Second line of the input contains a string of length n containing symbols 'w' and 'h'.
If the i-th position of a string contains 'w', then the photo i should be seen in the horizontal orientation.
If the i-th position of a string contains 'h', then the photo i should be seen in vertical orientation.
Output
Output the only integer, the maximum number of photos Vasya is able to watch during those T seconds.
Examples
Input
4 2 3 10
wwhw
Output
2
Input
5 2 4 13
hhwhh
Output
4
Input
5 2 4 1000
hhwhh
Output
5
Input
3 1 100 10
whw
Output
0
Note
In the first sample test you can rotate the first photo (3 seconds), watch the first photo (1 seconds), move left (2 second), rotate fourth photo (3 seconds), watch fourth photo (1 second). The whole process takes exactly 10 seconds.
Note that in the last sample test the time is not enough even to watch the first photo, also you can't skip it.
### Input:
5 2 4 13
hhwhh
### Output:
4
### Input:
3 1 100 10
whw
### Output:
0
### Code:
def main():
n, a, b, t = map(int, input().split())
b += 1
l = [b if char == "w" else 1 for char in input()]
t -= sum(l) - a * (n + 2)
hi, n2 = n, n * 2
n21 = n2 + 1
lo = res = 0
l *= 2
while lo <= n and hi < n2:
t -= l[hi]
hi += 1
b = hi - n
while lo < b or (hi - lo + (hi if hi < n21 - lo else n21 - lo)) * a > t:
t += l[lo]
lo += 1
if res < hi - lo:
res = hi - lo
if res == n:
break
print(res)
if __name__ == '__main__':
main()
|
675_E. Trains and Statistic_1332 | Vasya commutes by train every day. There are n train stations in the city, and at the i-th station it's possible to buy only tickets to stations from i + 1 to ai inclusive. No tickets are sold at the last station.
Let ρi, j be the minimum number of tickets one needs to buy in order to get from stations i to station j. As Vasya is fond of different useless statistic he asks you to compute the sum of all values ρi, j among all pairs 1 ≤ i < j ≤ n.
Input
The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of stations.
The second line contains n - 1 integer ai (i + 1 ≤ ai ≤ n), the i-th of them means that at the i-th station one may buy tickets to each station from i + 1 to ai inclusive.
Output
Print the sum of ρi, j among all pairs of 1 ≤ i < j ≤ n.
Examples
Input
4
4 4 4
Output
6
Input
5
2 3 5 5
Output
17
Note
In the first sample it's possible to get from any station to any other (with greater index) using only one ticket. The total number of pairs is 6, so the answer is also 6.
Consider the second sample:
* ρ1, 2 = 1
* ρ1, 3 = 2
* ρ1, 4 = 3
* ρ1, 5 = 3
* ρ2, 3 = 1
* ρ2, 4 = 2
* ρ2, 5 = 2
* ρ3, 4 = 1
* ρ3, 5 = 1
* ρ4, 5 = 1
Thus the answer equals 1 + 2 + 3 + 3 + 1 + 2 + 2 + 1 + 1 + 1 = 17. | n=int(input())
a=list(map(int, input().split()))
a=[ai-1 for ai in a]
a[n:n] = [n - 1]
dp=[0]*n
ans=0
i=n-2
nmax=2**17
tree=[[0,0]]*2*nmax;
#Build Segment tree
j=0
while j<n:
tree[nmax + j] = [a[j], j]
j=j+1
j=nmax-1
while j>0:
tree[j]=max(tree[j*2],tree[j*2+1])
j=j-1
#get max of a interval [left, right]
def get(left, right):
ans=[-1,-1]
left=left+nmax
right=right+nmax+1
while left<right:
if (left & 1):
ans = max(ans, tree[left])
left = left + 1
if (right & 1):
right = right - 1
ans = max(ans, tree[right])
left = left // 2
right = right // 2
return ans[1]
while i>=0:
m = get(i + 1, a[i]);
dp[i] = dp[m] - (a[i] - m) + n - i - 1
ans += dp[i]
i=i-1
print(ans) | {
"input": [
"4\n4 4 4\n",
"5\n2 3 5 5\n",
"7\n7 3 4 6 6 7\n",
"4\n3 3 4\n",
"6\n3 3 6 6 6\n",
"5\n4 4 4 5\n",
"9\n2 9 7 6 9 7 8 9\n",
"3\n3 3\n",
"8\n3 7 7 8 8 7 8\n",
"10\n2 10 8 7 8 8 10 9 10\n",
"2\n2\n",
"9\n3 9 7 6 9 7 8 9\n",
"4\n3 4 4\n",
"8\n3 5 7 8 8 7 8\n",
"8\n3 8 7 8 8 7 8\n",
"7\n7 3 4 7 6 7\n",
"5\n3 3 5 5\n",
"6\n4 3 6 6 6\n",
"5\n3 4 4 5\n",
"9\n2 6 7 6 9 7 8 9\n",
"3\n2 3\n",
"8\n2 7 7 8 8 7 8\n",
"8\n3 3 7 8 8 7 8\n",
"5\n5 3 5 5\n",
"6\n5 3 6 6 6\n",
"9\n2 4 7 6 9 7 8 9\n",
"8\n3 5 4 8 8 7 8\n",
"9\n2 5 7 6 9 7 8 9\n",
"9\n2 4 5 6 9 7 8 9\n",
"8\n4 5 4 8 8 7 8\n",
"10\n2 10 8 7 8 9 10 9 10\n",
"8\n3 8 7 8 8 8 8\n",
"6\n4 5 6 6 6\n",
"8\n6 8 7 8 8 8 8\n",
"10\n3 10 8 7 8 9 10 9 10\n",
"9\n2 6 5 9 9 7 8 9\n",
"6\n3 3 6 5 6\n",
"8\n3 3 7 8 7 7 8\n",
"8\n2 7 8 8 8 7 8\n",
"7\n3 5 4 7 6 7\n",
"4\n4 3 4\n",
"6\n3 5 6 6 6\n",
"5\n2 3 4 5\n",
"7\n3 3 4 7 6 7\n",
"5\n3 5 5 5\n",
"6\n4 4 6 6 6\n",
"9\n2 6 5 6 9 7 8 9\n",
"7\n2 3 4 7 6 7\n",
"10\n2 10 8 6 8 8 10 9 10\n",
"8\n6 3 7 8 8 7 8\n",
"7\n4 3 4 7 6 7\n",
"5\n5 4 4 5\n",
"8\n5 3 7 8 8 7 8\n"
],
"output": [
"6\n",
"17\n",
"35\n",
"8\n",
"21\n",
"13\n",
"52\n",
"3\n",
"37\n",
"63\n",
"1\n",
"51\n",
"7\n",
"39\n",
"35\n",
"32\n",
"14\n",
"20\n",
"15\n",
"58\n",
"4\n",
"38\n",
"42\n",
"12\n",
"19\n",
"66\n",
"44\n",
"60\n",
"70\n",
"40\n",
"62\n",
"34\n",
"18\n",
"31\n",
"61\n",
"57\n",
"22\n",
"43\n",
"37\n",
"33\n",
"7\n",
"19\n",
"20\n",
"39\n",
"12\n",
"19\n",
"60\n",
"44\n",
"66\n",
"38\n",
"35\n",
"12\n",
"39\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Vasya commutes by train every day. There are n train stations in the city, and at the i-th station it's possible to buy only tickets to stations from i + 1 to ai inclusive. No tickets are sold at the last station.
Let ρi, j be the minimum number of tickets one needs to buy in order to get from stations i to station j. As Vasya is fond of different useless statistic he asks you to compute the sum of all values ρi, j among all pairs 1 ≤ i < j ≤ n.
Input
The first line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of stations.
The second line contains n - 1 integer ai (i + 1 ≤ ai ≤ n), the i-th of them means that at the i-th station one may buy tickets to each station from i + 1 to ai inclusive.
Output
Print the sum of ρi, j among all pairs of 1 ≤ i < j ≤ n.
Examples
Input
4
4 4 4
Output
6
Input
5
2 3 5 5
Output
17
Note
In the first sample it's possible to get from any station to any other (with greater index) using only one ticket. The total number of pairs is 6, so the answer is also 6.
Consider the second sample:
* ρ1, 2 = 1
* ρ1, 3 = 2
* ρ1, 4 = 3
* ρ1, 5 = 3
* ρ2, 3 = 1
* ρ2, 4 = 2
* ρ2, 5 = 2
* ρ3, 4 = 1
* ρ3, 5 = 1
* ρ4, 5 = 1
Thus the answer equals 1 + 2 + 3 + 3 + 1 + 2 + 2 + 1 + 1 + 1 = 17.
### Input:
4
4 4 4
### Output:
6
### Input:
5
2 3 5 5
### Output:
17
### Code:
n=int(input())
a=list(map(int, input().split()))
a=[ai-1 for ai in a]
a[n:n] = [n - 1]
dp=[0]*n
ans=0
i=n-2
nmax=2**17
tree=[[0,0]]*2*nmax;
#Build Segment tree
j=0
while j<n:
tree[nmax + j] = [a[j], j]
j=j+1
j=nmax-1
while j>0:
tree[j]=max(tree[j*2],tree[j*2+1])
j=j-1
#get max of a interval [left, right]
def get(left, right):
ans=[-1,-1]
left=left+nmax
right=right+nmax+1
while left<right:
if (left & 1):
ans = max(ans, tree[left])
left = left + 1
if (right & 1):
right = right - 1
ans = max(ans, tree[right])
left = left // 2
right = right // 2
return ans[1]
while i>=0:
m = get(i + 1, a[i]);
dp[i] = dp[m] - (a[i] - m) + n - i - 1
ans += dp[i]
i=i-1
print(ans) |
765_D. Artsem and Saunders_1341 | Artsem has a friend Saunders from University of Chicago. Saunders presented him with the following problem.
Let [n] denote the set {1, ..., n}. We will also write f: [x] → [y] when a function f is defined in integer points 1, ..., x, and all its values are integers from 1 to y.
Now then, you are given a function f: [n] → [n]. Your task is to find a positive integer m, and two functions g: [n] → [m], h: [m] → [n], such that g(h(x)) = x for all <image>, and h(g(x)) = f(x) for all <image>, or determine that finding these is impossible.
Input
The first line contains an integer n (1 ≤ n ≤ 105).
The second line contains n space-separated integers — values f(1), ..., f(n) (1 ≤ f(i) ≤ n).
Output
If there is no answer, print one integer -1.
Otherwise, on the first line print the number m (1 ≤ m ≤ 106). On the second line print n numbers g(1), ..., g(n). On the third line print m numbers h(1), ..., h(m).
If there are several correct answers, you may output any of them. It is guaranteed that if a valid answer exists, then there is an answer satisfying the above restrictions.
Examples
Input
3
1 2 3
Output
3
1 2 3
1 2 3
Input
3
2 2 2
Output
1
1 1 1
2
Input
2
2 1
Output
-1 | n = int(input())
f = list(map(int, input().split()))
h = []
ind_h = [-1] * (n + 1)
g = [0] * n
occs = {}
for i in range(len(f)):
if f[i] not in occs:
occs[f[i]] = {i + 1}
h.append(f[i])
ind_h[f[i]] = len(h) - 1
g[i] = len(h)
else:
g[i] = ind_h[f[i]] + 1
occs[f[i]].add(i + 1)
for k in occs:
if k not in occs[k]:
print(-1)
exit()
print(len(h))
print(*g)
print(*h)
| {
"input": [
"3\n1 2 3\n",
"3\n2 2 2\n",
"2\n2 1\n",
"3\n2 2 3\n",
"5\n1 4 5 4 5\n",
"4\n2 2 4 4\n",
"3\n1 1 2\n",
"4\n1 2 1 2\n",
"4\n4 2 2 4\n",
"6\n1 2 3 4 5 5\n",
"1\n1\n",
"10\n4 4 4 4 4 4 4 4 4 4\n",
"7\n7 3 3 5 5 7 7\n",
"5\n1 2 3 4 3\n",
"4\n1 2 1 1\n",
"4\n4 2 4 4\n",
"6\n1 1 1 4 4 4\n",
"2\n1 2\n",
"4\n3 4 3 4\n",
"3\n1 2 1\n",
"3\n3 2 3\n",
"5\n5 5 5 3 5\n",
"5\n1 3 3 4 4\n",
"6\n1 1 1 3 3 3\n",
"2\n2 2\n",
"4\n1 1 3 3\n",
"4\n2 2 3 2\n",
"5\n5 3 3 3 5\n",
"5\n1 4 5 4 4\n",
"4\n3 2 3 2\n",
"3\n1 1 3\n",
"4\n1 1 3 1\n",
"6\n1 2 5 4 5 5\n",
"5\n1 2 3 4 4\n",
"5\n5 5 3 3 5\n",
"3\n1 2 2\n",
"5\n5 5 3 4 5\n",
"4\n1 1 1 1\n",
"4\n1 2 1 4\n",
"4\n4 2 3 4\n",
"6\n2 2 3 4 5 5\n",
"4\n1 2 3 3\n",
"4\n2 2 3 4\n",
"4\n3 2 3 4\n",
"6\n2 2 5 4 5 5\n",
"10\n4 4 4 4 7 4 7 4 4 4\n",
"10\n6 4 4 4 4 4 4 4 4 4\n",
"6\n2 1 1 4 4 4\n",
"5\n5 5 5 2 5\n",
"5\n1 5 3 4 4\n",
"6\n1 1 1 2 3 3\n",
"5\n2 4 5 4 4\n",
"10\n6 4 4 4 4 4 4 4 3 4\n",
"6\n2 1 1 4 4 3\n",
"4\n2 1 3 2\n",
"6\n3 1 1 4 4 3\n",
"4\n2 1 3 1\n",
"4\n2 1 4 4\n",
"3\n2 1 2\n",
"4\n1 1 1 2\n",
"10\n4 4 4 4 7 4 4 4 4 4\n",
"4\n4 3 4 4\n",
"6\n1 1 1 4 4 2\n",
"6\n1 2 1 3 3 3\n",
"6\n1 1 1 4 3 3\n",
"3\n2 1 3\n",
"10\n6 4 4 4 4 4 2 4 3 4\n",
"6\n2 1 1 3 4 3\n",
"4\n4 1 3 1\n",
"4\n1 1 1 3\n",
"6\n1 2 1 3 2 3\n",
"6\n1 1 1 4 6 3\n",
"5\n5 5 2 4 5\n",
"6\n1 2 1 3 6 3\n",
"6\n1 1 1 4 6 5\n",
"6\n1 4 1 3 6 3\n",
"6\n1 4 1 3 6 2\n",
"5\n1 4 5 5 5\n",
"5\n1 2 5 4 3\n",
"4\n1 3 1 1\n",
"4\n3 4 3 2\n",
"3\n3 2 1\n",
"5\n1 1 5 4 4\n",
"5\n2 5 3 4 4\n",
"6\n1 1 2 2 3 3\n",
"10\n6 4 4 4 4 4 4 4 6 4\n",
"6\n3 1 1 3 4 3\n",
"4\n2 1 1 2\n",
"6\n1 2 2 3 3 3\n",
"6\n1 1 1 4 5 3\n",
"10\n6 4 4 4 4 4 2 4 3 3\n"
],
"output": [
"3\n1 2 3 \n1 2 3 ",
"1\n1 1 1 \n2 ",
"-1",
"2\n1 1 2 \n2 3 ",
"3\n1 2 3 2 3 \n1 4 5 ",
"2\n1 1 2 2 \n2 4 ",
"-1",
"2\n1 2 1 2 \n1 2 ",
"2\n2 1 1 2\n2 4\n",
"5\n1 2 3 4 5 5 \n1 2 3 4 5 ",
"1\n1 \n1 ",
"1\n1 1 1 1 1 1 1 1 1 1 \n4 ",
"3\n3 1 1 2 2 3 3\n3 5 7\n",
"4\n1 2 3 4 3 \n1 2 3 4 ",
"2\n1 2 1 1 \n1 2 ",
"2\n2 1 2 2\n2 4\n",
"2\n1 1 1 2 2 2 \n1 4 ",
"2\n1 2 \n1 2 ",
"2\n1 2 1 2 \n3 4 ",
"2\n1 2 1 \n1 2 ",
"2\n2 1 2\n2 3\n",
"-1",
"3\n1 2 2 3 3 \n1 3 4 ",
"-1",
"1\n1 1 \n2 ",
"2\n1 1 2 2 \n1 3 ",
"2\n1 1 2 1 \n2 3 ",
"2\n2 1 1 1 2\n3 5\n",
"-1\n",
"2\n2 1 2 1\n2 3\n",
"2\n1 1 2\n1 3\n",
"2\n1 1 2 1\n1 3\n",
"4\n1 2 4 3 4 4\n1 2 4 5\n",
"4\n1 2 3 4 4\n1 2 3 4\n",
"2\n2 2 1 1 2\n3 5\n",
"2\n1 2 2\n1 2\n",
"3\n3 3 1 2 3\n3 4 5\n",
"1\n1 1 1 1\n1\n",
"3\n1 2 1 3\n1 2 4\n",
"3\n3 1 2 3\n2 3 4\n",
"4\n1 1 2 3 4 4\n2 3 4 5\n",
"3\n1 2 3 3\n1 2 3\n",
"3\n1 1 2 3\n2 3 4\n",
"3\n2 1 2 3\n2 3 4\n",
"3\n1 1 3 2 3 3\n2 4 5\n",
"2\n1 1 1 1 2 1 2 1 1 1\n4 7\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n",
"-1\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Artsem has a friend Saunders from University of Chicago. Saunders presented him with the following problem.
Let [n] denote the set {1, ..., n}. We will also write f: [x] → [y] when a function f is defined in integer points 1, ..., x, and all its values are integers from 1 to y.
Now then, you are given a function f: [n] → [n]. Your task is to find a positive integer m, and two functions g: [n] → [m], h: [m] → [n], such that g(h(x)) = x for all <image>, and h(g(x)) = f(x) for all <image>, or determine that finding these is impossible.
Input
The first line contains an integer n (1 ≤ n ≤ 105).
The second line contains n space-separated integers — values f(1), ..., f(n) (1 ≤ f(i) ≤ n).
Output
If there is no answer, print one integer -1.
Otherwise, on the first line print the number m (1 ≤ m ≤ 106). On the second line print n numbers g(1), ..., g(n). On the third line print m numbers h(1), ..., h(m).
If there are several correct answers, you may output any of them. It is guaranteed that if a valid answer exists, then there is an answer satisfying the above restrictions.
Examples
Input
3
1 2 3
Output
3
1 2 3
1 2 3
Input
3
2 2 2
Output
1
1 1 1
2
Input
2
2 1
Output
-1
### Input:
3
1 2 3
### Output:
3
1 2 3
1 2 3
### Input:
3
2 2 2
### Output:
1
1 1 1
2
### Code:
n = int(input())
f = list(map(int, input().split()))
h = []
ind_h = [-1] * (n + 1)
g = [0] * n
occs = {}
for i in range(len(f)):
if f[i] not in occs:
occs[f[i]] = {i + 1}
h.append(f[i])
ind_h[f[i]] = len(h) - 1
g[i] = len(h)
else:
g[i] = ind_h[f[i]] + 1
occs[f[i]].add(i + 1)
for k in occs:
if k not in occs[k]:
print(-1)
exit()
print(len(h))
print(*g)
print(*h)
|
789_A. Anastasia and pebbles_1345 | Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park.
She has only two pockets. She can put at most k pebbles in each pocket at the same time. There are n different pebble types in the park, and there are wi pebbles of the i-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day.
Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.
Input
The first line contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket.
The second line contains n integers w1, w2, ..., wn (1 ≤ wi ≤ 104) — number of pebbles of each type.
Output
The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles.
Examples
Input
3 2
2 3 4
Output
3
Input
5 4
3 1 8 9 7
Output
5
Note
In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day.
Optimal sequence of actions in the second sample case:
* In the first day Anastasia collects 8 pebbles of the third type.
* In the second day she collects 8 pebbles of the fourth type.
* In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type.
* In the fourth day she collects 7 pebbles of the fifth type.
* In the fifth day she collects 1 pebble of the second type. | import math
n,k = map(int,input().split())
stones = list(map(int, input().split()))
days = 0
for i in range(n):
days += math.ceil(stones[i]/k)
print(math.ceil(days/2)) | {
"input": [
"5 4\n3 1 8 9 7\n",
"3 2\n2 3 4\n",
"10 1\n1 1 1 1 1 1 1 1 1 1\n",
"3 57\n78 165 54\n",
"1 1\n10000\n",
"2 2\n2 2\n",
"9 13\n132 87 200 62 168 51 185 192 118\n",
"5 72\n74 10 146 189 184\n",
"1 22\n1\n",
"10 1\n1 0 1 1 1 1 1 1 1 1\n",
"3 87\n78 165 54\n",
"9 13\n132 166 200 62 168 51 185 192 118\n",
"5 72\n74 10 227 189 184\n",
"3 29\n78 165 54\n",
"9 13\n132 166 200 62 168 58 185 192 118\n",
"9 13\n132 166 200 62 168 58 106 192 118\n",
"9 13\n12 166 200 62 168 58 107 192 118\n",
"9 13\n12 43 200 62 168 58 107 192 118\n",
"9 13\n12 43 200 62 168 26 107 192 118\n",
"9 13\n12 43 200 62 72 26 107 192 118\n",
"9 18\n12 43 200 65 72 11 107 192 118\n",
"9 20\n12 43 200 65 72 11 121 192 118\n",
"9 20\n12 43 4 65 72 11 121 192 118\n",
"9 6\n12 43 4 65 72 11 121 192 118\n",
"9 6\n12 43 7 65 72 11 121 192 89\n",
"9 6\n12 43 7 65 72 11 53 192 89\n",
"3 57\n74 165 54\n",
"1 1\n10001\n",
"9 13\n132 166 200 62 168 58 299 192 118\n",
"9 13\n132 96 200 62 168 58 106 192 118\n",
"9 13\n186 166 292 62 168 58 107 192 118\n",
"9 13\n12 43 200 62 168 26 67 192 118\n",
"9 13\n12 43 397 62 72 26 107 192 118\n",
"9 14\n12 43 200 62 72 11 107 192 118\n",
"9 18\n12 43 200 65 36 11 121 192 118\n",
"9 6\n12 43 4 65 72 11 121 368 118\n",
"9 6\n12 43 7 84 72 11 121 192 118\n",
"9 13\n132 96 200 62 168 58 106 192 159\n",
"9 13\n186 42 291 62 168 58 106 192 118\n",
"9 13\n12 15 200 62 168 58 107 192 175\n",
"9 18\n12 43 200 65 36 11 121 249 118\n",
"9 6\n12 43 4 104 72 11 121 368 118\n",
"9 13\n12 43 397 62 72 29 78 192 118\n",
"9 13\n12 80 200 130 72 11 107 192 100\n",
"9 18\n12 43 58 65 36 11 121 249 118\n",
"9 6\n12 43 4 104 72 11 230 368 118\n",
"9 14\n11 43 200 65 72 11 187 192 118\n",
"2 2\n2 4\n",
"3 2\n2 3 2\n",
"9 13\n186 166 200 62 168 58 106 192 118\n",
"9 13\n186 166 200 62 168 58 107 192 118\n",
"9 13\n12 43 200 62 72 11 107 192 118\n",
"9 13\n12 43 200 65 72 11 107 192 118\n",
"9 18\n12 43 200 65 72 11 121 192 118\n",
"9 6\n12 43 7 65 72 11 121 192 118\n",
"9 6\n12 43 11 65 72 11 53 192 89\n",
"10 1\n1 1 1 1 1 1 1 1 1 2\n",
"9 13\n132 87 200 62 168 2 185 192 118\n",
"5 72\n74 10 168 189 184\n",
"3 2\n2 4 4\n",
"3 118\n78 165 54\n",
"3 29\n78 156 54\n",
"9 13\n186 42 200 62 168 58 106 192 118\n",
"9 13\n12 166 200 62 168 58 107 61 118\n",
"9 13\n12 15 200 62 168 58 107 192 118\n",
"9 13\n12 43 200 130 72 11 107 192 118\n",
"9 18\n12 43 200 65 72 8 107 192 118\n",
"9 20\n11 43 200 65 72 11 121 192 118\n",
"9 6\n8 43 7 65 72 11 121 192 89\n",
"9 6\n12 43 5 65 72 11 53 192 89\n",
"9 6\n12 67 11 65 72 11 53 192 89\n",
"3 57\n74 165 36\n",
"9 13\n132 7 200 62 168 2 185 192 118\n",
"5 72\n74 10 168 153 184\n",
"3 137\n78 165 54\n",
"3 29\n31 156 54\n",
"9 13\n132 166 200 62 168 58 299 192 32\n",
"9 13\n12 166 200 62 168 58 107 61 202\n",
"9 13\n12 43 200 42 168 26 67 192 118\n",
"9 13\n12 43 397 62 72 29 107 192 118\n",
"9 14\n12 43 200 62 72 3 107 192 118\n",
"9 13\n12 80 200 130 72 11 107 192 118\n",
"9 18\n12 22 200 65 72 8 107 192 118\n",
"9 20\n11 43 200 65 72 11 187 192 118\n",
"9 6\n6 43 7 84 72 11 121 192 118\n",
"9 6\n8 19 7 65 72 11 121 192 89\n",
"9 6\n12 43 5 75 72 11 53 192 89\n",
"9 6\n12 67 11 65 72 4 53 192 89\n",
"9 13\n132 7 200 62 168 1 185 192 118\n",
"5 72\n74 0 168 153 184\n",
"3 137\n78 177 54\n",
"3 29\n5 156 54\n",
"9 13\n132 96 290 62 168 58 106 192 159\n",
"9 13\n186 42 291 62 168 58 106 192 15\n",
"9 13\n12 166 200 62 26 58 107 61 202\n",
"9 13\n12 15 200 62 331 58 107 192 175\n",
"9 13\n12 43 200 42 168 18 67 192 118\n",
"9 14\n12 43 200 62 72 3 107 192 192\n",
"9 18\n12 22 200 62 72 8 107 192 118\n",
"9 9\n11 43 200 65 72 11 187 192 118\n",
"9 6\n3 43 7 84 72 11 121 192 118\n",
"9 6\n8 19 7 126 72 11 121 192 89\n",
"9 6\n12 43 5 75 72 11 53 115 89\n",
"9 6\n12 67 16 65 72 4 53 192 89\n",
"9 13\n132 5 200 62 168 1 185 192 118\n",
"3 137\n78 177 10\n",
"3 29\n9 156 54\n",
"9 13\n132 96 18 62 168 58 106 192 159\n",
"9 13\n186 42 291 62 168 58 144 192 15\n"
],
"output": [
"5\n",
"3\n",
"5\n",
"3\n",
"5000\n",
"1\n",
"48\n",
"6\n",
"1\n",
"5\n",
"2\n",
"51\n",
"7\n",
"6\n",
"52\n",
"49\n",
"44\n",
"39\n",
"38\n",
"34\n",
"25\n",
"23\n",
"19\n",
"55\n",
"53\n",
"47\n",
"3\n",
"5001\n",
"56\n",
"46\n",
"54\n",
"36\n",
"42\n",
"32\n",
"24\n",
"70\n",
"57\n",
"48\n",
"50\n",
"40\n",
"26\n",
"73\n",
"41\n",
"37\n",
"22\n",
"82\n",
"35\n",
"2\n",
"2\n",
"51\n",
"51\n",
"34\n",
"34\n",
"25\n",
"55\n",
"47\n",
"6\n",
"47\n",
"6\n",
"3\n",
"2\n",
"6\n",
"46\n",
"39\n",
"38\n",
"36\n",
"25\n",
"23\n",
"53\n",
"46\n",
"49\n",
"3\n",
"44\n",
"6\n",
"2\n",
"5\n",
"52\n",
"42\n",
"36\n",
"42\n",
"32\n",
"38\n",
"24\n",
"25\n",
"56\n",
"51\n",
"47\n",
"48\n",
"44\n",
"6\n",
"2\n",
"5\n",
"51\n",
"46\n",
"36\n",
"47\n",
"36\n",
"34\n",
"24\n",
"53\n",
"56\n",
"56\n",
"41\n",
"49\n",
"44\n",
"2\n",
"5\n",
"41\n",
"47\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Anastasia loves going for a walk in Central Uzhlyandian Park. But she became uninterested in simple walking, so she began to collect Uzhlyandian pebbles. At first, she decided to collect all the pebbles she could find in the park.
She has only two pockets. She can put at most k pebbles in each pocket at the same time. There are n different pebble types in the park, and there are wi pebbles of the i-th type. Anastasia is very responsible, so she never mixes pebbles of different types in same pocket. However, she can put different kinds of pebbles in different pockets at the same time. Unfortunately, she can't spend all her time collecting pebbles, so she can collect pebbles from the park only once a day.
Help her to find the minimum number of days needed to collect all the pebbles of Uzhlyandian Central Park, taking into consideration that Anastasia can't place pebbles of different types in same pocket.
Input
The first line contains two integers n and k (1 ≤ n ≤ 105, 1 ≤ k ≤ 109) — the number of different pebble types and number of pebbles Anastasia can place in one pocket.
The second line contains n integers w1, w2, ..., wn (1 ≤ wi ≤ 104) — number of pebbles of each type.
Output
The only line of output contains one integer — the minimum number of days Anastasia needs to collect all the pebbles.
Examples
Input
3 2
2 3 4
Output
3
Input
5 4
3 1 8 9 7
Output
5
Note
In the first sample case, Anastasia can collect all pebbles of the first type on the first day, of second type — on the second day, and of third type — on the third day.
Optimal sequence of actions in the second sample case:
* In the first day Anastasia collects 8 pebbles of the third type.
* In the second day she collects 8 pebbles of the fourth type.
* In the third day she collects 3 pebbles of the first type and 1 pebble of the fourth type.
* In the fourth day she collects 7 pebbles of the fifth type.
* In the fifth day she collects 1 pebble of the second type.
### Input:
5 4
3 1 8 9 7
### Output:
5
### Input:
3 2
2 3 4
### Output:
3
### Code:
import math
n,k = map(int,input().split())
stones = list(map(int, input().split()))
days = 0
for i in range(n):
days += math.ceil(stones[i]/k)
print(math.ceil(days/2)) |
80_C. Heroes_1349 | The year of 2012 is coming...
According to an ancient choradrican legend in this very year, in 2012, Diablo and his brothers Mephisto and Baal will escape from hell, and innumerable hordes of demons will enslave the human world. But seven brave heroes have already gathered on the top of a mountain Arreat to protect us mere mortals from the effect of this terrible evil.
The seven great heroes are: amazon Anka, barbarian Chapay, sorceress Cleo, druid Troll, necromancer Dracul, paladin Snowy and a professional hit girl Hexadecimal. Heroes already know how much experience will be given for each of the three megabosses: a for Mephisto, b for Diablo and c for Baal.
Here's the problem: heroes are as much as seven and megabosses are only three! Then our heroes decided to split into three teams, where each team will go to destroy their own megaboss. Each team member will receive a <image> of experience, rounded down, where x will be the amount of experience for the killed megaboss and y — the number of people in the team.
Heroes do not want to hurt each other's feelings, so they want to split into teams so that the difference between the hero who received the maximum number of experience and the hero who received the minimum number of experience were minimal. Since there can be several divisions into teams, then you need to find the one in which the total amount of liking in teams were maximum.
It is known that some heroes like others. But if hero p likes hero q, this does not mean that the hero q likes hero p. No hero likes himself.
The total amount of liking in teams is the amount of ordered pairs (p, q), such that heroes p and q are in the same group, and hero p likes hero q (but it is not important if hero q likes hero p). In case of heroes p and q likes each other and they are in the same group, this pair should be counted twice, as (p, q) and (q, p).
A team can consist even of a single hero, but it is important that every megaboss was destroyed. All heroes must be involved in the campaign against evil. None of the heroes can be in more than one team.
It is guaranteed that every hero is able to destroy any megaboss alone.
Input
The first line contains a single non-negative integer n (0 ≤ n ≤ 42) — amount of liking between the heroes. Next n lines describe liking in the form "p likes q", meaning that the hero p likes the hero q (p ≠ q). Every liking is described in the input exactly once, no hero likes himself.
In the last line are given three integers a, b and c (1 ≤ a, b, c ≤ 2·109), separated by spaces: the experience for Mephisto, the experience for Diablo and experience for Baal.
In all the pretests, except for examples from the statement, the following condition is satisfied: a = b = c.
Output
Print two integers — the minimal difference in the experience between two heroes who will receive the maximum and minimum number of experience points, and the maximal total amount of liking in teams (the number of friendships between heroes that end up in one team).
When calculating the second answer, the team division should satisfy the difference-minimizing contraint. I.e. primary you should minimize the difference in the experience and secondary you should maximize the total amount of liking.
