Large Language Models are Temporal and Causal Reasoners for Video Question Answering
This is the official implementation of Flipped-VQA (EMNLP 2023) (arxiv) (demo).
Dohwan Ko1*, Ji Soo Lee1*, Wooyoung Kang2, Byungseok Roh2, Hyunwoo J. Kim1.
1Department of Computer Science and Engineering, Korea University 2Kakao Brain
Setup
To install requirements, run:
git clone https://github.com/mlvlab/Flipped-VQA.git
cd Flipped-VQA
mkdir pretrained
conda create -n flipped-vqa python=3.8
conda activate flipped-vqa
sh setup.sh
Dataset & LLaMA Preparation
- You can download our preprocessed datasets (NExT-QA, STAR, DramaQA, VLEP and TVQA) in huggingface (We also provide the fine-tuned model on each dataset).
git lfs install
git clone https://huggingface.co/datasets/ikodoh/Flipped-VQA-Data
mv ./Flipped-VQA-Data/data ./
mv ./Flipped-VQA-Data/checkpoint ./
unzip ./data/tvqa/tvqa_subtitles.zip -d ./data/tvqa
rm -rf Flipped-VQA-Data ./data/tvqa/tvqa_subtitles.zip
- You can download original LLaMA at here, and put the checkpoint in
./pretrained
.
./pretrained
└─ llama
|─ 7B
| |─ consolidated.00.pth
| └─ params.json
|─ 13B
| :
|─ 33B
| :
└─ tokenizer.model
Training LLaMA-VQA (LLaMA + Flipped-VQA)
NExT-QA
torchrun --rdzv_endpoint 127.0.0.1:1234 --nproc_per_node 4 train.py --model 7B \
--max_seq_len 128 --batch_size 8 --epochs 5 --warmup_epochs 2 --bias 3.5 --tau 100. --max_feats 10 --dataset nextqa \
--blr 9e-2 --weight_decay 0.14 --output_dir ./checkpoint/nextqa --accum_iter 2 --vaq --qav
STAR
torchrun --rdzv_endpoint 127.0.0.1:1234 --nproc_per_node 4 train.py --model 7B \
--max_seq_len 128 --batch_size 8 --epochs 5 --warmup_epochs 2 --bias 3 --tau 100. --max_feats 10 --dataset star \
--blr 9e-2 --weight_decay 0.16 --output_dir ./checkpoint/star --accum_iter 1 --vaq --qav
DramaQA
torchrun --rdzv_endpoint 127.0.0.1:1234 --nproc_per_node 4 train.py --model 7B \
--max_seq_len 384 --batch_size 2 --epochs 5 --warmup_epochs 2 --bias 3 --tau 100. --max_feats 10 --dataset dramaqa \
--blr 9e-2 --weight_decay 0.10 --output_dir ./checkpoint/dramaqa --accum_iter 8 --vaq --qav
VLEP
torchrun --rdzv_endpoint 127.0.0.1:1234 --nproc_per_node 4 train.py --model 7B \
--max_seq_len 256 --batch_size 4 --epochs 5 --warmup_epochs 2 --bias 3 --tau 100. --max_feats 10 --dataset vlep \
--blr 6e-2 --weight_decay 0.20 --output_dir ./checkpoint/vlep --accum_iter 8 --sub --qav
TVQA
torchrun --rdzv_endpoint 127.0.0.1:1234 --nproc_per_node 8 train.py --model 7B \
--max_seq_len 650 --batch_size 1 --epochs 5 --warmup_epochs 2 --bias 3 --tau 100. --max_feats 10 --dataset tvqa \
--blr 7e-2 --weight_decay 0.02 --output_dir ./checkpoint/tvqa --dataset tvqa --accum_iter 4 --sub --vaq --qav
The fine-tuned checkpoints on each dataset are here.
Evaluation
From the training command, simply replace train.py
with eval.py
and add --resume ./your/checkpoint.pth
.
Acknowledgements
This repo is built upon LLaMA-Adapter.
Citations
@inproceedings{ko2023large,
title={Large Language Models are Temporal and Causal Reasoners for Video Question Answering},
author={Ko, Dohwan and Lee, Ji Soo and Kang, Wooyoung and Roh, Byungseok and Kim, Hyunwoo J},
booktitle={EMNLP},
year={2023}
}