code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class UpperCamelCase__( unittest.TestCase ): def a__( self : int )-> int: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase__ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) UpperCAmelCase = model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ ) UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(UpperCamelCase__ ) model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ , streamer=UpperCamelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase = cs.out[:-1] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def a__( self : Optional[Any] )-> str: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase__ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) UpperCAmelCase = model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ ) UpperCAmelCase = tokenizer.decode(greedy_ids[0] ) UpperCAmelCase = TextIteratorStreamer(UpperCamelCase__ ) UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} UpperCAmelCase = Thread(target=model.generate , kwargs=UpperCamelCase__ ) thread.start() UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def a__( self : str )-> Dict: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase__ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) UpperCAmelCase = model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ ) UpperCAmelCase = greedy_ids[:, input_ids.shape[1] :] UpperCAmelCase = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(UpperCamelCase__ , skip_prompt=UpperCamelCase__ ) model.generate(UpperCamelCase__ , max_new_tokens=10 , do_sample=UpperCamelCase__ , streamer=UpperCamelCase__ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer UpperCAmelCase = cs.out[:-1] self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def a__( self : Dict )-> Tuple: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''distilgpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase__ ) UpperCAmelCase = -1 UpperCAmelCase = torch.ones((1, 5) , device=UpperCamelCase__ ).long() * model.config.bos_token_id with CaptureStdout() as cs: UpperCAmelCase = TextStreamer(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) model.generate(UpperCamelCase__ , max_new_tokens=1 , do_sample=UpperCamelCase__ , streamer=UpperCamelCase__ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token UpperCAmelCase = cs.out[:-1] # Remove the final "\n" UpperCAmelCase = tokenizer(UpperCamelCase__ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def a__( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase__ ) UpperCAmelCase = -1 UpperCAmelCase = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase__ ) UpperCAmelCase = TextIteratorStreamer(UpperCamelCase__ , timeout=0.001 ) UpperCAmelCase = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} UpperCAmelCase = Thread(target=model.generate , kwargs=UpperCamelCase__ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase__ ): UpperCAmelCase = '''''' for new_text in streamer: streamer_text += new_text
210
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
from math import sqrt def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" SCREAMING_SNAKE_CASE__ = True # 0 and 1 are none primes. if number <= 1: SCREAMING_SNAKE_CASE__ = False for divisor in range(2 , int(round(sqrt(UpperCamelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: SCREAMING_SNAKE_CASE__ = False break # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'status' must been from type bool" return status def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N SCREAMING_SNAKE_CASE__ = list(range(2 , n + 1 ) ) SCREAMING_SNAKE_CASE__ = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(UpperCamelCase_ ) ): for j in range(i + 1 , len(UpperCamelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): SCREAMING_SNAKE_CASE__ = 0 # filters actual prime numbers. SCREAMING_SNAKE_CASE__ = [x for x in begin_list if x != 0] # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'ans' must been from type list" return ans def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (n > 2), "'N' must been an int and > 2" SCREAMING_SNAKE_CASE__ = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(UpperCamelCase_ ): ans.append(UpperCamelCase_ ) # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'ans' must been from type list" return ans def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and number >= 0, "'number' must been an int and >= 0" SCREAMING_SNAKE_CASE__ = [] # this list will be returns of the function. # potential prime number factors. SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = number if number == 0 or number == 1: ans.append(UpperCamelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(UpperCamelCase_ ): while quotient != 1: if is_prime(UpperCamelCase_ ) and (quotient % factor == 0): ans.append(UpperCamelCase_ ) quotient /= factor else: factor += 1 else: ans.append(UpperCamelCase_ ) # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'ans' must been from type list" return ans def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE__ = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE__ = prime_factorization(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = max(UpperCamelCase_ ) # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'ans' must been from type int" return ans def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" SCREAMING_SNAKE_CASE__ = 0 # prime factorization of 'number' SCREAMING_SNAKE_CASE__ = prime_factorization(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = min(UpperCamelCase_ ) # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'ans' must been from type int" return ans def _lowercase ( UpperCamelCase_ ) -> int: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , UpperCamelCase_ ), "compare bust been from type bool" return number % 2 == 0 def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , UpperCamelCase_ ), "compare bust been from type bool" return number % 2 != 0 def _lowercase ( UpperCamelCase_ ) -> List[str]: '''simple docstring''' assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (number > 2) and is_even(UpperCamelCase_ ) ), "'number' must been an int, even and > 2" SCREAMING_SNAKE_CASE__ = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' SCREAMING_SNAKE_CASE__ = get_prime_numbers(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) # run variable for while-loops. SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = None # exit variable. for break up the loops SCREAMING_SNAKE_CASE__ = True while i < len_pn and loop: SCREAMING_SNAKE_CASE__ = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: SCREAMING_SNAKE_CASE__ = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (len(UpperCamelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE__ = 0 while numbera != 0: SCREAMING_SNAKE_CASE__ = numbera % numbera SCREAMING_SNAKE_CASE__ = numbera SCREAMING_SNAKE_CASE__ = rest # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." SCREAMING_SNAKE_CASE__ = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' SCREAMING_SNAKE_CASE__ = prime_factorization(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = prime_factorization(UpperCamelCase_ ) elif numbera == 1 or numbera == 1: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = max(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: SCREAMING_SNAKE_CASE__ = prime_fac_a.count(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = prime_fac_a.count(UpperCamelCase_ ) for _ in range(max(UpperCamelCase_ , UpperCamelCase_ ) ): ans *= n else: SCREAMING_SNAKE_CASE__ = prime_fac_a.count(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ): ans *= n done.append(UpperCamelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: SCREAMING_SNAKE_CASE__ = prime_fac_a.count(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ): ans *= n done.append(UpperCamelCase_ ) # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowercase ( UpperCamelCase_ ) -> Tuple: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (n >= 0), "'number' must been a positive int" SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(UpperCamelCase_ ): ans += 1 # precondition assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and is_prime( UpperCamelCase_ ), "'ans' must been a prime number and from type int" return ans def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' assert ( is_prime(UpperCamelCase_ ) and is_prime(UpperCamelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" SCREAMING_SNAKE_CASE__ = p_number_a + 1 # jump to the next number SCREAMING_SNAKE_CASE__ = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(UpperCamelCase_ ): number += 1 while number < p_number_a: ans.append(UpperCamelCase_ ) number += 1 # fetch the next prime number. while not is_prime(UpperCamelCase_ ): number += 1 # precondition assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ans[0] != p_number_a and ans[len(UpperCamelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (n >= 1), "'n' must been int and >= 1" SCREAMING_SNAKE_CASE__ = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(UpperCamelCase_ ) # precondition assert ans[0] == 1 and ans[len(UpperCamelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowercase ( UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" SCREAMING_SNAKE_CASE__ = get_divisors(UpperCamelCase_ ) # precondition assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (divisors[0] == 1) and (divisors[len(UpperCamelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. SCREAMING_SNAKE_CASE__ = gcd(abs(UpperCamelCase_ ) , abs(UpperCamelCase_ ) ) # precondition assert ( isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (n >= 0), "'n' must been a int and >= 0" SCREAMING_SNAKE_CASE__ = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) and (n >= 0), "'n' must been an int and >= 0" SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 1 # this will be return for _ in range(n - 1 ): SCREAMING_SNAKE_CASE__ = ans ans += fiba SCREAMING_SNAKE_CASE__ = tmp return ans
472
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
"""simple docstring""" from __future__ import annotations import pandas as pd def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->list[int]: """simple docstring""" __lowercase : int = [0] * no_of_processes __lowercase : Optional[int] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_lowerCamelCase ): __lowercase : List[str] = burst_time[i] __lowercase : Optional[int] = 0 __lowercase : int = 0 __lowercase : Optional[Any] = 9_99_99_99_99 __lowercase : Optional[Any] = 0 __lowercase : Optional[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(_lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __lowercase : Dict = remaining_time[j] __lowercase : List[Any] = j __lowercase : Dict = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __lowercase : Optional[Any] = remaining_time[short] if minm == 0: __lowercase : str = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __lowercase : Optional[int] = False # Find finish time of current process __lowercase : List[Any] = increment_time + 1 # Calculate waiting time __lowercase : Optional[Any] = finish_time - arrival_time[short] __lowercase : Optional[Any] = finar - burst_time[short] if waiting_time[short] < 0: __lowercase : int = 0 # Increment time increment_time += 1 return waiting_time def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->list[int]: """simple docstring""" __lowercase : Dict = [0] * no_of_processes for i in range(_lowerCamelCase ): __lowercase : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->None: """simple docstring""" __lowercase : str = 0 __lowercase : List[str] = 0 for i in range(_lowerCamelCase ): __lowercase : Tuple = total_waiting_time + waiting_time[i] __lowercase : Union[str, Any] = total_turn_around_time + turn_around_time[i] print(F'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("Average turn around time =", total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') __A : Dict = int(input()) __A : Dict = [0] * no_of_processes __A : List[str] = [0] * no_of_processes __A : List[Any] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) __A, __A : int = map(int, input().split()) __A : Optional[Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __A : List[Any] = burst_time __A : str = no_of_processes __A : Tuple = waiting_time __A : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __A : Optional[int] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
575
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : int = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class __magic_name__ ( __lowercase ): """simple docstring""" __UpperCamelCase = '''biogpt''' def __init__( self :Optional[Any] , snake_case :str=42_384 , snake_case :Tuple=1_024 , snake_case :Dict=24 , snake_case :Any=16 , snake_case :str=4_096 , snake_case :Tuple="gelu" , snake_case :List[str]=0.1 , snake_case :Any=0.1 , snake_case :Tuple=1_024 , snake_case :List[Any]=0.02 , snake_case :Dict=1e-12 , snake_case :Any=True , snake_case :List[str]=True , snake_case :Optional[Any]=0.0 , snake_case :Optional[Any]=0.0 , snake_case :Any=1 , snake_case :List[str]=0 , snake_case :Optional[Any]=2 , **snake_case :List[Any] , ): '''simple docstring''' A_ : Dict = vocab_size A_ : Optional[int] = max_position_embeddings A_ : Union[str, Any] = hidden_size A_ : List[str] = num_hidden_layers A_ : str = num_attention_heads A_ : int = intermediate_size A_ : Optional[int] = hidden_act A_ : Optional[Any] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : Optional[int] = layer_norm_eps A_ : List[str] = scale_embedding A_ : Optional[Any] = use_cache A_ : Dict = layerdrop A_ : Any = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
454
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( __lowercase ): __UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] __UpperCAmelCase : List[str] = '''BridgeTowerImageProcessor''' __UpperCAmelCase : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = 0 , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = True , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> int: '''simple docstring''' snake_case : Dict = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask snake_case : Tuple = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCamelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Any = self.tokenizer.model_input_names snake_case : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
178
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase__ : def __init__( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=13 , UpperCamelCase_ : Optional[Any]=30 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : List[str]=32 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : Dict=37 , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : str=10 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Tuple=2 , ) -> Any: """simple docstring""" lowerCamelCase_ : List[str] = parent lowerCamelCase_ : Tuple = batch_size lowerCamelCase_ : int = image_size lowerCamelCase_ : Any = patch_size lowerCamelCase_ : Union[str, Any] = num_channels lowerCamelCase_ : Optional[Any] = is_training lowerCamelCase_ : List[Any] = use_labels lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : Optional[int] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : List[Any] = intermediate_size lowerCamelCase_ : Union[str, Any] = hidden_act lowerCamelCase_ : Dict = hidden_dropout_prob lowerCamelCase_ : List[Any] = attention_probs_dropout_prob lowerCamelCase_ : int = type_sequence_label_size lowerCamelCase_ : Tuple = initializer_range lowerCamelCase_ : Dict = scope lowerCamelCase_ : Any = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCamelCase_ : Tuple = (image_size // patch_size) ** 2 lowerCamelCase_ : Tuple = num_patches + 2 def __UpperCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ : Dict = None if self.use_labels: lowerCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : str ) -> int: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = TFDeiTModel(config=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : List[str] = TFDeiTForMaskedImageModeling(config=UpperCamelCase__ ) lowerCamelCase_ : int = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : Optional[Any] = TFDeiTForMaskedImageModeling(UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Dict = self.type_sequence_label_size lowerCamelCase_ : str = TFDeiTForImageClassification(UpperCamelCase__ ) lowerCamelCase_ : Dict = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ : str = 1 lowerCamelCase_ : Tuple = TFDeiTForImageClassification(UpperCamelCase__ ) lowerCamelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ : Optional[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : str = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = config_and_inputs lowerCamelCase_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): A = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) A = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) A = False A = False A = False A = False def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : List[str] = TFDeiTModelTester(self ) lowerCamelCase_ : Any = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : Union[str, Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowerCamelCase_ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , tf.keras.layers.Dense ) ) def __UpperCamelCase ( self : int ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ : List[str] = model_class(UpperCamelCase__ ) lowerCamelCase_ : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCamelCase_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def __UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def __UpperCamelCase ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=False ) -> Any: """simple docstring""" lowerCamelCase_ : Any = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ : Union[str, Any] = TFDeiTModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __snake_case (): """simple docstring""" lowerCamelCase_ : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : int = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) lowerCamelCase_ : Optional[Any] = self.default_image_processor lowerCamelCase_ : Tuple = prepare_img() lowerCamelCase_ : Optional[int] = image_processor(images=UpperCamelCase__ , return_tensors='''tf''' ) # forward pass lowerCamelCase_ : Dict = model(**UpperCamelCase__ ) # verify the logits lowerCamelCase_ : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCamelCase_ : str = tf.constant([-1.0266, 0.1912, -1.2861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