Examples
Input
3
Troll likes Dracul
Dracul likes Anka
Snowy likes Hexadecimal
210 200 180
Output
30 3
Input
2
Anka likes Chapay
Chapay likes Anka
10000 50 50
Output
1950 2
Note
A note to first example: it the first team should be Dracul, Troll and Anka, in the second one Hexadecimal and Snowy, and in the third Cleo и Chapay. | # -*- coding: utf-8 -*-
"""
Created on Fri Nov 1 14:28:37 2019
@author: PC-4
"""
from itertools import combinations, product
Teams = [[1, 1, 5],
[1, 2, 4],
[1, 3, 3],
[2, 2, 3]]
Names = {}
Names["Anka"] = 0
Names["Chapay"] = 1
Names["Cleo"] = 2
Names["Dracul"] = 3
Names["Hexadecimal"] = 4
Names["Snowy"] = 5
Names["Troll"] = 6
graph = [[0] * 7 for _ in range(7)]
N = int(input())
for _ in range(N):
p, q = input().split(" likes ")
p = Names[p]
q = Names[q]
graph[p][q] = 1
a, b, c = sorted(map(int, input().split()))
E_diff_star = float('inf')
team_all = []
for t1, t2, t3 in Teams:
E = [a//t1, b//t2, c//t3]
E_diff = max(E) - min(E)
if E_diff < E_diff_star:
E_diff_star = E_diff
team_all = [[t1, t2, t3]]
elif E_diff == E_diff_star:
team_all.append([t1, t2, t3])
liking = 0
for team in team_all:
for te2 in combinations(set(range(7)), team[2]):
te2 = set(te2)
left = set(range(7)) - te2
L2 = sum(graph[p][q] for p, q in product(te2, te2))
for te1 in combinations(left, team[1]):
te1 = set(te1)
te0 = left - te1
L1 = sum(graph[p][q] for p, q in product(te1, te1))
L0 = sum(graph[p][q] for p, q in product(te0, te0))
L = L2 + L1 + L0
if L > liking:
liking = L
print(E_diff_star, liking)
| {
"input": [
"3\nTroll likes Dracul\nDracul likes Anka\nSnowy likes Hexadecimal\n210 200 180\n",
"2\nAnka likes Chapay\nChapay likes Anka\n10000 50 50\n",
"0\n2000000000 2000000000 1\n",
"22\nCleo likes Snowy\nCleo likes Troll\nChapay likes Dracul\nSnowy likes Troll\nDracul likes Chapay\nDracul likes Snowy\nChapay likes Cleo\nSnowy likes Chapay\nDracul likes Troll\nAnka likes Hexadecimal\nSnowy likes Anka\nHexadecimal likes Cleo\nHexadecimal likes Troll\nDracul likes Anka\nCleo likes Hexadecimal\nHexadecimal likes Dracul\nChapay likes Troll\nChapay likes Hexadecimal\nAnka likes Snowy\nTroll likes Hexadecimal\nSnowy likes Hexadecimal\nAnka likes Chapay\n458053183 602148195 994999698\n",
"5\nTroll likes Chapay\nAnka likes Snowy\nAnka likes Dracul\nChapay likes Anka\nSnowy likes Troll\n709201888 431802832 597079932\n",
"18\nCleo likes Snowy\nSnowy likes Hexadecimal\nCleo likes Hexadecimal\nTroll likes Dracul\nHexadecimal likes Snowy\nDracul likes Troll\nChapay likes Anka\nChapay likes Cleo\nTroll likes Chapay\nHexadecimal likes Chapay\nAnka likes Snowy\nTroll likes Snowy\nDracul likes Snowy\nDracul likes Chapay\nChapay likes Troll\nCleo likes Troll\nHexadecimal likes Cleo\nAnka likes Chapay\n864225278 509037060 402199775\n",
"0\n1 2000000000 2000000000\n",
"12\nAnka likes Dracul\nDracul likes Troll\nCleo likes Troll\nSnowy likes Hexadecimal\nHexadecimal likes Chapay\nCleo likes Dracul\nCleo likes Chapay\nHexadecimal likes Anka\nSnowy likes Cleo\nHexadecimal likes Snowy\nCleo likes Snowy\nChapay likes Snowy\n584329075 428752235 675234087\n",
"12\nCleo likes Hexadecimal\nChapay likes Anka\nHexadecimal likes Cleo\nAnka likes Snowy\nAnka likes Cleo\nDracul likes Snowy\nAnka likes Troll\nSnowy likes Anka\nCleo likes Anka\nHexadecimal likes Troll\nHexadecimal likes Chapay\nSnowy likes Troll\n1000000000 1 2000000000\n",
"0\n100 300 600\n",
"6\nTroll likes Chapay\nHexadecimal likes Snowy\nCleo likes Dracul\nCleo likes Anka\nChapay likes Anka\nAnka likes Chapay\n758376921 432619768 578580897\n",
"11\nSnowy likes Dracul\nAnka likes Dracul\nChapay likes Snowy\nHexadecimal likes Troll\nAnka likes Cleo\nChapay likes Dracul\nAnka likes Chapay\nSnowy likes Troll\nAnka likes Hexadecimal\nCleo likes Chapay\nTroll likes Cleo\n100 100 100\n",
"18\nSnowy likes Troll\nChapay likes Hexadecimal\nCleo likes Snowy\nDracul likes Snowy\nSnowy likes Chapay\nTroll likes Cleo\nSnowy likes Anka\nDracul likes Hexadecimal\nHexadecimal likes Anka\nAnka likes Hexadecimal\nAnka likes Chapay\nTroll likes Anka\nAnka likes Snowy\nAnka likes Troll\nSnowy likes Cleo\nHexadecimal likes Troll\nHexadecimal likes Dracul\nCleo likes Anka\n20000 1000 20000\n",
"0\n1 1 10000\n",
"12\nSnowy likes Chapay\nCleo likes Dracul\nHexadecimal likes Snowy\nHexadecimal likes Anka\nDracul likes Chapay\nCleo likes Troll\nDracul likes Snowy\nSnowy likes Dracul\nTroll likes Chapay\nDracul likes Anka\nChapay likes Hexadecimal\nTroll likes Dracul\n436364663 856574374 347564737\n",
"8\nAnka likes Chapay\nDracul likes Snowy\nSnowy likes Cleo\nCleo likes Anka\nCleo likes Troll\nHexadecimal likes Troll\nTroll likes Cleo\nSnowy likes Dracul\n325432666 254352394 547360304\n",
"17\nHexadecimal likes Chapay\nChapay likes Snowy\nChapay likes Troll\nAnka likes Hexadecimal\nCleo likes Troll\nSnowy likes Cleo\nCleo likes Anka\nCleo likes Hexadecimal\nAnka likes Snowy\nChapay likes Hexadecimal\nAnka likes Cleo\nDracul likes Snowy\nChapay likes Anka\nTroll likes Hexadecimal\nTroll likes Anka\nAnka likes Dracul\nHexadecimal likes Anka\n828886798 548024213 166661324\n",
"8\nSnowy likes Anka\nHexadecimal likes Snowy\nTroll likes Dracul\nHexadecimal likes Troll\nSnowy likes Troll\nAnka likes Snowy\nSnowy likes Chapay\nAnka likes Chapay\n70 70 70\n",
"0\n477107314 230715335 261545417\n",
"3\nChapay likes Hexadecimal\nAnka likes Cleo\nTroll likes Snowy\n15 15000 90\n",
"14\nChapay likes Cleo\nCleo likes Anka\nDracul likes Snowy\nSnowy likes Cleo\nChapay likes Anka\nSnowy likes Anka\nChapay likes Troll\nTroll likes Anka\nAnka likes Snowy\nChapay likes Dracul\nDracul likes Anka\nHexadecimal likes Chapay\nSnowy likes Dracul\nCleo likes Dracul\n15 15 15\n",
"4\nAnka likes Cleo\nSnowy likes Cleo\nAnka likes Hexadecimal\nCleo likes Snowy\n1 1 1\n",
"18\nAnka likes Troll\nDracul likes Chapay\nHexadecimal likes Dracul\nChapay likes Dracul\nAnka likes Hexadecimal\nSnowy likes Cleo\nDracul likes Anka\nSnowy likes Anka\nSnowy likes Hexadecimal\nDracul likes Troll\nDracul likes Snowy\nHexadecimal likes Anka\nChapay likes Hexadecimal\nSnowy likes Dracul\nCleo likes Snowy\nChapay likes Cleo\nAnka likes Dracul\nTroll likes Anka\n838821770 712931449 361810998\n",
"1\nHexadecimal likes Chapay\n848189141 631955593 79523012\n",
"17\nCleo likes Dracul\nTroll likes Cleo\nAnka likes Chapay\nAnka likes Troll\nChapay likes Snowy\nTroll likes Snowy\nChapay likes Dracul\nHexadecimal likes Snowy\nDracul likes Snowy\nTroll likes Hexadecimal\nHexadecimal likes Anka\nCleo likes Snowy\nHexadecimal likes Dracul\nSnowy likes Chapay\nSnowy likes Hexadecimal\nSnowy likes Dracul\nDracul likes Troll\n112909524 619275170 403563648\n",
"0\n1200000000 1200000000 1200000000\n",
"6\nChapay likes Troll\nTroll likes Cleo\nCleo likes Troll\nChapay likes Snowy\nAnka likes Snowy\nTroll likes Dracul\n987499608 272739716 133573597\n",
"12\nCleo likes Hexadecimal\nTroll likes Cleo\nAnka likes Cleo\nHexadecimal likes Troll\nAnka likes Snowy\nHexadecimal likes Anka\nTroll likes Hexadecimal\nTroll likes Anka\nDracul likes Cleo\nCleo likes Troll\nDracul likes Troll\nChapay likes Anka\n762445890 377707484 324080158\n",
"0\n2000000000 2000000000 2000000000\n",
"16\nChapay likes Snowy\nHexadecimal likes Anka\nChapay likes Troll\nDracul likes Cleo\nTroll likes Hexadecimal\nHexadecimal likes Dracul\nChapay likes Cleo\nSnowy likes Cleo\nSnowy likes Anka\nTroll likes Chapay\nSnowy likes Hexadecimal\nTroll likes Snowy\nCleo likes Hexadecimal\nAnka likes Snowy\nSnowy likes Chapay\nAnka likes Dracul\n843382501 58524777 503038818\n",
"5\nChapay likes Cleo\nAnka likes Hexadecimal\nAnka likes Chapay\nCleo likes Troll\nAnka likes Cleo\n299076810 225593528 36830738\n",
"13\nCleo likes Hexadecimal\nCleo likes Snowy\nHexadecimal likes Anka\nAnka likes Snowy\nTroll likes Snowy\nChapay likes Hexadecimal\nHexadecimal likes Snowy\nSnowy likes Chapay\nTroll likes Cleo\nAnka likes Hexadecimal\nHexadecimal likes Cleo\nChapay likes Dracul\nSnowy likes Dracul\n1000000000 2000000000 1000000000\n",
"2\nTroll likes Cleo\nAnka likes Cleo\n14344913 559182022 405430772\n",
"21\nChapay likes Dracul\nSnowy likes Chapay\nSnowy likes Troll\nCleo likes Chapay\nCleo likes Troll\nChapay likes Cleo\nSnowy likes Anka\nDracul likes Anka\nTroll likes Snowy\nSnowy likes Cleo\nChapay likes Hexadecimal\nCleo likes Anka\nCleo likes Snowy\nHexadecimal likes Cleo\nHexadecimal likes Snowy\nHexadecimal likes Anka\nHexadecimal likes Troll\nAnka likes Snowy\nDracul likes Troll\nChapay likes Anka\nSnowy likes Hexadecimal\n482557397 502108264 750230216\n",
"13\nAnka likes Cleo\nCleo likes Troll\nChapay likes Cleo\nSnowy likes Troll\nChapay likes Anka\nChapay likes Snowy\nSnowy likes Chapay\nAnka likes Snowy\nSnowy likes Dracul\nCleo likes Hexadecimal\nDracul likes Chapay\nAnka likes Hexadecimal\nSnowy likes Cleo\n554338888 280967932 682619964\n",
"18\nHexadecimal likes Chapay\nTroll likes Dracul\nTroll likes Snowy\nCleo likes Dracul\nChapay likes Snowy\nDracul likes Chapay\nCleo likes Snowy\nDracul likes Hexadecimal\nTroll likes Anka\nAnka likes Troll\nHexadecimal likes Dracul\nChapay likes Hexadecimal\nCleo likes Chapay\nAnka likes Hexadecimal\nSnowy likes Dracul\nChapay likes Troll\nAnka likes Snowy\nDracul likes Cleo\n240256138 922743697 38909902\n",
"5\nTroll likes Dracul\nAnka likes Chapay\nCleo likes Anka\nChapay likes Cleo\nSnowy likes Hexadecimal\n222 400 400\n",
"2\nSnowy likes Hexadecimal\nTroll likes Dracul\n2000000000 2000000000 2000000000\n",
"6\nAnka likes Troll\nTroll likes Chapay\nTroll likes Hexadecimal\nHexadecimal likes Cleo\nSnowy likes Hexadecimal\nChapay likes Troll\n740076959 230477703 987799796\n",
"0\n2130761060 2000000000 1\n",
"0\n1 1723177055 2000000000\n",
"12\nAnka likes Dracul\nDracul likes Troll\nCleo likes Troll\nSnowy likes Hexadecimal\nHexadecimal likes Chapay\nCleo likes Dracul\nCleo likes Chapay\nHexadecimal likes Anka\nSnowy likes Cleo\nHexadecimal likes Snowy\nCleo likes Snowy\nChapay likes Snowy\n306797119 428752235 675234087\n",
"0\n100 464 600\n",
"0\n2 1 10000\n",
"0\n477107314 230715335 62757606\n",
"1\nHexadecimal likes Chapay\n538942871 631955593 79523012\n",
"0\n358024755 1200000000 1200000000\n",
"5\nTroll likes Dracul\nAnka likes Chapay\nCleo likes Anka\nChapay likes Cleo\nSnowy likes Hexadecimal\n222 400 384\n",
"6\nAnka likes Troll\nTroll likes Chapay\nTroll likes Hexadecimal\nHexadecimal likes Cleo\nSnowy likes Hexadecimal\nChapay likes Troll\n740076959 230477703 62091989\n",
"3\nTroll likes Dracul\nDracul likes Anka\nSnowy likes Hexadecimal\n210 239 180\n",
"0\n861409739 2000000000 1\n",
"0\n101 464 600\n",
"0\n79977540 230715335 62757606\n",
"1\nHexadecimal likes Chapay\n765609202 631955593 79523012\n",
"0\n695643148 1200000000 1200000000\n",
"5\nTroll likes Dracul\nAnka likes Chapay\nCleo likes Anka\nChapay likes Cleo\nSnowy likes Hexadecimal\n222 681 384\n",
"0\n85405675 2000000000 1\n",
"0\n101 216 600\n",
"0\n3 2 10000\n",
"0\n79977540 230715335 48548536\n",
"5\nTroll likes Dracul\nAnka likes Chapay\nCleo likes Anka\nChapay likes Cleo\nSnowy likes Hexadecimal\n36 681 384\n",
"0\n85405675 341784148 1\n",
"0\n101 216 1135\n",
"0\n3 0 10000\n",
"0\n57276566 230715335 48548536\n",
"0\n978089377 1200000000 1477122805\n",
"0\n85405675 341784148 2\n",
"0\n111 216 1135\n",
"0\n57276566 385427574 48548536\n",
"0\n6364059 1200000000 1477122805\n",
"0\n81259431 341784148 2\n",
"0\n111 216 1225\n",
"0\n3 0 10101\n",
"0\n57276566 560045240 48548536\n",
"0\n6364059 1200000000 1080195487\n",
"0\n145670651 341784148 2\n",
"0\n111 408 1225\n",
"0\n3 0 10111\n",
"0\n57276566 1057812068 48548536\n",
"0\n3355765 1200000000 1080195487\n",
"0\n145670651 341784148 1\n",
"0\n011 408 1225\n",
"0\n3553862 1057812068 48548536\n",
"0\n3355765 184319516 1080195487\n",
"0\n145670651 517993429 1\n",
"0\n2 0 10011\n",
"0\n4656129 184319516 1080195487\n",
"0\n145670651 884611066 1\n",
"0\n111 212 2052\n",
"0\n2 0 11011\n",
"0\n3553862 586993679 80775718\n",
"0\n7789613 184319516 1080195487\n",
"0\n236655287 884611066 1\n",
"0\n3 1 10000\n",
"0\n695643148 1200000000 1477122805\n",
"0\n3 0 10001\n",
"0\n2 0 10111\n",
"0\n111 212 1225\n",
"0\n3553862 1057812068 80775718\n"
],
"output": [
"30 3\n",
"1950 2\n",
"666666665 0\n",
"102639975 9\n",
"82638550 3\n",
"86975205 9\n",
"666666665 0\n",
"77788420 6\n",
"499999999 7\n",
"50 0\n",
"72980564 5\n",
"17 5\n",
"5666 8\n",
"1999 0\n",
"111742423 6\n",
"55277237 6\n",
"107350782 9\n",
"12 5\n",
"43678104 0\n",
"2985 2\n",
"2 6\n",
"0 3\n",
"124167182 8\n",
"203206701 1\n",
"88872300 9\n",
"200000000 0\n",
"113301305 5\n",
"92108551 6\n",
"333333334 0\n",
"192994632 8\n",
"62861532 3\n",
"166666666 6\n",
"172049094 2\n",
"9775434 8\n",
"96188303 7\n",
"191776022 10\n",
"89 5\n",
"333333334 2\n",
"98788895 5\n",
"710253685 0\n",
"666666665 0\n",
"71679470 6\n",
"100 0\n",
"1999 0\n",
"56519222 0\n",
"131128852 1\n",
"41975245 0\n",
"81 5\n",
"122927250 4\n",
"26 3\n",
"499999999 0\n",
"99 0\n",
"22768836 0\n",
"175680055 1\n",
"252178426 0\n",
"52 4\n",
"399999999 0\n",
"49 0\n",
"1998 0\n",
"17690063 0\n",
"156 4\n",
"85405674 0\n",
"126 0\n",
"2000 0\n",
"11133499 0\n",
"110955312 0\n",
"85405673 0\n",
"116 0\n",
"28536978 0\n",
"486010209 0\n",
"81259429 0\n",
"134 0\n",
"2020 0\n",
"63460512 0\n",
"393635941 0\n",
"85446035 0\n",
"195 0\n",
"2022 0\n",
"163013877 0\n",
"396644235 0\n",
"85446036 0\n",
"295 0\n",
"208008551 0\n",
"212683332 0\n",
"129498356 0\n",
"2002 0\n",
"211382968 0\n",
"176922212 0\n",
"299 0\n",
"2202 0\n",
"113844873 0\n",
"208249484 0\n",
"221152765 0\n",
"1999 0\n",
"252178426 0\n",
"2000 0\n",
"2022 0\n",
"134 0\n",
"208008551 0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
The year of 2012 is coming...
According to an ancient choradrican legend in this very year, in 2012, Diablo and his brothers Mephisto and Baal will escape from hell, and innumerable hordes of demons will enslave the human world. But seven brave heroes have already gathered on the top of a mountain Arreat to protect us mere mortals from the effect of this terrible evil.
The seven great heroes are: amazon Anka, barbarian Chapay, sorceress Cleo, druid Troll, necromancer Dracul, paladin Snowy and a professional hit girl Hexadecimal. Heroes already know how much experience will be given for each of the three megabosses: a for Mephisto, b for Diablo and c for Baal.
Here's the problem: heroes are as much as seven and megabosses are only three! Then our heroes decided to split into three teams, where each team will go to destroy their own megaboss. Each team member will receive a <image> of experience, rounded down, where x will be the amount of experience for the killed megaboss and y — the number of people in the team.
Heroes do not want to hurt each other's feelings, so they want to split into teams so that the difference between the hero who received the maximum number of experience and the hero who received the minimum number of experience were minimal. Since there can be several divisions into teams, then you need to find the one in which the total amount of liking in teams were maximum.
It is known that some heroes like others. But if hero p likes hero q, this does not mean that the hero q likes hero p. No hero likes himself.
The total amount of liking in teams is the amount of ordered pairs (p, q), such that heroes p and q are in the same group, and hero p likes hero q (but it is not important if hero q likes hero p). In case of heroes p and q likes each other and they are in the same group, this pair should be counted twice, as (p, q) and (q, p).
A team can consist even of a single hero, but it is important that every megaboss was destroyed. All heroes must be involved in the campaign against evil. None of the heroes can be in more than one team.
It is guaranteed that every hero is able to destroy any megaboss alone.
Input
The first line contains a single non-negative integer n (0 ≤ n ≤ 42) — amount of liking between the heroes. Next n lines describe liking in the form "p likes q", meaning that the hero p likes the hero q (p ≠ q). Every liking is described in the input exactly once, no hero likes himself.
In the last line are given three integers a, b and c (1 ≤ a, b, c ≤ 2·109), separated by spaces: the experience for Mephisto, the experience for Diablo and experience for Baal.
In all the pretests, except for examples from the statement, the following condition is satisfied: a = b = c.
Output
Print two integers — the minimal difference in the experience between two heroes who will receive the maximum and minimum number of experience points, and the maximal total amount of liking in teams (the number of friendships between heroes that end up in one team).
When calculating the second answer, the team division should satisfy the difference-minimizing contraint. I.e. primary you should minimize the difference in the experience and secondary you should maximize the total amount of liking.
Examples
Input
3
Troll likes Dracul
Dracul likes Anka
Snowy likes Hexadecimal
210 200 180
Output
30 3
Input
2
Anka likes Chapay
Chapay likes Anka
10000 50 50
Output
1950 2
Note
A note to first example: it the first team should be Dracul, Troll and Anka, in the second one Hexadecimal and Snowy, and in the third Cleo и Chapay.
### Input:
3
Troll likes Dracul
Dracul likes Anka
Snowy likes Hexadecimal
210 200 180
### Output:
30 3
### Input:
2
Anka likes Chapay
Chapay likes Anka
10000 50 50
### Output:
1950 2
### Code:
# -*- coding: utf-8 -*-
"""
Created on Fri Nov 1 14:28:37 2019
@author: PC-4
"""
from itertools import combinations, product
Teams = [[1, 1, 5],
[1, 2, 4],
[1, 3, 3],
[2, 2, 3]]
Names = {}
Names["Anka"] = 0
Names["Chapay"] = 1
Names["Cleo"] = 2
Names["Dracul"] = 3
Names["Hexadecimal"] = 4
Names["Snowy"] = 5
Names["Troll"] = 6
graph = [[0] * 7 for _ in range(7)]
N = int(input())
for _ in range(N):
p, q = input().split(" likes ")
p = Names[p]
q = Names[q]
graph[p][q] = 1
a, b, c = sorted(map(int, input().split()))
E_diff_star = float('inf')
team_all = []
for t1, t2, t3 in Teams:
E = [a//t1, b//t2, c//t3]
E_diff = max(E) - min(E)
if E_diff < E_diff_star:
E_diff_star = E_diff
team_all = [[t1, t2, t3]]
elif E_diff == E_diff_star:
team_all.append([t1, t2, t3])
liking = 0
for team in team_all:
for te2 in combinations(set(range(7)), team[2]):
te2 = set(te2)
left = set(range(7)) - te2
L2 = sum(graph[p][q] for p, q in product(te2, te2))
for te1 in combinations(left, team[1]):
te1 = set(te1)
te0 = left - te1
L1 = sum(graph[p][q] for p, q in product(te1, te1))
L0 = sum(graph[p][q] for p, q in product(te0, te0))
L = L2 + L1 + L0
if L > liking:
liking = L
print(E_diff_star, liking)
|
835_A. Key races_1353 | Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of s characters. The first participant types one character in v1 milliseconds and has ping t1 milliseconds. The second participant types one character in v2 milliseconds and has ping t2 milliseconds.
If connection ping (delay) is t milliseconds, the competition passes for a participant as follows:
1. Exactly after t milliseconds after the start of the competition the participant receives the text to be entered.
2. Right after that he starts to type it.
3. Exactly t milliseconds after he ends typing all the text, the site receives information about it.
The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw.
Given the length of the text and the information about participants, determine the result of the game.
Input
The first line contains five integers s, v1, v2, t1, t2 (1 ≤ s, v1, v2, t1, t2 ≤ 1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
Output
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
Examples
Input
5 1 2 1 2
Output
First
Input
3 3 1 1 1
Output
Second
Input
4 5 3 1 5
Output
Friendship
Note
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins.
In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins.
In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw. | s, v1, v2, t1, t2 = list(map(int, input().split()))
a = 2*t1 + s*v1
b = 2*t2 + s*v2
if a > b:
print("Second")
elif a < b:
print("First")
else:
print("Friendship")
| {
"input": [
"4 5 3 1 5\n",
"5 1 2 1 2\n",
"3 3 1 1 1\n",
"2 313 856 964 421\n",
"61 464 623 89 548\n",
"37 261 207 1 1000\n",
"4 202 512 995 375\n",
"3 3 1 6 9\n",
"213 480 811 134 745\n",
"1 10 2 6 10\n",
"6 5 7 10 4\n",
"2 7 6 2 3\n",
"29 344 406 900 1\n",
"1 2 8 8 5\n",
"1 1 1 1 1\n",
"424 41 41 909 909\n",
"641 31 29 161 802\n",
"12 462 8 311 327\n",
"15 14 32 65 28\n",
"1 2 8 9 8\n",
"9 5 7 8 7\n",
"637 324 69 612 998\n",
"884 913 263 641 265\n",
"2 9 8 8 9\n",
"13 849 819 723 918\n",
"894 197 325 232 902\n",
"485 117 368 567 609\n",
"69 1 2 1 2\n",
"436 306 266 493 580\n",
"8 8 1 1 1\n",
"2 3 9 8 2\n",
"1000 1000 1000 1000 1000\n",
"3 313 856 964 421\n",
"3 3 1 11 9\n",
"2 2 9 8 1\n",
"61 538 623 89 548\n",
"7 202 512 995 375\n",
"213 480 811 69 745\n",
"1 10 2 4 10\n",
"6 10 7 10 4\n",
"2 7 9 2 3\n",
"39 344 406 900 1\n",
"424 41 41 740 909\n",
"641 28 29 161 802\n",
"12 462 8 130 327\n",
"8 14 32 65 28\n",
"2 5 7 8 7\n",
"637 324 69 612 540\n",
"884 913 263 641 150\n",
"2 9 8 8 10\n",
"13 849 819 475 918\n",
"894 197 197 232 902\n",
"485 228 368 567 609\n",
"131 1 2 1 2\n",
"436 306 266 59 580\n",
"8 9 1 1 1\n",
"2 3 14 8 2\n",
"4 9 3 1 5\n",
"3 3 1 2 1\n",
"73 538 623 89 548\n",
"7 237 512 995 375\n",
"6 3 1 11 9\n",
"213 480 811 33 745\n",
"1 10 2 1 10\n",
"6 10 7 5 4\n",
"2 9 9 2 3\n",
"39 333 406 900 1\n",
"641 28 35 161 802\n",
"12 166 8 130 327\n",
"10 14 32 65 28\n",
"637 324 69 612 177\n",
"884 913 263 266 150\n",
"2 9 8 8 7\n",
"13 849 744 475 918\n",
"894 141 197 232 902\n",
"131 1 2 1 4\n",
"436 306 337 59 580\n",
"8 9 1 1 2\n",
"2 2 9 8 2\n",
"4 8 3 1 5\n",
"3 3 1 3 1\n",
"73 538 623 89 474\n",
"7 237 22 995 375\n",
"6 3 1 1 9\n",
"213 562 811 33 745\n",
"1 10 2 1 18\n",
"6 7 7 5 4\n",
"2 13 9 2 3\n",
"39 640 406 900 1\n",
"641 28 35 240 802\n",
"12 166 8 130 523\n",
"10 14 47 65 28\n",
"637 442 69 612 177\n",
"884 913 263 96 150\n",
"13 849 744 475 316\n",
"859 306 337 59 580\n",
"8 9 2 1 2\n",
"4 15 3 1 5\n",
"3 3 1 3 2\n",
"73 538 675 89 474\n",
"7 237 22 995 530\n",
"3 3 1 1 9\n",
"213 763 811 33 745\n",
"6 7 7 5 2\n",
"2 13 9 1 3\n",
"39 640 406 900 2\n",
"641 38 35 240 802\n",
"23 166 8 130 523\n",
"10 4 47 65 28\n",
"637 349 69 612 177\n",
"884 913 263 96 222\n",
"859 306 337 59 344\n",
"8 9 2 2 2\n",
"2 2 9 11 1\n",
"4 15 5 1 5\n",
"73 538 675 89 583\n",
"7 237 22 995 732\n",
"3 3 1 2 9\n",
"200 763 811 33 745\n",
"4 7 7 5 2\n",
"2 13 16 1 3\n",
"641 38 35 240 265\n",
"31 166 8 130 523\n",
"10 4 47 9 28\n",
"637 240 69 612 177\n",
"884 913 263 171 222\n",
"859 163 337 59 344\n",
"16 9 2 2 2\n",
"7 15 5 1 5\n"
],
"output": [
"Friendship\n",
"First\n",
"Second\n",
"Friendship\n",
"First\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"First\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"Friendship\n",
"Second\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"Second\n",
"Friendship\n",
"Friendship\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"Second\n",
"Friendship\n",
"Friendship\n",
"First\n",
"Second\n",
"Friendship\n",
"First\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"First\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"Second\n",
"Second\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"First\n",
"Second\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"Second\n",
"Second\n",
"Second\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"First\n",
"First\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"Second\n",
"First\n",
"Second\n",
"Second\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Two boys decided to compete in text typing on the site "Key races". During the competition, they have to type a text consisting of s characters. The first participant types one character in v1 milliseconds and has ping t1 milliseconds. The second participant types one character in v2 milliseconds and has ping t2 milliseconds.
If connection ping (delay) is t milliseconds, the competition passes for a participant as follows:
1. Exactly after t milliseconds after the start of the competition the participant receives the text to be entered.
2. Right after that he starts to type it.
3. Exactly t milliseconds after he ends typing all the text, the site receives information about it.
The winner is the participant whose information on the success comes earlier. If the information comes from both participants at the same time, it is considered that there is a draw.
Given the length of the text and the information about participants, determine the result of the game.
Input
The first line contains five integers s, v1, v2, t1, t2 (1 ≤ s, v1, v2, t1, t2 ≤ 1000) — the number of characters in the text, the time of typing one character for the first participant, the time of typing one character for the the second participant, the ping of the first participant and the ping of the second participant.
Output
If the first participant wins, print "First". If the second participant wins, print "Second". In case of a draw print "Friendship".
Examples
Input
5 1 2 1 2
Output
First
Input
3 3 1 1 1
Output
Second
Input
4 5 3 1 5
Output
Friendship
Note
In the first example, information on the success of the first participant comes in 7 milliseconds, of the second participant — in 14 milliseconds. So, the first wins.
In the second example, information on the success of the first participant comes in 11 milliseconds, of the second participant — in 5 milliseconds. So, the second wins.
In the third example, information on the success of the first participant comes in 22 milliseconds, of the second participant — in 22 milliseconds. So, it is be a draw.
### Input:
4 5 3 1 5
### Output:
Friendship
### Input:
5 1 2 1 2
### Output:
First
### Code:
s, v1, v2, t1, t2 = list(map(int, input().split()))
a = 2*t1 + s*v1
b = 2*t2 + s*v2
if a > b:
print("Second")
elif a < b:
print("First")
else:
print("Friendship")
|
87_B. Vasya and Types_1359 | Programmer Vasya is studying a new programming language &K*. The &K* language resembles the languages of the C family in its syntax. However, it is more powerful, which is why the rules of the actual C-like languages are unapplicable to it. To fully understand the statement, please read the language's description below carefully and follow it and not the similar rules in real programming languages.
There is a very powerful system of pointers on &K* — you can add an asterisk to the right of the existing type X — that will result in new type X * . That is called pointer-definition operation. Also, there is the operation that does the opposite — to any type of X, which is a pointer, you can add an ampersand — that will result in a type &X, to which refers X. That is called a dereference operation.
The &K* language has only two basic data types — void and errtype. Also, the language has operators typedef and typeof.
* The operator "typedef A B" defines a new data type B, which is equivalent to A. A can have asterisks and ampersands, and B cannot have them. For example, the operator typedef void** ptptvoid will create a new type ptptvoid, that can be used as void**.
* The operator "typeof A" returns type of A, brought to void, that is, returns the type void**...*, equivalent to it with the necessary number of asterisks (the number can possibly be zero). That is, having defined the ptptvoid type, as shown above, the typeof ptptvoid operator will return void**.
An attempt of dereferencing of the void type will lead to an error: to a special data type errtype. For errtype the following equation holds true: errtype* = &errtype = errtype. An attempt to use the data type that hasn't been defined before that will also lead to the errtype.
Using typedef, we can define one type several times. Of all the definitions only the last one is valid. However, all the types that have been defined earlier using this type do not change.
Let us also note that the dereference operation has the lower priority that the pointer operation, in other words &T * is always equal to T.
Note, that the operators are executed consecutively one by one. If we have two operators "typedef &void a" and "typedef a* b", then at first a becomes errtype, and after that b becomes errtype* = errtype, but not &void* = void (see sample 2).
Vasya does not yet fully understand this powerful technology, that's why he asked you to help him. Write a program that analyzes these operators.
Input
The first line contains an integer n (1 ≤ n ≤ 100) — the number of operators. Then follow n lines with operators. Each operator is of one of two types: either "typedef A B", or "typeof A". In the first case the B type differs from void and errtype types, and besides, doesn't have any asterisks and ampersands.
All the data type names are non-empty lines of no more than 20 lowercase Latin letters. The number of asterisks and ampersands separately in one type in any operator does not exceed 10, however if we bring some types to void with several asterisks, their number may exceed 10.
Output
For every typeof operator print on the single line the answer to that operator — the type that the given operator returned.
Examples
Input
5
typedef void* ptv
typeof ptv
typedef &&ptv node
typeof node
typeof &ptv
Output
void*
errtype
void
Input
17
typedef void* b
typedef b* c
typeof b
typeof c
typedef &b b
typeof b
typeof c
typedef &&b* c
typeof c
typedef &b* c
typeof c
typedef &void b
typeof b
typedef b******* c
typeof c
typedef &&b* c
typeof c
Output
void*
void**
void
void**
errtype
void
errtype
errtype
errtype
Note
Let's look at the second sample.
After the first two queries typedef the b type is equivalent to void*, and с — to void**.
The next query typedef redefines b — it is now equal to &b = &void* = void. At that, the с type doesn't change.
After that the с type is defined as &&b* = &&void* = &void = errtype. It doesn't influence the b type, that's why the next typedef defines c as &void* = void.
Then the b type is again redefined as &void = errtype.
