Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
csv
Languages:
Chinese
Size:
10K - 100K
License:
metadata
license: other
license_name: creative-commons-by-nc
task_categories:
- question-answering
language:
- zh
tags:
- traditional chinese
- finance
- medical
- taiwan
- benchmark
- zh-tw
- zh-hant
pretty_name: tmmlu++
size_categories:
- 100K<n<1M
TMMLU+ : Large scale traditional chinese massive multitask language understanding
We present TMMLU+, a traditional Chinese massive multitask language understanding dataset. TMMLU+ is a multiple-choice question-answering dataset featuring 66 subjects, ranging from elementary to professional level.
The TMMLU+ dataset is six times larger and contains more balanced subjects compared to its predecessor, TMMLU. We have included benchmark results in TMMLU+ from closed-source models and 20 open-source Chinese large language models, with parameters ranging from 1.8B to 72B. The benchmark results show that Traditional Chinese variants still lag behind those trained on major Simplified Chinese models.
from datasets import load_dataset
task_list = [
'engineering_math', 'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology', 'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate',
'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2', 'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry',
'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities', 'politic_science', 'agriculture', 'official_document_management',
'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning', 'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology',
'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation', 'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law',
'education_(profession_level)', 'economics', 'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders',
'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature', 'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam',
'junior_social_studies', 'tve_mathematics', 'tve_chinese_language', 'tve_natural_sciences', 'junior_chemistry', 'music', 'education', 'three_principles_of_people',
'taiwanese_hokkien'
]
for task in task_list:
val = load_dataset('ikala/tmmluplus', task)['validation']
dev = load_dataset('ikala/tmmluplus', task)['train']
test = load_dataset('ikala/tmmluplus', task)['test']
Statistic on all four category : STEM, Social Science, Humanities, Other
Category | Test | Dev | Validation |
---|---|---|---|
STEM | 3458 | 70 | 385 |
Social Sciences | 5958 | 90 | 665 |
Humanities | 1763 | 35 | 197 |
Other (Business, Health, Misc.) | 8939 | 135 | 995 |
Total | 20118 | 330 | 2242 |
Benchmark on direct prompting
model | STEM | Social Science | Humanities | Other | Average |
---|---|---|---|---|---|
Qwen/Qwen-72B | 61.12 | 71.65 | 63.00 | 61.31 | 64.27 |
Qwen/Qwen-14B | 46.94 | 56.69 | 49.43 | 48.81 | 50.47 |
Gemini-pro | 45.38 | 57.29 | 48.80 | 48.21 | 49.92 |
01-ai/Yi-34B-Chat | 40.24 | 56.77 | 53.99 | 47.58 | 49.64 |
Qwen/Qwen-14B-Chat | 43.86 | 53.29 | 44.78 | 45.13 | 46.77 |
01-ai/Yi-6B-Chat | 39.62 | 50.24 | 44.44 | 44.26 | 44.64 |
Claude-1.3 | 42.65 | 49.33 | 42.16 | 44.14 | 44.57 |
gpt-3.5-turbo-0613 | 41.56 | 46.72 | 36.73 | 42.03 | 41.76 |
CausalLM/14B | 39.83 | 44.50 | 39.61 | 41.97 | 41.48 |
Skywork/Skywork-13B-base | 36.93 | 47.27 | 41.04 | 40.10 | 41.33 |
Qwen/Qwen-7B | 37.53 | 45.48 | 38.09 | 38.96 | 40.01 |
Qwen/Qwen-7B-Chat | 33.32 | 44.64 | 40.27 | 39.89 | 39.53 |
vivo-ai/BlueLM-7B-Base | 33.94 | 41.52 | 37.38 | 38.74 | 37.90 |
baichuan-inc/Baichuan2-13B-Chat | 29.64 | 43.73 | 37.36 | 39.88 | 37.65 |
Qwen/Qwen-1_8B | 32.65 | 38.95 | 38.34 | 35.27 | 36.30 |
Claude-2 | 39.65 | 39.09 | 28.59 | 37.47 | 36.20 |
THUDM/chatglm3-6b | 31.05 | 39.31 | 35.64 | 35.60 | 35.40 |
deepseek-ai/deepseek-llm-7b-chat | 29.82 | 42.29 | 34.24 | 34.31 | 35.17 |
CausalLM/7B | 31.03 | 38.17 | 35.87 | 35.39 | 35.11 |
Azure99/blossom-v3_1-mistral-7b | 32.80 | 36.91 | 32.36 | 34.53 | 34.15 |
Qwen/Qwen-1_8B-Chat | 26.60 | 36.36 | 31.81 | 31.96 | 31.68 |
TigerResearch/tigerbot-13b-chat-v3 | 24.73 | 29.63 | 25.72 | 27.22 | 26.82 |
hongyin/mistral-7b-80k | 24.26 | 23.76 | 22.56 | 24.57 | 23.79 |
yentinglin/Taiwan-LLM-13B-v2.0-chat | 18.53 | 27.65 | 17.77 | 21.49 | 21.36 |
LinkSoul/Chinese-Llama-2-7b | 16.55 | 18.39 | 12.97 | 16.13 | 16.01 |
yentinglin/Taiwan-LLM-7B-v2.1-chat | 14.99 | 16.23 | 15.00 | 16.22 | 15.61 |
FlagAlpha/Atom-7B | 5.60 | 13.57 | 7.71 | 11.84 | 9.68 |