501
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase = 16 _lowercase = 32 def lowerCAmelCase__ ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : DatasetDict , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : int = 1_6 )-> Dict: A__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ = DatasetDict( { '''train''': dataset['''train'''].select(UpperCamelCase_ ), '''validation''': dataset['''train'''].select(UpperCamelCase_ ), '''test''': dataset['''validation'''], } ) def tokenize_function(UpperCamelCase_ : Optional[int] ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase_ : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( UpperCamelCase_ , padding='''longest''' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) A__ = DataLoader( tokenized_datasets['''test'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def lowerCAmelCase__ ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] )-> Tuple: # New Code # A__ = [] # Download the dataset A__ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits A__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator A__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation A__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: A__ = batch_size // MAX_GPU_BATCH_SIZE A__ = MAX_GPU_BATCH_SIZE set_seed(UpperCamelCase_ ) # New Code # # Create our folds: A__ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) A__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(UpperCamelCase_ ): A__ , A__ , A__ = get_fold_dataloaders( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) A__ = model(**UpperCamelCase_ ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase_ ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , UpperCamelCase_ ) # New Code # # We also run predictions on the test set at the very end A__ = [] for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase_ ) A__ = outputs.logits A__ , A__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(UpperCamelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: A__ = torch.cat(UpperCamelCase_ , dim=0 ) A__ = torch.stack(UpperCamelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) A__ = metric.compute(predictions=UpperCamelCase_ , references=UpperCamelCase_ ) accelerator.print('''Average test metrics from all folds:''' , UpperCamelCase_ ) def lowerCAmelCase__ ( )-> int: A__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=UpperCamelCase_ , default=3 , help='''The number of splits to perform across the dataset''' ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
632
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
def UpperCAmelCase_ ( __lowerCAmelCase ) -> "list[int]": if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) __lowercase : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 __lowercase : Optional[Any] = 1 if upper_limit > 0: __lowercase : Dict = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowerCAmelCase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print("\n********* Catalan Numbers Using Dynamic Programming ************\n") print("\n*** Enter -1 at any time to quit ***") print("\nEnter the upper limit (≥ 0) for the Catalan number sequence: ", end="") try: while True: __lowerCAmelCase : Dict = int(input().strip()) if N < 0: print("\n********* Goodbye!! ************") break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print("Try another upper limit for the sequence: ", end="") except (NameError, ValueError): print("\n********* Invalid input, goodbye! ************\n") import doctest doctest.testmod()
509
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ = importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def A_ ( lowercase ) -> str: """simple docstring""" if "://" in dataset_path: UpperCAmelCase_ : List[str] = dataset_path.split("""://""" )[1] return dataset_path def A_ ( lowercase ) -> bool: """simple docstring""" if fs is not None and fs.protocol != "file": return True else: return False def A_ ( lowercase , lowercase , lowercase ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = not is_remote_filesystem(lowercase ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase ) , fs._strip_protocol(lowercase ) ) else: fs.mv(lowercase , lowercase , recursive=lowercase ) def A_ ( ) -> None: """simple docstring""" if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: UpperCAmelCase_ : str = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Tuple = threading.Lock()
470
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' from itertools import product def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): A__ = sides_number A__ = max_face_number * dice_number A__ = [0] * (max_total + 1) A__ = 1 A__ = range(_lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(_lowerCamelCase , repeat=_lowerCamelCase ): A__ = sum(_lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def UpperCamelCase ( ): A__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) A__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) A__ = 0 A__ = 9 A__ = 4 * 9 A__ = 6 for peter_total in range(_lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) A__ = (4**9) * (6**6) A__ = peter_wins_count / total_games_number A__ = round(_lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
440
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCamelCase = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) UpperCamelCase = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_0000): out_file.write(data) UpperCamelCase = BeautifulSoup(res.text, 'html.parser') UpperCamelCase = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"""https://google.com{link.get('href')}""")
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowercase : Dict = logging.get_logger(__name__) def lowerCamelCase__ ( A : List[str] ): '''simple docstring''' UpperCAmelCase = R'''\w+[.]\d+''' UpperCAmelCase = re.findall(A , A ) for pat in pats: UpperCAmelCase = key.replace(A , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCamelCase__ ( A : Optional[int] , A : Dict , A : Dict ): '''simple docstring''' UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase__ ( A : Tuple , A : Any , A : str=42 ): '''simple docstring''' UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase = flax_model.init_weights(PRNGKey(A ) ) UpperCAmelCase = flatten_dict(A ) UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase = rename_key(A ) UpperCAmelCase = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase , UpperCAmelCase = rename_key_and_reshape_tensor(A , A , A ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase = jnp.asarray(A ) return unflatten_dict(A )
210
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __snake_case = Mapping[str, np.ndarray] __snake_case = Mapping[str, Any] # Is a nested dict. __snake_case = 0.01 @dataclasses.dataclass(frozen=__lowercase ) class lowercase__ : A__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. A__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. A__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. A__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. A__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions A__ : Optional[np.ndarray] =None # Optional remark about the protein. Included as a comment in output PDB # files A__ : Optional[str] =None # Templates used to generate this protein (prediction-only) A__ : Optional[Sequence[str]] =None # Chain corresponding to each parent A__ : Optional[Sequence[int]] =None def _lowercase ( UpperCamelCase_ ) -> Protein: '''simple docstring''' SCREAMING_SNAKE_CASE__ = r'(\[[A-Z]+\]\n)' SCREAMING_SNAKE_CASE__ = [tag.strip() for tag in re.split(UpperCamelCase_ , UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0] SCREAMING_SNAKE_CASE__ = zip(tags[0::2] , [l.split('\n' ) for l in tags[1::2]] ) SCREAMING_SNAKE_CASE__ = ['N', 'CA', 'C'] SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None for g in groups: if "[PRIMARY]" == g[0]: SCREAMING_SNAKE_CASE__ = g[1][0].strip() for i in range(len(UpperCamelCase_ ) ): if seq[i] not in residue_constants.restypes: SCREAMING_SNAKE_CASE__ = 'X' # FIXME: strings are immutable SCREAMING_SNAKE_CASE__ = np.array( [residue_constants.restype_order.get(UpperCamelCase_ , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: SCREAMING_SNAKE_CASE__ = [] for axis in range(3 ): tertiary.append(list(map(UpperCamelCase_ , g[1][axis].split() ) ) ) SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: SCREAMING_SNAKE_CASE__ = np.array(list(map({'-': 0, '+': 1}.get , g[1][0].strip() ) ) ) SCREAMING_SNAKE_CASE__ = np.zeros( ( len(UpperCamelCase_ ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=UpperCamelCase_ , atom_mask=UpperCamelCase_ , aatype=UpperCamelCase_ , residue_index=np.arange(len(UpperCamelCase_ ) ) , b_factors=UpperCamelCase_ , ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ = 0 ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = prot.remark if remark is not None: pdb_headers.append(F'REMARK {remark}' ) SCREAMING_SNAKE_CASE__ = prot.parents SCREAMING_SNAKE_CASE__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: SCREAMING_SNAKE_CASE__ = [p for i, p in zip(UpperCamelCase_ , UpperCamelCase_ ) if i == chain_id] if parents is None or len(UpperCamelCase_ ) == 0: SCREAMING_SNAKE_CASE__ = ['N/A'] pdb_headers.append(F'PARENT {" ".join(UpperCamelCase_ )}' ) return pdb_headers def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = pdb_str.split('\n' ) SCREAMING_SNAKE_CASE__ = prot.remark if remark is not None: out_pdb_lines.append(F'REMARK {remark}' ) SCREAMING_SNAKE_CASE__ = 42 if prot.parents is not None and len(prot.parents ) > 0: SCREAMING_SNAKE_CASE__ = [] if prot.parents_chain_index is not None: SCREAMING_SNAKE_CASE__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(UpperCamelCase_ ) , [] ) parent_dict[str(UpperCamelCase_ )].append(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = max([int(UpperCamelCase_ ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): SCREAMING_SNAKE_CASE__ = parent_dict.get(str(UpperCamelCase_ ) , ['N/A'] ) parents_per_chain.append(UpperCamelCase_ ) else: parents_per_chain.append(list(prot.parents ) ) else: SCREAMING_SNAKE_CASE__ = [['N/A']] def make_parent_line(UpperCamelCase_ ) -> str: return F'PARENT {" ".join(UpperCamelCase_ )}' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) SCREAMING_SNAKE_CASE__ = 0 for i, l in enumerate(UpperCamelCase_ ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(UpperCamelCase_ ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = parents_per_chain[chain_counter] else: SCREAMING_SNAKE_CASE__ = ['N/A'] out_pdb_lines.append(make_parent_line(UpperCamelCase_ ) ) return "\n".join(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ = residue_constants.restypes + ['X'] def res_atoa(UpperCamelCase_ ) -> str: return residue_constants.restype_atoa.get(restypes[r] , 'UNK' ) SCREAMING_SNAKE_CASE__ = residue_constants.atom_types SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = prot.atom_mask SCREAMING_SNAKE_CASE__ = prot.aatype SCREAMING_SNAKE_CASE__ = prot.atom_positions SCREAMING_SNAKE_CASE__ = prot.residue_index.astype(np.intaa ) SCREAMING_SNAKE_CASE__ = prot.b_factors SCREAMING_SNAKE_CASE__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('Invalid aatypes.' ) SCREAMING_SNAKE_CASE__ = get_pdb_headers(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: pdb_lines.extend(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = aatype.shape[0] SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = string.ascii_uppercase SCREAMING_SNAKE_CASE__ = None # Add all atom sites. for i in range(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(UpperCamelCase_ , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue SCREAMING_SNAKE_CASE__ = 'ATOM' SCREAMING_SNAKE_CASE__ = atom_name if len(UpperCamelCase_ ) == 4 else F' {atom_name}' SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 1.00 SCREAMING_SNAKE_CASE__ = atom_name[0] # Protein supports only C, N, O, S, this works. SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'A' if chain_index is not None: SCREAMING_SNAKE_CASE__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! SCREAMING_SNAKE_CASE__ = ( F'{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}' F'{res_name_a:>3} {chain_tag:>1}' F'{residue_index[i]:>4}{insertion_code:>1} ' F'{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}' F'{occupancy:>6.2f}{b_factor:>6.2f} ' F'{element:>2}{charge:>2}' ) pdb_lines.append(UpperCamelCase_ ) atom_index += 1 SCREAMING_SNAKE_CASE__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = chain_index[i + 1] if should_terminate: # Close the chain. SCREAMING_SNAKE_CASE__ = 'TER' SCREAMING_SNAKE_CASE__ = ( F'{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}' ) pdb_lines.append(UpperCamelCase_ ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(UpperCamelCase_ , UpperCamelCase_ ) ) pdb_lines.append('END' ) pdb_lines.append('' ) return "\n".join(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Protein: '''simple docstring''' return Protein( aatype=features['aatype'] , atom_positions=result['final_atom_positions'] , atom_mask=result['final_atom_mask'] , residue_index=features['residue_index'] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['final_atom_mask'] ) , chain_index=UpperCamelCase_ , remark=UpperCamelCase_ , parents=UpperCamelCase_ , parents_chain_index=UpperCamelCase_ , )
472
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __A : Optional[Any] = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __A : Tuple = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __A : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->tuple[str, float]: """simple docstring""" __lowercase : Union[str, Any] = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->tuple[str, str]: """simple docstring""" __lowercase : str = random.randint(0, len(_lowerCamelCase ) - 1 ) __lowercase : List[str] = parent_a[:random_slice] + parent_a[random_slice:] __lowercase : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->str: """simple docstring""" __lowercase : List[str] = list(_lowerCamelCase ) if random.uniform(0, 1 ) < MUTATION_PROBABILITY: __lowercase : Optional[Any] = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, ) ->list[str]: """simple docstring""" __lowercase : Tuple = [] # Generate more children proportionally to the fitness score. __lowercase : Union[str, Any] = int(parent_a[1] * 1_00 ) + 1 __lowercase : int = 10 if child_n >= 10 else child_n for _ in range(_lowerCamelCase ): __lowercase : int = population_score[random.randint(0, _lowerCamelCase )][0] __lowercase ,__lowercase : int = crossover(parent_a[0], _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase, _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase, _lowerCamelCase ) ) return pop def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase = True ) ->tuple[int, int, str]: """simple docstring""" if N_POPULATION < N_SELECTED: __lowercase : Optional[Any] = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __lowercase : Any = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __lowercase : Optional[Any] = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_lowerCamelCase ) # Generate random starting population. __lowercase : Dict = [] for _ in range(_lowerCamelCase ): population.append("".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __lowercase ,__lowercase : int = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __lowercase : Optional[Any] = [evaluate(_lowerCamelCase, _lowerCamelCase ) for item in population] # Check if there is a matching evolution. __lowercase : Optional[Any] = sorted(_lowerCamelCase, key=lambda _lowerCamelCase : x[1], reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __lowercase : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. __lowercase : List[Any] = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )], _lowerCamelCase, _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": __A : Union[str, Any] = ( 'This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!' ) __A : str = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) __A, __A, __A : int = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
575
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> int: def count_of_possible_combinations(_lowerCAmelCase : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> int: def count_of_possible_combinations_with_dp_array( _lowerCAmelCase : int , _lowerCAmelCase : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] A_ : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item , _lowerCAmelCase ) for item in array ) A_ : Union[str, Any] = answer return answer A_ : Any = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_lowerCAmelCase , _lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : list[int] , _lowerCAmelCase : int ) -> int: A_ : Optional[int] = [0] * (target + 1) A_ : Optional[Any] = 1 for i in range(1 , target + 1 ): for j in range(_lowerCAmelCase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : str = 3 _lowerCAmelCase : List[Any] = 5 _lowerCAmelCase : List[Any] = [1, 2, 5] print(combination_sum_iv(n, array, target))