Please note that the c type in the next query is defined exactly as errtype******* = errtype, and not &void******* = void******. The same happens in the last typedef. | types = {'void':'void', 'errtype':'errtype'}
def getRealType(type_expr):
expr_type = type_expr.strip('&*')
full_type_name = type_expr.replace(expr_type, types.get(expr_type, "errtype"))
base_type = full_type_name.strip('&*')
if base_type == "void":
addr_count = full_type_name.count('*')
deref_count = full_type_name.count('&')
if deref_count > addr_count:
return "errtype"
return base_type + "*" * (addr_count - deref_count)
else:
return "errtype"
def setTypeAlias(type_expr, alias_name):
types[alias_name] = getRealType(type_expr)
n = int(input())
for _ in range(n):
operator = input().split()
command = operator[0]
if command == "typedef":
setTypeAlias(operator[1], operator[2])
else:
print(getRealType(operator[1]))
# Made By Mostafa_Khaled | {
"input": [
"17\ntypedef void* b\ntypedef b* c\ntypeof b\ntypeof c\ntypedef &b b\ntypeof b\ntypeof c\ntypedef &&b* c\ntypeof c\ntypedef &b* c\ntypeof c\ntypedef &void b\ntypeof b\ntypedef b******* c\ntypeof c\ntypedef &&b* c\ntypeof c\n",
"5\ntypedef void* ptv\ntypeof ptv\ntypedef &&ptv node\ntypeof node\ntypeof &ptv\n",
"10\ntypedef errtype** ucywcaykzh\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcaykzh\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewklwhiukrz\ntypeof &&vfqmtssewklwhiukrz********\ntypedef &errtype********** xvhxopvh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"2\ntypedef void errtypea\ntypeof errtypea\n",
"15\ntypedef &void pt\ntypeof pt\ntypeof pt*\ntypedef pt**** err\ntypeof err\ntypeof &err\ntypeof err*\ntypedef &void*** pt\ntypeof err\ntypeof &err\ntypeof err*\ntypeof pt\ntypeof pt*\ntypeof &&pt*\ntypeof &&&pt\n",
"10\ntypedef &void**** youdyfpinzk\ntypeof &youdyfpinzk***\ntypedef &&&&youdyfpinzk****** nfbsgpjzhxzskmxc\ntypeof nfbsgpjzhxzskmxc***\ntypedef &&&void*** puerqioirikxej\ntypeof &puerqioirikxej********\ntypedef &puerqioirikxej******** xzgzsamjdufuyxz\ntypeof &xzgzsamjdufuyxz******\ntypedef &&&&xzgzsamjdufuyxz******* hbyqffrbitdgott\ntypeof hbyqffrbitdgott*****\n",
"10\ntypeof void\ntypedef void voiddd\ntypeof &&&&&voiddd*********\ntypeof &&&&&voidddd*********\ntypedef aaaa bbbb\ntypeof bbbb\ntypeof aaaa\ntypedef void** aaaa\ntypeof aaaa\ntypeof bbbb\n",
"10\ntypedef void**** iizqen\ntypeof iizqen****\ntypedef &void**** gdq\ntypeof &&gdq*********\ntypedef &&errtype******** lhndwyohjckrcew\ntypeof &lhndwyohjckrcew*\ntypedef &&&&void********** ccuoxbgeui\ntypeof ccuoxbgeui\ntypedef &&&&gdq******** gdq\ntypeof gdq******\n",
"5\ntypedef void* ptv\ntypeof ptv\ntypedef &&ptv node\ntypeof node\ntypeof &ptv\n",
"10\ntypedef &errtype********* xekls\ntypeof &xekls*\ntypedef xekls*** xekls\ntypeof &xekls********\ntypedef &void*** xekls\ntypeof &xekls\ntypedef &errtype******* dwkmly\ntypeof &&dwkmly******\ntypedef void******* zkpahsnsumbnnzi\ntypeof zkpahsnsumbnnzi*\n",
"17\ntypedef void* b\ntypedef b* c\ntypeof b\ntypeof c\ntypedef &b b\ntypeof b\ntypeof c\ntypedef &&b* c\ntypeof c\ntypedef &b* c\ntypeof c\ntypedef &void b\ntypeof b\ntypedef b******* c\ntypeof c\ntypedef &&b* c\ntypeof c\n",
"10\ntypedef &&&&void******* xqldryeid\ntypeof &xqldryeid*\ntypedef &void****** frgqt\ntypeof &&frgqt*********\ntypedef &void******* xqldryeid\ntypeof xqldryeid*\ntypedef errtype* xqldryeid\ntypeof &xqldryeid****\ntypedef &&&&&xqldryeid***** cuyhdvkkfyjzjmdkgcf\ntypeof cuyhdvkkfyjzjmdkgcf********\n",
"10\ntypedef &errtype*** oomxdcottaxn\ntypeof &oomxdcottaxn*********\ntypedef oomxdcottaxn**** bqbigpn\ntypeof &&bqbigpn**********\ntypedef &&&void******** ilrltx\ntypeof &&ilrltx**********\ntypedef void*** yo\ntypeof yo**********\ntypedef oomxdcottaxn*** bqbigpn\ntypeof &bqbigpn****\n",
"10\ntypedef yo******* qxqkvdlvbymjvfsr\ntypeof &&&qxqkvdlvbymjvfsr****\ntypedef qxqkvdlvbymjvfsr* tezeyz\ntypeof tezeyz**********\ntypedef &qxqkvdlvbymjvfsr********** anho\ntypeof &&&anho********\ntypedef &tezeyz* oxdbjclieutuocavuq\ntypeof oxdbjclieutuocavuq***\ntypedef void* yo\ntypeof yo***\n",
"10\ntypedef &&&&&void* mbmrmohbydctgukqbueu\ntypeof &mbmrmohbydctgukqbueu*******\ntypedef &&mbmrmohbydctgukqbueu******* xollxoxrhif\ntypeof xollxoxrhif********\ntypedef &&&&void** zijybfnyxmodoahvvikd\ntypeof zijybfnyxmodoahvvikd****\ntypedef &void**** to\ntypeof &to*******\ntypedef &void******* yhhoqgpnysxvft\ntypeof &&&yhhoqgpnysxvft*******\n",
"10\ntypedef &ymeyyknmj****** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbitdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqioirikxej*****\n",
"1\ntypeof a\n",
"4\ntypedef void voida\ntypedef voida* voidb\ntypedef voidb* voidc\ntypeof voidc\n",
"10\ntypedef errtype** ucywcaykzh\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcayhzk\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewklwhiukrz\ntypeof &&vfqmtssewklwhiukrz********\ntypedef &errtype********** xvhxopvh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"15\ntypedef &void pt\ntypeof pt\ntypeof pt*\ntypedef pt**** err\ntypeof err\ntypeof &err\ntypeof err*\ntypedef &void*** pt\ntypeof err\ntypeof &err\ntypeof err*\ntypeof tp\ntypeof pt*\ntypeof &&pt*\ntypeof &&&pt\n",
"10\ntypedef &void**** youdyfpinzk\ntypeof &youdyfpinzk***\ntypedef &&&&youdyfpinzk****** nfbsgpjzhxzskmxc\ntypeof nfbsgpjzhxzskmxc***\ntypedef &&&void*** puerqioirikxej\ntypeof &puerqioisikxej********\ntypedef &puerqioirikxej******** xzgzsamjdufuyxz\ntypeof &xzgzsamjdufuyxz******\ntypedef &&&&xzgzsamjdufuyxz******* hbyqffrbitdgott\ntypeof hbyqffrbitdgott*****\n",
"10\ntypeof void\ntypedef void voiddd\ntypeof &&&&&voiddd*********\ntypeof &&&&&voidddd*********\ntypedef aaaa bbba\ntypeof bbbb\ntypeof aaaa\ntypedef void** aaaa\ntypeof aaaa\ntypeof bbbb\n",
"10\ntypedef &errtype*** oomxdcottaxn\ntypeof &oomxdcottaxn*********\ntypedef oomxdcottaxn**** bqbigpn\ntypeof &&bqbigpn**********\ntypedef &&&void******** ilrltx\ntypeof &&ilrltx**********\ntypedef void*** oy\ntypeof yo**********\ntypedef oomxdcottaxn*** bqbigpn\ntypeof &bqbigpn****\n",
"10\ntypedef &ymeyyknmj****** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbitdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqiohrikxej*****\n",
"10\ntypedef errtype** ucywcaykzh\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcaykzh\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewkmwhiukrz\ntypeof &&vfqmtssewklwhiukrz********\ntypedef &errtype********** xvhxopvh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"2\ntypedef void eretypra\ntypeof errtypea\n",
"10\ntypedef void**** iizqen\ntypeof iiyqen****\ntypedef &void**** gdq\ntypeof &&gdq*********\ntypedef &&errtype******** lhndwyohjckrcew\ntypeof &lhndwyohjckrcew*\ntypedef &&&&void********** ccuoxbgeui\ntypeof ccuoxbgeui\ntypedef &&&&gdq******** gdq\ntypeof gdq******\n",
"10\ntypedef &errtype********* xekls\ntypeof &xekls*\ntypedef xekls*** xekls\ntypeof &xekls********\ntypedef &void*** xekls\ntypeof &xekls\ntypedef &errtype******* dwkmly\ntypeof &&dwkmly******\ntypedef void******* zkpahsnsulbnnzi\ntypeof zkpahsnsumbnnzi*\n",
"17\ntypedef void* b\ntypedef b* d\ntypeof b\ntypeof c\ntypedef &b b\ntypeof b\ntypeof c\ntypedef &&b* c\ntypeof c\ntypedef &b* c\ntypeof c\ntypedef &void b\ntypeof b\ntypedef b******* c\ntypeof c\ntypedef &&b* c\ntypeof c\n",
"10\ntypedef &&&&void******* xqldryeid\ntypeof &xqldryeid*\ntypedef &void****** frgqt\ntypeof &&frgqt*********\ntypedef &void******* xqldryeid\ntypeof xqldrydid*\ntypedef errtype* xqldryeid\ntypeof &xqldryeid****\ntypedef &&&&&xqldryeid***** cuyhdvkkfyjzjmdkgcf\ntypeof cuyhdvkkfyjzjmdkgcf********\n",
"10\ntypedef &errtype*** oomxdcottaxn\ntypeof &oomxdcottaxn****)****\ntypedef oomxdcottaxn**** bqbigpn\ntypeof &&bqbigpn**********\ntypedef &&&void******** ilrltx\ntypeof &&ilrltx**********\ntypedef void*** yo\ntypeof yo**********\ntypedef oomxdcottaxn*** bqbigpn\ntypeof &bqbigpn****\n",
"10\ntypedef &&&&&void* mbmrmohbydctgukqbueu\ntypeof &mbmrmohbydctgukqbueu*******\ntypedef &&mbmrmohbydctgukqbueu******* xollxoxrhif\ntypeof xollxoxrhif********\ntypedef &&&&void** zijybfnyxmodoahvvikd\ntypeof zijybfnyxmodoahvvikd****\ntypedef &void**** to\ntypeof &to*******\ntypedef &void******* yhhoqgpnysxvft\ntypeof &&&yhhoqgpnys*vft******x\n",
"17\ntypedef void* b\ntypedef b* c\ntypeof b\ntypeof d\ntypedef &b b\ntypeof b\ntypeof c\ntypedef &&b* c\ntypeof c\ntypedef &b* c\ntypeof c\ntypedef &void b\ntypeof b\ntypedef b******* c\ntypeof c\ntypedef &&b* c\ntypeof c\n",
"5\ntypedef void* ptv\ntypeof ptv\ntypedef &&psv node\ntypeof node\ntypeof &ptv\n",
"10\ntypedef &ymeyyknmj*)**** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbisdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpjnzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqioirikxej*****\n",
"5\ntypedef void* ptv\ntypeof qtv\ntypedef &&ptv node\ntypeof node\ntypeof &ptv\n",
"10\ntypedef &errtype********* xekls\ntypeof &xekls*\ntypedef xekls*)* xekls\ntypeof &xekls********\ntypedef &void*** xekls\ntypeof &xekls\ntypedef &errtype******* dwkmly\ntypeof &&dwkmly******\ntypedef void******* zkpahsnsumbnnzi\ntypeof zkpahsnsumbnnzi*\n",
"17\ntypedef void* b\ntypedef b* c\ntypeof a\ntypeof c\ntypedef &b b\ntypeof b\ntypeof c\ntypedef &&b* c\ntypeof c\ntypedef &b* c\ntypeof c\ntypedef &void b\ntypeof b\ntypedef b******* c\ntypeof c\ntypedef &&b* c\ntypeof c\n",
"10\ntypedef &&&&voie******* xqldryeid\ntypeof &xqldryeid*\ntypedef &void****** frgqt\ntypeof &&frgqt*********\ntypedef &void******* xqldryeid\ntypeof xqldryeid*\ntypedef errtype* xqldryeid\ntypeof &xqldryeid****\ntypedef &&&&&xqldryeid***** cuyhdvkkfyjzjmdkgcf\ntypeof cuyhdvkkfyjzjmdkgcf********\n",
"10\ntypedef yo******* qxqkvdlvbymjvfsr\ntypeof &&&qxqkvdlvbymjvfsr****\ntypedef qxqkvdlvbymjvfsr* tezeyz\ntypeof tezeyz**********\ntypedef &qxqkvdlvbymivfsr********** anho\ntypeof &&&anho********\ntypedef &tezeyz* oxdbjclieutuocavuq\ntypeof oxdbjclieutuocavuq***\ntypedef void* yo\ntypeof yo***\n",
"10\ntypeof diov\ntypedef void voiddd\ntypeof &&&&&voiddd*********\ntypeof &&&&&voiddcd*********\ntypedef aaaa bbbb\ntypeof bbbb\ntypeof aaaa\ntypedef void** aaaa\ntypeof aaaa\ntypeof bbbb\n",
"10\ntypedef &errtype*** oomxdcottaxn\ntypeof &oomxdcottaxn*********\ntypedef oomxdcottaxn**** bqbigpn\ntypeof &&bqbigpn**********\ntypedef &&&void******** ilrltx\ntypeof &&ilrltx**********\ntypedef void*** oy\ntypeof yo**********\ntypedef oomxdcottaxn*** bbqigpn\ntypeof &bqbigpn****\n",
"10\ntypedef &ymeyyknmj****** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbitdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqiohrikxej***+*\n",
"10\ntypeof void\ntypedef void voiddd\ntypeof &&&&&voiddd*********\ntypeof &&&&&voiddcd*********\ntypedef aaaa bbbb\ntypeof bbbb\ntypeof aaaa\ntypedef void** aaaa\ntypeof aaaa\ntypeof bbbb\n",
"10\ntypedef &ymeyyknmj*)**** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbitdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqioirikxej*****\n",
"4\ntypedef void voida\ntypedef voida* voidb\ntypedef voidb* voidc\ntypeof voicc\n",
"10\ntypedef errtype** ucywcaykzh\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcayhzk\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewklwhiukrz\ntypeof &&vfqmtssewklwhiukrz)*******\ntypedef &errtype********** xvhxopvh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"15\ntypedef &void pt\ntypeof pt\ntypeof pt*\ntypedef pt**** err\ntypeof err\ntypeof &eqr\ntypeof err*\ntypedef &void*** pt\ntypeof err\ntypeof &err\ntypeof err*\ntypeof tp\ntypeof pt*\ntypeof &&pt*\ntypeof &&&pt\n",
"10\ntypedef &ymeyyknmj****** yyeymknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbitdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqiohrikxej***+*\n",
"2\ntypedef void eretyprb\ntypeof errtypea\n",
"10\ntypedef &ymeyyknmj*)**** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbisdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqioirikxej*****\n",
"10\ntypedef errtype** ucywcaykzh\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcayhzk\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewklwhiukrz\ntypeof &&vfqmtssewklwhiukrz)*******\ntypedef &errtype********** xvhxoovh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"10\ntypedef &ymeyyknmj****** yyeymknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbitdgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqiohrhkxej***+*\n",
"2\ntypedef diov eretyprb\ntypeof errtypea\n",
"2\ntypedef diov eretzprb\ntypeof errtypea\n",
"2\ntypedef diov eretzprb\ntypeof errtype`\n",
"2\ntypedef diov brpztere\ntypeof errtypea\n",
"2\ntypedef diov brpztere\ntypeof eqrtypea\n",
"2\ntypedef oidv brpztere\ntypeof eqrtypea\n",
"2\ntypedef diov errtypea\ntypeof errtypea\n",
"10\ntypedef errtype** ucywcaykzh\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcayhzk\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewklwhiukrz\ntypeof &&vfqmtssewklwhiukrz********\ntypedef &errsype********** xvhxopvh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"15\ntypedef &void pt\ntypeof pt\ntypeof pt*\ntypedef pt**** rre\ntypeof err\ntypeof &err\ntypeof err*\ntypedef &void*** pt\ntypeof err\ntypeof &err\ntypeof err*\ntypeof tp\ntypeof pt*\ntypeof &&pt*\ntypeof &&&pt\n",
"10\ntypedef &errtype*** oomxdcottaxn\ntypeof &oomxecottaxn*********\ntypedef oomxdcottaxn**** bqbigpn\ntypeof &&bqbigpn**********\ntypedef &&&void******** ilrltx\ntypeof &&ilrltx**********\ntypedef void*** oy\ntypeof yo**********\ntypedef oomxdcottaxn*** bbqigpn\ntypeof &bqbigpn****\n",
"10\ntypedef &ymeyyknmj****** ymeyyknmj\ntypeof &&&&ymeyyknmj*******\ntypedef &&&&errtype***** hbyqffrbitdgott\ntypeof &hbyqffrbitdgott**********\ntypedef &&&m** hbyqffrbitdgott\ntypeof &&hbyqffrbiudgott\ntypedef &&&void*** youdyfpinzk\ntypeof &&youdyfpinzk*********\ntypedef &&&&&xzgzsamjdufuyxz********* puerqioirikxej\ntypeof &&puerqiohrikxej***+*\n",
"10\ntypedef errtype** uzywcaykch\ntypeof &ucywcaykzh*********\ntypedef &&&&&&void********* ucywcaykzh\ntypeof &&&ucywcaykzh******\ntypedef &errtype vfqmtssewkmwhiukrz\ntypeof &&vfqmtssewklwhiukrz********\ntypedef &errtype********** xvhxopvh\ntypeof &xvhxopvh\ntypedef &void****** kieypzcclmsvce\ntypeof &&&&&kieypzcclmsvce**\n",
"2\ntypedef void eretypar\ntypeof errtypea\n",
"10\ntypedef &errtype********* xekls\ntypeof &xekls*\ntypedef xekls*** xekls\ntypeof &xekls********\ntypedef &void*** xekls\ntypeof &xekls\ntypedef &errtype******* dwkmly\ntypeof &&dwkmky******\ntypedef void******* zkpahsnsulbnnzi\ntypeof zkpahsnsumbnnzi*\n",
"10\ntypedef &&&&void******* xqldryeid\ntypeof &xqldryeid*\ntypedef &void****** frgqt\ntypeof &&frgqt*********\ntypedef &void******* xqldryeid\ntypeof xqldrydid*\ntypedef errtype* xqldryeid\ntypeof &xqldryeid****\ntypedef &&&&&xqldryeid***** cuyhdvkkfyjzjmdkgcf\ntypeof cuyhdwkkfyjzjmdkgcf********\n"
],
"output": [
"void*\nvoid**\nerrtype\nvoid**\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\n",
"void*\nerrtype\nerrtype\n",
"errtype\nvoid******\nerrtype\nerrtype\nvoid**\n",
"void\n",
"errtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nvoid**\nvoid***\nvoid*\nerrtype\n",
"void*****\nvoid********\nvoid*******\nvoid************\nvoid***************\n",
"void\nvoid****\nerrtype\nerrtype\nerrtype\nvoid**\nerrtype\n",
"void********\nvoid**********\nerrtype\nvoid******\nvoid*************\n",
"void*\nerrtype\nvoid\n",
"errtype\nerrtype\nvoid*\nerrtype\nvoid********\n",
"void*\nvoid**\nvoid\nvoid**\nerrtype\nvoid\nerrtype\nerrtype\nerrtype\n",
"void***\nvoid************\nvoid*******\nerrtype\nerrtype\n",
"errtype\nerrtype\nvoid*************\nvoid*************\nerrtype\n",
"errtype\nerrtype\nerrtype\nerrtype\nvoid****\n",
"errtype\nerrtype\nerrtype\nvoid*********\nvoid**********\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\n",
"void**\n",
"errtype\nerrtype\nerrtype\nerrtype\nvoid**\n",
"errtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nvoid***\nvoid*\nerrtype\n",
"void*****\nvoid********\nerrtype\nvoid************\nvoid***************\n",
"void\nvoid****\nerrtype\nerrtype\nerrtype\nvoid**\nerrtype\n",
"errtype\nerrtype\nvoid*************\nerrtype\nerrtype\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\nvoid******\nerrtype\nerrtype\nvoid**\n",
"errtype\n",
"errtype\nvoid**********\nerrtype\nvoid******\nvoid*************\n",
"errtype\nerrtype\nvoid*\nerrtype\nerrtype\n",
"void*\nerrtype\nvoid\nerrtype\nerrtype\nvoid\nerrtype\nerrtype\nerrtype\n",
"void***\nvoid************\nerrtype\nerrtype\nerrtype\n",
"errtype\nerrtype\nvoid*************\nvoid*************\nerrtype\n",
"errtype\nerrtype\nerrtype\nvoid*********\nerrtype\n",
"void*\nerrtype\nerrtype\nvoid**\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\n",
"void*\nerrtype\nerrtype\n",
"errtype\nerrtype\nerrtype\nerrtype\nerrtype\n",
"errtype\nerrtype\nvoid\n",
"errtype\nerrtype\nvoid*\nerrtype\nvoid********\n",
"errtype\nvoid**\nvoid\nvoid**\nerrtype\nvoid\nerrtype\nerrtype\nerrtype\n",
"errtype\nvoid************\nvoid*******\nerrtype\nerrtype\n",
"errtype\nerrtype\nerrtype\nerrtype\nvoid****\n",
"errtype\nvoid****\nerrtype\nerrtype\nerrtype\nvoid**\nerrtype\n",
"errtype\nerrtype\nvoid*************\nerrtype\nerrtype\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"void\nvoid****\nerrtype\nerrtype\nerrtype\nvoid**\nerrtype\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\n",
"errtype\nerrtype\nerrtype\nerrtype\nvoid**\n",
"errtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nvoid***\nvoid*\nerrtype\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\nerrtype\nerrtype\nerrtype\nvoid**\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\n",
"errtype\n",
"errtype\n",
"errtype\n",
"errtype\n",
"errtype\n",
"errtype\n",
"errtype\nerrtype\nerrtype\nerrtype\nvoid**\n",
"errtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nerrtype\nvoid***\nvoid*\nerrtype\n",
"errtype\nerrtype\nvoid*************\nerrtype\nerrtype\n",
"errtype\nerrtype\nerrtype\nvoid*******\nerrtype\n",
"errtype\nvoid******\nerrtype\nerrtype\nvoid**\n",
"errtype\n",
"errtype\nerrtype\nvoid*\nerrtype\nerrtype\n",
"void***\nvoid************\nerrtype\nerrtype\nerrtype\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Programmer Vasya is studying a new programming language &K*. The &K* language resembles the languages of the C family in its syntax. However, it is more powerful, which is why the rules of the actual C-like languages are unapplicable to it. To fully understand the statement, please read the language's description below carefully and follow it and not the similar rules in real programming languages.
There is a very powerful system of pointers on &K* — you can add an asterisk to the right of the existing type X — that will result in new type X * . That is called pointer-definition operation. Also, there is the operation that does the opposite — to any type of X, which is a pointer, you can add an ampersand — that will result in a type &X, to which refers X. That is called a dereference operation.
The &K* language has only two basic data types — void and errtype. Also, the language has operators typedef and typeof.
* The operator "typedef A B" defines a new data type B, which is equivalent to A. A can have asterisks and ampersands, and B cannot have them. For example, the operator typedef void** ptptvoid will create a new type ptptvoid, that can be used as void**.
* The operator "typeof A" returns type of A, brought to void, that is, returns the type void**...*, equivalent to it with the necessary number of asterisks (the number can possibly be zero). That is, having defined the ptptvoid type, as shown above, the typeof ptptvoid operator will return void**.
An attempt of dereferencing of the void type will lead to an error: to a special data type errtype. For errtype the following equation holds true: errtype* = &errtype = errtype. An attempt to use the data type that hasn't been defined before that will also lead to the errtype.
Using typedef, we can define one type several times. Of all the definitions only the last one is valid. However, all the types that have been defined earlier using this type do not change.
Let us also note that the dereference operation has the lower priority that the pointer operation, in other words &T * is always equal to T.
Note, that the operators are executed consecutively one by one. If we have two operators "typedef &void a" and "typedef a* b", then at first a becomes errtype, and after that b becomes errtype* = errtype, but not &void* = void (see sample 2).
Vasya does not yet fully understand this powerful technology, that's why he asked you to help him. Write a program that analyzes these operators.
Input
The first line contains an integer n (1 ≤ n ≤ 100) — the number of operators. Then follow n lines with operators. Each operator is of one of two types: either "typedef A B", or "typeof A". In the first case the B type differs from void and errtype types, and besides, doesn't have any asterisks and ampersands.
All the data type names are non-empty lines of no more than 20 lowercase Latin letters. The number of asterisks and ampersands separately in one type in any operator does not exceed 10, however if we bring some types to void with several asterisks, their number may exceed 10.
Output
For every typeof operator print on the single line the answer to that operator — the type that the given operator returned.
Examples
Input
5
typedef void* ptv
typeof ptv
typedef &&ptv node
typeof node
typeof &ptv
Output
void*
errtype
void
Input
17
typedef void* b
typedef b* c
typeof b
typeof c
typedef &b b
typeof b
typeof c
typedef &&b* c
typeof c
typedef &b* c
typeof c
typedef &void b
typeof b
typedef b******* c
typeof c
typedef &&b* c
typeof c
Output
void*
void**
void
void**
errtype
void
errtype
errtype
errtype
Note
Let's look at the second sample.
After the first two queries typedef the b type is equivalent to void*, and с — to void**.
The next query typedef redefines b — it is now equal to &b = &void* = void. At that, the с type doesn't change.
After that the с type is defined as &&b* = &&void* = &void = errtype. It doesn't influence the b type, that's why the next typedef defines c as &void* = void.
Then the b type is again redefined as &void = errtype.
Please note that the c type in the next query is defined exactly as errtype******* = errtype, and not &void******* = void******. The same happens in the last typedef.
### Input:
17
typedef void* b
typedef b* c
typeof b
typeof c
typedef &b b
typeof b
typeof c
typedef &&b* c
typeof c
typedef &b* c
typeof c
typedef &void b
typeof b
typedef b******* c
typeof c
typedef &&b* c
typeof c
### Output:
void*
void**
errtype
void**
errtype
errtype
errtype
errtype
errtype
### Input:
5
typedef void* ptv
typeof ptv
typedef &&ptv node
typeof node
typeof &ptv
### Output:
void*
errtype
errtype
### Code:
types = {'void':'void', 'errtype':'errtype'}
def getRealType(type_expr):
expr_type = type_expr.strip('&*')
full_type_name = type_expr.replace(expr_type, types.get(expr_type, "errtype"))
base_type = full_type_name.strip('&*')
if base_type == "void":
addr_count = full_type_name.count('*')
deref_count = full_type_name.count('&')
if deref_count > addr_count:
return "errtype"
return base_type + "*" * (addr_count - deref_count)
else:
return "errtype"
def setTypeAlias(type_expr, alias_name):
types[alias_name] = getRealType(type_expr)
n = int(input())
for _ in range(n):
operator = input().split()
command = operator[0]
if command == "typedef":
setTypeAlias(operator[1], operator[2])
else:
print(getRealType(operator[1]))
# Made By Mostafa_Khaled |
903_D. Almost Difference_1363 | Let's denote a function
<image>
You are given an array a consisting of n integers. You have to calculate the sum of d(ai, aj) over all pairs (i, j) such that 1 ≤ i ≤ j ≤ n.
Input
The first line contains one integer n (1 ≤ n ≤ 200000) — the number of elements in a.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of the array.
Output
Print one integer — the sum of d(ai, aj) over all pairs (i, j) such that 1 ≤ i ≤ j ≤ n.
Examples
Input
5
1 2 3 1 3
Output
4
Input
4
6 6 5 5
Output
0
Input
4
6 6 4 4
Output
-8
Note
In the first example:
1. d(a1, a2) = 0;
2. d(a1, a3) = 2;
3. d(a1, a4) = 0;
4. d(a1, a5) = 2;
5. d(a2, a3) = 0;
6. d(a2, a4) = 0;
7. d(a2, a5) = 0;
8. d(a3, a4) = - 2;
9. d(a3, a5) = 0;
10. d(a4, a5) = 2. | from sys import stdin, stdout
n = int(stdin.readline())
a = [int(i) for i in stdin.readline().split()]
d = dict()
ans, sm = 0, 0
for i in range(n):
if a[i] not in d.keys():
d[a[i]] = 0
d[a[i]] += 1
ans += i * a[i] - sm
if (a[i] + 1) in d.keys():
ans += 1 * d[a[i] + 1]
if (a[i] - 1) in d.keys():
ans -= 1 * d[a[i] - 1]
sm += a[i]
stdout.write(str(ans))
| {
"input": [
"4\n6 6 5 5\n",
"5\n1 2 3 1 3\n",
"4\n6 6 4 4\n",
"100\n591 417 888 251 792 847 685 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 537 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 776 72 729 69 20 917\n",
"1\n32955\n",
"2\n1 1000000000\n",
"1\n1\n",
"5\n3 1 1 1 3\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 18 59 64 18 96 28 4 76 43 26 25 89 88 96 33 27 97 52 37 92 80 23 18 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 2 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"100\n7 8 5 9 5 6 6 9 7 6 8 7 5 10 7 2 6 1 8 10 7 9 9 8 9 6 8 5 10 6 3 7 5 8 9 7 6 1 9 9 6 9 9 2 10 4 4 6 7 9 7 7 9 10 6 10 8 6 4 7 5 5 8 10 10 7 6 9 8 1 5 1 6 6 2 9 8 4 6 6 9 10 6 1 9 9 9 6 1 8 9 2 8 7 1 10 8 2 4 7\n",
"1\n1000000000\n",
"5\n1 999999996 999999998 999999994 1000000000\n",
"1\n22955\n",
"100\n591 417 888 251 792 847 31 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 537 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 776 72 729 69 20 917\n",
"1\n9442\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 18 59 113 18 96 28 4 76 43 26 25 89 88 96 33 27 97 52 37 92 80 23 18 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 1 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 4 4 1 5 1 6 6 6 8 8 6 2 6\n",
"4\n1 6 5 5\n",
"5\n1 4 3 1 3\n",
"4\n6 6 6 4\n",
"100\n591 417 888 251 792 847 31 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 537 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 18 59 113 18 96 28 4 76 55 26 25 89 88 96 33 27 97 52 37 92 80 23 18 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 8 8 2 6 3 3 10 7 10 8 6 1 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 3 4 1 5 1 6 6 6 8 8 6 2 6\n",
"4\n1 6 5 10\n",
"5\n1 4 6 1 3\n",
"100\n591 417 888 251 792 847 31 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 84 788 104 355 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 18 13 113 18 96 28 4 76 55 26 25 89 88 96 33 27 97 52 37 92 80 23 18 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 13 8 2 6 3 3 10 7 10 8 6 1 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 3 4 1 5 1 6 6 6 8 8 6 2 6\n",
"4\n1 6 5 14\n",
"4\n11 6 6 7\n",
"100\n591 417 888 251 792 847 31 3 182 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 84 788 104 115 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n7 4 5 5 10 10 5 8 5 7 4 5 4 6 13 8 2 6 3 3 10 7 10 8 6 1 7 3 9 7 7 2 4 5 2 4 9 5 10 1 10 5 10 4 1 3 4 2 6 9 9 9 10 6 2 5 6 1 8 10 4 10 3 4 10 5 5 4 10 4 5 3 7 10 2 7 3 6 9 6 1 6 5 5 4 6 6 3 4 1 5 1 6 6 6 8 8 12 2 6\n",
"4\n1 6 8 14\n",
"100\n591 417 888 251 792 847 31 3 31 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 84 788 104 115 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 328 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 1 13 113 18 96 28 4 76 55 26 25 89 88 96 33 27 97 52 37 92 80 23 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"4\n11 9 6 7\n",
"100\n591 417 888 251 792 847 31 3 31 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 84 788 104 115 624 803 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 250 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 1 13 113 18 96 28 4 76 55 26 25 157 88 96 33 27 97 52 37 92 80 23 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"4\n11 9 6 8\n",
"100\n591 417 888 251 792 847 31 3 31 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 84 788 104 115 624 931 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 250 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 98 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 1 13 113 18 96 28 4 76 55 26 25 157 88 96 33 27 97 52 37 92 80 23 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"4\n2 5 7 14\n",
"4\n11 9 8 8\n",
"100\n591 417 888 251 792 847 31 3 31 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 46 788 104 115 624 931 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 250 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 98 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 1 13 113 18 96 28 4 76 55 26 25 157 88 96 33 27 97 52 37 92 80 2 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"100\n591 417 888 251 792 847 41 3 31 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 46 788 104 115 624 931 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 250 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 303 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 98 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 1 13 113 18 96 28 4 76 55 26 25 157 88 96 33 27 97 52 37 92 80 2 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 130 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"4\n2 2 7 11\n",
"4\n0 9 8 8\n",
"100\n591 417 888 251 792 847 41 3 31 461 102 348 555 956 771 901 712 878 580 631 342 333 285 899 525 725 543 718 929 653 46 788 104 115 624 931 253 853 201 995 536 184 65 205 540 652 549 777 248 405 677 950 431 580 600 846 250 429 134 983 526 103 500 963 400 23 276 704 570 757 410 658 507 620 984 244 486 454 802 411 985 508 635 283 96 597 855 775 139 839 839 61 219 986 142 72 729 69 20 917\n",
"100\n82 81 14 33 78 80 15 60 89 82 98 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 1 13 113 18 96 28 4 76 55 26 25 157 88 96 33 27 97 52 37 92 80 2 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 130 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 101 12 51 50 79 47 2\n",
"4\n2 2 7 15\n",
"4\n1 9 8 8\n",
"1\n0\n",
"1\n1000000001\n",
"1\n22258\n",
"1\n16931\n",
"1\n2\n",
"1\n1000100001\n",
"1\n23245\n",
"4\n6 6 6 7\n",
"1\n27038\n",
"1\n-1\n",
"1\n1000100011\n",
"1\n39355\n",
"1\n5963\n",
"1\n-2\n",
"100\n82 81 14 33 78 80 15 60 89 82 79 13 15 17 25 13 21 20 63 26 62 63 79 36 18 21 88 92 27 18 13 113 18 96 28 4 76 55 26 25 89 88 96 33 27 97 52 37 92 80 23 17 78 14 88 5 3 14 85 72 84 75 41 3 51 92 91 79 18 78 19 79 8 35 85 86 78 17 51 36 100 32 49 95 2 100 67 72 55 53 42 3 21 100 12 51 50 79 47 2\n",
"1\n0000100011\n",
"1\n46991\n",
"4\n11 8 6 7\n",
"1\n1903\n",
"1\n4\n",
"1\n0000100001\n",
"1\n77761\n",
"4\n1 6 7 14\n",
"1\n1994\n",
"1\n5\n",
"1\n1000010000\n",
"1\n98565\n",
"4\n1 5 7 14\n",
"1\n382\n",
"1\n-3\n",
"1\n1000010100\n",
"1\n122002\n",
"1\n737\n",
"1\n-5\n",
"1\n1000110100\n",
"1\n84179\n",
"4\n2 2 7 14\n",
"4\n9 9 8 8\n",
"1\n1308\n",
"1\n-7\n",
"1\n1000100100\n",
"1\n144549\n",
"1\n2291\n",
"1\n-8\n",
"1\n1000100000\n",
"1\n124880\n"
],
"output": [
"0",
"4",
"-8",
"-91018",
"0",
"999999999",
"0",
"0",
"6076",
"-1774",
"-1713",
"0",
"3999999992",
"0",
"-34120\n",
"0\n",
"4265\n",
"-1733\n",
"13\n",
"4\n",
"-6\n",
"-90546\n",
"3964\n",
"-1808\n",
"27\n",
"3\n",
"-90829\n",
"5757\n",
"-2161\n",
"39\n",
"-14\n",
"-82909\n",
"-1583\n",
"41\n",
"-70376\n",
"6452\n",
"-16\n",
"-71389\n",
"5159\n",
"-11\n",
"-75102\n",
"3657\n",
"38\n",
"-8\n",
"-73620\n",
"3632\n",
"-74490\n",
"5825\n",
"32\n",
"25\n",
"-61576\n",
"5910\n",
"44\n",
"22\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5757\n",
"0\n",
"0\n",
"-14\n",
"0\n",
"0\n",
"0\n",
"0\n",
"39\n",
"0\n",
"0\n",
"0\n",
"0\n",
"41\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"41\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Let's denote a function
<image>
You are given an array a consisting of n integers. You have to calculate the sum of d(ai, aj) over all pairs (i, j) such that 1 ≤ i ≤ j ≤ n.
Input
The first line contains one integer n (1 ≤ n ≤ 200000) — the number of elements in a.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — elements of the array.
Output
Print one integer — the sum of d(ai, aj) over all pairs (i, j) such that 1 ≤ i ≤ j ≤ n.
Examples
Input
5
1 2 3 1 3
Output
4
Input
4
6 6 5 5
Output
0
Input
4
6 6 4 4
Output
-8
Note
In the first example:
1. d(a1, a2) = 0;
2. d(a1, a3) = 2;
3. d(a1, a4) = 0;
4. d(a1, a5) = 2;
5. d(a2, a3) = 0;
6. d(a2, a4) = 0;
7. d(a2, a5) = 0;
8. d(a3, a4) = - 2;
9. d(a3, a5) = 0;
10. d(a4, a5) = 2.
