Search is not available for this dataset
age
float64
18
96
priors_count
float64
0
37
days_b_screening_arrest
float64
-30
30
c_jail_time
float64
-1
799
juv_fel_count
float64
0
20
juv_other_count
float64
0
9
juv_misd_count
float64
0
13
c_charge_degree:F
float64
0
1
c_charge_degree:M
float64
0
1
race:African-American
float64
0
1
race:Asian
float64
0
1
race:Caucasian
float64
0
1
race:Hispanic
float64
0
1
race:Native_American
float64
0
1
race:Other
float64
0
1
age_cat:25_-_45
float64
0
1
age_cat:Greater_than_45
float64
0
1
age_cat:Less_than_25
float64
0
1
sex:Female
float64
0
1
sex:Male
float64
0
1
is_recid
int64
0
1
40
0
-1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
25
1
-1
1
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
1
1
36
11
-1
2
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
23
1
-1
0
0
0
1
0
1
0
0
1
0
0
0
0
0
1
0
1
0
29
0
0
-1
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
54
21
-1
0
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
30
4
-1
1
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
1
23
0
0
2
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
1
0
22
4
-1
2
0
2
1
0
1
0
0
1
0
0
0
0
0
1
0
1
1
53
11
-1
110
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
54
0
-1
27
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
1
0
44
3
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
42
1
-3
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
24
2
-1
1
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
1
30
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
1
29
1
-1
11
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
25
4
-5
5
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
30
9
-1
243
0
0
0
1
0
1
0
0
0
0
0
1
0
0
1
0
1
41
0
-3
1
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
1
1
42
0
-1
281
0
0
0
1
0
0
0
0
0
0
1
1
0
0
1
0
0
32
0
-1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
1
26
1
0
0
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
1
0
55
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
1
0
40
0
-1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
30
3
0
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
33
1
-17
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
0
20
2
-1
31
0
1
2
1
0
0
0
0
1
0
0
0
0
1
0
1
1
25
1
-1
1
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
57
0
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
36
5
-1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
0
26
24
-1
85
1
0
3
0
1
1
0
0
0
0
0
1
0
0
0
1
1
26
10
-1
2
1
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
21
1
-1
1
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
1
25
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
23
1
-1
1
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
1
21
2
-24
21
0
0
1
0
1
1
0
0
0
0
0
0
0
1
0
1
1
25
0
-1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
0
27
4
-1
1
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
56
0
0
-1
0
0
0
1
0
0
0
1
0
0
0
0
1
0
0
1
0
28
1
-1
1
0
0
0
1
0
0
0
0
1
0
0
1
0
0
0
1
0
24
1
-1
24
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
0
51
0
-1
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
1
0
1
46
2
-1
1
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
1
0
20
1
-1
2
0
2
0
1
0
1
0
0
0
0
0
0
0
1
0
1
0
26
2
0
3
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
33
0
-1
23
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
36
9
0
1
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
80
0
-1
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
35
16
-1
191
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
44
0
-1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
33
4
-1
1
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
21
0
-1
45
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
0
41
0
-1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
42
0
0
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
53
0
-1
3
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
1
37
1
-1
5
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
1
0
26
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
1
36
0
0
-1
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
23
2
-1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
1
49
7
-1
3
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
1
1
46
0
0
1
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
1
0
43
3
21
2
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
1
31
1
-1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
52
2
-5
3
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
28
11
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
22
0
-1
0
0
0
0
1
0
1
0
0
0
0
0
0
0
1
0
1
1
54
0
-4
1
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
0
25
0
0
1
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
32
2
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
37
2
0
169
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
0
27
8
-1
1
0
1
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
28
5
-1
170
1
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
27
4
-1
34
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
36
0
-1
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
28
6
-1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
42
0
0
34
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1
57
19
-1
117
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
0
26
0
-1
0
0
0
0
0
1
0
0
1
0
0
0
1
0
0
0
1
0
25
2
-1
3
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
31
2
-28
27
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
1
41
0
-1
0
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
0
35
3
0
1
0
2
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
31
0
-1
9
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
38
7
-1
197
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
36
0
-7
1
0
0
0
0
1
0
0
0
1
0
0
1
0
0
0
1
0
37
3
-1
29
0
0
0
1
0
1
0
0
0
0
0
1
0
0
1
0
0
24
0
-1
20
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
1
1
29
9
-1
1
1
1
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
45
1
0
0
0
0
0
0
1
0
0
1
0
0
0
0
1
0
0
1
1
29
0
-3
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
0
0
27
1
-1
2
0
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
60
0
-1
2
0
0
0
1
0
1
0
0
0
0
0
0
1
0
0
1
1
23
2
-1
1
0
0
1
1
0
1
0
0
0
0
0
0
0
1
0
1
1
29
5
-1
258
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
1
0
30
2
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
0
0
1
1
38
2
0
8
0
0
0
1
0
0
1
0
0
0
0
1
0
0
0
1
0
33
0
-1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
1
0
49
2
-1
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
1
0
22
0
-1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
1
0
33
7
0
78
0
0
0
1
0
1
0
0
0
0
0
1
0
0
0
1
1

Port of the compas-recidivism dataset from propublica (github here). See details there and use carefully, as there are serious known social impacts and biases present in this dataset.

Basic preprocessing done by the imodels team in this notebook.

The target is the binary outcome is_recid.

Sample usage

Load the data:

from datasets import load_dataset

dataset = load_dataset("imodels/compas-recidivism")
df = pd.DataFrame(dataset['train'])
X = df.drop(columns=['is_recid'])
y = df['is_recid'].values

Fit a model:

import imodels
import numpy as np

m = imodels.FIGSClassifier(max_rules=5)
m.fit(X, y)
print(m)

Evaluate:

df_test = pd.DataFrame(dataset['test'])
X_test = df.drop(columns=['is_recid'])
y_test = df['is_recid'].values
print('accuracy', np.mean(m.predict(X_test) == y_test))
Downloads last month
120

Models trained or fine-tuned on imodels/compas-recidivism