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( __lowercase , unittest.TestCase ): __UpperCAmelCase : Optional[int] = DebertaVaTokenizer __UpperCAmelCase : Optional[Any] = DebertaVaTokenizerFast __UpperCAmelCase : Any = True __UpperCAmelCase : str = True def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case : List[Any] = DebertaVaTokenizer(UpperCamelCase__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : Any = "this is a test" snake_case : Union[str, Any] = "this is a test" return input_text, output_text def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Tuple = "<pad>" snake_case : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(UpperCamelCase__ ) , 3_0001 ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[str] = " \tHeLLo!how \n Are yoU? " snake_case : List[str] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on snake_case : Optional[int] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) snake_case : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) snake_case : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : List[Any] = "I was born in 92000, and this is falsé." snake_case : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on snake_case : Tuple = DebertaVaTokenizer(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = DebertaVaTokenizerFast(UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Dict = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Optional[Any] = "I was born in 92000, and this is falsé." snake_case : str = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on snake_case : List[str] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Optional[int] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = "I was born in 92000, and this is falsé." snake_case : Optional[Any] = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on snake_case : Union[str, Any] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : List[str] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : List[str] = "I was born in 92000, and this is falsé." snake_case : Optional[Any] = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on snake_case : Optional[int] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[int] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : str = " \tHeLLo!how \n Are yoU? " snake_case : Union[str, Any] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on snake_case : Union[str, Any] = DebertaVaTokenizer(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Optional[Any] = DebertaVaTokenizerFast(UpperCamelCase__ , do_lower_case=UpperCamelCase__ , split_by_punct=UpperCamelCase__ ) snake_case : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : str = self.get_tokenizer() snake_case : List[Any] = self.get_rust_tokenizer() snake_case : Optional[int] = "I was born in 92000, and this is falsé." snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) snake_case : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) snake_case : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = self.get_rust_tokenizer() snake_case : Union[str, Any] = tokenizer.encode(UpperCamelCase__ ) snake_case : Optional[Any] = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Dict = "This is a test" snake_case : List[Any] = [13, 1, 4398, 25, 21, 1289] snake_case : Any = ["▁", "T", "his", "▁is", "▁a", "▁test"] snake_case : Dict = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] snake_case : Optional[int] = DebertaVaTokenizer(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) snake_case : Optional[int] = DebertaVaTokenizerFast(UpperCamelCase__ , keep_accents=UpperCamelCase__ ) snake_case : Any = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : int = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # fmt: off snake_case : Optional[int] = "I was born in 92000, and this is falsé." snake_case : str = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] snake_case : Tuple = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] snake_case : Any = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on snake_case : Dict = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Any = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[str] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : List[Any] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) snake_case : Dict = rust_tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = DebertaVaTokenizer(UpperCamelCase__ ) snake_case : Any = tokenizer.encode("sequence builders" ) snake_case : Dict = tokenizer.encode("multi-sequence build" ) snake_case : Any = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) snake_case : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCamelCase__ , ) @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : int = {"input_ids": [[1, 3_9867, 36, 1_9390, 486, 27, 3_5052, 8_1436, 18, 6_0685, 1225, 7, 3_5052, 8_1436, 18, 9367, 1_6899, 18, 1_5937, 53, 594, 773, 18, 1_6287, 3_0465, 36, 1_5937, 6, 4_1139, 38, 3_6979, 6_0763, 191, 6, 3_4132, 99, 6, 5_0538, 390, 4_3230, 6, 3_4132, 2779, 2_0850, 14, 699, 1072, 1194, 36, 382, 1_0901, 53, 7, 699, 1072, 2084, 36, 2_0422, 630, 53, 19, 105, 3049, 1896, 1053, 1_6899, 1506, 11, 3_7978, 4243, 7, 1237, 3_1869, 200, 1_6566, 654, 6, 3_5052, 8_1436, 7, 5_5630, 1_3593, 4, 2], [1, 26, 1_5011, 13, 667, 8, 1053, 18, 2_3611, 1237, 7_2356, 1_2820, 34, 10_4134, 1209, 35, 1_3313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 1_5785, 1_4951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
178
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' import os def __snake_case (): """simple docstring""" lowerCamelCase_ : int = os.path.join(os.path.dirname(__UpperCAmelCase ) , '''num.txt''' ) with open(__UpperCAmelCase ) as file_hand: return str(sum(int(__UpperCAmelCase ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
501
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase = 16 _lowercase = 32 def lowerCAmelCase__ ( UpperCamelCase_ : Accelerator , UpperCamelCase_ : int = 1_6 , UpperCamelCase_ : str = "bert-base-cased" )-> Union[str, Any]: A__ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) A__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(UpperCamelCase_ : Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset A__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=UpperCamelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase_ , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(UpperCamelCase_ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets['''train'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) A__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any )-> Union[str, Any]: # Initialize accelerator A__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config['''lr'''] A__ = int(config['''num_epochs'''] ) A__ = int(config['''seed'''] ) A__ = int(config['''batch_size'''] ) A__ = args.model_name_or_path set_seed(UpperCamelCase_ ) A__ , A__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase_ , return_dict=UpperCamelCase_ ) # Instantiate optimizer A__ = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) A__ = optimizer_cls(params=model.parameters() , lr=UpperCamelCase_ ) if accelerator.state.deepspeed_plugin is not None: A__ = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: A__ = 1 A__ = (len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): A__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=0 , num_training_steps=UpperCamelCase_ , ) else: A__ = DummyScheduler(UpperCamelCase_ , total_num_steps=UpperCamelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # We need to keep track of how many total steps we have iterated over A__ = 0 # We also need to keep track of the stating epoch so files are named properly A__ = 0 # Now we train the model A__ = evaluate.load('''glue''' , '''mrpc''' ) A__ = 0 A__ = {} for epoch in range(UpperCamelCase_ , UpperCamelCase_ ): model.train() for step, batch in enumerate(UpperCamelCase_ ): A__ = model(**UpperCamelCase_ ) A__ = outputs.loss A__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() A__ = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**UpperCamelCase_ ) A__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times A__ , A__ = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(UpperCamelCase_ ) - 1: A__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] A__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , UpperCamelCase_ ) A__ = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: A__ = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( )-> Tuple: A__ = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=UpperCamelCase_ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=UpperCamelCase_ , ) parser.add_argument( '''--output_dir''' , type=UpperCamelCase_ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=UpperCamelCase_ , default=UpperCamelCase_ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=UpperCamelCase_ , default=3 , help='''Number of train epochs.''' , ) A__ = parser.parse_args() A__ = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 4_2, '''batch_size''': 1_6} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
632
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
from __future__ import annotations def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> bool: __lowercase : List[Any] = get_failure_array(__lowerCAmelCase ) # 2) Step through text searching for pattern __lowercase , __lowercase : List[Any] = 0, 0 # index into text, pattern while i < len(__lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(__lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: __lowercase : str = failure[j - 1] continue i += 1 return False def UpperCAmelCase_ ( __lowerCAmelCase ) -> list[int]: __lowercase : Optional[int] = [0] __lowercase : str = 0 __lowercase : Any = 1 while j < len(__lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: __lowercase : Union[str, Any] = failure[i - 1] continue j += 1 failure.append(__lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) __lowerCAmelCase : Optional[Any] = "abc1abc12" __lowerCAmelCase : Any = "alskfjaldsabc1abc1abc12k23adsfabcabc" __lowerCAmelCase : int = "alskfjaldsk23adsfabcabc" assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __lowerCAmelCase : Union[str, Any] = "ABABX" __lowerCAmelCase : Tuple = "ABABZABABYABABX" assert kmp(pattern, text) # Test 3) __lowerCAmelCase : Tuple = "AAAB" __lowerCAmelCase : Optional[int] = "ABAAAAAB" assert kmp(pattern, text) # Test 4) __lowerCAmelCase : Optional[Any] = "abcdabcy" __lowerCAmelCase : Optional[Any] = "abcxabcdabxabcdabcdabcy" assert kmp(pattern, text) # Test 5) __lowerCAmelCase : Optional[int] = "aabaabaaa" assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
509
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ (__lowercase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any = KandinskyVaaInpaintPipeline UpperCamelCase_ : str = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] UpperCamelCase_ : Union[str, Any] = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] UpperCamelCase_ : str = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] UpperCamelCase_ : str = False @property def a ( self : Union[str, Any] )-> List[Any]: """simple docstring""" return 32 @property def a ( self : List[Any] )-> Dict: """simple docstring""" return 32 @property def a ( self : str )-> int: """simple docstring""" return self.time_input_dim @property def a ( self : Optional[Any] )-> Dict: """simple docstring""" return self.time_input_dim * 4 @property def a ( self : str )-> Any: """simple docstring""" return 1_00 @property def a ( self : Any )-> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Any = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase_ : List[str] = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def a ( self : Optional[Any] )-> List[str]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self : Union[str, Any] )-> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def a ( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.dummy_unet UpperCAmelCase_ : Tuple = self.dummy_movq UpperCAmelCase_ : str = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCamelCase__ , ) UpperCAmelCase_ : Any = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def a ( self : Optional[Any] , a_ : int , a_ : Tuple=0 )-> Optional[int]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) # create init_image UpperCAmelCase_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ : List[Any] = Image.fromarray(np.uinta(UpperCamelCase__ ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask UpperCAmelCase_ : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) UpperCAmelCase_ : List[Any] = 0 if str(UpperCamelCase__ ).startswith("""mps""" ): UpperCAmelCase_ : List[Any] = torch.manual_seed(UpperCamelCase__ ) else: UpperCAmelCase_ : List[Any] = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) UpperCAmelCase_ : str = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def a ( self : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase_ : List[Any] = """cpu""" UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : List[str] = self.pipeline_class(**UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase_ : Dict = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) UpperCAmelCase_ : Union[str, Any] = output.images UpperCAmelCase_ : Any = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Tuple = np.array( [0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def a ( self : int )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def a ( self : int )-> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) UpperCAmelCase_ : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) UpperCAmelCase_ : Optional[Any] = np.ones((7_68, 7_68) , dtype=np.floataa ) UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : int = """a hat""" UpperCAmelCase_ : Any = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) UpperCAmelCase_ : int = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa ) UpperCAmelCase_ : Tuple = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase_ : List[str] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase_ ,UpperCAmelCase_ : List[str] = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase_ : List[str] = pipeline( image=UpperCamelCase__ , mask_image=UpperCamelCase__ , image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=1_00 , height=7_68 , width=7_68 , output_type="""np""" , ) UpperCAmelCase_ : str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
470
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCAmelCase : Optional[Any] =open # noqa: we just need to have a builtin inside this module to test it properly
440
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=13 , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=3 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=[10, 20, 30, 40] , SCREAMING_SNAKE_CASE__ : Dict=[2, 2, 3, 2] , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Optional[int]=37 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : str=10 , SCREAMING_SNAKE_CASE__ : List[Any]=0.02 , SCREAMING_SNAKE_CASE__ : str=["stage2", "stage3", "stage4"] , SCREAMING_SNAKE_CASE__ : int=[2, 3, 4] , SCREAMING_SNAKE_CASE__ : str=None , ) -> Optional[Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = num_stages lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = initializer_range lowerCAmelCase__ = out_features lowerCAmelCase__ = out_indices lowerCAmelCase__ = scope def a ( self : Any ) -> Tuple: lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def a ( self : Optional[int] ) -> Union[str, Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> int: lowerCAmelCase__ = ConvNextModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: lowerCAmelCase__ = ConvNextForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Dict: lowerCAmelCase__ = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase__ = None lowerCAmelCase__ = ConvNextBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase__ = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a ( self : Optional[Any] ) -> str: lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __lowercase , __lowercase , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case__ = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : int ) -> Optional[Any]: lowerCAmelCase__ = ConvNextModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def a ( self : Dict ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : int ) -> Optional[Any]: return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def a ( self : Tuple ) -> int: pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def a ( self : List[Any] ) -> Any: pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def a ( self : Union[str, Any] ) -> Tuple: pass def a ( self : Dict ) -> List[str]: lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(UpperCamelCase__ ) lowerCAmelCase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def a ( self : Optional[Any] ) -> Tuple: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def a ( self : Optional[Any] ) -> Optional[Any]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def a ( self : Optional[int] ) -> Any: def check_hidden_states_output(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCAmelCase__ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def a ( self : Optional[int] ) -> Any: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @slow def a ( self : List[str] ) -> Union[str, Any]: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = ConvNextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def _A ( ): """simple docstring""" lowerCAmelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self : Optional[Any] ) -> Optional[Any]: return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def a ( self : Any ) -> Tuple: lowerCAmelCase__ = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(UpperCamelCase__ ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) lowerCAmelCase__ = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @require_torch class __lowerCamelCase ( unittest.TestCase , __lowercase ): """simple docstring""" snake_case__ = (ConvNextBackbone,) if is_torch_available() else () snake_case__ = ConvNextConfig snake_case__ = False def a ( self : str ) -> Union[str, Any]: lowerCAmelCase__ = ConvNextModelTester(self )
61
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
'''simple docstring''' def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
210
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
from math import isqrt def _lowercase ( UpperCamelCase_ ) -> bool: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(UpperCamelCase_ ) + 1 ) ) def _lowercase ( UpperCamelCase_ = 10**6 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 7 while prime_candidate < max_prime: primes_count += is_prime(UpperCamelCase_ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