### Input:
4
6 6 5 5
### Output:
0
### Input:
5
1 2 3 1 3
### Output:
4
### Code:
from sys import stdin, stdout
n = int(stdin.readline())
a = [int(i) for i in stdin.readline().split()]
d = dict()
ans, sm = 0, 0
for i in range(n):
if a[i] not in d.keys():
d[a[i]] = 0
d[a[i]] += 1
ans += i * a[i] - sm
if (a[i] + 1) in d.keys():
ans += 1 * d[a[i] + 1]
if (a[i] - 1) in d.keys():
ans -= 1 * d[a[i] - 1]
sm += a[i]
stdout.write(str(ans))
|
954_F. Runner's Problem_1368 | You are running through a rectangular field. This field can be represented as a matrix with 3 rows and m columns. (i, j) denotes a cell belonging to i-th row and j-th column.
You start in (2, 1) and have to end your path in (2, m). From the cell (i, j) you may advance to:
* (i - 1, j + 1) — only if i > 1,
* (i, j + 1), or
* (i + 1, j + 1) — only if i < 3.
However, there are n obstacles blocking your path. k-th obstacle is denoted by three integers ak, lk and rk, and it forbids entering any cell (ak, j) such that lk ≤ j ≤ rk.
You have to calculate the number of different paths from (2, 1) to (2, m), and print it modulo 109 + 7.
Input
The first line contains two integers n and m (1 ≤ n ≤ 104, 3 ≤ m ≤ 1018) — the number of obstacles and the number of columns in the matrix, respectively.
Then n lines follow, each containing three integers ak, lk and rk (1 ≤ ak ≤ 3, 2 ≤ lk ≤ rk ≤ m - 1) denoting an obstacle blocking every cell (ak, j) such that lk ≤ j ≤ rk. Some cells may be blocked by multiple obstacles.
Output
Print the number of different paths from (2, 1) to (2, m), taken modulo 109 + 7. If it is impossible to get from (2, 1) to (2, m), then the number of paths is 0.
Example
Input
2 5
1 3 4
2 2 3
Output
2 | from operator import itemgetter
import sys
input = sys.stdin.buffer.readline
def _mul(A, B, MOD):
C = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for k in range(len(B)):
for j in range(len(B[0])):
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD
return C
def pow_matrix(A, n, MOD):
B = [[0] * len(A) for i in range(len(A))]
for i in range(len(A)):
B[i][i] = 1
while n > 0:
if n & 1:
B = _mul(A, B, MOD)
A = _mul(A, A, MOD)
n = n // 2
return B
def calc(A, vec, MOD):
n = len(vec)
res = [0] * n
for i in range(n):
for j in range(n):
res[i] += A[i][j] * vec[j]
res[i] %= MOD
return res
n, m = map(int, input().split())
info = [list(map(int, input().split())) for i in range(n)]
MOD = 10 ** 9 + 7
res = [[] for i in range(3)]
for row, l, r in info:
row -= 1
l -= 1
res[row].append((l, r))
for row in range(3):
res[row].sort(key=itemgetter(1))
blocks = {}
ind_set = set([])
for row in range(3):
tmp = []
for l, r in res[row]:
if not tmp:
tmp.append((l, r))
continue
while tmp:
if l <= tmp[-1][1]:
pl, pr = tmp.pop()
l = min(pl, l)
else:
break
tmp.append((l, r))
for l, r in tmp:
if l not in blocks:
blocks[l] = []
if r not in blocks:
blocks[r] = []
blocks[l].append((row, 1))
blocks[r].append((row, -1))
ind_set.add(l)
ind_set.add(r)
ind_list = sorted(list(ind_set))
dp = [0, 1, 0]
matrix = [[1, 1, 0], [1, 1, 1], [0, 1, 1]]
prv_ind = 0
for ind in ind_list:
length = (ind - prv_ind - 1)
tmp_matrix = pow_matrix(matrix, length, MOD)
dp = calc(tmp_matrix, dp, MOD)
for row, flag in blocks[ind]:
if flag == 1:
for i in range(3):
matrix[row][i] = 0
else:
for i in range(3):
matrix[row][i] = 1
matrix[0][2] = 0
matrix[2][0] = 0
dp = calc(matrix, dp, MOD)
prv_ind = ind
length = m - prv_ind - 1
tmp_matrix = pow_matrix(matrix, length, MOD)
dp = calc(tmp_matrix, dp, MOD)
print(dp[1] % MOD) | {
"input": [
"2 5\n1 3 4\n2 2 3\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 9 75\n2 4 50\n2 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 50\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n2 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 46 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 85 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 62 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"2 5\n1 2 4\n2 2 3\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 9 75\n2 4 50\n2 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 5\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n2 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 46 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 85 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 92\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 62 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 55\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 45 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 59\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 43 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n2 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 9 75\n2 4 50\n2 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 5\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n3 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 46 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 85 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 92\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 90 63\n3 62 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 82 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 55\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 34 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 59\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n2 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 9 75\n2 4 50\n2 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 5\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n3 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 46 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 8 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 92\n3 99 99\n1 14 79\n2 94 97\n2 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 90 63\n3 62 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n2 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 9 75\n2 4 50\n2 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 5\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n3 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 83 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 8 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 92\n3 99 99\n1 14 79\n2 94 97\n2 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 90 63\n3 62 87\n1 18 75\n1 26 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n1 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n2 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n1 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n1 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 90 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n1 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 90 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n1 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 6 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 27 86\n2 55 84\n1 90 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n1 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 6 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 38\n1 27 86\n2 55 84\n1 90 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n1 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 6 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n2 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 38\n1 27 86\n2 55 84\n1 90 53\n3 80 81\n1 66 70\n2 11 40\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n2 14 79\n2 94 97\n1 66 85\n1 7 49\n1 50 50\n1 31 11\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 6 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 9 75\n2 4 50\n3 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 50\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n2 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 46 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 85 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 5 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 87\n3 68 75\n1 33 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 62 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 51 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 24 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 19 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n1 20 46\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 15\n3 79 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n1 71 96\n2 34 52\n2 16 95\n1 54 55\n1 65 85\n1 76 92\n2 19 91\n1 26 43\n2 83 95\n2 70 88\n2 67 88\n1 8 75\n2 4 50\n2 9 11\n1 77 92\n1 28 58\n1 23 72\n1 24 75\n2 12 5\n1 54 55\n2 45 93\n1 88 93\n2 98 99\n1 40 58\n2 40 42\n1 16 61\n2 94 94\n1 82 86\n2 81 85\n2 46 46\n2 88 97\n2 6 86\n1 30 86\n2 87 96\n1 44 50\n2 43 88\n1 29 98\n1 39 76\n1 78 94\n1 6 69\n2 92 95\n1 40 68\n1 97 99\n1 85 85\n1 69 74\n1 23 51\n1 34 66\n2 70 98\n2 94 97\n1 54 73\n",
"50 100\n3 24 49\n2 10 12\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 35 52\n1 63 69\n2 65 40\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 99 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 55\n3 24 87\n1 18 75\n1 30 41\n",
"50 100\n3 24 49\n2 10 19\n1 87 92\n2 19 60\n2 53 79\n3 65 82\n3 10 46\n1 46 86\n2 55 84\n1 50 53\n3 80 81\n3 66 70\n2 11 52\n1 63 69\n2 65 87\n3 68 75\n1 42 42\n1 56 90\n3 73 93\n2 20 26\n2 42 80\n2 83 87\n3 99 99\n1 14 79\n2 94 97\n1 66 85\n1 7 73\n1 50 50\n2 16 40\n2 76 94\n1 71 98\n1 54 99\n1 61 87\n3 98 98\n2 11 41\n3 67 78\n1 31 58\n3 81 85\n1 81 94\n3 41 83\n3 46 65\n1 94 94\n3 31 38\n1 19 35\n3 50 54\n3 85 90\n3 47 63\n3 24 87\n1 18 75\n2 43 41\n"
],
"output": [
"2\n",
"5\n",
"0\n",
"0\n",
"2\n",
"5\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"5\n",
"0\n",
"0\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are running through a rectangular field. This field can be represented as a matrix with 3 rows and m columns. (i, j) denotes a cell belonging to i-th row and j-th column.
You start in (2, 1) and have to end your path in (2, m). From the cell (i, j) you may advance to:
* (i - 1, j + 1) — only if i > 1,
* (i, j + 1), or
* (i + 1, j + 1) — only if i < 3.
However, there are n obstacles blocking your path. k-th obstacle is denoted by three integers ak, lk and rk, and it forbids entering any cell (ak, j) such that lk ≤ j ≤ rk.
You have to calculate the number of different paths from (2, 1) to (2, m), and print it modulo 109 + 7.
Input
The first line contains two integers n and m (1 ≤ n ≤ 104, 3 ≤ m ≤ 1018) — the number of obstacles and the number of columns in the matrix, respectively.
Then n lines follow, each containing three integers ak, lk and rk (1 ≤ ak ≤ 3, 2 ≤ lk ≤ rk ≤ m - 1) denoting an obstacle blocking every cell (ak, j) such that lk ≤ j ≤ rk. Some cells may be blocked by multiple obstacles.
Output
Print the number of different paths from (2, 1) to (2, m), taken modulo 109 + 7. If it is impossible to get from (2, 1) to (2, m), then the number of paths is 0.
Example
Input
2 5
1 3 4
2 2 3
Output
2
### Input:
2 5
1 3 4
2 2 3
### Output:
2
### Input:
50 100
1 71 96
2 34 52
2 16 95
1 54 55
1 65 85
1 76 92
2 19 91
1 26 43
2 83 95
2 70 88
2 67 88
1 9 75
2 4 50
2 9 11
1 77 92
1 28 58
1 23 72
1 24 75
2 12 50
1 54 55
2 45 93
1 88 93
2 98 99
1 40 58
2 40 42
1 16 61
2 94 94
1 82 86
2 81 85
2 46 46
2 88 97
2 6 86
1 30 86
2 87 96
1 44 50
2 43 88
1 29 98
1 39 76
1 78 94
1 6 69
2 92 95
1 40 68
1 97 99
1 85 85
1 69 74
1 23 51
1 34 66
2 70 98
2 94 97
1 54 73
### Output:
5
### Code:
from operator import itemgetter
import sys
input = sys.stdin.buffer.readline
def _mul(A, B, MOD):
C = [[0] * len(B[0]) for i in range(len(A))]
for i in range(len(A)):
for k in range(len(B)):
for j in range(len(B[0])):
C[i][j] = (C[i][j] + A[i][k] * B[k][j]) % MOD
return C
def pow_matrix(A, n, MOD):
B = [[0] * len(A) for i in range(len(A))]
for i in range(len(A)):
B[i][i] = 1
while n > 0:
if n & 1:
B = _mul(A, B, MOD)
A = _mul(A, A, MOD)
n = n // 2
return B
def calc(A, vec, MOD):
n = len(vec)
res = [0] * n
for i in range(n):
for j in range(n):
res[i] += A[i][j] * vec[j]
res[i] %= MOD
return res
n, m = map(int, input().split())
info = [list(map(int, input().split())) for i in range(n)]
MOD = 10 ** 9 + 7
res = [[] for i in range(3)]
for row, l, r in info:
row -= 1
l -= 1
res[row].append((l, r))
for row in range(3):
res[row].sort(key=itemgetter(1))
blocks = {}
ind_set = set([])
for row in range(3):
tmp = []
for l, r in res[row]:
if not tmp:
tmp.append((l, r))
continue
while tmp:
if l <= tmp[-1][1]:
pl, pr = tmp.pop()
l = min(pl, l)
else:
break
tmp.append((l, r))
for l, r in tmp:
if l not in blocks:
blocks[l] = []
if r not in blocks:
blocks[r] = []
blocks[l].append((row, 1))
blocks[r].append((row, -1))
ind_set.add(l)
ind_set.add(r)
ind_list = sorted(list(ind_set))
dp = [0, 1, 0]
matrix = [[1, 1, 0], [1, 1, 1], [0, 1, 1]]
prv_ind = 0
for ind in ind_list:
length = (ind - prv_ind - 1)
tmp_matrix = pow_matrix(matrix, length, MOD)
dp = calc(tmp_matrix, dp, MOD)
for row, flag in blocks[ind]:
if flag == 1:
for i in range(3):
matrix[row][i] = 0
else:
for i in range(3):
matrix[row][i] = 1
matrix[0][2] = 0
matrix[2][0] = 0
dp = calc(matrix, dp, MOD)
prv_ind = ind
length = m - prv_ind - 1
tmp_matrix = pow_matrix(matrix, length, MOD)
dp = calc(tmp_matrix, dp, MOD)
print(dp[1] % MOD) |
9_E. Interesting Graph and Apples_1375 | Hexadecimal likes drawing. She has drawn many graphs already, both directed and not. Recently she has started to work on a still-life «interesting graph and apples». An undirected graph is called interesting, if each of its vertices belongs to one cycle only — a funny ring — and does not belong to any other cycles. A funny ring is a cycle that goes through all the vertices just once. Moreover, loops are funny rings too.
She has already drawn the apples and some of the graph edges. But now it is not clear, how to connect the rest of the vertices to get an interesting graph as a result. The answer should contain the minimal amount of added edges. And furthermore, the answer should be the lexicographically smallest one. The set of edges (x1, y1), (x2, y2), ..., (xn, yn), where xi ≤ yi, is lexicographically smaller than the set (u1, v1), (u2, v2), ..., (un, vn), where ui ≤ vi, provided that the sequence of integers x1, y1, x2, y2, ..., xn, yn is lexicographically smaller than the sequence u1, v1, u2, v2, ..., un, vn. If you do not cope, Hexadecimal will eat you. ...eat you alive.
Input
The first line of the input data contains a pair of integers n and m (1 ≤ n ≤ 50, 0 ≤ m ≤ 2500) — the amount of vertices and edges respectively. The following lines contain pairs of numbers xi and yi (1 ≤ xi, yi ≤ n) — the vertices that are already connected by edges. The initial graph may contain multiple edges and loops.
Output
In the first line output «YES» or «NO»: if it is possible or not to construct an interesting graph. If the answer is «YES», in the second line output k — the amount of edges that should be added to the initial graph. Finally, output k lines: pairs of vertices xj and yj, between which edges should be drawn. The result may contain multiple edges and loops. k can be equal to zero.
Examples
Input
3 2
1 2
2 3
Output
YES
1
1 3 | def dfs(v, comp):
used[v] = comp
for u in graph[v]:
if not used[u]:
dfs(u, comp)
n, m = map(int, input().split())
graph = [[] for i in range(n)]
for i in range(m):
v, u = map(int, input().split())
graph[v - 1].append(u - 1)
graph[u - 1].append(v - 1)
used = [0] * n
ncomp = 0
for v in range(n):
if not used[v]:
ncomp += 1
dfs(v, ncomp)
maxpwr = max(map(len, graph))
if n - m != ncomp or maxpwr > 2:
if n == m and ncomp == 1 and maxpwr == 2:
print("YES")
print(0)
else:
print("NO")
else:
print("YES")
print(n - m)
leaves = []
for v in range(n):
if len(graph[v]) == 1:
leaves.append([v + 1, used[v]])
elif len(graph[v]) == 0:
leaves.append([v + 1, used[v]])
leaves.append([v + 1, used[v]])
sets = []
for i in range(len(leaves)):
if leaves[i][0] == 0:
continue
for j in range(i + 1, len(leaves)):
if leaves[j][0] == 0:
continue
if leaves[i][1] == leaves[j][1]:
continue
seti = -1
for k in range(len(sets)):
if leaves[i][1] in sets[k]:
seti = k
break
setj = -2
for k in range(len(sets)):
if leaves[j][1] in sets[k]:
setj = k
break
if seti != setj:
print(leaves[i][0], leaves[j][0])
if seti >= 0:
if setj >= 0:
sets[seti] |= sets[setj]
sets.pop(setj)
else:
sets[seti].add(leaves[j][1])
else:
if setj >= 0:
sets[setj].add(leaves[i][1])
else:
sets.append(set([leaves[i][1], leaves[j][1]]))
leaves[i][0] = 0
leaves[j][0] = 0
break
for i in range(len(leaves)):
if leaves[i][0] == 0:
continue
for j in range(i + 1, len(leaves)):
if leaves[j][0] == 0:
continue
print(leaves[i][0], leaves[j][0])
break
else:
continue
break | {
"input": [
"3 2\n1 2\n2 3\n",
"42 28\n7 19\n15 24\n3 42\n18 5\n32 27\n26 20\n40 30\n35 2\n14 8\n22 10\n36 4\n16 14\n21 29\n37 40\n2 12\n30 21\n19 17\n39 34\n31 28\n20 3\n4 33\n11 42\n26 21\n9 10\n4 32\n6 1\n1 14\n14 12\n",
"2 2\n1 2\n2 1\n",
"3 2\n3 2\n2 1\n",
"3 3\n1 3\n2 1\n3 2\n",
"2 3\n1 1\n1 2\n2 1\n",
"50 27\n10 7\n32 9\n17 33\n25 34\n47 28\n23 16\n15 46\n41 50\n18 24\n27 19\n35 36\n19 38\n50 31\n31 40\n4 14\n1 11\n6 48\n33 35\n36 30\n39 12\n28 45\n2 1\n22 13\n3 49\n29 36\n7 34\n36 8\n",
"30 21\n6 14\n19 17\n25 20\n28 10\n10 3\n24 23\n22 13\n1 7\n11 26\n12 1\n16 8\n14 9\n30 15\n4 27\n13 21\n20 12\n24 14\n19 10\n7 10\n16 8\n26 11\n",
"9 4\n7 6\n2 8\n3 5\n8 3\n",
"6 1\n4 1\n",
"34 18\n9 14\n30 23\n19 3\n34 19\n26 2\n31 28\n7 21\n20 27\n16 15\n18 20\n5 34\n17 22\n10 12\n6 4\n8 32\n29 24\n24 10\n34 22\n",
"45 20\n37 5\n41 6\n13 22\n28 24\n30 10\n39 35\n5 20\n38 32\n26 1\n23 37\n35 17\n21 12\n7 8\n1 7\n4 16\n8 40\n44 3\n27 23\n19 2\n33 27\n",
"1 3\n1 1\n1 1\n1 1\n",
"47 36\n29 31\n25 45\n39 46\n12 19\n31 21\n4 41\n5 38\n33 3\n21 39\n40 1\n1 47\n35 12\n42 10\n2 4\n6 35\n17 16\n22 28\n14 22\n41 25\n10 14\n34 37\n27 20\n44 27\n20 2\n3 17\n45 13\n18 34\n47 15\n10 44\n25 15\n12 23\n27 17\n15 38\n17 32\n29 31\n3 39\n",
"6 3\n3 4\n1 3\n2 5\n",
"33 19\n27 23\n17 16\n20 33\n3 11\n1 31\n26 24\n25 10\n21 15\n14 9\n12 4\n29 2\n7 21\n32 13\n33 6\n5 26\n13 28\n6 22\n3 24\n27 19\n",
"49 29\n43 18\n44 26\n49 31\n37 19\n20 16\n18 22\n30 5\n7 28\n12 2\n31 11\n27 43\n25 9\n19 4\n35 25\n4 30\n6 27\n46 41\n38 23\n17 37\n13 8\n11 38\n29 20\n40 10\n22 29\n36 7\n17 36\n35 48\n41 36\n39 27\n",
"50 0\n",
"40 29\n23 2\n40 16\n35 31\n2 40\n39 35\n18 11\n21 7\n3 6\n15 5\n4 18\n17 19\n8 34\n16 17\n9 39\n37 21\n19 26\n26 36\n33 4\n10 9\n34 22\n13 20\n32 40\n35 11\n5 12\n14 5\n5 24\n40 6\n32 35\n21 21\n",
"41 28\n6 28\n1 38\n11 7\n12 26\n10 36\n9 21\n8 3\n2 20\n33 32\n21 40\n34 10\n22 15\n30 22\n5 12\n19 35\n13 6\n31 37\n25 4\n15 23\n37 33\n19 19\n20 6\n14 8\n9 12\n27 33\n28 27\n37 11\n36 20\n",
"39 25\n8 23\n27 38\n6 32\n20 33\n7 34\n22 26\n32 12\n23 2\n28 20\n33 35\n18 10\n1 21\n11 18\n39 28\n17 9\n36 8\n15 17\n14 1\n19 24\n37 30\n21 39\n38 13\n28 5\n36 30\n33 13\n",
"46 24\n24 43\n38 20\n8 38\n22 13\n25 24\n40 35\n21 10\n7 39\n18 5\n33 19\n26 7\n1 27\n43 26\n9 17\n3 44\n44 14\n20 11\n5 2\n15 32\n23 8\n10 37\n27 23\n43 23\n33 25\n",
"32 24\n9 15\n32 16\n26 7\n15 8\n30 21\n23 14\n22 17\n14 29\n19 1\n24 31\n3 22\n20 9\n5 23\n10 3\n27 24\n1 30\n8 18\n23 28\n14 4\n27 10\n11 9\n11 24\n11 18\n17 6\n",
"44 31\n28 26\n5 36\n9 37\n36 29\n26 5\n25 42\n30 22\n29 3\n35 10\n44 28\n18 13\n16 6\n3 33\n22 9\n4 15\n27 19\n17 11\n19 41\n11 25\n10 30\n2 34\n12 7\n37 31\n16 40\n25 24\n28 44\n41 37\n21 21\n12 28\n20 23\n20 17\n",
"48 32\n45 23\n17 3\n2 48\n47 20\n27 18\n13 28\n18 26\n26 21\n48 31\n21 9\n43 19\n34 43\n10 36\n14 17\n6 12\n3 11\n15 1\n23 37\n37 13\n42 40\n35 5\n16 7\n40 44\n4 29\n24 25\n5 16\n31 45\n39 22\n46 34\n22 30\n28 33\n33 41\n",
"49 0\n",
"45 22\n15 23\n14 30\n5 44\n43 21\n24 17\n37 38\n40 9\n41 43\n7 4\n38 22\n26 18\n44 41\n42 11\n4 33\n35 24\n36 15\n19 1\n1 37\n9 35\n12 40\n31 29\n18 25\n",
"1 0\n",
"35 28\n6 24\n35 10\n14 19\n30 34\n29 23\n21 16\n34 5\n22 6\n7 35\n13 29\n27 3\n8 27\n5 15\n26 11\n19 1\n31 28\n17 31\n18 20\n12 32\n4 17\n10 4\n32 8\n35 18\n9 5\n33 30\n24 25\n12 12\n34 3\n",
"48 26\n27 5\n13 21\n14 20\n41 31\n4 26\n21 39\n31 17\n18 4\n42 2\n28 43\n11 23\n35 22\n34 18\n23 15\n10 13\n7 48\n5 44\n19 25\n12 7\n15 27\n39 41\n33 10\n45 40\n20 42\n29 38\n17 28\n",
"1 2\n1 1\n1 1\n",
"8 3\n3 8\n2 6\n1 7\n",
"2 1\n1 1\n",
"8 4\n1 7\n2 4\n6 2\n5 8\n",
"6 6\n1 2\n2 3\n3 1\n4 5\n5 6\n6 1\n",
"5 2\n1 5\n5 4\n",
"6 6\n4 3\n3 5\n6 4\n1 6\n2 1\n5 2\n",
"37 22\n2 15\n37 11\n14 29\n9 37\n15 23\n24 35\n18 3\n23 12\n34 33\n4 19\n22 14\n21 26\n28 27\n12 36\n8 6\n26 28\n31 1\n29 5\n27 25\n17 10\n33 18\n35 20\n",
"4 1\n3 1\n",
"49 26\n33 34\n43 21\n26 27\n46 33\n32 47\n6 3\n44 14\n34 42\n4 8\n27 29\n12 4\n42 7\n22 16\n5 31\n35 24\n39 40\n20 12\n17 44\n8 18\n38 26\n48 39\n31 17\n9 19\n10 23\n1 30\n49 38\n",
"2 1\n2 1\n",
"9 5\n5 2\n4 6\n8 4\n1 8\n2 1\n",
"4 2\n3 1\n4 2\n",
"7 6\n5 6\n2 7\n7 3\n4 1\n1 5\n3 4\n",
"38 30\n21 36\n20 21\n9 11\n27 10\n25 20\n33 16\n11 23\n31 4\n13 22\n36 27\n32 37\n12 6\n35 31\n5 34\n6 14\n7 38\n26 18\n4 24\n18 5\n23 17\n29 28\n38 13\n10 30\n18 3\n15 25\n1 24\n22 22\n17 22\n36 18\n23 13\n",
"7 4\n3 2\n2 6\n6 7\n1 5\n",
"9 2\n2 5\n1 6\n",
"2 0\n",
"50 1\n2 3\n",
"4 3\n1 2\n4 1\n2 3\n",
"3 2\n1 2\n1 2\n",
"47 26\n24 2\n13 24\n25 14\n35 6\n4 10\n11 18\n29 41\n37 13\n38 3\n2 31\n30 29\n6 42\n33 25\n41 45\n40 8\n28 47\n43 39\n39 38\n1 5\n45 22\n19 21\n18 37\n36 17\n27 28\n16 11\n12 30\n",
"31 24\n6 25\n8 13\n29 20\n13 5\n26 8\n16 9\n31 2\n22 7\n24 21\n28 18\n9 12\n27 14\n20 24\n23 10\n10 27\n15 1\n21 28\n11 16\n12 29\n8 7\n10 28\n27 19\n17 3\n23 16\n",
"2 1\n2 2\n",
"50 1\n2 3\n",
"4 3\n1 2\n1 3\n1 4\n",
"36 23\n27 31\n33 14\n17 24\n14 25\n3 8\n1 21\n24 27\n13 26\n23 6\n35 22\n34 33\n36 4\n19 16\n18 15\n32 36\n5 7\n20 30\n21 11\n11 27\n8 23\n6 10\n4 31\n15 31\n",
"5 3\n3 5\n4 2\n5 1\n",
"49 0\n",
"7 3\n7 4\n5 2\n1 3\n",
"2 2\n1 1\n2 2\n",
"50 21\n27 16\n42 35\n15 28\n46 17\n30 39\n47 18\n35 25\n26 24\n24 30\n28 41\n40 38\n11 21\n33 20\n43 10\n37 14\n1 43\n32 49\n49 6\n10 45\n21 50\n39 3\n",
"1 1\n1 1\n",
"46 25\n44 40\n25 10\n28 44\n26 4\n38 7\n27 3\n46 8\n32 28\n22 20\n14 33\n30 14\n12 23\n13 30\n40 18\n37 35\n10 16\n23 22\n3 46\n36 24\n19 12\n18 42\n11 34\n34 36\n9 32\n24 19\n",
"5 2\n1 3\n4 1\n",
"50 0\n",
"43 36\n3 24\n25 36\n36 11\n12 38\n11 32\n15 3\n8 9\n2 17\n5 40\n21 37\n39 20\n28 30\n16 22\n27 13\n31 6\n24 39\n34 19\n35 18\n43 21\n41 4\n7 31\n33 26\n6 5\n42 27\n29 2\n30 10\n40 1\n1 29\n20 14\n40 29\n29 6\n26 27\n37 21\n19 9\n31 4\n19 38\n",
"8 5\n4 7\n3 6\n8 3\n6 5\n1 2\n",
"42 28\n7 19\n15 24\n3 42\n18 5\n32 27\n26 20\n40 30\n35 2\n14 8\n22 8\n36 4\n16 14\n21 29\n37 40\n2 12\n30 21\n19 17\n39 34\n31 28\n20 3\n4 33\n11 42\n26 21\n9 10\n4 32\n6 1\n1 14\n14 12\n",
"45 20\n37 5\n41 6\n13 22\n28 24\n30 10\n39 35\n5 20\n38 32\n26 1\n23 37\n35 29\n21 12\n7 8\n1 7\n4 16\n8 40\n44 3\n27 23\n19 2\n33 27\n",
"45 22\n15 23\n14 30\n5 44\n43 21\n24 17\n37 38\n40 9\n41 43\n7 4\n38 8\n26 18\n44 41\n42 11\n4 33\n35 24\n36 15\n19 1\n1 37\n9 35\n12 40\n31 29\n18 25\n",
"48 26\n27 5\n13 21\n14 20\n41 31\n4 26\n21 39\n31 6\n18 4\n42 2\n28 43\n11 23\n35 22\n34 18\n23 15\n10 13\n7 48\n5 44\n19 25\n12 7\n15 27\n39 41\n33 10\n45 40\n20 42\n29 38\n17 28\n",
"8 4\n1 7\n2 8\n6 2\n5 8\n",
"37 22\n2 15\n37 11\n14 29\n9 37\n9 23\n24 35\n18 3\n23 12\n34 33\n4 19\n22 14\n21 26\n28 27\n12 36\n8 6\n26 28\n31 1\n29 5\n27 25\n17 10\n33 18\n35 20\n",
"7 6\n5 6\n2 7\n7 3\n2 1\n1 5\n3 4\n",
"9 2\n2 6\n1 6\n",
"11 1\n2 3\n",
"50 21\n27 16\n42 35\n15 28\n46 17\n30 39\n47 18\n48 25\n26 24\n24 30\n28 41\n40 38\n11 21\n33 20\n43 10\n37 14\n1 43\n32 49\n49 6\n10 45\n21 50\n39 3\n",
"2 1\n1 2\n",
"46 25\n44 40\n25 10\n28 44\n26 4\n38 7\n27 3\n46 8\n32 28\n22 20\n14 33\n30 14\n12 23\n13 30\n40 18\n37 35\n10 16\n23 22\n3 46\n36 24\n19 15\n18 42\n11 34\n34 36\n9 32\n24 19\n",
"4 2\n1 3\n4 1\n",
"6 0\n",
"4 2\n1 2\n2 3\n",
"11 1\n2 6\n",
"4 1\n1 2\n",
"4 2\n1 3\n4 2\n",
"10 1\n2 6\n",
"50 27\n10 7\n32 9\n17 33\n25 34\n47 28\n23 16\n15 46\n41 50\n18 24\n27 19\n29 36\n19 38\n50 31\n31 40\n4 14\n1 11\n6 48\n33 35\n36 30\n39 12\n28 45\n2 1\n22 13\n3 49\n29 36\n7 34\n36 8\n",
"30 21\n6 14\n19 17\n25 20\n28 10\n10 3\n24 23\n22 13\n1 7\n11 26\n24 1\n16 8\n14 9\n30 15\n4 27\n13 21\n20 12\n24 14\n19 10\n7 10\n16 8\n26 11\n",
"34 18\n9 14\n30 23\n4 3\n34 19\n26 2\n31 28\n7 21\n20 27\n16 15\n18 20\n5 34\n17 22\n10 12\n6 4\n8 32\n29 24\n24 10\n34 22\n",
"47 36\n29 31\n25 45\n39 46\n12 19\n41 21\n4 41\n5 38\n33 3\n21 39\n40 1\n1 47\n35 12\n42 10\n2 4\n6 35\n17 16\n22 28\n14 22\n41 25\n10 14\n34 37\n27 20\n44 27\n20 2\n3 17\n45 13\n18 34\n47 15\n10 44\n25 15\n12 23\n27 17\n15 38\n17 32\n29 31\n3 39\n",
"33 19\n27 23\n17 16\n20 33\n6 11\n1 31\n26 24\n25 10\n21 15\n14 9\n12 4\n29 2\n7 21\n32 13\n33 6\n5 26\n13 28\n6 22\n3 24\n27 19\n",