472
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
"""simple docstring""" import math import os import sys def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" __lowercase : Any = "" try: with open(_lowerCamelCase, "rb" ) as binary_file: __lowercase : Tuple = binary_file.read() for dat in data: __lowercase : List[str] = F'{dat:08b}' result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->None: """simple docstring""" lexicon.pop(_lowerCamelCase ) __lowercase : Any = last_match_id if math.loga(_lowerCamelCase ).is_integer(): for curr_key in lexicon: __lowercase : str = "0" + lexicon[curr_key] __lowercase : Dict = bin(_lowerCamelCase )[2:] def snake_case__ ( _lowerCamelCase ) ->str: """simple docstring""" __lowercase : Union[str, Any] = {"0": "0", "1": "1"} __lowercase ,__lowercase : List[Any] = "", "" __lowercase : List[str] = len(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowercase : str = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) index += 1 __lowercase : int = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __lowercase : Any = lexicon[curr_string] result += last_match_id return result def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->str: """simple docstring""" __lowercase : List[str] = os.path.getsize(_lowerCamelCase ) __lowercase : Tuple = bin(_lowerCamelCase )[2:] __lowercase : Union[str, Any] = len(_lowerCamelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->None: """simple docstring""" __lowercase : Any = 8 try: with open(_lowerCamelCase, "wb" ) as opened_file: __lowercase : List[str] = [ to_write[i : i + byte_length] for i in range(0, len(_lowerCamelCase ), _lowerCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_lowerCamelCase, 2 ).to_bytes(1, byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->None: """simple docstring""" __lowercase : Tuple = read_file_binary(_lowerCamelCase ) __lowercase : int = compress_data(_lowerCamelCase ) __lowercase : int = add_file_length(_lowerCamelCase, _lowerCamelCase ) write_file_binary(_lowerCamelCase, _lowerCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
575
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class __magic_name__ ( __lowercase ): """simple docstring""" __UpperCamelCase = '''facebook/bart-large-mnli''' __UpperCamelCase = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __UpperCamelCase = '''text_classifier''' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSequenceClassification __UpperCamelCase = ['''text''', ['''text''']] __UpperCamelCase = ['''text'''] def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' super().setup() A_ : Dict = self.model.config A_ : int = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): A_ : List[Any] = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[Any] , snake_case :Dict ): '''simple docstring''' A_ : List[str] = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] ): '''simple docstring''' A_ : str = outputs.logits A_ : Dict = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
454
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __lowerCAmelCase ( ) -> None: """simple docstring""" print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def __lowerCAmelCase ( lowercase : int ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print("Generating prime p..." ) snake_case : int = rabinMiller.generate_large_prime(lowercase ) print("Generating prime q..." ) snake_case : Union[str, Any] = rabinMiller.generate_large_prime(lowercase ) snake_case : Optional[int] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: snake_case : Optional[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowercase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) snake_case : str = cryptoMath.find_mod_inverse(lowercase , (p - 1) * (q - 1) ) snake_case : List[Any] = (n, e) snake_case : List[Any] = (n, d) return (public_key, private_key) def __lowerCAmelCase ( lowercase : str , lowercase : int ) -> None: """simple docstring""" if os.path.exists(F'{name}_pubkey.txt' ) or os.path.exists(F'{name}_privkey.txt' ): print("\nWARNING:" ) print( F'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' "Use a different name or delete these files and re-run this program." ) sys.exit() snake_case ,snake_case : str = generate_key(lowercase ) print(F'\nWriting public key to file {name}_pubkey.txt...' ) with open(F'{name}_pubkey.txt' , "w" ) as out_file: out_file.write(F'{key_size},{public_key[0]},{public_key[1]}' ) print(F'Writing private key to file {name}_privkey.txt...' ) with open(F'{name}_privkey.txt' , "w" ) as out_file: out_file.write(F'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
178
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __lowerCamelCase : Dict = HfApi() __lowerCamelCase : str = {} # fmt: off __lowerCamelCase : List[str] = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) __lowerCamelCase : Union[str, Any] = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) __lowerCamelCase : Optional[Any] = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) __lowerCamelCase : Union[str, Any] = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) __lowerCamelCase : List[str] = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) __lowerCamelCase : List[Any] = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) __lowerCamelCase : int = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) __lowerCamelCase : Any = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) __lowerCamelCase : Optional[int] = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) __lowerCamelCase : Tuple = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) __lowerCamelCase : Optional[Any] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) __lowerCamelCase : Any = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) __lowerCamelCase : Optional[Any] = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) __lowerCamelCase : List[str] = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) __lowerCamelCase : str = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on __lowerCamelCase : str = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __lowerCamelCase : int = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith("""CompVis"""): __lowerCamelCase : Tuple = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: __lowerCamelCase : Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __lowerCamelCase : Optional[Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __lowerCamelCase : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __lowerCamelCase : Dict = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
501
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict )-> Dict: A__ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A__ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } A__ = f"{src_lang}-{tgt_lang}" A__ = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ ) A__ = os.path.join(UpperCamelCase_ , '''README.md''' ) print(f"Generating {path}" ) with open(UpperCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(UpperCamelCase_ ) # make sure we are under the root of the project _lowercase = Path(__file__).resolve().parent.parent.parent _lowercase = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowercase = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
632
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase : List[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ("transformer.decoder.ref_point_head.layers.0.weight", "decoder.ref_point_head.layers.0.weight"), ("transformer.decoder.ref_point_head.layers.0.bias", "decoder.ref_point_head.layers.0.bias"), ("transformer.decoder.ref_point_head.layers.1.weight", "decoder.ref_point_head.layers.1.weight"), ("transformer.decoder.ref_point_head.layers.1.bias", "decoder.ref_point_head.layers.1.bias"), ("transformer.decoder.query_scale.layers.0.weight", "decoder.query_scale.layers.0.weight"), ("transformer.decoder.query_scale.layers.0.bias", "decoder.query_scale.layers.0.bias"), ("transformer.decoder.query_scale.layers.1.weight", "decoder.query_scale.layers.1.weight"), ("transformer.decoder.query_scale.layers.1.bias", "decoder.query_scale.layers.1.bias"), ("transformer.decoder.layers.0.ca_qpos_proj.weight", "decoder.layers.0.ca_qpos_proj.weight"), ("transformer.decoder.layers.0.ca_qpos_proj.bias", "decoder.layers.0.ca_qpos_proj.bias"), ] ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Optional[int] = state_dict.pop(__lowerCAmelCase ) __lowercase : Optional[int] = val def UpperCAmelCase_ ( __lowerCAmelCase ) -> Tuple: __lowercase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __lowercase : Any = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) __lowercase : int = value else: __lowercase : Tuple = value return new_state_dict def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=False ) -> List[Any]: __lowercase : Tuple = '''''' if is_panoptic: __lowercase : Tuple = '''conditional_detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowercase : Tuple = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __lowercase : Tuple = state_dict.pop(F'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowercase : Tuple = in_proj_weight[:256, :] __lowercase : List[Any] = in_proj_bias[:256] __lowercase : Any = in_proj_weight[256:512, :] __lowercase : Optional[int] = in_proj_bias[256:512] __lowercase : Dict = in_proj_weight[-256:, :] __lowercase : int = in_proj_bias[-256:] def UpperCAmelCase_ ( ) -> List[Any]: __lowercase : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __lowercase : Tuple = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: __lowercase : Union[str, Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __lowercase : Tuple = '''resnet101''' if "dc5" in model_name: __lowercase : Optional[int] = True __lowercase : List[str] = '''panoptic''' in model_name if is_panoptic: __lowercase : Dict = 250 else: __lowercase : Optional[Any] = 91 __lowercase : Optional[Any] = '''huggingface/label-files''' __lowercase : Tuple = '''coco-detection-id2label.json''' __lowercase : List[str] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) __lowercase : Dict = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} __lowercase : Any = idalabel __lowercase : str = {v: k for k, v in idalabel.items()} # load image processor __lowercase : List[Any] = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __lowercase : Any = ConditionalDetrImageProcessor(format=__lowerCAmelCase ) # prepare image __lowercase : Optional[int] = prepare_img() __lowercase : Optional[Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ) __lowercase : List[Any] = encoding['''pixel_values'''] logger.info(F'Converting model {model_name}...' ) # load original model from torch hub __lowercase : Any = torch.hub.load('''DeppMeng/ConditionalDETR''' , __lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() __lowercase : Dict = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __lowercase : Dict = '''conditional_detr.''' + src rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : str = rename_backbone_keys(__lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__lowerCAmelCase , is_panoptic=__lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowercase : Any = '''conditional_detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''conditional_detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): __lowercase : Tuple = state_dict.pop(__lowerCAmelCase ) __lowercase : Union[str, Any] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowercase : Any = state_dict.pop(__lowerCAmelCase ) __lowercase : Dict = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: __lowercase : Dict = state_dict.pop(__lowerCAmelCase ) __lowercase : Union[str, Any] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): __lowercase : List[str] = state_dict.pop(__lowerCAmelCase ) __lowercase : int = val # finally, create HuggingFace model and load state dict __lowercase : Tuple = ConditionalDetrForSegmentation(__lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(__lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=__lowerCAmelCase , organization='''DepuMeng''' , commit_message='''Add model''' ) # verify our conversion __lowercase : Optional[Any] = conditional_detr(__lowerCAmelCase ) __lowercase : Any = model(__lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) # Save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": __lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="conditional_detr_resnet50", type=str, help="Name of the CONDITIONAL_DETR model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) __lowerCAmelCase : Tuple = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
509
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
"""simple docstring""" def A_ ( lowercase ) -> list: """simple docstring""" if bit_count < 0: raise ValueError("""The given input must be positive""" ) # get the generated string sequence UpperCAmelCase_ : Union[str, Any] = gray_code_sequence_string(lowercase ) # # convert them to integers for i in range(len(lowercase ) ): UpperCAmelCase_ : str = int(sequence[i] , 2 ) return sequence def A_ ( lowercase ) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : Union[str, Any] = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : Any = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : int = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Union[str, Any] = """0""" + smaller_sequence[i] sequence.append(lowercase ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : List[Any] = """1""" + smaller_sequence[i] sequence.append(lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
470
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' import operator as op __lowerCAmelCase : List[str] ="scaler.pt" __lowerCAmelCase : int ="pytorch_model" __lowerCAmelCase : Tuple ="random_states" __lowerCAmelCase : Dict ="optimizer" __lowerCAmelCase : Tuple ="scheduler" __lowerCAmelCase : Dict ="pytorch_model.bin" __lowerCAmelCase : Union[str, Any] ="pytorch_model.bin.index.json" __lowerCAmelCase : int ="model.safetensors" __lowerCAmelCase : Any ="model.safetensors.index.json" __lowerCAmelCase : List[str] ="1.10.2" __lowerCAmelCase : Dict ="py38" __lowerCAmelCase : str ="4.17.0" __lowerCAmelCase : List[Any] =["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] __lowerCAmelCase : int =["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] __lowerCAmelCase : Tuple =["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] __lowerCAmelCase : Optional[int] =["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] __lowerCAmelCase : List[str] =["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] __lowerCAmelCase : int ="2.0.1" __lowerCAmelCase : Any =["pdsh", "standard", "openmpi", "mvapich"] __lowerCAmelCase : List[Any] =["default", "reduce-overhead", "max-autotune"] __lowerCAmelCase : Optional[int] ={">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 __lowerCAmelCase : Tuple =[ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] __lowerCAmelCase : Dict =["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] __lowerCAmelCase : Dict =["DEEPSPEED", "MULTI_XPU", "FSDP"]
440
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def _A ( lowerCAmelCase_ : List[str]=None ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(add_help=lowerCAmelCase_ , allow_abbrev=lowerCAmelCase_ ) # The main config parser lowerCAmelCase__ = config_command_parser(lowerCAmelCase_ ) # The subparser to add commands to lowerCAmelCase__ = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(lowerCAmelCase_ , parents=[parent_parser] ) update_command_parser(lowerCAmelCase_ , parents=[parent_parser] ) return config_parser def _A ( ): """simple docstring""" lowerCAmelCase__ = get_config_parser() lowerCAmelCase__ = config_parser.parse_args() if not hasattr(lowerCAmelCase_ , "func" ): config_parser.print_help() exit(1 ) # Run args.func(lowerCAmelCase_ ) if __name__ == "__main__": main()
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCamelCase__ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(A ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def lowerCamelCase__ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def lowerCamelCase__ ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(A ): http_head('''https://huggingface.co''' )
210
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class lowercase__ ( __lowercase , unittest.TestCase ): A__ : Optional[Any] =PegasusTokenizer A__ : Optional[int] =PegasusTokenizerFast A__ : List[Any] =True A__ : Any =True def A_ ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = PegasusTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A_ ( self : int ): return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def A_ ( self : List[Any] , **UpperCAmelCase_ : Any ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def A_ ( self : Tuple , UpperCAmelCase_ : List[str] ): return ("This is a test", "This is a test") def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = '</s>' SCREAMING_SNAKE_CASE__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(UpperCamelCase__ ) , 1103 ) def A_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = ( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE__ = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] SCREAMING_SNAKE_CASE__ = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word SCREAMING_SNAKE_CASE__ = '<mask_1> To ensure a <mask_2> flow of bank resolutions.' SCREAMING_SNAKE_CASE__ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE__ = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 SCREAMING_SNAKE_CASE__ = 'To ensure a smooth flow of bank resolutions.' SCREAMING_SNAKE_CASE__ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] SCREAMING_SNAKE_CASE__ = tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A_ ( self : str ): SCREAMING_SNAKE_CASE__ = ['This is going to be way too long.' * 150, 'short example'] SCREAMING_SNAKE_CASE__ = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE__ = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. @slow def A_ ( self : Tuple ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class lowercase__ ( __lowercase , unittest.TestCase ): A__ : int =PegasusTokenizer A__ : List[Any] =PegasusTokenizerFast A__ : Dict =True A__ : List[str] =True def A_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = PegasusTokenizer(UpperCamelCase__ , offset=0 , mask_token_sent=UpperCamelCase__ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A_ ( self : int ): return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def A_ ( self : List[str] , **UpperCAmelCase_ : int ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def A_ ( self : Tuple , UpperCAmelCase_ : List[str] ): return ("This is a test", "This is a test") def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = self.tokenizer_class.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ = ( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) SCREAMING_SNAKE_CASE__ = rust_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] SCREAMING_SNAKE_CASE__ = py_tokenizer([raw_input_str] , return_tensors=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ).input_ids[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_torch def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = ['This is going to be way too long.' * 1000, 'short example'] SCREAMING_SNAKE_CASE__ = ['not super long but more than 5 tokens', 'tiny'] SCREAMING_SNAKE_CASE__ = self._large_tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = self._large_tokenizer( text_target=UpperCamelCase__ , max_length=5 , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(UpperCamelCase__ ) == 2 # input_ids, attention_mask. def A_ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ = ( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) SCREAMING_SNAKE_CASE__ = self._large_tokenizer(UpperCamelCase__ ).input_ids self.assertListEqual( UpperCamelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
472
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def snake_case ( self : Tuple , lowercase__ : Any=0 ): __lowercase : int = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(UpperCamelCase__ ) ) __lowercase : Dict = np.random.RandomState(UpperCamelCase__ ) __lowercase : str = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.7_5, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def snake_case ( self : Optional[Any] ): __lowercase : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : Any = self.get_dummy_inputs() __lowercase : Union[str, Any] = pipe(**UpperCamelCase__ ).images __lowercase : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase : Optional[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case ( self : int ): __lowercase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowercase : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : Union[str, Any] = self.get_dummy_inputs() __lowercase : Any = pipe(**UpperCamelCase__ ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase : Union[str, Any] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self : Optional[int] ): __lowercase : List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowercase : int = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # warmup pass to apply optimizations __lowercase : Dict = pipe(**self.get_dummy_inputs() ) __lowercase : Any = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**UpperCamelCase__ ).images __lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase : Any = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self : Tuple ): __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowercase : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : str = self.get_dummy_inputs() __lowercase : Any = pipe(**UpperCamelCase__ ).images __lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase : str = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self : str ): __lowercase : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowercase : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : Tuple = self.get_dummy_inputs() __lowercase : List[Any] = pipe(**UpperCamelCase__ ).images __lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase : List[str] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case ( self : Tuple ): __lowercase : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __lowercase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : Dict = self.get_dummy_inputs() __lowercase : Optional[int] = pipe(**UpperCamelCase__ ).images __lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __lowercase : int = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def snake_case ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self : Optional[int] ): __lowercase : Tuple = ort.SessionOptions() __lowercase : List[Any] = False return options def snake_case ( self : int ): __lowercase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase : Optional[Any] = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default __lowercase : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : List[Any] = "A fantasy landscape, trending on artstation" __lowercase : Union[str, Any] = np.random.RandomState(0 ) __lowercase : List[Any] = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=UpperCamelCase__ , output_type="np" , ) __lowercase : Optional[Any] = output.images __lowercase : List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __lowercase : List[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case ( self : Any ): __lowercase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __lowercase : Optional[Any] = init_image.resize((7_6_8, 5_1_2) ) __lowercase : str = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) __lowercase : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __lowercase : str = "A fantasy landscape, trending on artstation" __lowercase : Any = np.random.RandomState(0 ) __lowercase : Any = pipe( prompt=UpperCamelCase__ , image=UpperCamelCase__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=UpperCamelCase__ , output_type="np" , ) __lowercase : int = output.images __lowercase : Union[str, Any] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __lowercase : List[str] = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
575
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
import datasets _lowerCAmelCase : Optional[Any] = '''\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n''' _lowerCAmelCase : Tuple = '''\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n''' _lowerCAmelCase : Any = '''\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n''' def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> Optional[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), "references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" , ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple , snake_case :Any ): '''simple docstring''' return {"accuracy": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )}
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' if len(UpperCamelCase__ ) != degree + 1: raise ValueError( "The number of coefficients should be equal to the degree + 1." ) snake_case : int = list(UpperCamelCase__ ) snake_case : Dict = degree def __add__( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' if self.degree > polynomial_a.degree: snake_case : int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , UpperCamelCase__ ) else: snake_case : Optional[int] = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , UpperCamelCase__ ) def __sub__( self , UpperCamelCase__ ) -> Any: '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ) -> str: '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : List[str] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ) -> str: '''simple docstring''' snake_case : Optional[int] = "" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(UpperCamelCase__ ) return polynomial def __repr__( self ) -> Tuple: '''simple docstring''' return self.__str__() def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : Union[str, Any] = [0] * self.degree for i in range(self.degree ): snake_case : str = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ = 0 ) -> List[str]: '''simple docstring''' snake_case : Optional[Any] = [0] * (self.degree + 2) snake_case : Optional[int] = constant for i in range(self.degree + 1 ): snake_case : List[str] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , UpperCamelCase__ ) def __eq__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return not self.__eq__(UpperCamelCase__ )
178
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' from math import isqrt def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCAmelCase , __UpperCAmelCase ): lowerCamelCase_ : List[Any] = False return [i for i in range(2 , __UpperCAmelCase ) if is_prime[i]] def __snake_case (__UpperCAmelCase = 10**8 ): """simple docstring""" lowerCamelCase_ : Tuple = calculate_prime_numbers(max_number // 2 ) lowerCamelCase_ : List[str] = 0 lowerCamelCase_ : Optional[int] = 0 lowerCamelCase_ : str = len(__UpperCAmelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
501
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : List[Any] )-> int: if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer A__ = flax_key_tuple[:-1] + ('''weight''',) A__ = torch.permute(UpperCamelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase_ ): # linear layer A__ = flax_key_tuple[:-1] + ('''weight''',) A__ = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A__ = flax_key_tuple[:-1] + ('''weight''',) return flax_key_tuple, flax_tensor def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] )-> int: if "metadata" in layer: A__ = layer.split('''metadata''' ) A__ = ''''''.join(split_layer[0] )[:-1] A__ = [tuple(('''metadata''' + split_layer[1]).split('''/''' ) )] elif "kvstore" in layer: A__ = layer.split('''kvstore''' ) A__ = ''''''.join(split_layer[0] )[:-1] A__ = [tuple(('''kvstore''' + split_layer[1]).split('''/''' ) )] else: A__ = layer.split('''/''' ) A__ = '''/'''.join(split_layer[:-1] ) A__ = (split_layer[-1],) if "kvstore/path" in layer: A__ = f"{switch_checkpoint_path}/{checkpoint_info[layer]}" elif "kvstore/driver" in layer: A__ = '''file''' else: A__ = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCAmelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] )-> Tuple: A__ = rename_keys(UpperCamelCase_ ) A__ = {} for k, v in current_block.items(): A__ = v A__ = new_current_block torch.save(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str = WEIGHTS_NAME )-> List[Any]: A__ = convert_file_size_to_int(UpperCamelCase_ ) A__ = [] A__ = {} A__ = 0 A__ = 0 os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) with gfile.GFile(switch_checkpoint_path + '''/checkpoint''' , '''rb''' ) as fp: A__ = serialization.msgpack_restore(fp.read() )['''optimizer''']['''target'''] A__ = flatten_dict(UpperCamelCase_ , sep='''/''' ) A__ = {} for layer in checkpoint_info.keys(): A__ , A__ , A__ = get_key_and_tensorstore_dict( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if curr_real_layer_name in all_layers: A__ = content else: A__ = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file A__ = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() A__ = torch.tensor(UpperCamelCase_ ) A__ = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts A__ , A__ = rename_base_flax_keys(tuple(key.split('''/''' ) ) , UpperCamelCase_ ) A__ = '''/'''.join(UpperCamelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: A__ = os.path.join( UpperCamelCase_ , weights_name.replace('''.bin''' , f"-{len(UpperCamelCase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCamelCase_ , UpperCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block A__ = {} A__ = 0 A__ = raw_weights.to(getattr(UpperCamelCase_ , UpperCamelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block A__ = os.path.join(UpperCamelCase_ , weights_name.replace('''.bin''' , f"-{len(UpperCamelCase_ )+1:05d}-of-???.bin" ) ) rename_and_save_block(UpperCamelCase_ , UpperCamelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCamelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index A__ = {} A__ = {} for idx, shard in enumerate(UpperCamelCase_ ): A__ = weights_name.replace( '''.bin''' , f"-{idx+1:05d}-of-{len(UpperCamelCase_ ):05d}.bin" ) # len(sharded_state_dicts):05d} A__ = os.path.join(UpperCamelCase_ , weights_name.replace('''.bin''' , f"-{idx+1:05d}-of-???.bin" ) ) os.rename(UpperCamelCase_ , os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) A__ = shard for key in shard: A__ = shard_file # Add the metadata A__ = {'''total_size''': total_size} A__ = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , '''w''' , encoding='''utf-8''' ) as f: A__ = json.dumps(UpperCamelCase_ , indent=2 , sort_keys=UpperCamelCase_ ) + '''\n''' f.write(UpperCamelCase_ ) return metadata, index if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600", type=str, required=False, help="Path to a directory containing a folder per layer. Follows the original Google format.", ) parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size") parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model") parser.add_argument( "--pytorch_dump_folder_path", default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted", type=str, required=False, help="Path to the output pytorch model.", ) _lowercase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCAmelCase__ ( )-> str: from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer A__ = SwitchTransformersConfig.from_pretrained('''google/switch-base-8''' ) config.save_pretrained('''/home/arthur_huggingface_co/transformers/switch_converted''' ) A__ = SwitchTransformersForConditionalGeneration.from_pretrained( '''/home/arthur_huggingface_co/transformers/switch_converted''' , device_map='''auto''' ) A__ = TaTokenizer.from_pretrained('''t5-small''' ) A__ = '''A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''' A__ = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ).input_ids A__ = model.generate(UpperCamelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
632
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=5 ) -> List[Any]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 __lowercase : str = torch.tensor(tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1 __lowercase : List[Any] = model(__lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple __lowercase : str = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() __lowercase : Tuple = logits[0, masked_index, :] __lowercase : Dict = logits.softmax(dim=0 ) __lowercase , __lowercase : Dict = prob.topk(k=__lowerCAmelCase , dim=0 ) __lowercase : Union[str, Any] = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__lowerCAmelCase ) )] ) __lowercase : List[str] = tokenizer.mask_token __lowercase : List[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): __lowercase : Union[str, Any] = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__lowerCAmelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__lowerCAmelCase ) , __lowerCAmelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__lowerCAmelCase , __lowerCAmelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __lowerCAmelCase : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base") __lowerCAmelCase : Dict = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() __lowerCAmelCase : Optional[Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
509
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase_ = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
470
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self :List[str] , lowercase_ :List[str] , lowercase_ :str=7 , lowercase_ :Tuple=3 , lowercase_ :Tuple=30 , lowercase_ :List[str]=4_00 , lowercase_ :int=True , lowercase_ :Any=None , lowercase_ :List[str]=True , lowercase_ :Optional[int]=[0.5, 0.5, 0.5] , lowercase_ :Any=[0.5, 0.5, 0.5] , lowercase_ :Any=True , lowercase_ :List[str]=1 / 2_55 , lowercase_ :Union[str, Any]=True , )-> int: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize A__ = size A__ = do_normalize A__ = image_mean A__ = image_std A__ = do_rescale A__ = rescale_factor A__ = do_pad def UpperCAmelCase_ ( self :Union[str, Any] )-> Any: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Dict , lowercase_ :Optional[Any]=False )-> List[Any]: if not batched: A__ = image_inputs[0] if isinstance(UpperCamelCase__ , Image.Image ): A__, A__ = image.size else: A__, A__ = image.shape[1], image.shape[2] if w < h: A__ = int(self.size["shortest_edge"] * h / w ) A__ = self.size["shortest_edge"] elif w > h: A__ = self.size["shortest_edge"] A__ = int(self.size["shortest_edge"] * w / h ) else: A__ = self.size["shortest_edge"] A__ = self.size["shortest_edge"] else: A__ = [] for image in image_inputs: A__, A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(UpperCamelCase__ , key=lambda lowercase_ : item[0] )[0] A__ = max(UpperCamelCase__ , key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class UpperCAmelCase ( __lowercase , unittest.TestCase ): __lowercase = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self :int )-> Optional[Any]: A__ = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase_ ( self :str )-> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self :Any )-> Optional[Any]: A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCamelCase__ , "size" ) ) def UpperCAmelCase_ ( self :Optional[int] )-> List[Any]: A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) A__ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase__ ) def UpperCAmelCase_ ( self :Tuple )-> Optional[Any]: pass def UpperCAmelCase_ ( self :List[str] )-> Any: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__, A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__, A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) A__ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self :Optional[int] )-> int: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__, A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values A__, A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self :Optional[Any] )-> Dict: # Initialize image_processing A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A__, A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A__ = image_processing(UpperCamelCase__ , return_tensors="pt" ).pixel_values A__, A__ = self.image_processor_tester.get_expected_values(UpperCamelCase__ , batched=UpperCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase_ ( self :List[str] )-> int: # prepare image and target A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: A__ = json.loads(f.read() ) A__ = {"image_id": 3_97_69, "annotations": target} # encode them A__ = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) A__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , return_tensors="pt" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area A__ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase__ ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase__ ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase__ ) ) # verify class_labels A__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase__ ) ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase__ ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase__ ) ) @slow def UpperCAmelCase_ ( self :int )-> int: # prepare image, target and masks_path A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: A__ = json.loads(f.read() ) A__ = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} A__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them A__ = ConditionalDetrImageProcessor(format="coco_panoptic" ) A__ = image_processing(images=UpperCamelCase__ , annotations=UpperCamelCase__ , masks_path=UpperCamelCase__ , return_tensors="pt" ) # verify pixel values A__ = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCamelCase__ , atol=1E-4 ) ) # verify area A__ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCamelCase__ ) ) # verify boxes A__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCamelCase__ ) A__ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCamelCase__ , atol=1E-3 ) ) # verify image_id A__ = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCamelCase__ ) ) # verify is_crowd A__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCamelCase__ ) ) # verify class_labels A__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCamelCase__ ) ) # verify masks A__ = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCamelCase__ ) # verify orig_size A__ = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCamelCase__ ) ) # verify size A__ = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCamelCase__ ) )