"49 29\n43 18\n44 26\n49 31\n37 19\n20 16\n18 22\n30 5\n7 28\n12 2\n31 11\n27 43\n25 9\n19 4\n35 25\n4 30\n6 27\n46 41\n38 23\n4 37\n13 8\n11 38\n29 20\n40 10\n22 29\n36 7\n17 36\n35 48\n41 36\n39 27\n",
"40 29\n23 2\n40 16\n35 31\n2 40\n39 35\n18 11\n21 7\n3 6\n15 5\n5 18\n17 19\n8 34\n16 17\n9 39\n37 21\n19 26\n26 36\n33 4\n10 9\n34 22\n13 20\n32 40\n35 11\n5 12\n14 5\n5 24\n40 6\n32 35\n21 21\n",
"41 28\n6 28\n1 38\n11 7\n12 26\n10 36\n9 21\n8 3\n2 20\n33 32\n21 40\n34 10\n22 15\n30 22\n5 12\n19 35\n13 6\n31 37\n25 4\n15 23\n37 33\n19 19\n20 6\n14 8\n17 12\n27 33\n28 27\n37 11\n36 20\n",
"39 25\n8 23\n27 38\n6 32\n20 33\n7 34\n22 26\n32 12\n23 2\n28 20\n33 35\n18 10\n1 37\n11 18\n39 28\n17 9\n36 8\n15 17\n14 1\n19 24\n37 30\n21 39\n38 13\n28 5\n36 30\n33 13\n",
"32 24\n9 15\n32 16\n26 7\n15 8\n30 21\n23 14\n22 17\n14 29\n19 1\n24 31\n3 22\n20 18\n5 23\n10 3\n27 24\n1 30\n8 18\n23 28\n14 4\n27 10\n11 9\n11 24\n11 18\n17 6\n",
"44 31\n28 26\n5 36\n9 37\n36 29\n26 5\n25 42\n30 22\n29 3\n35 10\n44 28\n19 13\n16 6\n3 33\n22 9\n4 15\n27 19\n17 11\n19 41\n11 25\n10 30\n2 34\n12 7\n37 31\n16 40\n25 24\n28 44\n41 37\n21 21\n12 28\n20 23\n20 17\n",
"35 28\n6 24\n35 10\n14 19\n30 34\n29 23\n21 16\n34 5\n22 6\n7 35\n13 29\n27 3\n8 27\n5 15\n26 11\n19 1\n31 28\n17 31\n18 20\n12 32\n4 17\n10 4\n32 12\n35 18\n9 5\n33 30\n24 25\n12 12\n34 3\n",
"38 30\n21 36\n20 21\n9 11\n27 10\n25 20\n33 16\n11 23\n31 4\n13 22\n36 27\n32 37\n12 6\n35 9\n5 34\n6 14\n7 38\n26 18\n4 24\n18 5\n23 17\n29 28\n38 13\n10 30\n18 3\n15 25\n1 24\n22 22\n17 22\n36 18\n23 13\n",
"31 24\n6 25\n8 13\n29 20\n13 5\n26 8\n16 9\n31 2\n22 7\n24 21\n28 18\n9 12\n13 14\n20 24\n23 10\n10 27\n15 1\n21 28\n11 16\n12 29\n8 7\n10 28\n27 19\n17 3\n23 16\n",
"36 23\n27 31\n33 14\n34 24\n14 25\n3 8\n1 21\n24 27\n13 26\n23 6\n35 22\n34 33\n36 4\n19 16\n18 15\n32 36\n5 7\n20 30\n21 11\n11 27\n8 23\n6 10\n4 31\n15 31\n",
"43 36\n3 24\n25 36\n36 11\n12 38\n11 32\n15 3\n8 9\n2 17\n5 40\n21 37\n39 20\n28 30\n16 22\n27 13\n31 6\n24 39\n34 19\n35 18\n43 21\n41 4\n7 31\n33 26\n6 5\n42 27\n29 2\n30 10\n40 1\n1 29\n20 14\n40 29\n29 6\n26 27\n37 21\n19 9\n31 4\n9 38\n",
"42 28\n7 19\n15 24\n3 42\n18 5\n32 27\n26 20\n40 30\n35 2\n14 8\n22 8\n36 4\n16 14\n21 29\n37 3\n2 12\n30 21\n19 17\n39 34\n31 28\n20 3\n4 33\n11 42\n26 21\n9 10\n4 32\n6 1\n1 14\n14 12\n",
"30 21\n6 14\n19 17\n25 20\n28 10\n10 3\n24 23\n22 13\n1 7\n11 26\n24 1\n16 8\n14 9\n30 15\n4 27\n13 21\n11 12\n24 14\n19 10\n7 10\n16 8\n26 11\n",
"34 18\n9 14\n30 29\n4 3\n34 19\n26 2\n31 28\n7 21\n20 27\n16 15\n18 20\n5 34\n17 22\n10 12\n6 4\n8 32\n29 24\n24 10\n34 22\n",
"47 36\n29 31\n25 45\n39 46\n12 19\n41 21\n4 41\n5 38\n33 3\n21 39\n40 2\n1 47\n35 12\n42 10\n2 4\n6 35\n17 16\n22 28\n14 22\n41 25\n10 14\n34 37\n27 20\n44 27\n20 2\n3 17\n45 13\n18 34\n47 15\n10 44\n25 15\n12 23\n27 17\n15 38\n17 32\n29 31\n3 39\n",
"33 19\n27 23\n32 16\n20 33\n6 11\n1 31\n26 24\n25 10\n21 15\n14 9\n12 4\n29 2\n7 21\n32 13\n33 6\n5 26\n13 28\n6 22\n3 24\n27 19\n",
"44 31\n28 26\n5 36\n9 37\n36 29\n26 5\n25 42\n30 22\n29 3\n35 10\n44 28\n19 13\n16 6\n3 33\n22 9\n4 15\n27 19\n17 11\n19 41\n11 25\n10 30\n2 34\n12 7\n37 31\n16 40\n25 24\n28 44\n41 37\n21 21\n20 28\n20 23\n20 17\n",
"35 28\n6 24\n35 10\n14 19\n30 34\n29 23\n21 16\n34 5\n22 6\n7 35\n13 29\n27 3\n8 27\n5 15\n26 11\n19 1\n31 28\n28 31\n18 20\n12 32\n4 17\n10 4\n32 12\n35 18\n9 5\n33 30\n24 25\n12 12\n34 3\n",
"48 26\n27 5\n13 21\n14 20\n41 31\n4 26\n21 39\n31 6\n18 4\n42 2\n28 43\n11 23\n35 22\n34 18\n23 15\n10 13\n7 48\n5 23\n19 25\n12 7\n15 27\n39 41\n33 10\n45 40\n20 42\n29 38\n17 28\n",
"7 6\n5 6\n2 7\n7 3\n2 1\n1 5\n3 7\n",
"36 23\n27 31\n33 14\n34 24\n14 25\n3 8\n1 21\n24 27\n13 26\n23 6\n35 22\n34 33\n36 4\n15 16\n18 15\n32 36\n5 7\n20 30\n21 11\n11 27\n8 23\n6 10\n4 31\n15 31\n",
"46 25\n44 40\n25 10\n28 44\n26 4\n38 7\n27 3\n46 8\n32 28\n22 20\n14 33\n30 14\n12 23\n13 30\n40 30\n37 35\n10 16\n23 22\n3 46\n36 24\n19 15\n18 42\n11 34\n34 36\n9 32\n24 19\n",
"43 36\n3 24\n25 36\n36 11\n12 38\n11 32\n15 3\n8 1\n2 17\n5 40\n21 37\n39 20\n28 30\n16 22\n27 13\n31 6\n24 39\n34 19\n35 18\n43 21\n41 4\n7 31\n33 26\n6 5\n42 27\n29 2\n30 10\n40 1\n1 29\n20 14\n40 29\n29 6\n26 27\n37 21\n19 9\n31 4\n9 38\n",
"30 21\n3 14\n19 17\n25 20\n28 10\n10 3\n24 23\n22 13\n1 7\n11 26\n24 1\n16 8\n14 9\n30 15\n4 27\n13 21\n11 12\n24 14\n19 10\n7 10\n16 8\n26 11\n",
"47 36\n29 31\n25 45\n39 46\n12 19\n41 21\n4 41\n5 38\n33 3\n21 39\n40 2\n1 47\n35 12\n42 10\n2 4\n6 35\n17 16\n22 28\n14 22\n41 25\n10 14\n34 37\n27 20\n46 27\n20 2\n3 17\n45 13\n18 34\n47 15\n10 44\n25 15\n12 23\n27 17\n15 38\n17 32\n29 31\n3 39\n",
"44 31\n28 26\n5 36\n9 37\n36 29\n26 5\n25 42\n30 22\n29 3\n35 10\n44 28\n19 13\n16 6\n3 33\n22 2\n4 15\n27 19\n17 11\n19 41\n11 25\n10 30\n2 34\n12 7\n37 31\n16 40\n25 24\n28 44\n41 37\n21 21\n20 28\n20 23\n20 17\n",
"35 28\n6 24\n35 10\n14 19\n30 34\n29 23\n21 16\n34 5\n22 6\n7 35\n13 29\n27 3\n8 27\n5 15\n26 11\n19 1\n31 28\n28 31\n18 20\n12 32\n4 17\n10 4\n32 12\n35 18\n9 5\n7 30\n24 25\n12 12\n34 3\n",
"48 26\n27 5\n13 21\n14 20\n41 31\n4 26\n21 39\n31 6\n18 4\n42 2\n28 43\n11 23\n35 22\n34 18\n23 15\n10 13\n7 48\n5 23\n19 21\n12 7\n15 27\n39 41\n33 10\n45 40\n20 42\n29 38\n17 28\n",
"36 23\n27 31\n33 14\n34 24\n14 25\n3 8\n1 21\n24 27\n13 26\n23 6\n35 22\n34 33\n36 4\n15 16\n18 15\n32 36\n5 9\n20 30\n21 11\n11 27\n8 23\n6 10\n4 31\n15 31\n",
"46 25\n44 40\n25 10\n28 44\n26 4\n38 7\n27 3\n46 8\n32 28\n22 20\n14 33\n30 14\n12 23\n13 30\n40 30\n37 35\n10 16\n23 22\n3 46\n36 24\n26 15\n18 42\n11 34\n34 36\n9 32\n24 19\n"
],
"output": [
"YES\n1\n1 3\n",
"NO\n",
"YES\n0\n",
"YES\n1\n1 3\n",
"YES\n0\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n5\n1 2\n1 4\n4 6\n5 9\n7 9\n",
"YES\n5\n1 2\n2 3\n3 5\n4 6\n5 6\n",
"NO\n",
"YES\n25\n2 3\n4 6\n9 10\n9 11\n11 12\n13 14\n14 15\n15 16\n17 18\n18 19\n20 21\n22 24\n25 26\n25 28\n29 30\n29 31\n31 32\n33 34\n34 36\n36 39\n38 40\n41 42\n42 43\n43 45\n44 45\n",
"NO\n",
"NO\n",
"YES\n3\n1 2\n4 6\n5 6\n",
"YES\n14\n1 2\n4 5\n7 8\n8 9\n10 11\n12 14\n15 16\n17 18\n18 19\n20 23\n22 28\n25 29\n30 31\n30 32\n",
"NO\n",
"YES\n50\n1 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 50\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n16\n1 2\n4 6\n7 8\n8 9\n10 11\n12 14\n15 19\n20 24\n25 27\n29 30\n32 35\n32 36\n38 39\n38 41\n42 46\n44 47\n",
"YES\n49\n1 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 49\n",
"YES\n23\n2 3\n2 5\n3 6\n6 7\n8 10\n8 11\n10 12\n13 14\n13 16\n16 17\n19 20\n20 21\n22 23\n25 27\n26 28\n27 29\n28 30\n31 32\n32 33\n34 36\n34 39\n39 45\n42 45\n",
"YES\n1\n1 1\n",
"NO\n",
"YES\n22\n1 2\n1 3\n3 6\n6 8\n8 9\n9 11\n12 14\n16 19\n16 22\n24 25\n24 26\n29 30\n30 32\n32 33\n34 36\n35 37\n36 38\n37 40\n43 44\n45 46\n46 47\n47 48\n",
"NO\n",
"YES\n5\n1 2\n3 4\n4 5\n5 6\n7 8\n",
"NO\n",
"YES\n4\n1 3\n3 4\n5 6\n7 8\n",
"NO\n",
"YES\n3\n1 2\n2 3\n3 4\n",
"YES\n0\n",
"YES\n15\n1 2\n3 4\n5 6\n7 8\n7 9\n10 11\n13 16\n13 17\n16 19\n20 21\n22 24\n25 30\n30 31\n32 34\n32 36\n",
"YES\n3\n1 2\n2 4\n3 4\n",
"YES\n23\n1 2\n2 3\n5 6\n7 9\n10 11\n11 13\n13 14\n15 16\n15 18\n19 20\n21 22\n23 24\n25 28\n25 29\n28 30\n32 35\n36 37\n36 40\n37 41\n41 43\n45 46\n45 47\n48 49\n",
"YES\n1\n1 2\n",
"YES\n4\n3 5\n3 7\n6 9\n7 9\n",
"YES\n2\n1 2\n3 4\n",
"YES\n1\n2 6\n",
"NO\n",
"YES\n3\n1 3\n4 5\n4 7\n",
"YES\n7\n1 2\n3 4\n3 5\n4 7\n6 8\n7 9\n8 9\n",
"YES\n2\n1 2\n1 2\n",
"YES\n49\n1 2\n1 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 50\n",
"YES\n1\n3 4\n",
"NO\n",
"YES\n21\n1 3\n4 5\n7 8\n7 9\n9 10\n12 14\n15 16\n15 17\n19 20\n20 22\n21 23\n23 26\n26 27\n31 32\n32 33\n34 35\n34 36\n40 42\n43 44\n44 46\n46 47\n",
"NO\n",
"NO\n",
"YES\n49\n1 2\n1 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 50\n",
"NO\n",
"NO\n",
"YES\n2\n1 2\n3 4\n",
"YES\n49\n1 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 49\n",
"YES\n4\n1 2\n3 4\n5 6\n6 7\n",
"NO\n",
"YES\n29\n1 2\n2 3\n4 5\n4 6\n5 7\n7 8\n8 9\n9 11\n12 13\n12 14\n13 15\n16 17\n18 19\n19 20\n22 23\n22 25\n23 26\n27 29\n29 31\n31 32\n33 34\n34 36\n36 37\n38 41\n40 42\n44 45\n44 46\n47 48\n48 50\n",
"YES\n0\n",
"YES\n21\n1 2\n1 4\n2 5\n5 6\n6 7\n8 9\n11 13\n15 16\n15 17\n17 20\n21 25\n21 26\n27 29\n29 31\n31 33\n35 38\n37 39\n39 41\n41 43\n42 45\n43 45\n",
"YES\n3\n2 3\n2 5\n4 5\n",
"YES\n50\n1 2\n1 3\n2 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 12\n11 13\n12 14\n13 15\n14 16\n15 17\n16 18\n17 19\n18 20\n19 21\n20 22\n21 23\n22 24\n23 25\n24 26\n25 27\n26 28\n27 29\n28 30\n29 31\n30 32\n31 33\n32 34\n33 35\n34 36\n35 37\n36 38\n37 39\n38 40\n39 41\n40 42\n41 43\n42 44\n43 45\n44 46\n45 47\n46 48\n47 49\n48 50\n49 50\n",
"NO\n",
"YES\n3\n1 4\n2 5\n7 8\n",
"NO\n",
"YES\n25\n2 3\n4 6\n9 10\n9 11\n11 12\n13 14\n14 15\n15 16\n17 18\n17 19\n18 20\n21 22\n24 25\n25 26\n28 29\n30 31\n31 32\n33 34\n34 36\n36 38\n39 41\n40 42\n42 43\n43 45\n44 45\n",
"YES\n23\n2 3\n2 5\n3 6\n6 7\n8 10\n10 11\n12 13\n13 14\n16 17\n16 19\n20 21\n20 22\n22 23\n25 27\n26 28\n27 29\n28 30\n31 32\n32 33\n34 36\n34 39\n39 45\n42 45\n",
"YES\n22\n1 2\n1 3\n3 6\n8 9\n8 11\n9 12\n14 16\n16 17\n19 22\n24 25\n24 26\n29 30\n30 32\n32 33\n34 36\n35 37\n36 38\n37 40\n43 44\n45 46\n46 47\n47 48\n",
"YES\n4\n1 3\n3 4\n4 5\n6 7\n",
"YES\n15\n1 2\n3 4\n5 6\n7 8\n7 10\n11 13\n13 15\n16 17\n16 19\n20 21\n22 24\n25 30\n30 31\n32 34\n32 36\n",
"YES\n1\n4 6\n",
"YES\n7\n1 3\n2 4\n3 5\n4 7\n5 8\n7 9\n8 9\n",
"YES\n10\n1 2\n1 4\n3 5\n4 6\n5 7\n6 8\n7 9\n8 10\n9 11\n10 11\n",
"YES\n29\n1 2\n2 3\n4 5\n4 6\n5 7\n7 8\n8 9\n9 11\n12 13\n12 14\n13 15\n16 17\n18 19\n19 20\n22 23\n22 25\n23 26\n27 29\n29 31\n31 32\n33 34\n34 35\n36 37\n36 38\n40 42\n41 44\n44 45\n46 47\n48 50\n",
"YES\n1\n1 2\n",
"YES\n21\n1 2\n1 4\n2 5\n5 6\n6 7\n8 9\n11 12\n13 15\n16 17\n17 20\n21 25\n21 26\n27 29\n29 31\n31 33\n35 38\n37 39\n39 41\n41 43\n42 45\n43 45\n",
"YES\n2\n2 3\n2 4\n",
"YES\n6\n1 2\n1 3\n2 4\n3 5\n4 6\n5 6\n",
"YES\n2\n1 4\n3 4\n",
"YES\n10\n1 2\n1 3\n3 4\n4 5\n5 7\n6 8\n7 9\n8 10\n9 11\n10 11\n",
"YES\n3\n1 3\n2 4\n3 4\n",
"YES\n2\n1 2\n3 4\n",
"YES\n9\n1 2\n1 3\n3 4\n4 5\n5 7\n6 8\n7 9\n8 10\n9 10\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n"
]
} | 2CODEFORCES
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Hexadecimal likes drawing. She has drawn many graphs already, both directed and not. Recently she has started to work on a still-life «interesting graph and apples». An undirected graph is called interesting, if each of its vertices belongs to one cycle only — a funny ring — and does not belong to any other cycles. A funny ring is a cycle that goes through all the vertices just once. Moreover, loops are funny rings too.
She has already drawn the apples and some of the graph edges. But now it is not clear, how to connect the rest of the vertices to get an interesting graph as a result. The answer should contain the minimal amount of added edges. And furthermore, the answer should be the lexicographically smallest one. The set of edges (x1, y1), (x2, y2), ..., (xn, yn), where xi ≤ yi, is lexicographically smaller than the set (u1, v1), (u2, v2), ..., (un, vn), where ui ≤ vi, provided that the sequence of integers x1, y1, x2, y2, ..., xn, yn is lexicographically smaller than the sequence u1, v1, u2, v2, ..., un, vn. If you do not cope, Hexadecimal will eat you. ...eat you alive.
Input
The first line of the input data contains a pair of integers n and m (1 ≤ n ≤ 50, 0 ≤ m ≤ 2500) — the amount of vertices and edges respectively. The following lines contain pairs of numbers xi and yi (1 ≤ xi, yi ≤ n) — the vertices that are already connected by edges. The initial graph may contain multiple edges and loops.
Output
In the first line output «YES» or «NO»: if it is possible or not to construct an interesting graph. If the answer is «YES», in the second line output k — the amount of edges that should be added to the initial graph. Finally, output k lines: pairs of vertices xj and yj, between which edges should be drawn. The result may contain multiple edges and loops. k can be equal to zero.
Examples
Input
3 2
1 2
2 3
Output
YES
1
1 3
### Input:
3 2
1 2
2 3
### Output:
YES
1
1 3
### Input:
42 28
7 19
15 24
3 42
18 5
32 27
26 20
40 30
35 2
14 8
22 10
36 4
16 14
21 29
37 40
2 12
30 21
19 17
39 34
31 28
20 3
4 33
11 42
26 21
9 10
4 32
6 1
1 14
14 12
### Output:
NO
### Code:
def dfs(v, comp):
used[v] = comp
for u in graph[v]:
if not used[u]:
dfs(u, comp)
n, m = map(int, input().split())
graph = [[] for i in range(n)]
for i in range(m):
v, u = map(int, input().split())
graph[v - 1].append(u - 1)
graph[u - 1].append(v - 1)
used = [0] * n
ncomp = 0
for v in range(n):
if not used[v]:
ncomp += 1
dfs(v, ncomp)
maxpwr = max(map(len, graph))
if n - m != ncomp or maxpwr > 2:
if n == m and ncomp == 1 and maxpwr == 2:
print("YES")
print(0)
else:
print("NO")
else:
print("YES")
print(n - m)
leaves = []
for v in range(n):
if len(graph[v]) == 1:
leaves.append([v + 1, used[v]])
elif len(graph[v]) == 0:
leaves.append([v + 1, used[v]])
leaves.append([v + 1, used[v]])
sets = []
for i in range(len(leaves)):
if leaves[i][0] == 0:
continue
for j in range(i + 1, len(leaves)):
if leaves[j][0] == 0:
continue
if leaves[i][1] == leaves[j][1]:
continue
seti = -1
for k in range(len(sets)):
if leaves[i][1] in sets[k]:
seti = k
break
setj = -2
for k in range(len(sets)):
if leaves[j][1] in sets[k]:
setj = k
break
if seti != setj:
print(leaves[i][0], leaves[j][0])
if seti >= 0:
if setj >= 0:
sets[seti] |= sets[setj]
sets.pop(setj)
else:
sets[seti].add(leaves[j][1])
else:
if setj >= 0:
sets[setj].add(leaves[i][1])
else:
sets.append(set([leaves[i][1], leaves[j][1]]))
leaves[i][0] = 0
leaves[j][0] = 0
break
for i in range(len(leaves)):
if leaves[i][0] == 0:
continue
for j in range(i + 1, len(leaves)):
if leaves[j][0] == 0:
continue
print(leaves[i][0], leaves[j][0])
break
else:
continue
break |
p02548 AtCoder Beginner Contest 179 - A x B + C_1388 | Given is a positive integer N. How many tuples (A,B,C) of positive integers satisfy A \times B + C = N?
Constraints
* 2 \leq N \leq 10^6
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
Output
Print the answer.
Examples
Input
3
Output
3
Input
100
Output
473
Input
1000000
Output
13969985 | N = int(input())
ans = 0
for i in range(1, N):
ans += (N - 1) // i
print(ans) | {
"input": [
"3",
"100",
"1000000",
"4",
"101",
"5",
"001",
"8",
"6",
"2",
"110",
"10",
"13",
"111",
"12",
"17",
"9",
"7",
"14",
"16",
"11",
"22",
"26",
"18",
"19",
"24",
"43",
"23",
"44",
"72",
"32",
"20",
"15",
"33",
"27",
"65",
"42",
"54",
"31",
"25",
"59",
"37",
"107",
"71",
"183",
"74",
"113",
"90",
"29",
"21",
"28",
"75",
"34",
"51",
"78",
"64",
"36",
"45",
"40",
"115",
"39",
"41",
"35",
"47",
"48",
"76",
"52",
"61",
"55",
"38",
"53",
"99",
"50",
"214",
"57",
"257",
"120",
"144",
"66",
"60",
"56",
"95",
"85",
"62",
"30",
"88",
"70",
"73",
"87",
"106",
"89",
"68",
"92",
"86",
"197",
"116",
"69",
"162",
"84",
"119",
"67",
"63",
"49"
],
"output": [
"3",
"473",
"13969985",
"5\n",
"482\n",
"8\n",
"0\n",
"16\n",
"10\n",
"1\n",
"530\n",
"23\n",
"35\n",
"538\n",
"29\n",
"50\n",
"20\n",
"14\n",
"37\n",
"45\n",
"27\n",
"70\n",
"87\n",
"52\n",
"58\n",
"76\n",
"168\n",
"74\n",
"170\n",
"314\n",
"113\n",
"60\n",
"41\n",
"119\n",
"91\n",
"280\n",
"160\n",
"219\n",
"111\n",
"84\n",
"247\n",
"140\n",
"514\n",
"312\n",
"981\n",
"328\n",
"552\n",
"413\n",
"101\n",
"66\n",
"95\n",
"332\n",
"123\n",
"207\n",
"348\n",
"273\n",
"131\n",
"176\n",
"150\n",
"562\n",
"146\n",
"158\n",
"127\n",
"186\n",
"188\n",
"338\n",
"211\n",
"261\n",
"227\n",
"142\n",
"217\n",
"467\n",
"201\n",
"1178\n",
"239\n",
"1466\n",
"586\n",
"731\n",
"284\n",
"249\n",
"231\n",
"443\n",
"391\n",
"263\n",
"103\n",
"403\n",
"304\n",
"326\n",
"399\n",
"510\n",
"411\n",
"294\n",
"429\n",
"395\n",
"1070\n",
"566\n",
"300\n",
"846\n",
"379\n",
"582\n",
"292\n",
"267\n",
"198\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Given is a positive integer N. How many tuples (A,B,C) of positive integers satisfy A \times B + C = N?
Constraints
* 2 \leq N \leq 10^6
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
Output
Print the answer.
Examples
Input
3
Output
3
Input
100
Output
473
Input
1000000
Output
13969985
### Input:
3
### Output:
3
### Input:
100
### Output:
473
### Code:
N = int(input())
ans = 0
for i in range(1, N):
ans += (N - 1) // i
print(ans) |
p02679 AtCoder Beginner Contest 168 - ∙ (Bullet)_1392 | We have caught N sardines. The deliciousness and fragrantness of the i-th sardine is A_i and B_i, respectively.
We will choose one or more of these sardines and put them into a cooler. However, two sardines on bad terms cannot be chosen at the same time.
The i-th and j-th sardines (i \neq j) are on bad terms if and only if A_i \cdot A_j + B_i \cdot B_j = 0.
In how many ways can we choose the set of sardines to put into the cooler? Since the count can be enormous, print it modulo 1000000007.
Constraints
* All values in input are integers.
* 1 \leq N \leq 2 \times 10^5
* -10^{18} \leq A_i, B_i \leq 10^{18}
Input
Input is given from Standard Input in the following format:
N
A_1 B_1
:
A_N B_N
Output
Print the count modulo 1000000007.
Examples
Input
3
1 2
-1 1
2 -1
Output
5
Input
10
3 2
3 2
-1 1
2 -1
-3 -9
-8 12
7 7
8 1
8 2
8 4
Output
479 | from collections import defaultdict
def gcd(a, b):
return gcd(b, a%b) if b else a
mod = 10 ** 9 + 7
N = int(input())
X = defaultdict(lambda: [0, 0])
# X = dict()
x = 0
y = 0
z = 0
for i in range(N):
a, b = map(int, input().split())
g = abs(gcd(a, b))
if a * b > 0:
X[(abs(a) // g, abs(b) // g)][0] += 1
elif a * b < 0:
X[(abs(b) // g, abs(a) // g)][1] += 1
else:
if a:
x += 1
elif b:
y += 1
else:
z += 1
# suppose we have a super head point which can put togother with every point.
ans = 1
pow2 = [1]
for i in range(N):
pow2 += [pow2[-1] * 2 % mod]
for i in X.values():
ans *= pow2[i[0]] + pow2[i[1]]- 1
ans %= mod
ans *= pow2[x] + pow2[y] - 1
print((ans+z-1)%mod)
| {
"input": [
"3\n1 2\n-1 1\n2 -1",
"10\n3 2\n3 2\n-1 1\n2 -1\n-3 -9\n-8 12\n7 7\n8 1\n8 2\n8 4",
"3\n1 4\n-1 1\n2 -1",
"10\n3 2\n3 2\n-1 1\n2 -1\n-3 -6\n-8 12\n7 7\n8 1\n8 2\n8 4",
"3\n2 4\n-1 1\n2 -1",
"10\n3 2\n3 2\n-1 1\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n8 4",
"3\n2 4\n-2 1\n2 -1",
"10\n3 2\n3 0\n-1 1\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n15 5",
"10\n3 2\n3 0\n-2 2\n2 -2\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n15 3",
"10\n1 2\n3 0\n-2 2\n1 -2\n-3 -6\n-8 12\n7 1\n9 1\n8 2\n15 3",
"10\n1 1\n3 1\n0 4\n0 0\n-2 -6\n-8 5\n1 1\n9 1\n8 2\n15 5",
"10\n1 0\n3 1\n0 4\n0 0\n-2 -6\n-8 5\n1 1\n9 1\n8 2\n15 5",
"10\n1 0\n3 1\n0 4\n0 1\n-2 -6\n-12 5\n1 1\n9 1\n8 2\n15 5",
"10\n1 0\n3 1\n0 4\n0 2\n-2 -24\n-12 5\n1 0\n9 2\n8 2\n15 5",
"10\n1 0\n3 1\n0 4\n0 2\n-3 -24\n-12 5\n1 0\n9 2\n0 2\n15 5",
"10\n1 0\n1 1\n0 4\n-1 2\n-1 -24\n-12 1\n1 0\n13 2\n0 2\n10 5",
"10\n0 -1\n1 0\n0 4\n-1 2\n-2 -24\n-11 1\n1 0\n13 1\n0 2\n0 5",
"10\n-1 0\n1 0\n-1 4\n-1 2\n-2 -26\n-13 1\n1 0\n19 1\n0 3\n0 5",
"10\n-1 0\n1 0\n0 4\n-1 5\n-2 -26\n-13 1\n2 0\n1 1\n0 1\n0 2",
"10\n-1 0\n0 0\n0 4\n-1 5\n-2 -26\n-13 1\n2 0\n1 1\n0 1\n0 2",
"10\n-1 0\n0 0\n0 4\n-1 5\n-2 -26\n-11 1\n2 0\n1 1\n0 1\n0 2",
"10\n-1 0\n-1 0\n0 4\n-1 5\n-2 -26\n-11 1\n2 0\n1 1\n0 1\n0 2",
"10\n-1 1\n-2 0\n0 4\n-1 4\n-2 -26\n-11 1\n4 -1\n1 1\n0 2\n0 2",
"10\n0 1\n-2 0\n0 4\n-1 4\n-2 -26\n-11 1\n4 -1\n1 1\n0 2\n0 2",
"10\n0 1\n0 0\n0 4\n-1 16\n-2 -26\n-11 0\n4 -1\n1 1\n0 2\n0 4",
"10\n0 1\n0 0\n0 4\n-1 16\n-2 -26\n-11 0\n4 -1\n0 1\n0 2\n0 4",
"10\n0 1\n0 0\n0 4\n-1 16\n-2 -26\n-11 0\n0 -1\n0 1\n0 2\n0 4",
"10\n0 1\n0 0\n0 4\n-1 16\n-2 -26\n-11 0\n2 -1\n0 1\n0 0\n0 4",
"10\n0 1\n0 0\n0 4\n-1 16\n-2 -26\n-11 0\n2 -1\n0 1\n1 0\n0 4",
"10\n1 1\n0 0\n-1 1\n-1 16\n-2 -26\n-11 0\n2 -1\n0 1\n1 0\n0 4",
"10\n1 1\n0 0\n-1 2\n-1 13\n-2 -26\n-11 0\n2 -1\n0 1\n1 0\n0 4",
"10\n2 0\n0 0\n-1 2\n-1 13\n-2 -26\n-11 0\n2 -1\n0 1\n0 0\n0 4",
"10\n2 0\n0 0\n-1 2\n-1 13\n-2 -26\n-11 -1\n2 -1\n0 1\n0 0\n0 4",
"10\n2 0\n0 0\n-1 2\n-1 13\n0 -26\n-11 -1\n2 -1\n0 1\n0 0\n0 4",
"10\n2 -1\n0 0\n-1 2\n-1 13\n0 -26\n-16 -1\n4 -1\n0 1\n0 0\n0 4",
"3\n0 2\n4 0\n0 0",
"10\n1 -1\n0 0\n0 3\n-2 13\n0 -32\n-27 -2\n4 -2\n1 1\n-2 2\n1 4",
"10\n2 2\n1 -2\n-1 0\n0 12\n0 0\n-20 0\n3 -1\n1 2\n-5 0\n2 2",
"10\n2 2\n1 -1\n-1 0\n0 12\n0 0\n-18 0\n3 -1\n1 4\n-5 0\n2 3",
"10\n2 0\n1 -1\n-1 0\n0 11\n-1 -1\n-18 1\n6 0\n1 4\n-5 0\n2 3",
"10\n2 0\n2 -1\n-1 -1\n0 20\n0 -1\n-18 0\n1 0\n1 2\n-5 -1\n2 0",
"10\n2 0\n2 -1\n-1 -1\n1 20\n0 -1\n-18 -1\n1 -1\n1 1\n-5 -1\n4 0",
"10\n3 0\n2 0\n-1 -1\n1 20\n0 -1\n-18 -1\n1 -1\n1 1\n-5 0\n2 0",
"10\n3 0\n2 0\n-1 -1\n1 20\n0 -2\n-18 -1\n0 -1\n1 0\n-5 0\n2 0",
"10\n3 0\n2 0\n0 -1\n1 20\n0 -2\n-18 -2\n0 -1\n1 1\n-5 0\n0 0",
"10\n3 0\n2 -1\n0 -1\n0 20\n0 -2\n-2 -2\n0 -1\n0 1\n-3 0\n0 0",
"10\n3 0\n2 -1\n0 -1\n0 20\n0 -2\n-2 -2\n0 -1\n0 1\n-3 0\n0 -1",
"10\n3 -1\n2 -1\n0 -1\n0 20\n0 -2\n-2 -2\n0 -1\n0 1\n-3 0\n0 -1",
"10\n3 0\n2 -1\n0 -1\n0 30\n0 -2\n-2 -2\n1 -1\n0 1\n-3 0\n0 -1",
"10\n3 0\n2 0\n0 -1\n0 30\n0 -2\n-2 -1\n1 -1\n0 1\n-3 0\n0 -1",
"10\n1 0\n2 0\n0 -1\n0 60\n0 -2\n-2 -1\n1 0\n0 1\n-3 0\n0 -1",
"10\n1 0\n2 0\n1 -1\n0 60\n0 -2\n-2 -1\n1 0\n0 1\n-3 0\n0 -1",
"10\n1 0\n2 0\n1 -1\n0 60\n0 -2\n-2 -2\n1 0\n0 1\n-3 0\n0 -1",
"10\n1 0\n2 0\n1 -1\n0 60\n0 0\n-2 -2\n1 0\n0 1\n-3 0\n0 -1",
"10\n1 0\n2 0\n1 -1\n0 60\n0 0\n-2 -2\n1 0\n0 0\n-3 0\n0 -1",
"10\n1 0\n3 0\n1 -1\n0 60\n0 0\n-2 -2\n1 0\n0 0\n0 0\n0 -1",
"10\n1 0\n3 -1\n1 -1\n0 60\n0 0\n-2 -2\n1 0\n1 0\n0 0\n0 -1",
"10\n1 0\n3 -2\n0 -1\n0 60\n0 0\n-2 -2\n1 0\n1 0\n0 0\n0 -1",
"10\n1 0\n3 -2\n0 -1\n0 60\n0 0\n-2 -2\n1 0\n0 -1\n0 0\n0 -1",
"10\n1 2\n0 -2\n0 -1\n0 60\n0 0\n-2 -2\n1 0\n0 -1\n0 0\n0 -1",
"10\n1 1\n-1 -2\n0 -1\n0 92\n-1 0\n-3 -2\n2 0\n0 -1\n-1 0\n0 -1",
"10\n0 0\n-1 -2\n0 -1\n0 111\n-1 -1\n0 -1\n0 0\n0 -2\n-1 2\n0 0",
"10\n0 0\n0 -2\n0 1\n0 111\n0 -4\n0 -1\n-1 0\n0 -3\n1 0\n0 1",
"10\n0 0\n0 -2\n0 1\n0 111\n0 -4\n1 -1\n-1 0\n0 -3\n1 0\n0 1",
"10\n0 -1\n0 -3\n0 1\n0 111\n-1 -4\n1 -1\n0 1\n0 -6\n1 0\n0 1",
"10\n0 -1\n0 -3\n0 1\n0 111\n-1 -4\n1 -1\n1 1\n0 -6\n1 0\n0 1",
"10\n0 -1\n-1 -3\n0 1\n0 111\n-1 -4\n1 -1\n1 1\n0 -6\n1 0\n0 1",
"10\n-1 -1\n0 -6\n0 2\n-1 001\n0 -2\n2 3\n2 0\n2 -36\n1 1\n1 0",
"10\n-1 -1\n0 -6\n0 2\n-1 001\n0 -2\n2 2\n2 0\n2 -36\n1 1\n1 0",
"10\n-2 -1\n0 -6\n0 0\n-1 001\n-1 -2\n2 2\n2 0\n1 -36\n1 1\n1 0",
"10\n-2 0\n0 -6\n1 0\n-1 101\n-1 -1\n2 0\n1 0\n2 -12\n1 1\n1 0",
"10\n3 2\n3 2\n-1 1\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n8 5",
"3\n2 6\n-2 1\n2 -1",
"10\n3 2\n3 2\n-1 1\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n15 5",
"3\n0 6\n-2 1\n2 -1",
"3\n0 0\n-2 1\n2 -1",
"10\n3 2\n3 0\n-2 1\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n15 5",
"3\n0 0\n-2 0\n2 -1",
"10\n3 2\n3 0\n-2 1\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n15 3",
"3\n0 0\n-2 0\n2 0",
"10\n3 2\n3 0\n-2 2\n2 -1\n-3 -6\n-8 12\n7 1\n8 1\n8 2\n15 3",
"3\n1 0\n-2 0\n2 0",
"3\n1 0\n-2 0\n2 1",
"10\n3 2\n3 0\n-2 2\n2 -2\n-3 -6\n-8 12\n7 1\n9 1\n8 2\n15 3",
"3\n1 0\n-2 0\n0 1",
"10\n3 2\n3 0\n-2 2\n1 -2\n-3 -6\n-8 12\n7 1\n9 1\n8 2\n15 3",
"3\n1 0\n-2 0\n0 2",
"3\n1 0\n-1 0\n0 1",
"10\n1 2\n3 1\n-2 2\n1 -2\n-3 -6\n-8 12\n7 1\n9 1\n8 2\n15 3",
"3\n1 -1\n-1 0\n0 1",
"10\n1 2\n3 1\n0 2\n1 -2\n-3 -6\n-8 12\n7 1\n9 1\n8 2\n15 3",
"3\n1 -1\n-2 0\n0 1",
"10\n1 1\n3 1\n0 2\n1 -2\n-3 -6\n-8 12\n7 1\n9 1\n8 2\n15 3",
"3\n2 -1\n-2 0\n0 1",
"10\n1 1\n3 1\n0 2\n1 -2\n-3 -6\n-8 5\n7 1\n9 1\n8 2\n15 3",
"3\n2 -1\n-2 -1\n0 1",
"10\n1 1\n3 1\n0 2\n1 -2\n-3 -6\n-8 5\n8 1\n9 1\n8 2\n15 3",
"3\n1 -1\n-2 -1\n0 1",
"10\n1 1\n3 1\n0 4\n1 -2\n-3 -6\n-8 5\n8 1\n9 1\n8 2\n15 3",
"3\n1 -1\n-1 -1\n0 1",
"10\n1 1\n3 1\n0 4\n1 -2\n-2 -6\n-8 5\n8 1\n9 1\n8 2\n15 3",
"3\n1 0\n-1 -1\n0 1"
],
"output": [
"5",
"479",
"7\n",
"359\n",
"5\n",
"479\n",
"4\n",
"575\n",
"767\n",
"1023\n",
"512\n",
"384\n",
"639\n",
"447\n",
"351\n",
"335\n",
"303\n",
"263\n",
"179\n",
"132\n",
"176\n",
"239\n",
"431\n",
"543\n",
"272\n",
"264\n",
"260\n",
"137\n",
"152\n",
"168\n",
"224\n",
"113\n",
"161\n",
"145\n",
"257\n",
"3\n",
"320\n",
"288\n",
"216\n",
"407\n",
"227\n",
"399\n",
"339\n",
"279\n",
"120\n",
"140\n",
"267\n",
"519\n",
"209\n",
"155\n",
"93\n",
"123\n",
"92\n",
"69\n",
"58\n",
"35\n",
"67\n",
"61\n",
"77\n",
"133\n",
"183\n",
"130\n",
"131\n",
"134\n",
"515\n",
"389\n",
"395\n",
"219\n",
"197\n",
"200\n",
"527\n",
"479\n",
"7\n",
"479\n",
"7\n",
"4\n",
"479\n",
"4\n",
"479\n",
"4\n",
"575\n",
"7\n",
"7\n",
"767\n",
"4\n",
"767\n",
"4\n",
"4\n",
"1023\n",
"5\n",
"1023\n",
"5\n",
"1023\n",
"5\n",
"1023\n",
"7\n",
"1023\n",
"7\n",
"1023\n",
"5\n",
"1023\n",
"5\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
We have caught N sardines. The deliciousness and fragrantness of the i-th sardine is A_i and B_i, respectively.
We will choose one or more of these sardines and put them into a cooler. However, two sardines on bad terms cannot be chosen at the same time.
The i-th and j-th sardines (i \neq j) are on bad terms if and only if A_i \cdot A_j + B_i \cdot B_j = 0.
In how many ways can we choose the set of sardines to put into the cooler? Since the count can be enormous, print it modulo 1000000007.
Constraints
* All values in input are integers.
* 1 \leq N \leq 2 \times 10^5
* -10^{18} \leq A_i, B_i \leq 10^{18}
Input
Input is given from Standard Input in the following format:
N
A_1 B_1
:
A_N B_N
Output
Print the count modulo 1000000007.
Examples
Input
3
1 2
-1 1
2 -1
Output
5
Input
10
3 2
3 2
-1 1
2 -1
-3 -9
-8 12
7 7
8 1
8 2
8 4
Output
479
### Input:
3
1 2
-1 1
2 -1
### Output:
5
### Input:
10
3 2
3 2
-1 1
2 -1
-3 -9
-8 12
7 7
8 1
8 2
8 4
### Output:
479
### Code:
from collections import defaultdict
def gcd(a, b):
return gcd(b, a%b) if b else a
mod = 10 ** 9 + 7
N = int(input())
X = defaultdict(lambda: [0, 0])
# X = dict()
x = 0
y = 0
z = 0
for i in range(N):
a, b = map(int, input().split())
g = abs(gcd(a, b))
if a * b > 0:
X[(abs(a) // g, abs(b) // g)][0] += 1
elif a * b < 0:
X[(abs(b) // g, abs(a) // g)][1] += 1
else:
if a:
x += 1
elif b:
y += 1
else:
z += 1
# suppose we have a super head point which can put togother with every point.
ans = 1
pow2 = [1]
for i in range(N):
pow2 += [pow2[-1] * 2 % mod]
for i in X.values():
ans *= pow2[i[0]] + pow2[i[1]]- 1
ans %= mod
ans *= pow2[x] + pow2[y] - 1
print((ans+z-1)%mod)
|
p02807 Dwango Programming Contest 6th - Fusing Slimes_1396 | There are N slimes standing on a number line. The i-th slime from the left is at position x_i.
It is guaruanteed that 1 \leq x_1 < x_2 < \ldots < x_N \leq 10^{9}.
Niwango will perform N-1 operations. The i-th operation consists of the following procedures:
* Choose an integer k between 1 and N-i (inclusive) with equal probability.
* Move the k-th slime from the left, to the position of the neighboring slime to the right.
* Fuse the two slimes at the same position into one slime.
Find the total distance traveled by the slimes multiplied by (N-1)! (we can show that this value is an integer), modulo (10^{9}+7). If a slime is born by a fuse and that slime moves, we count it as just one slime.
Constraints
* 2 \leq N \leq 10^{5}
* 1 \leq x_1 < x_2 < \ldots < x_N \leq 10^{9}
* x_i is an integer.
Input
Input is given from Standard Input in the following format:
N
x_1 x_2 \ldots x_N
Output
Print the answer.
Examples
Input
3
1 2 3
Output
5
Input
12
161735902 211047202 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 982631932
Output
750927044 | n = int(input())
lst1 = list(map(int,input().split()))
mod = 10**9+7
def pow(n, p):
res = 1
while p > 0:
if p % 2 == 0:
n = n ** 2 % mod
p //= 2
else:
res = res * n % mod
p -= 1
return res % mod
fac = [1]
for i in range(n-1):
fac.append(fac[-1]*(i+1)%mod)
f = 1
ans = 0
for i in range(n-1):
ans += ((lst1[-1]-lst1[i])*fac[-1]*pow(i+1,mod-2))%mod
print(ans%mod) | {
"input": [
"12\n161735902 211047202 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 982631932",
"3\n1 2 3",
"12\n161735902 211047202 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 1765707086",
"3\n1 2 5",
"12\n161735902 394362112 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 1765707086",
"3\n1 3 5",
"12\n161735902 394362112 430302156 872675759 628894325 707723857 731963982 822804784 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 628894325 707723857 402149677 822804784 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 628894325 946982680 402149677 822804784 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 1190847685 946982680 402149677 822804784 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 1190847685 946982680 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 430302156 872675759 1190847685 946982680 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 127795962 872675759 1190847685 946982680 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 127795962 872675759 1190847685 946982680 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 127795962 872675759 1190847685 1723370727 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n249946995 467388357 127795962 872675759 1190847685 1723370727 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n367101616 467388357 127795962 872675759 1190847685 1723370727 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n367101616 467388357 127795962 872675759 1190847685 1723370727 402149677 270216579 135685914 923078537 628600728 1765707086",
"12\n367101616 467388357 127795962 872675759 1190847685 1723370727 668687333 270216579 135685914 923078537 628600728 1765707086",
"12\n367101616 467388357 127795962 872675759 1190847685 1723370727 668687333 270216579 135685914 125686970 628600728 1765707086",
"12\n367101616 467388357 156291688 872675759 1190847685 1723370727 668687333 270216579 135685914 125686970 628600728 1765707086",
"12\n367101616 467388357 156291688 888737356 1190847685 1723370727 668687333 270216579 135685914 125686970 628600728 1765707086",
"12\n367101616 467388357 156291688 888737356 1190847685 1723370727 668687333 270216579 263279879 125686970 628600728 1765707086",
"12\n367101616 782606466 156291688 888737356 1190847685 1723370727 668687333 270216579 263279879 125686970 628600728 1765707086",
"12\n161735902 211047202 620468900 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 982631932",
"3\n1 3 3",
"3\n1 2 10",
"12\n161735902 153817908 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 1765707086",
"3\n1 3 10",
"12\n161735902 394362112 430302156 872675759 628894325 707723857 402149677 822804784 880895728 923078537 971407775 1899824314",
"12\n161735902 394362112 430302156 872675759 628894325 946982680 402149677 118193378 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 1190847685 946982680 659456907 822804784 880895728 923078537 971407775 1765707086",
"12\n65590262 394362112 430302156 872675759 1190847685 946982680 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n236309991 467388357 430302156 872675759 1190847685 946982680 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 127795962 872675759 1190847685 210181890 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 127795962 872675759 1190847685 946982680 402149677 233485274 135685914 923078537 971407775 1765707086",
"12\n155910255 467388357 127795962 872675759 1190847685 1723370727 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n249946995 467388357 127795962 872675759 1190847685 1723370727 402149677 270216579 135685914 610891069 971407775 1765707086",
"12\n367101616 467388357 127795962 872675759 121747736 1723370727 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n367101616 467388357 127795962 1640220090 1190847685 1723370727 402149677 270216579 135685914 923078537 628600728 1765707086",
"12\n367101616 467388357 127795962 872675759 1190847685 1723370727 668687333 304635000 135685914 923078537 628600728 1765707086",
"12\n367101616 467388357 156291688 1477792495 1190847685 1723370727 668687333 270216579 135685914 125686970 628600728 1765707086",
"12\n367101616 467388357 156291688 888737356 1190847685 1723370727 668687333 270216579 135685914 28445051 628600728 1765707086",
"12\n367101616 782606466 156291688 888737356 1190847685 1723370727 576787926 270216579 263279879 125686970 628600728 1765707086",
"12\n161735902 211047202 758123752 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 982631932",
"3\n1 0 3",
"3\n0 2 10",
"12\n161735902 153817908 430302156 456338336 628894325 707723857 731963982 822804784 880895728 923078537 971407775 1765707086",
"3\n1 1 10",
"12\n161735902 394362112 708642191 872675759 628894325 946982680 402149677 118193378 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 1190847685 946982680 659456907 816973013 880895728 923078537 971407775 1765707086",
"12\n65590262 394362112 430302156 872675759 1190847685 946982680 402149677 822804784 135685914 556514256 971407775 1765707086",
"12\n236309991 467388357 430302156 872675759 1190847685 946982680 402149677 822804784 135685914 605112598 971407775 1765707086",
"12\n161735902 467388357 218368251 872675759 1190847685 210181890 402149677 822804784 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 126257933 872675759 1190847685 946982680 402149677 233485274 135685914 923078537 971407775 1765707086",
"12\n155910255 467388357 127795962 872675759 1190847685 1723370727 402149677 397005484 135685914 923078537 971407775 1765707086",
"12\n249946995 467388357 127795962 872675759 1190847685 1723370727 585878039 270216579 135685914 610891069 971407775 1765707086",
"12\n367101616 467388357 127795962 872675759 121747736 1138999790 402149677 270216579 135685914 923078537 971407775 1765707086",
"12\n367101616 467388357 127795962 1640220090 1190847685 1158214640 402149677 270216579 135685914 923078537 628600728 1765707086",
"12\n367101616 467388357 159541726 1477792495 1190847685 1723370727 668687333 270216579 135685914 125686970 628600728 1765707086",
"12\n161735902 211047202 758123752 450968417 628894325 707723857 731963982 822804784 978891789 923078537 971407775 982631932",
"3\n2 2 10",
"12\n161735902 153817908 430302156 456338336 628894325 707723857 731963982 1292969385 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 708642191 872675759 405378550 946982680 402149677 118193378 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 430302156 872675759 1190847685 946982680 659456907 816973013 880895728 923078537 971407775 1362959685",
"12\n236309991 467388357 430302156 872675759 1190847685 946982680 402149677 1615732667 135685914 605112598 971407775 1765707086",
"12\n161735902 467388357 218368251 872675759 1190847685 210181890 402149677 578502185 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 126257933 872675759 1190847685 946982680 749092417 233485274 135685914 923078537 971407775 1765707086",
"12\n155910255 467388357 127795962 872675759 1190847685 1723370727 402149677 397005484 135685914 923078537 1690273409 1765707086",
"12\n39728457 467388357 127795962 872675759 1190847685 1723370727 585878039 270216579 135685914 610891069 971407775 1765707086",
"12\n367101616 467388357 127795962 872675759 121747736 1138999790 394173623 270216579 135685914 923078537 971407775 1765707086",
"12\n367101616 467388357 159541726 1477792495 1190847685 1723370727 668687333 270216579 135685914 125686970 1191846896 1765707086",
"12\n161735902 153817908 430302156 456338336 628894325 707723857 170551574 1292969385 880895728 923078537 971407775 1765707086",
"3\n1 0 12",
"12\n161735902 394362112 708642191 872675759 405378550 946982680 402149677 110547358 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 208582102 872675759 1190847685 946982680 659456907 816973013 880895728 923078537 971407775 1362959685",
"12\n236309991 467388357 724813649 872675759 1190847685 946982680 402149677 1615732667 135685914 605112598 971407775 1765707086",
"12\n10777282 467388357 218368251 872675759 1190847685 210181890 402149677 578502185 135685914 923078537 971407775 1765707086",
"12\n161735902 467388357 126257933 872675759 1190847685 946982680 749092417 56894969 135685914 923078537 971407775 1765707086",
"12\n155910255 467388357 127795962 872675759 1190847685 1723370727 402149677 397005484 135685914 923078537 1690273409 1870414358",
"12\n39728457 467388357 127795962 872675759 1190847685 1723370727 585878039 270216579 265340279 610891069 971407775 1765707086",
"12\n161735902 153817908 430302156 456338336 628894325 707723857 170551574 1292969385 166321802 923078537 971407775 1765707086",
"3\n0 0 12",
"12\n30345845 394362112 708642191 872675759 405378550 946982680 402149677 110547358 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 208582102 872675759 1190847685 946982680 206331977 816973013 880895728 923078537 971407775 1362959685",
"12\n236309991 717653235 724813649 872675759 1190847685 946982680 402149677 1615732667 135685914 605112598 971407775 1765707086",
"12\n161735902 301038801 126257933 872675759 1190847685 946982680 749092417 56894969 135685914 923078537 971407775 1765707086",
"12\n155910255 467388357 135136574 872675759 1190847685 1723370727 402149677 397005484 135685914 923078537 1690273409 1870414358",
"12\n39728457 467388357 127795962 872675759 1190847685 1723370727 585878039 270216579 260534362 610891069 971407775 1765707086",
"12\n161735902 153817908 430302156 456338336 628894325 707723857 170551574 1292969385 198935015 923078537 971407775 1765707086",
"3\n0 -1 12",
"12\n30345845 394362112 708642191 872675759 405378550 767745523 402149677 110547358 880895728 923078537 971407775 1765707086",
"12\n161735902 394362112 208582102 872675759 1190847685 946982680 206331977 816973013 880895728 359957688 971407775 1362959685",
"12\n236309991 717653235 724813649 872675759 1190847685 946982680 653377096 1615732667 135685914 605112598 971407775 1765707086",
"12\n161735902 301038801 126257933 872675759 1190847685 946982680 695219587 56894969 135685914 923078537 971407775 1765707086",
"12\n39728457 467388357 127795962 872675759 1190847685 1723370727 585878039 308175318 260534362 610891069 971407775 1765707086",
"12\n161735902 153817908 430302156 456338336 628894325 707723857 164473536 1292969385 198935015 923078537 971407775 1765707086",
"3\n0 -1 19",
"12\n30345845 394362112 708642191 872675759 405378550 767745523 402149677 110547358 880895728 343998880 971407775 1765707086",
"12\n161735902 394362112 208582102 872675759 1190847685 946982680 206331977 412724029 880895728 359957688 971407775 1362959685",
"12\n236309991 717653235 724813649 872675759 1190847685 946982680 653377096 1615732667 16217625 605112598 971407775 1765707086",
"12\n161735902 301038801 70956625 872675759 1190847685 946982680 695219587 56894969 135685914 923078537 971407775 1765707086"
],
"output": [
"750927044",
"5",
"161914202\n",
"11\n",
"887780913\n",
"10\n",
"9952620\n",
"89619489\n",
"3107276\n",
"58421608\n",
"602338330\n",
"604332739\n",
"991043957\n",
"79411592\n",
"716486077\n",
"184071405\n",
"641273671\n",
"844719425\n",
"525784353\n",
"473666389\n",
"744454860\n",
"856794434\n",
"107187762\n",
"44560905\n",
"139672618\n",
"4\n",
"26\n",
"295288367\n",
"25\n",
"649725974\n",
"49874773\n",
"320340491\n",
"858225548\n",
"629374852\n",
"252443434\n",
"597556674\n",
"901027890\n",
"647614581\n",
"350377241\n",
"510420571\n",
"373564891\n",
"854833727\n",
"477311241\n",
"219369376\n",
"753722485\n",
"7\n",
"28\n",
"799978683\n",
"27\n",
"906103147\n",
"524718405\n",
"157165172\n",
"899877846\n",
"612360867\n",
"996075826\n",
"985068272\n",
"43479625\n",
"292836920\n",
"899695081\n",
"149523628\n",
"627017709\n",
"24\n",
"523250614\n",
"791116298\n",
"597999591\n",
"962555797\n",
"851798463\n",
"729348668\n",
"390669405\n",
"322379268\n",
"942848146\n",
"469392584\n",
"616220028\n",
"34\n",
"372241241\n",
"927851165\n",
"868725561\n",
"852433968\n",
"709008863\n",
"945121173\n",
"286756569\n",
"870630282\n",
"36\n",
"962786151\n",
"510595865\n",
"362614563\n",
"664238766\n",
"698777670\n",
"489685764\n",
"749345204\n",
"37\n",
"912528748\n",
"725397599\n",
"138537156\n",
"87880331\n",
"566897157\n",
"152993784\n",
"58\n",
"581602001\n",
"441844712\n",
"890200901\n",
"166454412\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are N slimes standing on a number line. The i-th slime from the left is at position x_i.
It is guaruanteed that 1 \leq x_1 < x_2 < \ldots < x_N \leq 10^{9}.
Niwango will perform N-1 operations. The i-th operation consists of the following procedures:
* Choose an integer k between 1 and N-i (inclusive) with equal probability.
* Move the k-th slime from the left, to the position of the neighboring slime to the right.
* Fuse the two slimes at the same position into one slime.
Find the total distance traveled by the slimes multiplied by (N-1)! (we can show that this value is an integer), modulo (10^{9}+7). If a slime is born by a fuse and that slime moves, we count it as just one slime.
Constraints
* 2 \leq N \leq 10^{5}
* 1 \leq x_1 < x_2 < \ldots < x_N \leq 10^{9}
* x_i is an integer.
Input
Input is given from Standard Input in the following format:
N
x_1 x_2 \ldots x_N
Output
Print the answer.
Examples
Input
3
1 2 3
Output
5
Input
12
161735902 211047202 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 982631932
Output
750927044
### Input:
12
161735902 211047202 430302156 450968417 628894325 707723857 731963982 822804784 880895728 923078537 971407775 982631932
### Output:
750927044
### Input:
3
1 2 3
### Output:
5
### Code:
n = int(input())
lst1 = list(map(int,input().split()))
mod = 10**9+7
def pow(n, p):
res = 1
while p > 0:
if p % 2 == 0:
n = n ** 2 % mod
p //= 2
else:
res = res * n % mod
p -= 1
return res % mod
fac = [1]
for i in range(n-1):
fac.append(fac[-1]*(i+1)%mod)
f = 1
ans = 0
for i in range(n-1):
ans += ((lst1[-1]-lst1[i])*fac[-1]*pow(i+1,mod-2))%mod
print(ans%mod) |
p02943 AtCoder Grand Contest 037 - Reversing and Concatenating_1399 | Takahashi has a string S of length N consisting of lowercase English letters. On this string, he will perform the following operation K times:
* Let T be the string obtained by reversing S, and U be the string obtained by concatenating S and T in this order.
* Let S' be some contiguous substring of U with length N, and replace S with S'.
Among the strings that can be the string S after the K operations, find the lexicographically smallest possible one.
Constraints
* 1 \leq N \leq 5000
* 1 \leq K \leq 10^9
* |S|=N
* S consists of lowercase English letters.
Input
Input is given from Standard Input in the following format:
N K
S
Output
Print the lexicographically smallest possible string that can be the string S after the K operations.
Examples
Input
5 1
bacba
Output
aabca
Input
10 2
bbaabbbaab
Output
aaaabbaabb | def solve(n, k, s):
u = s + s[::-1]
t = min(u[i:i + n] for i in range(n + 1))
i, h = 0, t[0]
for i, c in enumerate(t):
if c != h:
break
j = i
for _ in range(k - 1):
j <<= 1
if j >= n:
return h * n
return h * j + t[i:i + n - j]
n, k = map(int, input().split())
s = input()
print(solve(n, k, s))
| {
"input": [
"5 1\nbacba",
"10 2\nbbaabbbaab",
"5 2\nbacba",
"10 2\nbbbabbbaaa",
"10 3\nbbaabbbaab",
"5 2\nbacaa",
"10 2\nbaabbbaabb",
"10 2\nbaabbaaabb",
"10 2\nbbaaabbbab",
"5 1\nbabba",
"10 2\nbabbbbaabb",
"10 1\nbaabbaaabb",
"5 1\nbabbb",
"10 2\nbbaabbbbab",
"10 1\nbbaaabbaab",
"8 5\nbbaaabbbab",
"5 1\nbabbc",
"5 2\nbabbc",
"5 2\ncabab",
"10 1\nbbaabbbaab",
"5 1\nbacaa",
"5 1\nb`bbb",
"10 1\nbabbbbaabb",
"10 1\nbbbabbcaaa",
"5 1\naacab",
"10 1\nbbaabbbbab",
"5 1\ncbbab",
"5 1\naabac",
"4 4\nbbaaabbbab",
"5 1\nbaaac",
"5 2\naac`a",
"9 5\nbbaaabbbab",
"10 2\nabbabbbbab",
"10 1\nbbaabbcbab",
"5 1\nbabac",
"5 1\ncaaab",
"10 2\nbbaabbcbab",
"5 1\ncbbba",
"5 2\na`aac",
"5 1\naacba",
"5 1\nbbbac",
"5 1\nabcba",
"10 1\nbbaaabbbab",
"5 1\nbabca",
"5 2\n`bcab",
"2 5\nbacaa",
"10 2\nbbaaabbaab",
"5 8\nabc`a",
"10 1\nbbb`bbbaaa",
"10 3\nbabbba`abb",
"10 3\nbaabbababa",
"5 1\nb`abb",
"10 1\nbbbbbbaaba",
"10 5\nbbaa`bbbab",
"10 1\nabbabbcaba",
"5 1\naac`a",
"6 4\nbcaaabbbab",
"10 2\nbbaaabcbab",
"5 2\nca``a",
"5 1\nb`aac",
"10 2\nbbaabbcaab",
"5 2\nbbbac",
"10 2\nbbcabbba`a",
"10 2\nbbb`bbbaaa",
"7 7\nbbaaabbbab",
"5 1\nbba`b",
"10 2\nabbabbcaba",
"5 1\nbabcb",
"10 1\nbaaabbbaab",
"10 2\nbbb`babaaa",
"5 2\nbba`b",
"3 4\na``ac",
"10 1\nbaaabbb`ab",
"10 2\naaabab`bbb",
"5 2\nb`abb",
"10 3\naaabab`bbb",
"5 2\nacbbd",
"8 7\nbba`abbaac",
"10 3\nbbaabbba`b",
"5 2\nb`cba",
"10 1\nbaaaabbaab",
"5 1\nbabcc",
"5 3\n`bcaa",
"5 1\nb`caa",
"10 1\nbbbabbc`aa",
"5 2\na`bac",
"5 1\n`bcab",
"10 2\nbbaabbbbbb",
"10 1\naaabbb`bbb",
"10 1\nbabbba`abb",
"5 2\nbaa`c",
"10 2\nbba`bbcaab",
"5 1\nabdab",
"10 2\nbaaabbb`ab",
"10 4\naaabab`bbb",
"10 1\nbbaabbba`b",
"10 2\nbaabbb`abb",
"10 1\nbabbbaabba",
"5 5\nbbbbc",
"3 6\nbbaabbbaab",
"5 1\nbbbad",
"5 1\n`bdab"
],
"output": [
"aabca",
"aaaabbaabb",
"aaaab\n",
"aaaaaaaaaa\n",
"aaaaaaaabb\n",
"aaaaa\n",
"aaaabbbaab\n",
"aaaaaabbbb\n",
"aaaaaabbba\n",
"aabba\n",
"aaaabbbbaa\n",
"aaabbbbaaa\n",
"abbbb\n",
"aaaabbbbab\n",
"aaabbaabba\n",
"aaaaaaaa\n",
"abbcc\n",
"aabbc\n",
"aabab\n",
"aabbaabbba\n",
"aaaac\n",
"`bbbb\n",
"aabbbbaabb\n",
"aaaaaacbba\n",
"aacab\n",
"aabbbbabba\n",
"abbab\n",
"aabac\n",
"aaaa\n",
"aaacc\n",
"``aa`\n",
"aaaaaaaaa\n",
"aabbabbbba\n",
"aabbcbabba\n",
"abacc\n",
"aaabb\n",
"aaaabbcbab\n",
"aabbb\n",
"``aac\n",
"aabca\n",
"accab\n",
"aabcb\n",
"aaabbbabba\n",
"aacba\n",
"``bca\n",
"aa\n",
"aaaaaabbaa\n",
"`````\n",
"`bbbaaaaaa\n",
"````abbbba\n",
"aaaaaaaaba\n",
"`abbb\n",
"aabaabaabb\n",
"``````````\n",
"aabacbbabb\n",
"`aa`c\n",
"aaaaaa\n",
"aaaaaabcba\n",
"````a\n",
"`aacc\n",
"aaaabbaacb\n",
"aacca\n",
"``aa`abbba\n",
"``bbbaaaaa\n",
"aaaaaaa\n",
"`bb`a\n",
"aaaabacbba\n",
"abcbb\n",
"aaabbbaabb\n",
"``babaaaaa\n",
"``bb`\n",
"```\n",
"`abba`bbba\n",
"``bbbbbb`b\n",
"``abb\n",
"````bbbbbb\n",
"aacbb\n",
"````````\n",
"````bb`abb\n",
"``cba\n",
"aaaabbaabb\n",
"abccc\n",
"````b\n",
"`caaa\n",
"`aaaa`cbba\n",
"``bac\n",
"`bcab\n",
"aaaabbbbbb\n",
"`bbbbbb`bb\n",
"`abbbba`ab\n",
"``cc`\n",
"``bbcaabba\n",
"abbad\n",
"``abba`bbb\n",
"````````bb\n",
"`bb`abbbaa\n",
"``abbbba`b\n",
"aabbaabbaa\n",
"bbbbb\n",
"aaa\n",
"addab\n",
"`bdab\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Takahashi has a string S of length N consisting of lowercase English letters. On this string, he will perform the following operation K times:
* Let T be the string obtained by reversing S, and U be the string obtained by concatenating S and T in this order.
* Let S' be some contiguous substring of U with length N, and replace S with S'.
Among the strings that can be the string S after the K operations, find the lexicographically smallest possible one.
Constraints
* 1 \leq N \leq 5000
* 1 \leq K \leq 10^9
* |S|=N
* S consists of lowercase English letters.
Input
Input is given from Standard Input in the following format:
N K
S
Output
Print the lexicographically smallest possible string that can be the string S after the K operations.
Examples
Input
5 1
bacba
Output
aabca
Input
10 2
bbaabbbaab
Output
aaaabbaabb
### Input:
5 1
bacba
### Output:
aabca
### Input:
10 2
bbaabbbaab
### Output:
aaaabbaabb
### Code:
def solve(n, k, s):
u = s + s[::-1]
t = min(u[i:i + n] for i in range(n + 1))
i, h = 0, t[0]
for i, c in enumerate(t):
if c != h:
break
j = i
for _ in range(k - 1):
j <<= 1
if j >= n:
return h * n
return h * j + t[i:i + n - j]
n, k = map(int, input().split())
s = input()
print(solve(n, k, s))
|
p03080 ExaWizards 2019 - Red or Blue_1403 | There are N people numbered 1 to N. Each person wears a red hat or a blue hat.
You are given a string s representing the colors of the people. Person i wears a red hat if s_i is `R`, and a blue hat if s_i is `B`.
Determine if there are more people wearing a red hat than people wearing a blue hat.
Constraints
* 1 \leq N \leq 100
* |s| = N
* s_i is `R` or `B`.
Input
Input is given from Standard Input in the following format:
N
s
Output
If there are more people wearing a red hat than there are people wearing a blue hat, print `Yes`; otherwise, print `No`.
Examples
Input
4
RRBR
Output
Yes
Input
4
BRBR
Output
No | n = input()
s = input()
if s.count('R') > s.count('B') :
print('Yes')
else :
print('No')
| {
"input": [
"4\nRRBR",
"4\nBRBR",
"4\nRBRR",
"4\nBBRR",
"4\nRRCR",
"4\nRRAR",
"4\nRARR",
"4\nBQBR",
"4\nRCRR",
"4\nBPBR",
"4\nRRRC",
"4\nAQBR",
"4\nRRRD",
"4\nAQBS",
"4\nDRRR",
"4\nARBS",
"4\nERRR",
"4\nBQBS",
"4\nBPBS",
"4\nPBBS",
"4\nSBBP",
"4\nPBSB",
"4\nPASB",
"4\nPASC",
"4\nPACS",
"4\nPCAS",
"4\nCPAS",
"4\nCOAS",
"4\nOCAS",
"4\nSACO",
"4\nOACS",
"4\nSCAO",
"4\nSCBO",
"4\nCSBO",
"4\nCBSO",
"4\nSBCO",
"4\nSBCN",
"4\nNBCS",
"4\nSCBN",
"4\nNBBS",
"4\nNBAS",
"4\nNAAS",
"4\nNASA",
"4\nASAN",
"4\nSAAN",
"4\nSAAM",
"4\nMAAS",
"4\nMBAS",
"4\nMB@S",
"4\nMC@S",
"4\nM@CS",
"4\nM?CS",
"4\nSC?M",
"4\nS?CM",
"4\nS@CM",
"4\nSRCB",
"4\nARRR",
"4\nBBQR",
"4\nR@RR",
"4\nRBQB",
"4\nCRRR",
"4\nAPBR",
"4\nAQBQ",
"4\nBRBS",
"4\nAQCS",
"4\nBPCS",
"4\nPSBB",
"4\nSABP",
"4\nPBSC",
"4\nPARB",
"4\nCASP",
"4\nSCAP",
"4\nP@CS",
"4\nCQAS",
"4\nSAOC",
"4\nSOCA",
"4\nOBCS",
"4\nSDAO",
"4\nRCBO",
"4\nBSBO",
"4\nOCBS",
"4\nSBDO",
"4\nNCBS",
"4\nNACS",
"4\nSCCN",
"4\nSACN",
"4\nOBAS",
"4\nAASN",
"4\nNBSA",
"4\nNCSA",
"4\nSAAL",
"4\nMAAT",
"4\nSABM",
"4\nS@BM",
"4\nLC@S",
"4\nSC@M",
"4\nSM?C",
"4\nSC?N",
"4\nS?DM",
"4\nS@CL",
"4\nBCRS",
"4\nCBQR"
],
"output": [
"Yes",
"No",
"Yes\n",
"No\n",
"Yes\n",
"Yes\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"Yes\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n",
"No\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are N people numbered 1 to N. Each person wears a red hat or a blue hat.
You are given a string s representing the colors of the people. Person i wears a red hat if s_i is `R`, and a blue hat if s_i is `B`.
Determine if there are more people wearing a red hat than people wearing a blue hat.
Constraints
* 1 \leq N \leq 100
* |s| = N
* s_i is `R` or `B`.
Input
Input is given from Standard Input in the following format:
N
s
Output
If there are more people wearing a red hat than there are people wearing a blue hat, print `Yes`; otherwise, print `No`.
Examples
Input
4
RRBR
Output
Yes
Input
4
BRBR
Output
No
### Input:
4
RRBR
### Output:
Yes
### Input:
4
BRBR
### Output:
No
### Code:
n = input()
s = input()
if s.count('R') > s.count('B') :
print('Yes')
else :
print('No')
|
p03225 Tenka1 Programmer Contest - Equilateral_1406 | There are some coins in the xy-plane. The positions of the coins are represented by a grid of characters with H rows and W columns. If the character at the i-th row and j-th column, s_{ij}, is `#`, there is one coin at point (i,j); if that character is `.`, there is no coin at point (i,j). There are no other coins in the xy-plane.
There is no coin at point (x,y) where 1\leq i\leq H,1\leq j\leq W does not hold. There is also no coin at point (x,y) where x or y (or both) is not an integer. Additionally, two or more coins never exist at the same point.
Find the number of triples of different coins that satisfy the following condition:
* Choosing any two of the three coins would result in the same Manhattan distance between the points where they exist.
Here, the Manhattan distance between points (x,y) and (x',y') is |x-x'|+|y-y'|. Two triples are considered the same if the only difference between them is the order of the coins.
Constraints
* 1 \leq H,W \leq 300
* s_{ij} is `#` or `.`.
Input
Input is given from Standard Input in the following format:
H W
s_{11}...s_{1W}
:
s_{H1}...s_{HW}
Output
Print the number of triples that satisfy the condition.
Examples
Input
5 4
#.##
.##.
#...
..##
...#
Output
3
Input
5 4
.##
.##.
...
..##
...#
Output
3
Input
13 27
......#.........#.......#..
...#.....###..
..............#####...##...
...#######......#...#######
...#.....#.....###...#...#.
...#######....#.#.#.#.###.#
..............#.#.#...#.#..
.#.#.#...###..