440
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCamelCase__: __magic_name__ : int = XGLMConfig __magic_name__ : Any = {} __magic_name__ : Any = '''gelu''' def __init__( self : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=14 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=99 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Optional[Any]=37 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Any=0.02 , )-> Optional[Any]: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = d_model UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = ffn_dim UpperCAmelCase = activation_function UpperCAmelCase = activation_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = max_position_embeddings UpperCAmelCase = initializer_range UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = 2 UpperCAmelCase = 1 def a__( self : Optional[int] )-> Optional[Any]: """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def a__( self : List[str] )-> Optional[int]: """simple docstring""" UpperCAmelCase = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = self.get_config() UpperCAmelCase = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase__ , ) def a__( self : Any )-> Dict: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCamelCase__( __lowercase , __lowercase , unittest.TestCase ): __magic_name__ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __magic_name__ : List[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __magic_name__ : List[Any] = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) __magic_name__ : Union[str, Any] = False __magic_name__ : Union[str, Any] = False __magic_name__ : List[str] = False def a__( self : Tuple )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFXGLMModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=UpperCamelCase__ , n_embd=37 ) def a__( self : str )-> int: """simple docstring""" self.config_tester.run_common_tests() @slow def a__( self : int )-> List[Any]: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFXGLMModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def a__( self : int )-> Any: """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCamelCase__( unittest.TestCase ): @slow def a__( self : List[str] , lowerCAmelCase : Dict=True )-> Dict: """simple docstring""" UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCAmelCase = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on UpperCAmelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase__ ) @slow def a__( self : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCAmelCase = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCAmelCase = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCAmelCase = model.generate(UpperCamelCase__ , do_sample=UpperCamelCase__ , seed=[7, 0] ) UpperCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase__ ) UpperCAmelCase = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def a__( self : Tuple )-> List[Any]: """simple docstring""" UpperCAmelCase = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCAmelCase = '''left''' # use different length sentences to test batching UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCAmelCase = tokenizer(UpperCamelCase__ , return_tensors='''tf''' , padding=UpperCamelCase__ ) UpperCAmelCase = inputs['''input_ids'''] UpperCAmelCase = model.generate(input_ids=UpperCamelCase__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCAmelCase = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCAmelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 ) UpperCAmelCase = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCAmelCase = model.generate(input_ids=UpperCamelCase__ , max_new_tokens=12 ) UpperCAmelCase = tokenizer.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase__ ) UpperCAmelCase = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , [non_padded_sentence, padded_sentence] )
210
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __snake_case = datasets.utils.logging.get_logger(__name__) class lowercase__ ( folder_based_builder.FolderBasedBuilderConfig ): A__ : bool =None A__ : bool =None class lowercase__ ( folder_based_builder.FolderBasedBuilder ): A__ : int =datasets.Audio() A__ : Union[str, Any] ='''audio''' A__ : List[Any] =AudioFolderConfig A__ : List[str] # definition at the bottom of the script A__ : Any =AudioClassification(audio_column="""audio""" , label_column="""label""" ) __snake_case = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] __snake_case = AUDIO_EXTENSIONS
472
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def snake_case__ ( _lowerCamelCase=None, _lowerCamelCase=None ) ->Any: """simple docstring""" return field(default_factory=lambda: default, metadata=_lowerCamelCase ) @dataclass class lowerCAmelCase__ : """simple docstring""" __UpperCAmelCase : str = field( metadata={"help": "The csv file to plot."} , ) __UpperCAmelCase : bool = field( default=__lowercase , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __UpperCAmelCase : bool = field( default=__lowercase , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __UpperCAmelCase : bool = field( default=__lowercase , metadata={"help": "Disable logarithmic scale when plotting"} , ) __UpperCAmelCase : bool = field( default=__lowercase , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __UpperCAmelCase : Optional[str] = field( default=__lowercase , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __UpperCAmelCase : Optional[List[str]] = list_field( default=__lowercase , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def snake_case__ ( _lowerCamelCase ) ->List[Any]: """simple docstring""" try: int(_lowerCamelCase ) return True except ValueError: return False def snake_case__ ( _lowerCamelCase ) ->Any: """simple docstring""" try: float(_lowerCamelCase ) return True except ValueError: return False class lowerCAmelCase__ : """simple docstring""" def __init__( self : Any , lowercase__ : Tuple ): __lowercase : str = args __lowercase : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: __lowercase : Optional[Any] = csv.DictReader(UpperCamelCase__ ) for row in reader: __lowercase : str = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None __lowercase : str = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None __lowercase : str = float(row["result"] ) def snake_case ( self : Optional[Any] ): __lowercase ,__lowercase : List[str] = plt.subplots() __lowercase : List[str] = "Time usage" if self.args.is_time else "Memory usage" __lowercase : Any = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __lowercase : int = sorted(set(self.result_dict[model_name]["bsz"] ) ) __lowercase : Any = sorted(set(self.result_dict[model_name]["seq_len"] ) ) __lowercase : Optional[int] = self.result_dict[model_name]["result"] ((__lowercase) ,(__lowercase)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __lowercase : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __lowercase : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=UpperCamelCase__ , ) else: __lowercase : str = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__lowercase) ,(__lowercase)) : Dict = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) __lowercase : Union[str, Any] = np.asarray(UpperCamelCase__ , UpperCamelCase__ )[: len(UpperCamelCase__ )] plt.scatter( UpperCamelCase__ , UpperCamelCase__ , label=f'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(UpperCamelCase__ , UpperCamelCase__ , "--" ) title_str += f' {label_model_name} vs.' __lowercase : List[str] = title_str[:-4] __lowercase : int = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(UpperCamelCase__ ) plt.xlabel(UpperCamelCase__ ) plt.ylabel(UpperCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def snake_case__ ( ) ->str: """simple docstring""" __lowercase : List[str] = HfArgumentParser(_lowerCamelCase ) __lowercase : List[str] = parser.parse_args_into_dataclasses()[0] __lowercase : Dict = Plot(args=_lowerCamelCase ) plot.plot() if __name__ == "__main__": main()
575
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class __magic_name__ ( __lowercase ): """simple docstring""" def __init__( self :Optional[int] , **snake_case :int ): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , "vision" ) self.check_model_type(UpperCamelCase__ ) def __call__( self :List[Any] , snake_case :Union[str, "Image.Image", List[Dict[str, Any]]] , snake_case :Union[str, List[str]] = None , **snake_case :Dict , ): '''simple docstring''' if "text_queries" in kwargs: A_ : Dict = kwargs.pop("text_queries" ) if isinstance(UpperCamelCase__ , (str, Image.Image) ): A_ : int = {"image": image, "candidate_labels": candidate_labels} else: A_ : List[str] = image A_ : Tuple = super().__call__(UpperCamelCase__ , **UpperCamelCase__ ) return results def SCREAMING_SNAKE_CASE ( self :List[str] , **snake_case :List[Any] ): '''simple docstring''' A_ : List[str] = {} if "threshold" in kwargs: A_ : List[str] = kwargs["threshold"] if "top_k" in kwargs: A_ : Any = kwargs["top_k"] return {}, {}, postprocess_params def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :List[Any] ): '''simple docstring''' A_ : int = load_image(inputs["image"] ) A_ : Tuple = inputs["candidate_labels"] if isinstance(UpperCamelCase__ , UpperCamelCase__ ): A_ : str = candidate_labels.split("," ) A_ : Dict = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(UpperCamelCase__ ): A_ : int = self.tokenizer(UpperCamelCase__ , return_tensors=self.framework ) A_ : Dict = self.image_processor(UpperCamelCase__ , return_tensors=self.framework ) yield { "is_last": i == len(UpperCamelCase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :Any ): '''simple docstring''' A_ : Tuple = model_inputs.pop("target_size" ) A_ : Optional[int] = model_inputs.pop("candidate_label" ) A_ : Optional[Any] = model_inputs.pop("is_last" ) A_ : Dict = self.model(**UpperCamelCase__ ) A_ : List[str] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Tuple , snake_case :Any=0.1 , snake_case :List[Any]=None ): '''simple docstring''' A_ : Any = [] for model_output in model_outputs: A_ : Dict = model_output["candidate_label"] A_ : str = BaseModelOutput(UpperCamelCase__ ) A_ : Tuple = self.image_processor.post_process_object_detection( outputs=UpperCamelCase__ , threshold=UpperCamelCase__ , target_sizes=model_output["target_size"] )[0] for index in outputs["scores"].nonzero(): A_ : Tuple = outputs["scores"][index].item() A_ : List[Any] = self._get_bounding_box(outputs["boxes"][index][0] ) A_ : Dict = {"score": score, "label": label, "box": box} results.append(UpperCamelCase__ ) A_ : Tuple = sorted(UpperCamelCase__ , key=lambda snake_case : x["score"] , reverse=UpperCamelCase__ ) if top_k: A_ : int = results[:top_k] return results def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :"torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch." ) A_ , A_ , A_ , A_ : Optional[Any] = box.int().tolist() A_ : str = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
454
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification __snake_case = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co __snake_case = """main""" # Default branch name __snake_case = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) __snake_case = """aaaaaaa""" # This commit does not exist, so we should 404. __snake_case = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes __snake_case = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def __lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def __lowerCAmelCase ( ) -> int: """simple docstring""" print("Bonjour!" ) yield print("Au revoir!" ) class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class _lowerCAmelCase ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase__ ) , ["labels"] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ["start_positions", "end_positions"] ) class _lowerCAmelCase ( __lowercase ): pass self.assertEqual(find_labels(UpperCamelCase__ ) , ["labels"] ) @require_tf def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase__ ) , ["labels"] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(UpperCamelCase__ ) , ["start_positions", "end_positions"] ) class _lowerCAmelCase ( __lowercase ): pass self.assertEqual(find_labels(UpperCamelCase__ ) , ["labels"] ) @require_flax def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' self.assertEqual(find_labels(UpperCamelCase__ ) , [] ) self.assertEqual(find_labels(UpperCamelCase__ ) , [] ) self.assertEqual(find_labels(UpperCamelCase__ ) , [] ) class _lowerCAmelCase ( __lowercase ): pass self.assertEqual(find_labels(UpperCamelCase__ ) , [] )
178
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __lowerCamelCase : Optional[Any] = logging.get_logger(__name__) __lowerCamelCase : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCamelCase : List[str] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : List[str] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : Optional[Any] = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } __lowerCamelCase : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } __lowerCamelCase : List[str] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } __lowerCamelCase : Tuple = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } __lowerCamelCase : Optional[int] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowerCamelCase : List[Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } __lowerCamelCase : int = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class lowerCAmelCase__ ( __lowercase ): A = VOCAB_FILES_NAMES A = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A = DPRContextEncoderTokenizer class lowerCAmelCase__ ( __lowercase ): A = VOCAB_FILES_NAMES A = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A = DPRQuestionEncoderTokenizer __lowerCamelCase : Any = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) __lowerCamelCase : Tuple = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) __lowerCamelCase : Union[str, Any] = r"""\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n """ @add_start_docstrings(__lowercase ) class lowerCAmelCase__ : def __call__( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Union[bool, str] = False , UpperCamelCase_ : Union[bool, str] = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Optional[bool] = None , **UpperCamelCase_ : Tuple , ) -> Dict: """simple docstring""" if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: lowerCamelCase_ : int = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase_ : Optional[int] = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [titles] lowerCamelCase_ : Optional[int] = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [texts] lowerCamelCase_ : Dict = len(UpperCamelCase__ ) lowerCamelCase_ : str = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) else [questions] * n_passages assert len(UpperCamelCase__ ) == len( UpperCamelCase__ ), F"""There should be as many titles than texts but got {len(UpperCamelCase__ )} titles and {len(UpperCamelCase__ )} texts.""" lowerCamelCase_ : Any = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] lowerCamelCase_ : Any = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] lowerCamelCase_ : Optional[int] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__ ) ] } if return_attention_mask is not False: lowerCamelCase_ : List[str] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ : int = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : BatchEncoding , UpperCamelCase_ : DPRReaderOutput , UpperCamelCase_ : int = 16 , UpperCamelCase_ : int = 64 , UpperCamelCase_ : int = 4 , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : Tuple = reader_input['''input_ids'''] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = reader_output[:3] lowerCamelCase_ : int = len(UpperCamelCase__ ) lowerCamelCase_ : List[Any] = sorted(range(UpperCamelCase__ ) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__ ) lowerCamelCase_ : List[Any] = [] for doc_id in sorted_docs: lowerCamelCase_ : Optional[int] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ : Optional[int] = sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ : Tuple = len(UpperCamelCase__ ) lowerCamelCase_ : int = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(UpperCamelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __UpperCamelCase ( self : Dict , UpperCamelCase_ : List[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , ) -> Any: """simple docstring""" lowerCamelCase_ : Tuple = [] for start_index, start_score in enumerate(UpperCamelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ : Union[str, Any] = sorted(UpperCamelCase__ , key=lambda UpperCamelCase_ : x[1] , reverse=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"""Wrong span indices: [{start_index}:{end_index}]""" lowerCamelCase_ : Tuple = end_index - start_index + 1 assert length <= max_answer_length, F"""Span is too long: {length} > {max_answer_length}""" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(UpperCamelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowercase ) class lowerCAmelCase__ ( __lowercase ,__lowercase ): A = VOCAB_FILES_NAMES A = READER_PRETRAINED_VOCAB_FILES_MAP A = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = READER_PRETRAINED_INIT_CONFIGURATION A = ['''input_ids''', '''attention_mask'''] A = DPRReaderTokenizer
501
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _lowercase = logging.get_logger(__name__) _lowercase = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _lowercase = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } _lowercase = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } _lowercase = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } _lowercase = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } _lowercase = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } _lowercase = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } _lowercase = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _UpperCAmelCase ( __lowercase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _UpperCAmelCase ( __lowercase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) _lowercase = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) _lowercase = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__lowercase ) class _UpperCAmelCase : def __call__( self , a__ , a__ = None , a__ = None , a__ = False , a__ = False , a__ = None , a__ = None , a__ = None , **a__ , ): if titles is None and texts is None: return super().__call__( UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) elif titles is None or texts is None: A__ = titles if texts is None else texts return super().__call__( UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A__ = titles if not isinstance(UpperCamelCase__ , UpperCamelCase__) else [titles] A__ = texts if not isinstance(UpperCamelCase__ , UpperCamelCase__) else [texts] A__ = len(UpperCamelCase__) A__ = questions if not isinstance(UpperCamelCase__ , UpperCamelCase__) else [questions] * n_passages if len(UpperCamelCase__) != len(UpperCamelCase__): raise ValueError( F"There should be as many titles than texts but got {len(UpperCamelCase__)} titles and {len(UpperCamelCase__)} texts.") A__ = super().__call__(UpperCamelCase__ , UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__)['''input_ids'''] A__ = super().__call__(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__)['''input_ids'''] A__ = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(UpperCamelCase__ , UpperCamelCase__) ] } if return_attention_mask is not False: A__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) A__ = attention_mask return self.pad(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors=UpperCamelCase__) def snake_case_ ( self , a__ , a__ , a__ = 1_6 , a__ = 6_4 , a__ = 4 , ): A__ = reader_input['''input_ids'''] A__ , A__ , A__ = reader_output[:3] A__ = len(UpperCamelCase__) A__ = sorted(range(UpperCamelCase__) , reverse=UpperCamelCase__ , key=relevance_logits.__getitem__) A__ = [] for doc_id in sorted_docs: A__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence A__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: A__ = sequence_ids.index(self.pad_token_id) else: A__ = len(UpperCamelCase__) A__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=UpperCamelCase__ , top_spans=UpperCamelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=UpperCamelCase__ , start_index=UpperCamelCase__ , end_index=UpperCamelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(UpperCamelCase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def snake_case_ ( self , a__ , a__ , a__ , a__ , ): A__ = [] for start_index, start_score in enumerate(UpperCamelCase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) A__ = sorted(UpperCamelCase__ , key=lambda a__: x[1] , reverse=UpperCamelCase__) A__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"Wrong span indices: [{start_index}:{end_index}]") A__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"Span is too long: {length} > {max_answer_length}") if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(UpperCamelCase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(__lowercase ) class _UpperCAmelCase ( __lowercase , __lowercase ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = READER_PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = ['''input_ids''', '''attention_mask''']
632
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __lowerCAmelCase : int = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" __lowerCAmelCase : Dict = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" __lowerCAmelCase : Tuple = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: return float((preds == labels).mean() ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> int: __lowercase : Union[str, Any] = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) __lowercase : Any = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> str: __lowercase : Tuple = float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] ) __lowercase : Union[str, Any] = float(spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self : List[Any] ): if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def snake_case_ ( self : Any , _snake_case : Any , _snake_case : Any ): if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(UpperCamelCase__ , UpperCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(UpperCamelCase__ , UpperCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
509
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCAmelCase_ (__lowercase ): """simple docstring""" UpperCamelCase_ : Optional[Any] = '''poolformer''' def __init__( self : Optional[Any] , a_ : Union[str, Any]=3 , a_ : Dict=16 , a_ : Dict=16 , a_ : Union[str, Any]=3 , a_ : int=4.0 , a_ : Any=[2, 2, 6, 2] , a_ : Any=[64, 1_28, 3_20, 5_12] , a_ : List[Any]=[7, 3, 3, 3] , a_ : Optional[int]=[4, 2, 2, 2] , a_ : Dict=[2, 1, 1, 1] , a_ : int=4 , a_ : Tuple=0.0 , a_ : Optional[Any]="gelu" , a_ : Dict=True , a_ : List[Any]=1E-5 , a_ : int=0.02 , **a_ : List[Any] , )-> Optional[int]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Dict = stride UpperCAmelCase_ : Optional[int] = padding UpperCAmelCase_ : List[Any] = pool_size UpperCAmelCase_ : int = hidden_sizes UpperCAmelCase_ : List[Any] = mlp_ratio UpperCAmelCase_ : Optional[Any] = depths UpperCAmelCase_ : Optional[int] = patch_sizes UpperCAmelCase_ : Union[str, Any] = strides UpperCAmelCase_ : str = num_encoder_blocks UpperCAmelCase_ : Any = drop_path_rate UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Tuple = use_layer_scale UpperCAmelCase_ : List[str] = layer_scale_init_value UpperCAmelCase_ : int = initializer_range super().__init__(**UpperCamelCase__ ) class UpperCAmelCase_ (__lowercase ): """simple docstring""" UpperCamelCase_ : Tuple = version.parse("""1.11""" ) @property def a ( self : Optional[Any] )-> Any: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def a ( self : List[str] )-> int: """simple docstring""" return 2E-3
470
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : str ={ "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCAmelCase ( __lowercase ): __lowercase = '''van''' def __init__( self :Any , lowercase_ :List[str]=2_24 , lowercase_ :List[Any]=3 , lowercase_ :int=[7, 3, 3, 3] , lowercase_ :Dict=[4, 2, 2, 2] , lowercase_ :Dict=[64, 1_28, 3_20, 5_12] , lowercase_ :Union[str, Any]=[3, 3, 12, 3] , lowercase_ :List[str]=[8, 8, 4, 4] , lowercase_ :List[Any]="gelu" , lowercase_ :Union[str, Any]=0.0_2 , lowercase_ :str=1E-6 , lowercase_ :Optional[int]=1E-2 , lowercase_ :List[str]=0.0 , lowercase_ :Tuple=0.0 , **lowercase_ :str , )-> Any: super().__init__(**UpperCamelCase__ ) A__ = image_size A__ = num_channels A__ = patch_sizes A__ = strides A__ = hidden_sizes A__ = depths A__ = mlp_ratios A__ = hidden_act A__ = initializer_range A__ = layer_norm_eps A__ = layer_scale_init_value A__ = drop_path_rate A__ = dropout_rate
440
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): """simple docstring""" if not (isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ )): raise ValueError("longest_common_substring() takes two strings for inputs" ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = len(lowerCAmelCase_ ) lowerCAmelCase__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: lowerCAmelCase__ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: lowerCAmelCase__ = i lowerCAmelCase__ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__( metaclass=__lowercase ): __magic_name__ : Any = ['''torch''', '''scipy'''] def __init__( self : int , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def a__( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int] )-> int: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def a__( cls : Any , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int] )-> Dict: """simple docstring""" requires_backends(cls , ['''torch''', '''scipy'''] )
210
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def _lowercase ( UpperCamelCase_ , UpperCamelCase_ = 16 ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase_ ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE__ = datasets.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE__ = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE__ = 8 else: SCREAMING_SNAKE_CASE__ = None return tokenizer.pad( UpperCamelCase_ , padding='longest' , max_length=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase_ ) == "1": SCREAMING_SNAKE_CASE__ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: SCREAMING_SNAKE_CASE__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: SCREAMING_SNAKE_CASE__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE__ = config['lr'] SCREAMING_SNAKE_CASE__ = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE__ = int(config['seed'] ) SCREAMING_SNAKE_CASE__ = int(config['batch_size'] ) set_seed(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dataloaders(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE__ = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE__ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE__ = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=UpperCamelCase_ ) # Instantiate scheduler SCREAMING_SNAKE_CASE__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: SCREAMING_SNAKE_CASE__ = os.path.split(UpperCamelCase_ )[-1].split('.' )[0] accelerator.init_trackers(UpperCamelCase_ , UpperCamelCase_ ) # Now we train the model for epoch in range(UpperCamelCase_ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: SCREAMING_SNAKE_CASE__ = 0 for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() SCREAMING_SNAKE_CASE__ = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase_ , references=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , UpperCamelCase_ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { 'accuracy': eval_metric['accuracy'], 'f1': eval_metric['f1'], 'train_loss': total_loss.item() / len(UpperCamelCase_ ), 'epoch': epoch, } , step=UpperCamelCase_ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def _lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase_ , default=UpperCamelCase_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=UpperCamelCase_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": main()
472
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Dict = { 'configuration_blip': [ 'BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlipConfig', 'BlipTextConfig', 'BlipVisionConfig', ], 'processing_blip': ['BlipProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = ['BlipImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ 'BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlipModel', 'BlipPreTrainedModel', 'BlipForConditionalGeneration', 'BlipForQuestionAnswering', 'BlipVisionModel', 'BlipTextModel', 'BlipForImageTextRetrieval', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBlipModel', 'TFBlipPreTrainedModel', 'TFBlipForConditionalGeneration', 'TFBlipForQuestionAnswering', 'TFBlipVisionModel', 'TFBlipTextModel', 'TFBlipForImageTextRetrieval', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
575
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[str] = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> Optional[int]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowercase , int(b / 2 ) ) * actual_power(lowercase , int(b / 2 ) ) else: return a * actual_power(lowercase , int(b / 2 ) ) * actual_power(lowercase , int(b / 2 ) ) def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(lowercase , lowercase ) return actual_power(lowercase , lowercase ) if __name__ == "__main__": print(power(-2, -3))
178
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class lowerCAmelCase__ ( __lowercase ): A = 42 class lowerCAmelCase__ ( nn.Module ): def __init__( self : Tuple , UpperCamelCase_ : Any=3 , UpperCamelCase_ : str=3 , UpperCamelCase_ : List[str]=("DownEncoderBlock2D",) , UpperCamelCase_ : str=(64,) , UpperCamelCase_ : str=2 , UpperCamelCase_ : str=32 , UpperCamelCase_ : Optional[Any]="silu" , UpperCamelCase_ : str=True , ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ : Any = layers_per_block lowerCamelCase_ : Optional[int] = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase_ : int = None lowerCamelCase_ : Optional[int] = nn.ModuleList([] ) # down lowerCamelCase_ : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): lowerCamelCase_ : List[Any] = output_channel lowerCamelCase_ : Tuple = block_out_channels[i] lowerCamelCase_ : Optional[int] = i == len(UpperCamelCase__ ) - 1 lowerCamelCase_ : Any = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid lowerCamelCase_ : Optional[Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out lowerCamelCase_ : List[str] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) lowerCamelCase_ : Optional[Any] = nn.SiLU() lowerCamelCase_ : Any = 2 * out_channels if double_z else out_channels lowerCamelCase_ : Dict = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) lowerCamelCase_ : Optional[int] = False def __UpperCamelCase ( self : int , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ : Tuple = x lowerCamelCase_ : List[str] = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase_ : List[str] ): def custom_forward(*UpperCamelCase_ : Tuple ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version('''>=''' , '''1.11.0''' ): for down_block in self.down_blocks: lowerCamelCase_ : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle lowerCamelCase_ : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: lowerCamelCase_ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle lowerCamelCase_ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: lowerCamelCase_ : Optional[Any] = down_block(UpperCamelCase__ ) # middle lowerCamelCase_ : int = self.mid_block(UpperCamelCase__ ) # post-process lowerCamelCase_ : Optional[int] = self.conv_norm_out(UpperCamelCase__ ) lowerCamelCase_ : Any = self.conv_act(UpperCamelCase__ ) lowerCamelCase_ : List[str] = self.conv_out(UpperCamelCase__ ) return sample class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[str] , UpperCamelCase_ : Any=3 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : Optional[int]=("UpDecoderBlock2D",) , UpperCamelCase_ : int=(64,) , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : List[Any]=32 , UpperCamelCase_ : Union[str, Any]="silu" , UpperCamelCase_ : str="group" , ) -> int: """simple docstring""" super().__init__() lowerCamelCase_ : Union[str, Any] = layers_per_block lowerCamelCase_ : str = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowerCamelCase_ : Dict = None lowerCamelCase_ : Optional[int] = nn.ModuleList([] ) lowerCamelCase_ : Dict = in_channels if norm_type == '''spatial''' else None # mid lowerCamelCase_ : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up lowerCamelCase_ : str = list(reversed(UpperCamelCase__ ) ) lowerCamelCase_ : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): lowerCamelCase_ : int = output_channel lowerCamelCase_ : Optional[int] = reversed_block_out_channels[i] lowerCamelCase_ : Optional[int] = i == len(UpperCamelCase__ ) - 1 lowerCamelCase_ : Any = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = output_channel # out if norm_type == "spatial": lowerCamelCase_ : int = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: lowerCamelCase_ : Optional[int] = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) lowerCamelCase_ : int = nn.SiLU() lowerCamelCase_ : Union[str, Any] = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) lowerCamelCase_ : Union[str, Any] = False def __UpperCamelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=None ) -> str: """simple docstring""" lowerCamelCase_ : str = z lowerCamelCase_ : Union[str, Any] = self.conv_in(UpperCamelCase__ ) lowerCamelCase_ : int = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase_ : int ): def custom_forward(*UpperCamelCase_ : str ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version('''>=''' , '''1.11.0''' ): # middle lowerCamelCase_ : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: lowerCamelCase_ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle lowerCamelCase_ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: lowerCamelCase_ : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle lowerCamelCase_ : int = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ : List[Any] = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: lowerCamelCase_ : Any = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: lowerCamelCase_ : Dict = self.conv_norm_out(UpperCamelCase__ ) else: lowerCamelCase_ : Union[str, Any] = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ : List[str] = self.conv_act(UpperCamelCase__ ) lowerCamelCase_ : Any = self.conv_out(UpperCamelCase__ ) return sample class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Union[str, Any]="random" , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : str=True ) -> Any: """simple docstring""" super().