...........#...#...#######
..#######..#...#...#.....#
..#.....#..#...#...#.###.#
..#######..#...#...#.#.#.#
..........##...#...#.#####
Output
870 | H,W=map(int,input().split())
S=[list(input()) for i in range(H)]
table=[[0]*(H+W-1) for i in range(H+W-1)]
for j in range(H):
for i in range(W):
if S[j][i]=='#':
table[i+j][i-j+H-1]=1
yoko=[[0]*(H+W) for i in range(H+W-1)]
for j in range(H+W-1):
for i in range(1,H+W):
yoko[j][i]=yoko[j][i-1]+table[j][i-1]
tate=[[0]*(H+W-1) for i in range(H+W)]
for j in range(1,H+W):
for i in range(H+W-1):
tate[j][i]=tate[j-1][i]+table[j-1][i]
ans=0
for y in range(H+W-1):
for x in range((y+H-1)%2,H+W-1,2):
if table[y][x]!=1:
continue
for z in range(x+2,H+W-1,2):
if table[y][z]==1:
d=z-x
if y+d<H+W-1:
ans+=yoko[y+d][z+1]-yoko[y+d][x]
#print(1,'.',ans,':',x,y,z)
if y-d>=0:
ans+=yoko[y-d][z+1]-yoko[y-d][x]
#print(2,'.',ans,':',x,y,z)
for w in range(y+2,H+W-1,2):
if table[w][x]==1:
e=w-y
if x+e<H+W-1:
ans+=tate[w][x+e]-tate[y+1][x+e]
#print(3,'.',ans,':',x,y,w)
if x-e>=0:
ans+=tate[w][x-e]-tate[y+1][x-e]
#print(4,'.',ans,':',x,y,w)
print(ans)
| {
"input": [
"5 4\n#.##\n.##.\n#...\n..##\n...#",
"13 27\n......#.........#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#...#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#...#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"5 4\n.##\n.##.\n...\n..##\n...#",
"5 6\n#.##\n.##.\n#...\n..##\n...#",
"13 27\n......#.........#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#...#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"10 4\n.##\n.##.\n...\n..##\n...#",
"5 6\n$.##\n.##.\n#...\n..##\n...#",
"13 25\n......#.........#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#...#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 18\n......#.........#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#...#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"5 8\n#.$#\n.##.\n..-#\n##..\n...#",
"13 31\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"9 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"9 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"9 30\n../...#...-.....#......-#..\n...#.....###..\n.............-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n.............-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######...#...#...../../..\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n.............-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"13 30\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#.....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"13 30\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.\"....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"13 25\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.\"....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"13 25\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.\"....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.\"####",
"13 25\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-./...../.....\n...######.....#.#...#######\n.#..-#...###.....#.....#...\n#.###.#.#.#.\"....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.\"####",
"13 29\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-./...../.....\n...######.....#.#...#######\n.#..-#...###.....#.....#...\n#.###.#.#.#.\"....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..##.#.##.##...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.\"####",
"13 29\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-./...../.....\n...######.....#.#...#######\n.#..-#...###.....#.....#...\n#.###.#.#.#.\"....#######...\n..#.#...#.#.#...../........\n.#.#.#./.#$#..\n#######...#...#...../../..\n..##.#.##.##...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.\"####",
"8 4\n.##\n.##.\n...\n..##\n...#",
"5 8\n$.##\n.##.\n#...\n..##\n...#",
"14 4\n.##\n.##.\n...\n..##\n...#",
"5 8\n$.##\n.##.\n...#\n..##\n...#",
"13 18\n......#...-.....#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#...#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"14 4\n.##\n.##.\n..-\n..##\n...#",
"5 8\n#.$#\n.##.\n...#\n..##\n...#",
"13 31\n......#...-.....#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#...#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"14 4\n.##\n.##.\n..-\n./##\n...#",
"5 8\n#.$#\n.##.\n..-#\n..##\n...#",
"13 31\n......#...-.....#.......#..\n...#.....###..\n..............#####...##...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"14 4\n##.\n.##.\n..-\n./##\n...#",
"3 4\n##.\n.##.\n..-\n./##\n...#",
"5 8\n#.$#\n-##.\n..-#\n..##\n...#",
"13 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...........#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"3 4\n##.\n.##.\n..-\n./##\n#...",
"5 8\n#.$#\n-$#.\n..-#\n..##\n...#",
"13 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n..............#.#.#...#.#..\n.#.#.#...###..\n...../.....#...#./.#######\n..#######..#...#...#.....#\n..#.....#..#...#...#.###.#\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"3 6\n##.\n.##.\n..-\n./##\n#...",
"5 8\n#$.#\n-$#.\n..-#\n..##\n...#",
"2 6\n##.\n.##.\n..-\n./##\n#...",
"5 8\n#$.#\n-$#.\n#-..\n..##\n...#",
"2 6\n.##\n.##.\n..-\n./##\n#...",
"5 8\n#$.#\n-$#.\n#-..\n##..\n...#",
"2 6\n.##\n.##.\n./-\n./##\n#...",
"5 0\n#$.#\n-$#.\n#-..\n##..\n...#",
"9 30\n......#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...#######......#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"2 6\n.##\n.#$.\n./-\n./##\n#...",
"5 0\n#$.#\n-$#.\n#-..\n#$..\n...#",
"2 6\n-##\n.#$.\n./-\n./##\n#...",
"5 0\n#$.#\n-$#.\n#-..\n#$..\n../#",
"9 30\n../...#...-.....#.......#..\n...#.....###..\n..............#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"2 12\n-##\n.#$.\n./-\n./##\n#...",
"5 0\n#.$#\n-$#.\n#-..\n#$..\n../#",
"9 30\n../...#...-.....#.......#..\n...#.....###..\n.............-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"2 12\n-##\n.#$.\n.0-\n./##\n#...",
"5 0\n#/$#\n-$#.\n#-..\n#$..\n../#",
"9 30\n../...#...-.....#......-#..\n...#.....###..\n.............-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n...#######....#.#.#.#.###.#\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######./.#...#...../.....\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"2 12\n-##\n.#$.\n.0-\n##/.\n#...",
"6 0\n#/$#\n-$#.\n#-..\n#$..\n../#",
"2 11\n-##\n.#$.\n.0-\n##/.\n#...",
"6 -1\n#/$#\n-$#.\n#-..\n#$..\n../#",
"9 30\n../...#...-.....#......-#..\n...#.....###..\n.............-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...###..\n#######...#...#...../../..\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"2 11\n-##\n.#$.\n.0-\n##..\n#...",
"6 -1\n#/$#\n-$#.\n#-..\n#$..\n/..#",
"2 5\n-##\n.#$.\n.0-\n##..\n#...",
"11 -1\n#/$#\n-$#.\n#-..\n#$..\n/..#",
"2 2\n-##\n.#$.\n.0-\n##..\n#...",
"11 -1\n#/$#\n-$#.\n#-./\n#$..\n/..#",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n...../.......-#####...#\"...\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..#######..#...#...#.....#\n#.###.#...#...#..#.....#..\n..#######..#...#...#.#.#.#\n..........##...#...#.#####",
"3 2\n-##\n.#$.\n.0-\n##..\n#...",
"11 -1\n#/$#\n-$#.\n#-./\n#$..\n#../",
"3 2\n##-\n.#$.\n.0-\n##..\n#...",
"11 -1\n#/$#\n-$#.\n#-./\n..$#\n#../",
"3 2\n##-\n.$#.\n.0-\n##..\n#...",
"11 -1\n#/$#\n-##.\n#-./\n..$#\n#../",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n#.###.#...#...#..#.....#..\n..#######..#...#./.#.#.#.#\n..........##...#...#.#####",
"3 2\n-##\n.$#.\n.0-\n##..\n#...",
"11 -1\n#/$#\n-##.\n#-./\n..$#\n#.//",
"13 30\n../...#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n#.###.#...#...#..#.....#..\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"3 4\n-##\n.$#.\n.0-\n##..\n#...",
"11 0\n#/$#\n-##.\n#-./\n..$#\n#.//",
"13 30\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#...#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n#.###.#...#...#..#.....#..\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"3 6\n-##\n.$#.\n.0-\n##..\n#...",
"11 0\n#/$#\n.##-\n#-./\n..$#\n#.//",
"3 6\n-##\n.$#.\n.0-\n##..\n#/..",
"11 0\n#/$#\n.##-\n#-./\n..$#\n#./.",
"13 30\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#.....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"3 6\n-##\n.$#.\n-0.\n##..\n#/..",
"21 0\n#/$#\n.##-\n#-./\n..$#\n#./.",
"13 30\n../..-#...-.....#......-#..\n...#.....###..\n...\"#...#####-......./.....\n...######.....#.#...#######\n...#.....#.....###...#-..#.\n#.###.#.#.#.#....#######...\n......../.....#.#.#...#.#..\n.#.#.#./.#$#..\n#######...#...#...../../..\n..####.##..#...#..##.....#\n..#/....#..#...#...#.###.#\n..#######..#...#./.#.#.#.#\n..../.....##...#...#.#####",
"3 6\n-##\n.$#.\n-0.\n##..\n#/./",
"21 0\n#/$#\n.##-\n#/.-\n..$#\n#./.",
"3 6\n-##\n.$#.\n0.4364069664817982\n##..\n#/./",
"35 0\n#/$#\n.##-\n#/.-\n..$#\n#./.",
"3 6\n-##\n.$#.\n0.4364069664817982\n##..\n./#/"
],
"output": [
"3",
"870",
"3",
"3\n",
"583\n",
"0\n",
"1\n",
"476\n",
"187\n",
"2\n",
"565\n",
"528\n",
"530\n",
"157\n",
"159\n",
"138\n",
"481\n",
"465\n",
"460\n",
"461\n",
"453\n",
"442\n",
"398\n",
"389\n",
"401\n",
"435\n",
"469\n",
"0\n",
"1\n",
"0\n",
"3\n",
"187\n",
"0\n",
"3\n",
"583\n",
"0\n",
"3\n",
"583\n",
"0\n",
"0\n",
"3\n",
"565\n",
"0\n",
"3\n",
"565\n",
"0\n",
"3\n",
"0\n",
"0\n",
"0\n",
"1\n",
"0\n",
"0\n",
"157\n",
"0\n",
"0\n",
"0\n",
"0\n",
"159\n",
"0\n",
"0\n",
"159\n",
"0\n",
"0\n",
"159\n",
"0\n",
"0\n",
"0\n",
"0\n",
"138\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"465\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"461\n",
"0\n",
"0\n",
"461\n",
"0\n",
"0\n",
"461\n",
"0\n",
"0\n",
"0\n",
"0\n",
"453\n",
"0\n",
"0\n",
"453\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There are some coins in the xy-plane. The positions of the coins are represented by a grid of characters with H rows and W columns. If the character at the i-th row and j-th column, s_{ij}, is `#`, there is one coin at point (i,j); if that character is `.`, there is no coin at point (i,j). There are no other coins in the xy-plane.
There is no coin at point (x,y) where 1\leq i\leq H,1\leq j\leq W does not hold. There is also no coin at point (x,y) where x or y (or both) is not an integer. Additionally, two or more coins never exist at the same point.
Find the number of triples of different coins that satisfy the following condition:
* Choosing any two of the three coins would result in the same Manhattan distance between the points where they exist.
Here, the Manhattan distance between points (x,y) and (x',y') is |x-x'|+|y-y'|. Two triples are considered the same if the only difference between them is the order of the coins.
Constraints
* 1 \leq H,W \leq 300
* s_{ij} is `#` or `.`.
Input
Input is given from Standard Input in the following format:
H W
s_{11}...s_{1W}
:
s_{H1}...s_{HW}
Output
Print the number of triples that satisfy the condition.
Examples
Input
5 4
#.##
.##.
#...
..##
...#
Output
3
Input
5 4
.##
.##.
...
..##
...#
Output
3
Input
13 27
......#.........#.......#..
...#.....###..
..............#####...##...
...#######......#...#######
...#.....#.....###...#...#.
...#######....#.#.#.#.###.#
..............#.#.#...#.#..
.#.#.#...###..
...........#...#...#######
..#######..#...#...#.....#
..#.....#..#...#...#.###.#
..#######..#...#...#.#.#.#
..........##...#...#.#####
Output
870
### Input:
5 4
#.##
.##.
#...
..##
...#
### Output:
3
### Input:
13 27
......#.........#.......#..
...#.....###..
..............#####...##...
...#######......#...#######
...#.....#.....###...#...#.
...#######....#.#.#.#.###.#
..............#.#.#...#.#..
.#.#.#...###..
...........#...#...#######
..#######..#...#...#.....#
..#.....#..#...#...#.###.#
..#######..#...#...#.#.#.#
..........##...#...#.#####
### Output:
870
### Code:
H,W=map(int,input().split())
S=[list(input()) for i in range(H)]
table=[[0]*(H+W-1) for i in range(H+W-1)]
for j in range(H):
for i in range(W):
if S[j][i]=='#':
table[i+j][i-j+H-1]=1
yoko=[[0]*(H+W) for i in range(H+W-1)]
for j in range(H+W-1):
for i in range(1,H+W):
yoko[j][i]=yoko[j][i-1]+table[j][i-1]
tate=[[0]*(H+W-1) for i in range(H+W)]
for j in range(1,H+W):
for i in range(H+W-1):
tate[j][i]=tate[j-1][i]+table[j-1][i]
ans=0
for y in range(H+W-1):
for x in range((y+H-1)%2,H+W-1,2):
if table[y][x]!=1:
continue
for z in range(x+2,H+W-1,2):
if table[y][z]==1:
d=z-x
if y+d<H+W-1:
ans+=yoko[y+d][z+1]-yoko[y+d][x]
#print(1,'.',ans,':',x,y,z)
if y-d>=0:
ans+=yoko[y-d][z+1]-yoko[y-d][x]
#print(2,'.',ans,':',x,y,z)
for w in range(y+2,H+W-1,2):
if table[w][x]==1:
e=w-y
if x+e<H+W-1:
ans+=tate[w][x+e]-tate[y+1][x+e]
#print(3,'.',ans,':',x,y,w)
if x-e>=0:
ans+=tate[w][x-e]-tate[y+1][x-e]
#print(4,'.',ans,':',x,y,w)
print(ans)
|
p03371 AtCoder Beginner Contest 095 - Half and Half_1410 | "Pizza At", a fast food chain, offers three kinds of pizza: "A-pizza", "B-pizza" and "AB-pizza". A-pizza and B-pizza are completely different pizzas, and AB-pizza is one half of A-pizza and one half of B-pizza combined together. The prices of one A-pizza, B-pizza and AB-pizza are A yen, B yen and C yen (yen is the currency of Japan), respectively.
Nakahashi needs to prepare X A-pizzas and Y B-pizzas for a party tonight. He can only obtain these pizzas by directly buying A-pizzas and B-pizzas, or buying two AB-pizzas and then rearrange them into one A-pizza and one B-pizza. At least how much money does he need for this? It is fine to have more pizzas than necessary by rearranging pizzas.
Constraints
* 1 ≤ A, B, C ≤ 5000
* 1 ≤ X, Y ≤ 10^5
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
A B C X Y
Output
Print the minimum amount of money required to prepare X A-pizzas and Y B-pizzas.
Examples
Input
1500 2000 1600 3 2
Output
7900
Input
1500 2000 1900 3 2
Output
8500
Input
1500 2000 500 90000 100000
Output
100000000 | a, b, c, x, y = map(int, input().split())
print(min(a*x+b*y, c*2*max(x,y), c*2*min(x,y)+abs(x-y)*(a if x>y else b))) | {
"input": [
"1500 2000 1600 3 2",
"1500 2000 500 90000 100000",
"1500 2000 1900 3 2",
"1500 1572 1600 3 2",
"1500 2445 500 90000 100000",
"1500 2000 1615 3 2",
"1500 1572 1600 0 2",
"1500 2000 1166 3 2",
"1500 651 1600 0 2",
"1500 3132 752 90000 100000",
"1500 2000 1343 3 2",
"1500 2000 1343 3 3",
"1339 651 1600 0 1",
"542 2000 1343 3 3",
"1339 1142 1600 0 1",
"542 2000 1343 5 3",
"1339 1142 1600 0 2",
"542 2000 841 5 3",
"1339 1142 1600 0 4",
"1339 422 1600 0 4",
"1339 290 1600 0 4",
"778 2000 2830 5 3",
"778 1881 2830 5 3",
"1339 290 1999 1 4",
"1297 1881 2383 5 3",
"2595 290 1999 1 4",
"1297 1368 1708 5 3",
"2595 290 2334 1 8",
"1297 886 1708 5 3",
"4369 290 2334 1 8",
"1297 632 1708 5 3",
"1626 632 1708 5 3",
"4369 290 2668 0 8",
"1626 165 1708 5 3",
"1626 8 1708 5 3",
"1908 8 1708 5 3",
"1908 8 144 5 3",
"251 8 144 5 2",
"251 8 144 6 2",
"251 8 144 6 3",
"251 8 117 6 3",
"251 8 86 6 3",
"251 6 75 6 3",
"251 6 75 1 3",
"251 6 75 1 6",
"124 6 75 1 6",
"124 6 6 1 6",
"124 6 6 1 12",
"115 7 6 1 12",
"115 1 6 1 12",
"115 1 9 1 12",
"104 1 16 1 12",
"104 2 16 1 12",
"97 3 16 1 12",
"97 1 16 1 14",
"97 1 25 1 14",
"97 1 26 1 17",
"97 2 26 1 17",
"97 2 21 1 17",
"97 2 21 1 8",
"75 2 43 1 1",
"75 1 43 1 1",
"75 1 43 2 1",
"0 1 43 2 1",
"0 1 8 2 0",
"1 1 8 2 0",
"1 1 8 4 0",
"336 2000 1600 3 2",
"1500 3495 1900 3 2",
"1839 1572 1600 3 2",
"1500 2445 118 90000 100000",
"1500 965 1600 0 2",
"1500 3132 574 90000 100000",
"1500 2000 1166 0 2",
"1500 218 1600 0 2",
"1985 2000 1343 3 2",
"1500 2000 2264 3 3",
"1143 3132 1087 90000 100000",
"542 2000 1343 3 0",
"1339 120 1600 0 1",
"1928 3132 265 90000 100000",
"542 2000 1343 8 3",
"1339 1142 1600 1 2",
"542 2000 841 7 3",
"542 1406 1489 5 3",
"542 120 2830 5 3",
"778 2000 2830 5 1",
"1339 290 1874 0 5",
"778 1881 2830 5 0",
"778 1881 2383 5 5",
"1464 290 1999 1 4",
"1297 2556 2383 5 3",
"1717 290 1999 1 4",
"1297 1881 1708 10 3",
"2595 290 2334 1 2",
"2595 272 2334 1 8",
"1297 886 1708 5 6",
"4369 106 2334 1 8",
"1297 632 1708 5 5",
"4369 549 2668 1 8",
"1626 632 1708 8 3",
"4369 290 2668 0 1",
"1626 165 681 5 3"
],
"output": [
"7900",
"100000000",
"8500",
"7644\n",
"100000000\n",
"7960\n",
"3144\n",
"6164\n",
"1302\n",
"150400000\n",
"6872\n",
"8058\n",
"651\n",
"7626\n",
"1142\n",
"8710\n",
"2284\n",
"6130\n",
"4568\n",
"1688\n",
"1160\n",
"9890\n",
"9533\n",
"2499\n",
"12128\n",
"3755\n",
"10589\n",
"4915\n",
"9143\n",
"6689\n",
"8381\n",
"10026\n",
"2320\n",
"8625\n",
"8154\n",
"9564\n",
"1440\n",
"1271\n",
"1522\n",
"1530\n",
"1404\n",
"1032\n",
"900\n",
"162\n",
"180\n",
"160\n",
"42\n",
"78\n",
"89\n",
"23\n",
"29\n",
"43\n",
"54\n",
"65\n",
"45\n",
"63\n",
"68\n",
"84\n",
"74\n",
"56\n",
"77\n",
"76\n",
"151\n",
"1\n",
"0\n",
"2\n",
"4\n",
"5008\n",
"9100\n",
"8239\n",
"23600000\n",
"1930\n",
"114800000\n",
"4000\n",
"436\n",
"7357\n",
"10500\n",
"217400000\n",
"1626\n",
"120\n",
"53000000\n",
"10336\n",
"3623\n",
"7214\n",
"6928\n",
"3070\n",
"5890\n",
"1450\n",
"3890\n",
"13295\n",
"2624\n",
"14153\n",
"2877\n",
"18613\n",
"3175\n",
"4771\n",
"11801\n",
"5217\n",
"9645\n",
"8761\n",
"14904\n",
"290\n",
"6810\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
"Pizza At", a fast food chain, offers three kinds of pizza: "A-pizza", "B-pizza" and "AB-pizza". A-pizza and B-pizza are completely different pizzas, and AB-pizza is one half of A-pizza and one half of B-pizza combined together. The prices of one A-pizza, B-pizza and AB-pizza are A yen, B yen and C yen (yen is the currency of Japan), respectively.
Nakahashi needs to prepare X A-pizzas and Y B-pizzas for a party tonight. He can only obtain these pizzas by directly buying A-pizzas and B-pizzas, or buying two AB-pizzas and then rearrange them into one A-pizza and one B-pizza. At least how much money does he need for this? It is fine to have more pizzas than necessary by rearranging pizzas.
Constraints
* 1 ≤ A, B, C ≤ 5000
* 1 ≤ X, Y ≤ 10^5
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
A B C X Y
Output
Print the minimum amount of money required to prepare X A-pizzas and Y B-pizzas.
Examples
Input
1500 2000 1600 3 2
Output
7900
Input
1500 2000 1900 3 2
Output
8500
Input
1500 2000 500 90000 100000
Output
100000000
### Input:
1500 2000 1600 3 2
### Output:
7900
### Input:
1500 2000 500 90000 100000
### Output:
100000000
### Code:
a, b, c, x, y = map(int, input().split())
print(min(a*x+b*y, c*2*max(x,y), c*2*min(x,y)+abs(x-y)*(a if x>y else b))) |
p03534 CODE FESTIVAL 2017 Final (Parallel) - Palindrome-phobia_1414 | Snuke has a string S consisting of three kinds of letters: `a`, `b` and `c`.
He has a phobia for palindromes, and wants to permute the characters in S so that S will not contain a palindrome of length 2 or more as a substring. Determine whether this is possible.
Constraints
* 1 \leq |S| \leq 10^5
* S consists of `a`, `b` and `c`.
Input
Input is given from Standard Input in the following format:
S
Output
If the objective is achievable, print `YES`; if it is unachievable, print `NO`.
Examples
Input
abac
Output
YES
Input
aba
Output
NO
Input
babacccabab
Output
YES | s=input()
from collections import defaultdict
d=defaultdict(int)
for c in s:
d[c]+=1
a,b,c=d["a"],d["b"],d["c"]
mx=max(a,b,c)
mn=min(a,b,c)
#a,b,c = map(lambda x:x-mn, [a,b,c])
if mx-mn >=2:
print("NO")
else:
print("YES") | {
"input": [
"aba",
"abac",
"babacccabab",
"acac",
"bacaccbabab",
"ccaa",
"bacaacbcbab",
"babcbcaacab",
"bababccacab",
"bacaccbabac",
"bacaccbaaac",
"caaabccacab",
"caaaaccacab",
"bacaccaaaac",
"baa",
"caba",
"babacccbaab",
"aacc",
"bacabcbabab",
"bacaacccbab",
"babcbbaacab",
"aacaccbabac",
"caabaccacab",
"bbcaccbaaac",
"bba",
"caca",
"aabacccbaab",
"bacabcbaaab",
"aacaacccbab",
"babcbbbacab",
"aacaccbaaac",
"caabaccbcab",
"caaabccacbb",
"bab",
"acca",
"bacabccaaab",
"babcccaacaa",
"bacabbbcbab",
"caaabccacaa",
"baaabccacbb",
"bbb",
"acba",
"bacacccaaab",
"bacabbbcbba",
"ccaabacacaa",
"baaabccacab",
"abb",
"aabc",
"baaacccacab",
"abbcbbbacab",
"ccaabacbcaa",
"bacaccbaaab",
"abc",
"cbaa",
"aacbcabaacc",
"aacaccbaaab",
"cba",
"cbab",
"aaabcabcacc",
"aacaccaaaab",
"bca",
"cbac",
"ccacbacbaaa",
"aaaaccaaacb",
"bac",
"cabc",
"aaaabcaaacb",
"acb",
"cacb",
"aaaabcbaacb",
"cca",
"bcac",
"bcaabcbaaaa",
"acc",
"bcab",
"bbaaccbaaaa",
"bcc",
"acbb",
"aaaabccaabb",
"ccb",
"bbca",
"bbaaccbbaaa",
"cbc",
"bbcb",
"bbaaacbbaca",
"bbc",
"bcbb",
"bbaaacbbaba",
"aca",
"bcba",
"aabacccabab",
"ccab",
"bbacbcaacab",
"cacaccbaaac",
"aacaccbabca",
"caaaaccacaa",
"caa",
"baca",
"babacccbaaa",
"bcbcbbaaaab",
"aacacccabac",
"baabaccbcab",
"abcaccbaaac"
],
"output": [
"NO",
"YES",
"YES",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"YES\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n",
"NO\n",
"NO\n",
"YES\n",
"NO\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Snuke has a string S consisting of three kinds of letters: `a`, `b` and `c`.
He has a phobia for palindromes, and wants to permute the characters in S so that S will not contain a palindrome of length 2 or more as a substring. Determine whether this is possible.
Constraints
* 1 \leq |S| \leq 10^5
* S consists of `a`, `b` and `c`.
Input
Input is given from Standard Input in the following format:
S
Output
If the objective is achievable, print `YES`; if it is unachievable, print `NO`.
Examples
Input
abac
Output
YES
Input
aba
Output
NO
Input
babacccabab
Output
YES
### Input:
aba
### Output:
NO
### Input:
abac
### Output:
YES
### Code:
s=input()
from collections import defaultdict
d=defaultdict(int)
for c in s:
d[c]+=1
a,b,c=d["a"],d["b"],d["c"]
mx=max(a,b,c)
mn=min(a,b,c)
#a,b,c = map(lambda x:x-mn, [a,b,c])
if mx-mn >=2:
print("NO")
else:
print("YES") |
p03694 AtCoder Beginner Contest 064 - Traveling AtCoDeer Problem_1418 | It is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts.
There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses.
Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.
Constraints
* 1 ≤ N ≤ 100
* 0 ≤ a_i ≤ 1000
* a_i is an integer.
Input
Input is given from Standard Input in the following format:
N
a_1 a_2 ... a_N
Output
Print the minimum distance to be traveled.
Examples
Input
4
2 3 7 9
Output
7
Input
8
3 1 4 1 5 9 2 6
Output
8 | num = input()
l = list(map(int, input().split()))
print(max(l) - min(l)) | {
"input": [
"4\n2 3 7 9",
"8\n3 1 4 1 5 9 2 6",
"4\n2 3 9 9",
"8\n3 1 4 1 5 18 2 6",
"4\n2 3 13 9",
"4\n4 4 13 9",
"8\n3 1 1 1 5 15 1 6",
"4\n4 4 8 9",
"4\n0 4 8 18",
"8\n1 1 1 2 5 14 1 6",
"4\n-1 2 4 18",
"4\n-1 2 4 31",
"8\n0 1 0 2 7 8 1 6",
"4\n-1 2 11 6",
"8\n1 1 -1 2 -1 0 1 5",
"4\n-3 3 7 2",
"8\n2 2 0 2 0 -1 0 1",
"8\n2 0 -2 2 0 0 1 0",
"4\n1 -33 0 0",
"4\n1 -42 -1 0",
"4\n0 -42 -2 0",
"4\n0 -50 -2 0",
"4\n0 -94 -4 -1",
"4\n0 -123 -4 -1",
"4\n0 -84 -11 -1",
"4\n0 -41 -11 -2",
"4\n1 -30 -11 -2",
"4\n2 -33 -16 -2",
"4\n0 -33 -16 -2",
"4\n-2 -12 -21 -1",
"4\n0 -13 -21 -1",
"4\n0 -13 -26 -1",
"4\n0 -30 -26 0",
"8\n12 2 0 1 -2 4 -3 0",
"8\n10 2 0 1 -2 4 -6 0",
"4\n-1 -2 -2 -1",
"4\n-1 -2 -2 0",
"8\n9 3 -1 1 -3 3 -13 0",
"4\n-5 -1 -1 -40",
"8\n25 5 0 0 -2 10 -1 1",
"8\n47 5 2 0 -2 10 0 0",
"8\n64 5 0 0 -2 10 0 0",
"8\n64 5 0 0 -3 10 0 0",
"8\n79 5 0 0 -3 10 0 0",
"4\n-22 -4 2 -1",
"4\n-35 -4 2 -1",
"8\n121 1 -1 -1 -3 3 0 1",
"4\n-67 -8 2 -1",
"4\n-94 -8 2 -1",
"4\n-94 -8 4 -1",
"8\n55 1 -3 -1 -2 0 0 1",
"8\n55 1 -1 -1 -2 0 0 1",
"4\n-62 -1 0 -1",
"4\n1 -1 19 -4",
"4\n1 0 39 -8",
"4\n1 1 39 -1",
"4\n1 1 91 -1",
"4\n1 1 80 -1",
"4\n1 1 103 -1",
"4\n2 1 84 -1",
"4\n4 1 90 -1",
"8\n0 -5 0 15 -1 -10 2 1",
"4\n22 2 14 -6",
"8\n0 -4 -1 21 -2 -15 4 2",
"8\n0 -3 -1 27 -6 -18 4 2",
"4\n33 1 -1 -13",
"4\n33 1 -1 -19",
"4\n46 1 -1 -19",
"8\n0 -2 0 14 0 -30 3 1",
"8\n-1 -7 0 4 -1 -60 1 2",
"8\n0 -17 0 4 0 -44 1 0",
"4\n-3 51 -2 0",
"4\n-6 72 -3 0",
"4\n-3 58 -3 0",
"4\n-3 94 -3 0",
"4\n-3 48 -3 0",
"4\n-3 45 -11 0",
"4\n1 0 1 -28",
"8\n-1 -1 0 1 3 -52 -1 1",
"8\n-2 -1 0 1 3 -143 0 1",
"8\n-2 -1 0 1 3 -97 0 1",
"8\n-2 -1 0 1 3 -90 0 1",
"8\n-2 -1 0 1 3 -149 0 1",
"8\n-2 1 1 2 3 -158 0 2",
"8\n-2 1 0 2 4 -158 1 3",
"8\n-2 1 0 3 4 -158 1 6",
"8\n-2 1 0 3 4 -158 1 7",
"8\n3 1 1 1 5 18 2 6",
"4\n2 4 13 9",
"8\n3 1 1 1 5 18 1 6",
"4\n4 4 11 9",
"8\n2 1 1 1 5 15 1 6",
"8\n1 1 1 1 5 15 1 6",
"4\n0 4 8 9",
"8\n1 1 1 2 5 15 1 6",
"4\n0 4 4 18",
"8\n1 1 1 2 7 14 1 6",
"4\n0 2 4 18",
"8\n1 1 0 2 7 14 1 6",
"8\n0 1 0 2 7 14 1 6",
"4\n-1 2 8 31",
"8\n0 1 0 2 7 8 0 6"
],
"output": [
"7",
"8",
"7\n",
"17\n",
"11\n",
"9\n",
"14\n",
"5\n",
"18\n",
"13\n",
"19\n",
"32\n",
"8\n",
"12\n",
"6\n",
"10\n",
"3\n",
"4\n",
"34\n",
"43\n",
"42\n",
"50\n",
"94\n",
"123\n",
"84\n",
"41\n",
"31\n",
"35\n",
"33\n",
"20\n",
"21\n",
"26\n",
"30\n",
"15\n",
"16\n",
"1\n",
"2\n",
"22\n",
"39\n",
"27\n",
"49\n",
"66\n",
"67\n",
"82\n",
"24\n",
"37\n",
"124\n",
"69\n",
"96\n",
"98\n",
"58\n",
"57\n",
"62\n",
"23\n",
"47\n",
"40\n",
"92\n",
"81\n",
"104\n",
"85\n",
"91\n",
"25\n",
"28\n",
"36\n",
"45\n",
"46\n",
"52\n",
"65\n",
"44\n",
"64\n",
"48\n",
"54\n",
"78\n",
"61\n",
"97\n",
"51\n",
"56\n",
"29\n",
"55\n",
"146\n",
"100\n",
"93\n",
"152\n",
"161\n",
"162\n",
"164\n",
"165\n",
"17\n",
"11\n",
"17\n",
"7\n",
"14\n",
"14\n",
"9\n",
"14\n",
"18\n",
"13\n",
"18\n",
"14\n",
"14\n",
"32\n",
"8\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
It is only six months until Christmas, and AtCoDeer the reindeer is now planning his travel to deliver gifts.
There are N houses along TopCoDeer street. The i-th house is located at coordinate a_i. He has decided to deliver gifts to all these houses.
Find the minimum distance to be traveled when AtCoDeer can start and end his travel at any positions.
Constraints
* 1 ≤ N ≤ 100
* 0 ≤ a_i ≤ 1000
* a_i is an integer.
Input
Input is given from Standard Input in the following format:
N
a_1 a_2 ... a_N
Output
Print the minimum distance to be traveled.
Examples
Input
4
2 3 7 9
Output
7
Input
8
3 1 4 1 5 9 2 6
Output
8
### Input:
4
2 3 7 9
### Output:
7
### Input:
8
3 1 4 1 5 9 2 6
### Output:
8
### Code:
num = input()
l = list(map(int, input().split()))
print(max(l) - min(l)) |
p03849 AtCoder Regular Contest 066 - Xor Sum_1422 | You are given a positive integer N. Find the number of the pairs of integers u and v (0≦u,v≦N) such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 10^9+7.
Constraints
* 1≦N≦10^{18}
Input
The input is given from Standard Input in the following format:
N
Output
Print the number of the possible pairs of integers u and v, modulo 10^9+7.
Examples
Input
3
Output
5
Input
1422
Output
52277
Input
1000000000000000000
Output
787014179 | n=int(input())
d=dict()
def get(n):
if(n==1):return 1
if(n==0):return 0
if(n in d.keys()):return d[n]
if(n%2==0):
d[n]=2*get(n//2)+get(n//2-1)
else:
d[n]=2*get(n//2)+get(n//2+1)
d[n]%=(10**9+7)
return d[n]
def check(u,v,n):
for a in range(n+1):
b=u ^ a
if(a+b==v):
return 1
return 0
#for e in range(1,n):
# ans=0
# for i in range(e+1):
## for j in range(e+1):
# ans+=check(i,j,e)
# print(ans,get(e+1))
print(get(n+1))
| {
"input": [
"3",
"1422",
"1000000000000000000",
"4",
"1026",
"1000000001000000000",
"0",
"530",
"1100000001000000000",
"1",
"706",
"1100000001000010000",
"2",
"152",
"1100000001001010000",
"7",
"192",
"1100000011001010000",
"5",
"292",
"1100000001001010010",
"271",
"1101000001001010010",
"266",
"1101000000001010010",
"76",
"1101010000001010010",
"49",
"1101010000011010010",
"75",
"1101110000001010010",
"126",
"1101110000001110010",
"151",
"1101010000001110010",
"93",
"1001010000001110010",
"58",
"1001110000001110010",
"57",
"1001110001001110010",
"12",
"1001110001001110000",
"8",
"1001110001101110010",
"13",
"1531",
"1000001000000000000",
"11",
"663",
"1000000001100000000",
"992",
"1100000000000000000",
"6",
"245",
"1100000001000110000",
"198",
"1100000001001011000",
"14",
"218",
"1000000011001010000",
"9",
"16",
"428",
"1100010001001010010",
"182",
"1101000000011010010",
"46",
"1101110000001011010",
"17",
"1101110000011010010",
"61",
"1101111000001010010",
"147",
"1101110000001110000",
"233",
"1101010000001110000",
"150",
"1001010010001110010",
"105",
"1001110000001111010",
"15",
"1000110001001110010",
"1001110101001110000",
"25",
"1101110001101110010",
"20",
"2681",
"1010001000000000000",
"464",
"1000000000100000000",
"301",
"1100000000000000100",
"10",
"303",
"1110000001000110000",
"159",
"1101000001001011000",
"30",
"406",
"1000000010001010000",
"21",
"26"
],
"output": [
"5",
"52277",
"787014179",
"8\n",
"29565\n",
"999867657\n",
"1\n",
"10220\n",
"355035671\n",
"2\n",
"17242\n",
"391646023\n",
"4\n",
"1472\n",
"103347644\n",
"14\n",
"2201\n",
"194416284\n",
"10\n",
"4022\n",
"256110014\n",
"3526\n",
"646871849\n",
"3446\n",
"757030135\n",
"502\n",
"977998448\n",
"260\n",
"254853750\n",
"485\n",
"367744975\n",
"1093\n",
"120014212\n",
"1448\n",
"845461954\n",
"717\n",
"944721561\n",
"340\n",
"175786357\n",
"329\n",
"507169434\n",
"33\n",
"965789606\n",
"18\n",
"598929443\n",
"36\n",
"58980\n",
"572579\n",
"28\n",
"15197\n",
"69882250\n",
"28824\n",
"822366132\n",
"13\n",
"3178\n",
"926063611\n",
"2305\n",
"296800001\n",
"40\n",
"2726\n",
"464583195\n",
"21\n",
"46\n",
"7868\n",
"87291874\n",
"2062\n",
"834042114\n",
"242\n",
"894929003\n",
"50\n",
"230571839\n",
"358\n",
"158300591\n",
"1369\n",
"757424841\n",
"2976\n",
"580519761\n",
"1441\n",
"423315064\n",
"857\n",
"412426526\n",
"41\n",
"960841410\n",
"113194398\n",
"94\n",
"407444118\n",
"68\n",
"139596\n",
"790875629\n",
"8824\n",
"898648894\n",
"4298\n",
"543239468\n",
"26\n",
"4337\n",
"833303215\n",
"1581\n",
"683897149\n",
"121\n",
"7176\n",
"706170441\n",
"73\n",
"102\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
You are given a positive integer N. Find the number of the pairs of integers u and v (0≦u,v≦N) such that there exist two non-negative integers a and b satisfying a xor b=u and a+b=v. Here, xor denotes the bitwise exclusive OR. Since it can be extremely large, compute the answer modulo 10^9+7.
Constraints
* 1≦N≦10^{18}
Input
The input is given from Standard Input in the following format:
N
Output
Print the number of the possible pairs of integers u and v, modulo 10^9+7.
Examples
Input
3
Output
5
Input
1422
Output
52277
Input
1000000000000000000
Output
787014179
### Input:
3
### Output:
5
### Input:
1422
### Output:
52277
### Code:
n=int(input())
d=dict()
def get(n):
if(n==1):return 1
if(n==0):return 0
if(n in d.keys()):return d[n]
if(n%2==0):
d[n]=2*get(n//2)+get(n//2-1)
else:
d[n]=2*get(n//2)+get(n//2+1)
d[n]%=(10**9+7)
return d[n]
def check(u,v,n):
for a in range(n+1):
b=u ^ a
if(a+b==v):
return 1
return 0
#for e in range(1,n):
# ans=0
# for i in range(e+1):
## for j in range(e+1):
# ans+=check(i,j,e)
# print(ans,get(e+1))
print(get(n+1))
|
p04015 AtCoder Regular Contest 060 - Tak and Cards_1426 | Tak has N cards. On the i-th (1 \leq i \leq N) card is written an integer x_i. He is selecting one or more cards from these N cards, so that the average of the integers written on the selected cards is exactly A. In how many ways can he make his selection?
Constraints
* 1 \leq N \leq 50
* 1 \leq A \leq 50
* 1 \leq x_i \leq 50
* N,\,A,\,x_i are integers.
Input
The input is given from Standard Input in the following format:
N A
x_1 x_2 ... x_N
Output
Print the number of ways to select cards such that the average of the written integers is exactly A.
Examples
Input
4 8
7 9 8 9
Output
5
Input
3 8
6 6 9
Output
0
Input
8 5
3 6 2 8 7 6 5 9
Output
19
Input
33 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Output
8589934591 | n,a=map(int,input().split())
X=list(map(int,input().split()))
dp=[[[0]*(sum(X)+1) for _ in range(n+1)] for _ in range(n+1)]
dp[0][0][0]=1
for i in range(1,n+1): #x_1,x_2...x_n
for k in range(i): #k枚数選ぶ
for s in range(sum(X)+1): #合計
if dp[i-1][k][s]:
dp[i][k+1][s+X[i-1]]+=dp[i-1][k][s] #1枚選択肢が増えた時の、そのカードを加えた結果を加算
dp[i][k][s]+=dp[i-1][k][s]
ans=0
for i in range(1,n+1):
for j in range(1,sum(X)+1):
if j == i*a: #合計が平均のi倍の時に加える
ans+=dp[n][i][j]
print(ans) | {
"input": [
"4 8\n7 9 8 9",
"3 8\n6 6 9",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"8 5\n3 6 2 8 7 6 5 9",
"4 8\n7 12 8 9",
"3 8\n9 6 9",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3",
"8 5\n3 6 2 8 7 2 5 9",
"3 8\n15 6 9",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3",
"8 5\n3 6 2 8 7 2 5 16",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 0 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3",
"8 5\n3 6 2 8 3 2 5 16",
"8 8\n3 6 2 8 3 2 5 16",
"8 8\n3 6 2 3 3 2 5 16",
"8 5\n6 6 2 8 7 6 5 9",
"8 5\n3 6 2 6 7 2 5 9",
"8 8\n4 6 2 3 3 2 5 16",
"8 5\n6 6 2 8 7 2 1 16",
"8 5\n3 12 2 6 5 2 5 9",
"33 3\n3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 1 3 3 3 3 6 3 3 3 3 3 3 1 3 3 6 3",
"8 8\n0 6 2 1 3 2 10 10",
"33 3\n3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 1 3 3 3 3 6 3 3 3 3 3 3 1 3 3 6 3",
"33 3\n3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 1 3 3 3 3 6 3 2 3 3 3 3 1 3 3 6 3",
"8 5\n6 6 1 10 7 3 1 16",
"33 3\n3 3 3 3 3 3 3 4 3 3 3 4 3 3 3 3 1 3 3 3 3 4 3 2 3 3 3 3 1 3 3 6 3",
"33 3\n3 3 3 3 3 3 3 4 3 1 3 4 3 3 3 3 1 3 3 3 3 4 3 2 3 3 3 3 1 3 3 6 3",
"8 5\n3 6 2 8 7 2 5 1",
"33 3\n3 3 3 3 3 3 3 5 3 3 3 3 3 3 3 3 1 0 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3",
"33 3\n3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 3 6 3",
"8 5\n3 8 2 8 7 2 1 16",
"8 8\n1 7 3 8 3 1 20 21",
"8 5\n3 6 2 8 7 11 1 9",
"33 3\n0 3 3 3 3 3 3 3 3 3 3 3 5 3 3 3 0 0 3 3 0 3 3 3 3 3 3 3 1 3 3 3 3",
"33 3\n5 3 3 3 3 3 3 4 3 1 3 4 3 3 3 3 1 3 3 3 3 4 3 2 3 3 3 3 1 3 3 11 3",
"8 5\n3 6 2 8 7 4 2 1",
"33 3\n3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 1 3 3 1 3 1 6 3 3 3 3 3 1 3 3 6 3",
"33 3\n0 3 3 3 3 1 3 3 3 3 3 3 5 3 3 3 0 0 3 3 0 3 3 3 3 3 3 3 1 3 3 3 3",
"4 8\n7 12 8 8",
"4 16\n7 12 8 8",
"3 8\n15 3 9",
"4 16\n7 12 6 8",
"3 8\n15 2 9",
"2 16\n7 12 6 8",
"3 8\n15 2 13",
"2 16\n7 0 6 8",
"3 8\n15 3 13",
"8 8\n3 6 2 3 3 2 5 10",
"3 11\n15 3 13",
"8 8\n3 10 2 3 3 2 5 10",
"3 11\n15 3 20",
"8 8\n3 10 2 3 3 2 5 3",
"3 11\n15 3 31",
"8 8\n3 10 2 3 0 2 5 3",
"1 11\n15 3 31",
"8 8\n0 10 2 3 0 2 5 3",
"1 11\n0 3 31",
"8 8\n0 10 2 3 0 4 5 3",
"1 11\n0 3 24",
"8 8\n0 10 2 3 0 4 5 2",
"1 11\n1 3 24",
"8 8\n0 10 2 3 0 4 5 1",
"1 11\n1 0 24",
"8 8\n0 10 0 3 0 4 5 1",
"1 11\n2 0 24",
"7 8\n0 10 0 3 0 4 5 1",
"1 11\n2 0 7",
"7 8\n1 10 0 3 0 4 5 1",
"4 4\n7 9 8 9",
"3 8\n6 6 6",
"33 3\n3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3",
"4 8\n6 12 8 9",
"3 8\n9 9 9",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 6 3 3 3 3 3 3 3 3 1 3 3 3 3",
"3 15\n15 6 9",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 3 6 3",
"8 5\n3 6 2 8 7 2 1 16",
"4 16\n7 2 8 8",
"33 3\n3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 0 0 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3",
"8 5\n3 6 1 8 3 2 5 16",
"4 16\n7 12 5 8",
"3 8\n15 2 3",
"8 8\n3 6 3 8 3 2 5 16",
"2 16\n7 12 6 6",
"3 8\n15 2 11",
"2 16\n3 0 6 8",
"8 8\n0 6 2 3 3 2 5 10",
"3 11\n15 3 25",
"8 8\n5 10 2 3 3 2 5 10",
"3 11\n15 0 20",
"8 8\n4 10 2 3 3 2 5 3",
"0 11\n15 3 31",
"8 8\n3 10 0 3 0 2 5 3",
"1 11\n15 3 62",
"8 8\n0 10 2 3 0 2 7 3",
"1 6\n0 3 31",
"8 8\n0 10 3 3 0 4 5 3",
"1 8\n0 3 24",
"8 8\n0 10 2 3 0 4 8 2",
"1 11\n0 3 29",
"8 8\n0 10 3 3 0 4 5 1",
"8 8\n0 10 0 3 0 2 5 1",
"1 11\n0 0 24",
"7 8\n0 10 0 3 0 0 5 1"
],
"output": [
"5",
"0",
"8589934591",
"19",
"3\n",
"1\n",
"4294967295\n",
"25\n",
"0\n",
"2147483647\n",
"17\n",
"1073741823\n",
"7\n",
"9\n",
"5\n",
"11\n",
"27\n",
"4\n",
"13\n",
"15\n",
"805306367\n",
"2\n",
"939524095\n",
"1006632959\n",
"10\n",
"1342177279\n",
"1275068415\n",
"21\n",
"1610612735\n",
"536870911\n",
"12\n",
"19\n",
"16\n",
"268435455\n",
"671088639\n",
"18\n",
"1140850687\n",
"201326591\n",
"3\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"4294967295\n",
"1\n",
"0\n",
"2147483647\n",
"1\n",
"1073741823\n",
"11\n",
"0\n",
"1073741823\n",
"9\n",
"0\n",
"0\n",
"9\n",
"0\n",
"0\n",
"0\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"1\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
} | 5ATCODER
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
Tak has N cards. On the i-th (1 \leq i \leq N) card is written an integer x_i. He is selecting one or more cards from these N cards, so that the average of the integers written on the selected cards is exactly A. In how many ways can he make his selection?
Constraints
* 1 \leq N \leq 50
* 1 \leq A \leq 50
* 1 \leq x_i \leq 50
* N,\,A,\,x_i are integers.
Input
The input is given from Standard Input in the following format:
N A
x_1 x_2 ... x_N
Output
Print the number of ways to select cards such that the average of the written integers is exactly A.
Examples
Input
4 8
7 9 8 9
Output
5
Input
3 8
6 6 9
Output
0
Input
8 5
3 6 2 8 7 6 5 9
Output
19
Input
33 3
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Output
8589934591
### Input:
4 8
7 9 8 9
### Output:
5
### Input:
3 8
6 6 9
### Output:
0
### Code:
n,a=map(int,input().split())
X=list(map(int,input().split()))
dp=[[[0]*(sum(X)+1) for _ in range(n+1)] for _ in range(n+1)]
dp[0][0][0]=1
for i in range(1,n+1): #x_1,x_2...x_n
for k in range(i): #k枚数選ぶ
for s in range(sum(X)+1): #合計
if dp[i-1][k][s]:
dp[i][k+1][s+X[i-1]]+=dp[i-1][k][s] #1枚選択肢が増えた時の、そのカードを加えた結果を加算
dp[i][k][s]+=dp[i-1][k][s]
ans=0
for i in range(1,n+1):
for j in range(1,sum(X)+1):
if j == i*a: #合計が平均のi倍の時に加える
ans+=dp[n][i][j]
print(ans) |
p00100 Sale Result_1430 | There is data on sales of your company. Your task is to write a program which identifies good workers.
The program should read a list of data where each item includes the employee ID i, the amount of sales q and the corresponding unit price p. Then, the program should print IDs of employees whose total sales proceeds (i.e. sum of p × q) is greater than or equal to 1,000,000 in the order of inputting. If there is no such employees, the program should print "NA". You can suppose that n < 4000, and each employee has an unique ID. The unit price p is less than or equal to 1,000,000 and the amount of sales q is less than or equal to 100,000.
Input
The input consists of several datasets. The input ends with a line including a single 0. Each dataset consists of:
n (the number of data in the list)
i p q
i p q
:
:
i p q
Output
For each dataset, print a list of employee IDs or a text "NA"
Example
Input
4
1001 2000 520
1002 1800 450
1003 1600 625
1001 200 1220
2
1001 100 3
1005 1000 100
2
2013 5000 100
2013 5000 100
0
Output
1001
1003
NA
2013 | while True:
try:
n=int(input())
except:
break
if n==0:
break
data={}
staff=[]
for i in range(n):
spam=list(map(int,input().split()))
if spam[0] in data.keys():
data[spam[0]]+=spam[1]*spam[2]
else:
data[spam[0]]=spam[1]*spam[2]
staff.append(spam[0])
if max(data.values())<1000000:
print('NA')
else:
for i in staff:
if data[i] >= 1000000:
print(i) | {
"input": [
"4\n1001 2000 520\n1002 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n1001 2000 520\n80 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n0001 2000 520\n80 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n80 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 4\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n80 1800 450\n1003 3111 625\n1001 200 1220\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n80 1800 450\n1507 3111 625\n0001 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n80 3305 450\n1507 3111 625\n0001 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 3305 450\n1507 3111 625\n0101 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n18 2363 450\n1507 3111 1160\n0101 200 2276\n2\n1001 100 3\n867 1010 000\n2\n683 7792 100\n2013 5000 100\n0",
"4\n0100 2000 520\n18 2363 347\n1507 3111 1160\n0101 200 2276\n2\n1001 100 3\n867 1010 000\n2\n683 7792 000\n2013 5000 100\n0",
"4\n0110 2000 520\n18 2363 29\n1507 3111 1160\n0101 200 2276\n2\n1001 100 3\n867 1010 000\n2\n715 7792 000\n2013 5000 100\n0",
"4\n0110 2000 520\n11 2363 29\n1507 8024 1160\n1101 670 2276\n2\n0001 100 0\n502 1100 100\n2\n715 1354 100\n1668 9313 100\n0",
"4\n0110 2000 520\n14 2363 29\n1507 2654 1160\n1101 670 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 10861 100\n0",
"4\n0010 2000 520\n14 2363 29\n1507 2654 1160\n1101 670 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 10861 100\n0",
"4\n0010 2000 520\n14 2363 29\n1507 2654 1160\n1101 670 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 426 100\n0",
"4\n0010 1753 712\n14 3661 29\n1507 2654 1160\n1101 451 793\n2\n0010 001 0\n1433 1100 000\n2\n888 207 101\n187 346 000\n0",
"4\n1001 2000 520\n1002 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 000\n2013 5000 100\n0",
"4\n1001 2000 520\n80 1800 450\n1796 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n0101 2000 520\n80 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n0010 2000 520\n42 3305 450\n1507 3111 625\n0101 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 3305 450\n1507 3111 625\n0101 200 2276\n0\n1001 100 4\n1621 1010 100\n2\n683 7792 100\n2013 5000 100\n0",
"4\n0110 2000 480\n18 2363 29\n1507 3111 1160\n0101 200 2276\n2\n1001 100 3\n867 1010 000\n2\n715 7792 000\n2013 5000 100\n0",
"4\n0110 2000 520\n18 2363 29\n1507 3111 1160\n0101 247 2276\n2\n1001 100 3\n867 1110 000\n2\n715 7792 000\n2013 9313 110\n0",
"4\n0110 2000 520\n11 2363 29\n1507 837 1160\n1101 348 2276\n2\n0011 101 3\n943 1100 100\n2\n715 7792 000\n2013 9313 100\n0",
"4\n0110 2000 520\n11 2363 29\n1103 3111 1160\n1101 348 2276\n2\n0011 101 3\n943 1100 100\n2\n715 7792 100\n1668 9313 100\n0",
"4\n0110 2000 520\n11 2363 29\n1507 4437 1160\n1101 348 2276\n2\n0011 100 3\n943 1100 100\n2\n715 7792 100\n1668 16264 100\n0",
"4\n0110 2000 520\n11 2363 29\n1507 8024 1160\n1101 670 2276\n2\n0001 100 0\n502 1100 100\n2\n715 1354 100\n1668 14106 100\n0",
"4\n0110 2000 520\n14 2363 29\n1507 2654 1160\n1001 670 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 10861 100\n0",
"4\n0010 2000 520\n14 2363 29\n1507 2654 1160\n1101 670 2276\n0\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 426 100\n0",
"4\n0010 2000 520\n14 3661 29\n1507 2654 1160\n1100 670 2276\n2\n0011 100 0\n954 1100 000\n2\n715 245 100\n187 426 100\n0",
"4\n0010 2000 1291\n14 3661 29\n1507 2654 1160\n1101 451 2276\n2\n0011 101 0\n1433 1100 000\n0\n888 245 101\n187 426 100\n0",
"4\n0010 797 712\n14 3661 29\n1507 2654 1160\n1101 451 2276\n2\n0011 101 0\n1433 1100 000\n2\n888 207 101\n187 346 000\n0",
"4\n0110 1753 712\n14 3661 29\n1068 2654 1160\n1101 451 793\n2\n0010 001 0\n1433 1100 000\n2\n888 207 101\n187 346 000\n0",
"4\n0110 1753 712\n14 3661 29\n1145 2654 1160\n1101 451 793\n2\n0010 001 0\n1433 1100 000\n2\n888 207 101\n187 346 010\n0",
"4\n0110 1753 712\n14 3661 29\n266 2654 1160\n1101 451 793\n2\n0010 001 0\n1433 1100 000\n2\n888 207 100\n141 346 010\n0",
"4\n1110 1753 712\n8 3661 29\n1507 2654 1160\n1101 451 793\n2\n0010 001 0\n1433 1100 000\n2\n888 207 100\n141 346 010\n0",
"4\n1001 66 520\n80 1800 450\n1796 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n0101 2000 520\n80 1800 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n967 5000 100\n0",
"4\n0000 2000 520\n80 1800 450\n1003 3111 625\n1001 200 1472\n2\n1001 100 4\n1005 1010 100\n0\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n80 3305 450\n2017 3111 625\n0101 200 2276\n2\n1001 110 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 3305 74\n1507 3111 625\n0101 200 2276\n0\n1001 100 4\n1621 1010 100\n2\n683 7792 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 2363 450\n1507 3111 1160\n0101 200 2276\n2\n1001 110 3\n867 1010 000\n0\n683 7792 100\n2013 5000 100\n0",
"4\n0000 2000 520\n18 2363 347\n2731 3111 1160\n0101 200 2276\n2\n1001 100 3\n867 1010 000\n2\n683 7792 000\n2013 9482 100\n0",
"4\n0110 2000 520\n11 2363 29\n2955 3111 1160\n0101 348 2276\n2\n1011 100 3\n943 1110 000\n2\n715 7792 000\n2013 13746 100\n0",
"4\n0111 2000 520\n11 2363 46\n1507 3111 1160\n0101 348 2276\n2\n1011 100 3\n943 1100 000\n2\n715 7792 000\n2013 9313 100\n0",
"4\n0110 2000 520\n11 2363 29\n1103 3111 1160\n1101 348 2276\n2\n0011 101 3\n943 1100 100\n2\n715 7792 100\n1668 17132 100\n0",
"4\n0110 2000 520\n11 2363 29\n1315 2654 1160\n1101 670 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 2454 100\n0",
"4\n0010 2000 829\n14 3661 29\n124 2654 1160\n1101 670 2276\n2\n0011 111 0\n954 1100 000\n2\n888 245 101\n187 426 100\n0",
"4\n0010 2000 712\n14 3661 29\n661 2654 1160\n1101 451 2276\n2\n0011 101 0\n1433 1100 000\n2\n1330 245 101\n187 426 000\n0",
"4\n1001 2000 520\n1002 3520 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 010\n2013 5000 100\n0",
"4\n1000 2000 520\n80 1800 450\n1003 3111 625\n1001 200 1472\n2\n1001 100 4\n1005 1010 100\n0\n683 5000 100\n2013 5000 100\n0",
"4\n0000 875 520\n80 1800 450\n1003 3111 625\n0001 200 2276\n2\n1001 111 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n1000 2995 520\n80 1800 450\n1507 3111 566\n0001 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 2363 450\n955 3111 625\n0101 200 2276\n2\n1001 100 4\n867 1010 100\n2\n952 7792 101\n2013 5000 100\n0",
"4\n0000 2000 520\n42 2363 450\n1507 3111 1160\n0101 200 1270\n2\n1001 100 4\n867 1010 000\n2\n683 10470 110\n2013 5000 100\n0",
"4\n0110 2000 520\n18 2363 29\n1507 3111 1160\n0101 296 3828\n2\n1011 110 3\n867 1110 000\n2\n715 7792 000\n2013 9313 100\n0",
"4\n0110 2000 520\n11 2363 29\n1507 4437 1160\n1101 348 2276\n0\n0011 100 0\n943 1100 100\n2\n296 7792 100\n1668 9313 100\n0",
"4\n1010 2000 520\n14 2363 29\n1507 2654 1160\n1101 1328 2276\n0\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 426 100\n0",
"4\n0000 2000 520\n14 3661 29\n1507 2654 1160\n1101 936 2276\n2\n0001 100 0\n954 1100 000\n2\n1187 1354 100\n883 426 100\n0",
"4\n0010 3716 520\n14 3661 29\n1507 2460 80\n1101 670 2276\n2\n0011 100 0\n954 1100 000\n2\n715 245 100\n883 426 100\n0",
"4\n0010 2000 1291\n14 3661 29\n1507 2654 230\n1101 451 2276\n2\n0011 101 0\n1433 1100 000\n0\n888 245 101\n187 426 110\n0",
"4\n1001 2000 5\n1002 3520 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 010\n2013 5000 100\n0",
"4\n1000 2995 520\n80 1800 450\n2874 3111 566\n0001 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2634 520\n42 3305 450\n1507 255 625\n1101 200 2276\n2\n1001 100 5\n1005 1010 100\n2\n683 7792 100\n2013 5000 100\n0",
"4\n0001 2000 520\n18 2363 763\n1507 3276 1160\n0101 245 2276\n2\n1001 100 3\n867 1010 000\n2\n683 7792 000\n2013 5000 100\n0",
"4\n0110 2000 520\n0 2363 29\n1507 3111 1160\n0101 493 2276\n2\n1011 101 3\n943 1100 100\n2\n715 7792 000\n2013 10156 100\n0",
"4\n0110 2000 520\n11 2363 29\n2303 4647 1160\n1101 348 2276\n2\n1011 101 3\n943 1101 100\n2\n715 7792 000\n2013 1462 100\n0",
"4\n0110 2000 520\n14 2363 29\n1507 2654 1160\n1001 920 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 101\n497 10861 100\n0",
"4\n1000 2000 520\n14 2363 29\n1507 2654 1160\n1101 1328 2276\n0\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 426 100\n0",
"4\n0010 2000 520\n14 3661 29\n1507 375 1160\n1100 670 2276\n2\n0011 100 0\n954 1100 000\n2\n715 245 100\n50 426 100\n0",
"4\n0000 2000 1040\n80 1800 840\n1003 3111 625\n1001 200 1220\n2\n1011 100 4\n1005 1000 100\n2\n1030 5000 100\n2013 5000 110\n0",
"4\n0000 2995 520\n80 1800 450\n2874 3111 566\n0001 200 2276\n2\n1001 100 4\n1005 1010 100\n2\n683 5000 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 2363 450\n7 3111 1160\n0101 200 2276\n2\n1001 110 3\n867 1010 000\n0\n683 7792 100\n979 5000 110\n0",
"4\n0110 2000 321\n18 2363 29\n1507 2597 1160\n0101 296 3828\n2\n1011 110 3\n867 1110 000\n2\n715 7792 000\n2013 9313 100\n0",
"4\n0110 2000 520\n11 356 47\n2608 3111 1160\n1111 348 2276\n2\n0011 101 3\n943 1100 100\n2\n715 7792 100\n450 9313 100\n0",
"4\n0110 1372 520\n11 2363 29\n1507 4437 1160\n1101 348 2276\n0\n0011 100 0\n943 1100 100\n2\n299 7792 100\n1668 9313 100\n0",
"4\n0110 2000 520\n11 2363 29\n1507 8024 1160\n1101 670 2276\n2\n0011 110 0\n502 1100 100\n2\n715 1354 100\n2781 27366 100\n0",
"4\n0110 2000 520\n14 2363 29\n2126 2654 1160\n1001 920 2276\n2\n0001 100 0\n954 1100 100\n2\n715 1354 101\n497 10861 100\n0",
"4\n1001 2000 5\n1002 3520 450\n1003 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1000 100\n0\n2013 5000 010\n2817 5000 100\n0",
"4\n0000 875 520\n80 1800 450\n1554 3111 625\n0101 200 2276\n2\n1001 111 4\n1005 1010 100\n2\n683 2352 100\n2013 5000 100\n0",
"4\n0000 2000 520\n80 2930 450\n2802 4348 625\n0001 200 2276\n2\n1001 110 4\n1005 1011 100\n2\n683 18 100\n2013 5000 100\n0",
"4\n0010 2000 672\n42 2363 450\n1507 3111 1160\n0101 200 1270\n2\n1001 100 4\n867 1000 000\n2\n683 10470 110\n2013 5000 100\n0",
"4\n0111 2000 520\n11 2363 46\n1507 729 1160\n0101 348 2276\n2\n1011 100 3\n943 1100 000\n2\n715 7792 000\n2340 9313 100\n0",
"4\n0110 2000 520\n11 356 47\n2608 3111 1160\n1111 348 2276\n2\n0011 101 3\n943 1100 100\n2\n715 7792 100\n450 10606 100\n0",
"4\n0110 2000 520\n11 2363 29\n1315 73 2131\n1101 670 2276\n2\n0001 101 0\n954 1100 100\n2\n874 1354 100\n883 2454 100\n0",
"4\n1000 2000 520\n14 2363 50\n1507 2654 1160\n1100 1328 2276\n0\n0001 100 0\n954 1100 100\n2\n715 1354 100\n883 426 100\n0",
"4\n0010 591 1029\n14 3661 29\n1507 2654 1160\n1101 670 3725\n2\n0011 100 -1\n954 1100 000\n0\n678 245 100\n187 426 100\n0",
"4\n0000 2000 829\n14 3661 40\n218 6143 1160\n1101 670 2276\n2\n0011 001 0\n954 1100 000\n2\n715 245 100\n187 426 100\n0",
"4\n0010 797 946\n21 3661 29\n1507 2654 1160\n1001 696 2276\n2\n0011 101 0\n1433 1100 000\n2\n888 207 101\n187 115 000\n0",
"4\n1011 66 493\n80 1800 450\n3058 1600 1184\n1101 200 1220\n2\n1001 100 3\n1005 1000 100\n2\n2013 5000 100\n2013 5000 100\n0",
"4\n1000 2000 520\n80 1800 450\n1003 3111 788\n0001 327 1220\n2\n1011 100 4\n1005 1000 100\n2\n683 5000 100\n2013 2071 000\n0",
"4\n0110 2000 520\n11 356 47\n2608 3111 1160\n1111 348 2276\n2\n0011 101 3\n943 1100 100\n2\n715 7792 100\n528 10606 100\n0",
"4\n0000 2000 520\n14 3661 29\n1290 2654 1833\n1101 936 2276\n2\n0001 100 0\n22 1100 000\n2\n1187 2291 100\n883 426 100\n0",
"4\n0010 591 1029\n14 3661 29\n1507 2654 1160\n1001 670 3725\n2\n0011 100 -1\n954 1100 000\n0\n678 245 100\n187 426 100\n0",
"4\n0000 2000 829\n14 3661 40\n206 6143 1160\n1101 670 2276\n2\n0011 001 0\n954 1100 000\n2\n715 245 100\n187 426 100\n0",
"4\n0101 2956 520\n80 1800 450\n216 1600 625\n1001 200 1220\n2\n1001 100 3\n1005 1010 000\n2\n2013 5000 100\n1161 5000 101\n0",
"4\n1000 2042 520\n80 1800 450\n1003 3111 625\n1001 200 2693\n0\n1001 100 4\n1005 1010 100\n0\n683 5000 100\n2013 5000 110\n0",
"4\n0000 2000 797\n42 3305 74\n1793 3111 625\n0101 200 2276\n0\n0000 100 4\n1621 1000 101\n2\n683 7792 100\n2013 5000 100\n0",
"4\n0000 2000 520\n42 4156 450\n955 3111 1165\n0101 262 2276\n0\n1001 100 4\n867 1010 100\n2\n952 7792 001\n2013 5000 100\n0",
"4\n0010 2000 672\n42 2363 450\n1507 3111 1160\n0101 200 1270\n2\n1001 100 3\n867 1000 000\n2\n248 10470 110\n2013 5000 100\n0",
"4\n0001 2000 520\n18 2363 763\n780 3276 1160\n0111 245 2276\n2\n1001 100 5\n867 1010 000\n2\n683 1716 000\n2013 5000 100\n0"
],
"output": [
"1001\n1003\nNA\n2013",
"1001\n1003\nNA\n2013\n",
"0001\n1003\nNA\n2013\n",
"0000\n1003\nNA\n2013\n",
"0000\n1003\nNA\nNA\n",
"0000\n1507\nNA\nNA\n",
"0000\n80\n1507\nNA\nNA\n",
"0000\n42\n1507\nNA\nNA\n",
"0000\n18\n1507\nNA\nNA\n",
"0100\n1507\nNA\nNA\n",
"0110\n1507\nNA\nNA\n",
"0110\n1507\n1101\nNA\nNA\n",
"0110\n1507\n1101\nNA\n883\n",
"0010\n1507\n1101\nNA\n883\n",
"0010\n1507\n1101\nNA\nNA\n",
"0010\n1507\nNA\nNA\n",
"1001\n1003\nNA\nNA\n",
"1001\n1796\nNA\n2013\n",
"0101\n1003\nNA\n2013\n",
"0010\n42\n1507\nNA\nNA\n",
"0000\n42\n1507\n",
"1507\nNA\nNA\n",
"0110\n1507\nNA\n2013\n",
"0110\nNA\nNA\n",
"0110\n1103\nNA\nNA\n",
"0110\n1507\nNA\n1668\n",
"0110\n1507\n1101\nNA\n1668\n",
"0110\n1507\n1001\nNA\n883\n",
"0010\n1507\n1101\n",
"0010\n1507\n1100\nNA\nNA\n",
"0010\n1507\n1101\nNA\n",
"1507\n1101\nNA\nNA\n",
"0110\n1068\nNA\nNA\n",
"0110\n1145\nNA\nNA\n",
"0110\n266\nNA\nNA\n",
"1110\n1507\nNA\nNA\n",
"1796\nNA\n2013\n",
"0101\n1003\nNA\nNA\n",
"0000\n1003\nNA\n",
"0000\n80\n2017\nNA\nNA\n",
"0000\n1507\n",
"0000\n42\n1507\nNA\n",
"0000\n2731\nNA\nNA\n",
"0110\n2955\nNA\n2013\n",
"0111\n1507\nNA\nNA\n",
"0110\n1103\nNA\n1668\n",
"0110\n1315\n1101\nNA\nNA\n",
"0010\n124\n1101\nNA\nNA\n",
"0010\n661\n1101\nNA\nNA\n",
"1001\n1002\n1003\nNA\nNA\n",
"1000\n1003\nNA\n",
"1003\nNA\nNA\n",
"1000\n1507\nNA\nNA\n",
"0000\n42\n955\nNA\nNA\n",
"0000\n42\n1507\nNA\n683\n",
"0110\n1507\n0101\nNA\nNA\n",
"0110\n1507\n",
"1010\n1507\n1101\n",
"0000\n1507\n1101\nNA\nNA\n",
"0010\n1101\nNA\nNA\n",
"0010\n1101\nNA\n",
"1002\n1003\nNA\nNA\n",
"1000\n2874\nNA\nNA\n",
"0000\n42\nNA\nNA\n",
"0001\n18\n1507\nNA\nNA\n",
"0110\n1507\n0101\nNA\n2013\n",
"0110\n2303\nNA\nNA\n",
"0110\n1507\n1001\nNA\n497\n",
"1000\n1507\n1101\n",
"0010\n1100\nNA\nNA\n",
"0000\n80\n1003\nNA\nNA\n",
"0000\n2874\nNA\nNA\n",
"0000\n42\n7\nNA\n",
"1507\n0101\nNA\nNA\n",
"0110\n2608\nNA\nNA\n",
"1507\n",
"0110\n1507\n1101\nNA\n2781\n",
"0110\n2126\n1001\nNA\n497\n",
"1002\n1003\nNA\n",
"1554\nNA\nNA\n",
"0000\n80\n2802\nNA\nNA\n",
"0010\n42\n1507\nNA\n683\n",
"0111\nNA\nNA\n",
"0110\n2608\nNA\n450\n",
"0110\n1101\nNA\nNA\n",
"1000\n1507\n1100\n",
"1507\n1101\nNA\n",
"0000\n218\n1101\nNA\nNA\n",
"1507\n1001\nNA\nNA\n",
"3058\nNA\n2013\n",
"1000\n1003\nNA\nNA\n",
"0110\n2608\nNA\n528\n",
"0000\n1290\n1101\nNA\nNA\n",
"1507\n1001\nNA\n",
"0000\n206\n1101\nNA\nNA\n",
"0101\n216\nNA\nNA\n",
"1000\n1003\n",
"0000\n1793\n",
"0000\n42\n955\n",
"0010\n42\n1507\nNA\n248\n",
"0001\n18\n780\nNA\nNA\n"
]
} | 6AIZU
| Below is a problem description that describes the problem. Write code in Python that appropriately solves the problem.
### Description:
There is data on sales of your company. Your task is to write a program which identifies good workers.
The program should read a list of data where each item includes the employee ID i, the amount of sales q and the corresponding unit price p. Then, the program should print IDs of employees whose total sales proceeds (i.e. sum of p × q) is greater than or equal to 1,000,000 in the order of inputting. If there is no such employees, the program should print "NA". You can suppose that n < 4000, and each employee has an unique ID. The unit price p is less than or equal to 1,000,000 and the amount of sales q is less than or equal to 100,000.
Input
The input consists of several datasets. The input ends with a line including a single 0. Each dataset consists of:
n (the number of data in the list)
i p q
i p q
:
:
i p q
Output
For each dataset, print a list of employee IDs or a text "NA"
Example
Input
4
1001 2000 520
1002 1800 450
1003 1600 625
1001 200 1220
2
1001 100 3
1005 1000 100
2
2013 5000 100
2013 5000 100
0
Output
1001
1003
NA
2013
### Input:
4
1001 2000 520
1002 1800 450
1003 1600 625
1001 200 1220
2
1001 100 3
1005 1000 100
2
2013 5000 100
2013 5000 100
0
### Output:
1001
1003
NA
2013
### Input:
4
1001 2000 520
80 1800 450
1003 1600 625
1001 200 1220
2
1001 100 3
1005 1000 100
2
2013 5000 100
2013 5000 100
0
### Output:
1001
1003
NA
2013
### Code:
while True:
try:
n=int(input())
except:
break
if n==0:
break
data={}
staff=[]
for i in range(n):
spam=list(map(int,input().split()))
if spam[0] in data.keys():
data[spam[0]]+=spam[1]*spam[2]
else:
data[spam[0]]=spam[1]*spam[2]
staff.append(spam[0])
if max(data.values())<1000000:
print('NA')
else:
for i in staff:
if data[i] >= 1000000:
print(i) |