__init__() lowerCamelCase_ : int = n_e lowerCamelCase_ : Union[str, Any] = vq_embed_dim lowerCamelCase_ : List[str] = beta lowerCamelCase_ : List[str] = legacy lowerCamelCase_ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowerCamelCase_ : Dict = remap if self.remap is not None: self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) ) lowerCamelCase_ : Tuple = self.used.shape[0] lowerCamelCase_ : List[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowerCamelCase_ : List[Any] = self.re_embed lowerCamelCase_ : Optional[Any] = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: lowerCamelCase_ : List[Any] = n_e lowerCamelCase_ : Any = sane_index_shape def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Dict = inds.shape assert len(UpperCamelCase__ ) > 1 lowerCamelCase_ : Union[str, Any] = inds.reshape(ishape[0] , -1 ) lowerCamelCase_ : Union[str, Any] = self.used.to(UpperCamelCase__ ) lowerCamelCase_ : str = (inds[:, :, None] == used[None, None, ...]).long() lowerCamelCase_ : str = match.argmax(-1 ) lowerCamelCase_ : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": lowerCamelCase_ : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowerCamelCase_ : Optional[Any] = self.unknown_index return new.reshape(UpperCamelCase__ ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[Any] = inds.shape assert len(UpperCamelCase__ ) > 1 lowerCamelCase_ : Optional[int] = inds.reshape(ishape[0] , -1 ) lowerCamelCase_ : Optional[int] = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token lowerCamelCase_ : Any = 0 # simply set to zero lowerCamelCase_ : List[str] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() lowerCamelCase_ : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowerCamelCase_ : List[str] = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) lowerCamelCase_ : Dict = self.embedding(UpperCamelCase__ ).view(z.shape ) lowerCamelCase_ : List[Any] = None lowerCamelCase_ : str = None # compute loss for embedding if not self.legacy: lowerCamelCase_ : int = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowerCamelCase_ : Tuple = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowerCamelCase_ : List[Any] = z + (z_q - z).detach() # reshape back to match original input shape lowerCamelCase_ : Optional[int] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowerCamelCase_ : Any = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowerCamelCase_ : Any = self.remap_to_used(UpperCamelCase__ ) lowerCamelCase_ : Any = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowerCamelCase_ : Optional[int] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> List[Any]: """simple docstring""" if self.remap is not None: lowerCamelCase_ : List[str] = indices.reshape(shape[0] , -1 ) # add batch axis lowerCamelCase_ : Dict = self.unmap_to_all(UpperCamelCase__ ) lowerCamelCase_ : Union[str, Any] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowerCamelCase_ : Dict = self.embedding(UpperCamelCase__ ) if shape is not None: lowerCamelCase_ : str = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape lowerCamelCase_ : Any = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class lowerCAmelCase__ ( __lowercase ): def __init__( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any=False ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : int = parameters lowerCamelCase_ , lowerCamelCase_ : Optional[int] = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) lowerCamelCase_ : Optional[int] = torch.clamp(self.logvar , -30.0 , 20.0 ) lowerCamelCase_ : Optional[int] = deterministic lowerCamelCase_ : List[str] = torch.exp(0.5 * self.logvar ) lowerCamelCase_ : str = torch.exp(self.logvar ) if self.deterministic: lowerCamelCase_ : Union[str, Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def __UpperCamelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[torch.Generator] = None ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : int = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) lowerCamelCase_ : Tuple = self.mean + self.std * sample return x def __UpperCamelCase ( self : str , UpperCamelCase_ : Tuple=None ) -> str: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def __UpperCamelCase ( self : int , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=[1, 2, 3] ) -> Optional[Any]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) lowerCamelCase_ : Optional[int] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" return self.mean
501
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _lowercase = logging.get_logger(__name__) _lowercase = R"\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n" class _UpperCAmelCase ( __lowercase ): @add_start_docstrings(UpperCamelCase__) def __call__( self , a__ , a__ , **a__): raise NotImplementedError('''StoppingCriteria needs to be subclassed''') class _UpperCAmelCase ( __lowercase ): def __init__( self , a__ , a__ = None): A__ = max_length A__ = max_position_embeddings @add_start_docstrings(UpperCamelCase__) def __call__( self , a__ , a__ , **a__): A__ = input_ids.shape[-1] A__ = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( '''This is a friendly reminder - the current text generation call will exceed the model\'s predefined ''' F"maximum length ({self.max_position_embeddings}). Depending on the model, you may observe " '''exceptions, performance degradation, or nothing at all.''') return is_done class _UpperCAmelCase ( __lowercase ): def __init__( self , a__ , a__): warnings.warn( '''The class `MaxNewTokensCriteria` is deprecated. ''' F"Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` " '''with `max_length = start_length + max_new_tokens` instead.''' , UpperCamelCase__ , ) A__ = start_length A__ = max_new_tokens A__ = start_length + max_new_tokens @add_start_docstrings(UpperCamelCase__) def __call__( self , a__ , a__ , **a__): return input_ids.shape[-1] >= self.max_length class _UpperCAmelCase ( __lowercase ): def __init__( self , a__ , a__ = None): A__ = max_time A__ = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(UpperCamelCase__) def __call__( self , a__ , a__ , **a__): return time.time() - self.initial_timestamp > self.max_time class _UpperCAmelCase ( __lowercase ): @add_start_docstrings(UpperCamelCase__) def __call__( self , a__ , a__ , **a__): return any(criteria(UpperCamelCase__ , UpperCamelCase__) for criteria in self) @property def snake_case_ ( self): for stopping_criterium in self: if isinstance(UpperCamelCase__ , UpperCamelCase__): return stopping_criterium.max_length elif isinstance(UpperCamelCase__ , UpperCamelCase__): return stopping_criterium.max_length return None def lowerCAmelCase__ ( UpperCamelCase_ : StoppingCriteriaList , UpperCamelCase_ : int )-> StoppingCriteriaList: A__ = stopping_criteria.max_length A__ = deepcopy(UpperCamelCase_ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('''You set different `max_length` for stopping criteria and `max_length` parameter''' , UpperCamelCase_ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=UpperCamelCase_ ) ) return new_stopping_criteria
632
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
from __future__ import annotations from random import random class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , _snake_case : int | None = None ): __lowercase : List[str] = value __lowercase : Dict = random() __lowercase : Optional[int] = None __lowercase : Tuple = None def __repr__( self : List[Any] ): from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self : List[str] ): __lowercase : List[str] = str(self.value ) + ''' ''' __lowercase : List[Any] = str(self.left or '''''' ) __lowercase : Optional[int] = str(self.right or '''''' ) return value + left + right def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __lowercase , __lowercase : Any = split(root.left , __lowerCAmelCase ) return left, root else: __lowercase , __lowercase : Any = split(root.right , __lowerCAmelCase ) return root, right def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __lowercase : Tuple = merge(left.right , __lowerCAmelCase ) return left else: __lowercase : Dict = merge(__lowerCAmelCase , right.left ) return right def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Node | None: __lowercase : Union[str, Any] = Node(__lowerCAmelCase ) __lowercase , __lowercase : int = split(__lowerCAmelCase , __lowerCAmelCase ) return merge(merge(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Node | None: __lowercase , __lowercase : Tuple = split(__lowerCAmelCase , value - 1 ) __lowercase , __lowercase : int = split(__lowerCAmelCase , __lowerCAmelCase ) return merge(__lowerCAmelCase , __lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Node | None: for arg in args.split(): if arg[0] == "+": __lowercase : Any = insert(__lowerCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": __lowercase : Tuple = erase(__lowerCAmelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def UpperCAmelCase_ ( ) -> None: __lowercase : Optional[int] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __lowercase : List[str] = input() while args != "q": __lowercase : Tuple = interact_treap(__lowerCAmelCase , __lowerCAmelCase ) print(__lowerCAmelCase ) __lowercase : Dict = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
509
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple )-> str: """simple docstring""" UpperCAmelCase_ : Optional[int] = {} def a ( self : List[Any] )-> Any: """simple docstring""" print(self.vertex ) for i in self.vertex: print(UpperCamelCase__ , """ -> """ , """ -> """.join([str(UpperCamelCase__ ) for j in self.vertex[i]] ) ) def a ( self : Optional[int] , a_ : int , a_ : int )-> Any: """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(UpperCamelCase__ ) else: # else make a new vertex UpperCAmelCase_ : Union[str, Any] = [to_vertex] def a ( self : List[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(UpperCamelCase__ , UpperCamelCase__ ) def a ( self : Optional[Any] , a_ : int , a_ : list )-> Tuple: """simple docstring""" UpperCAmelCase_ : Any = True print(UpperCamelCase__ , end=""" """ ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(UpperCamelCase__ , UpperCamelCase__ ) if __name__ == "__main__": lowercase_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
470
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( __lowercase , unittest.TestCase ): __lowercase = KandinskyVaaPipeline __lowercase = [ '''image_embeds''', '''negative_image_embeds''', ] __lowercase = ['''image_embeds''', '''negative_image_embeds'''] __lowercase = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __lowercase = False @property def UpperCAmelCase_ ( self :Any )-> Dict: return 32 @property def UpperCAmelCase_ ( self :Tuple )-> str: return 32 @property def UpperCAmelCase_ ( self :Optional[int] )-> Optional[Any]: return self.time_input_dim @property def UpperCAmelCase_ ( self :str )-> Dict: return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self :List[Any] )-> Dict: return 1_00 @property def UpperCAmelCase_ ( self :str )-> Dict: torch.manual_seed(0 ) A__ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } A__ = UNetaDConditionModel(**UpperCamelCase__ ) return model @property def UpperCAmelCase_ ( self :List[str] )-> Tuple: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self :List[str] )-> List[Any]: torch.manual_seed(0 ) A__ = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self :int )-> Optional[Any]: A__ = self.dummy_unet A__ = self.dummy_movq A__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCamelCase__ , ) A__ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def UpperCAmelCase_ ( self :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :List[Any]=0 )-> Optional[Any]: A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) A__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCamelCase__ ) if str(UpperCamelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCamelCase__ ) else: A__ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) A__ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self :Dict )-> Union[str, Any]: A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCamelCase__ ) A__ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = pipe(**self.get_dummy_inputs(UpperCamelCase__ ) ) A__ = output.images A__ = pipe( **self.get_dummy_inputs(UpperCamelCase__ ) , return_dict=UpperCamelCase__ , )[0] A__ = image[0, -3:, -3:, -1] A__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A__ = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Union[str, Any] )-> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self :str )-> Optional[Any]: A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) A__ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCamelCase__ ) A__ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) A__ = pipeline.to(UpperCamelCase__ ) pipeline.set_progress_bar_config(disable=UpperCamelCase__ ) A__ = "red cat, 4k photo" A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__, A__ = pipe_prior( UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() A__ = torch.Generator(device="cuda" ).manual_seed(0 ) A__ = pipeline( image_embeds=UpperCamelCase__ , negative_image_embeds=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=1_00 , output_type="np" , ) A__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__ )
440
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
def _A ( lowerCAmelCase_ : int ): """simple docstring""" if length <= 0 or not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(lowerCAmelCase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
61
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
'''simple docstring''' def lowerCamelCase__ ( A : str , A : list[str] ): '''simple docstring''' UpperCAmelCase = '''''' for word_or_phrase in separated: if not isinstance(A , A ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(A ) if __name__ == "__main__": from doctest import testmod testmod()
210
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __snake_case = [ """openmmlab/upernet-convnext-tiny""", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __snake_case = """UperNetConfig""" class lowercase__ ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[int, Tuple[int, int]] , UpperCAmelCase_ : Union[int, Tuple[int, int], str] = 0 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Union[int, Tuple[int, int]] = 1 , ): super().__init__() SCREAMING_SNAKE_CASE__ = nn.Convad( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , bias=UpperCamelCase__ , dilation=UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = nn.BatchNormad(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = nn.ReLU() def A_ ( self : Optional[Any] , UpperCAmelCase_ : torch.Tensor ): SCREAMING_SNAKE_CASE__ = self.conv(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = self.batch_norm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = self.activation(UpperCamelCase__ ) return output class lowercase__ ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): super().__init__() SCREAMING_SNAKE_CASE__ = [ nn.AdaptiveAvgPoolad(UpperCamelCase__ ), UperNetConvModule(UpperCamelCase__ , UpperCamelCase__ , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : torch.Tensor ): SCREAMING_SNAKE_CASE__ = input for layer in self.layers: SCREAMING_SNAKE_CASE__ = layer(UpperCamelCase__ ) return hidden_state class lowercase__ ( nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : Tuple[int, ...] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : bool ): super().__init__() SCREAMING_SNAKE_CASE__ = pool_scales SCREAMING_SNAKE_CASE__ = align_corners SCREAMING_SNAKE_CASE__ = in_channels SCREAMING_SNAKE_CASE__ = channels SCREAMING_SNAKE_CASE__ = [] for i, pool_scale in enumerate(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = UperNetPyramidPoolingBlock(pool_scale=UpperCamelCase__ , in_channels=UpperCamelCase__ , channels=UpperCamelCase__ ) self.blocks.append(UpperCamelCase__ ) self.add_module(str(UpperCamelCase__ ) , UpperCamelCase__ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : torch.Tensor ): SCREAMING_SNAKE_CASE__ = [] for ppm in self.blocks: SCREAMING_SNAKE_CASE__ = ppm(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = nn.functional.interpolate( UpperCamelCase__ , size=x.size()[2:] , mode='bilinear' , align_corners=self.align_corners ) ppm_outs.append(UpperCamelCase__ ) return ppm_outs class lowercase__ ( nn.Module ): def __init__( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = config.pool_scales # e.g. (1, 2, 3, 6) SCREAMING_SNAKE_CASE__ = in_channels SCREAMING_SNAKE_CASE__ = config.hidden_size SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module SCREAMING_SNAKE_CASE__ = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) SCREAMING_SNAKE_CASE__ = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module SCREAMING_SNAKE_CASE__ = nn.ModuleList() SCREAMING_SNAKE_CASE__ = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer SCREAMING_SNAKE_CASE__ = UperNetConvModule(UpperCamelCase__ , self.channels , kernel_size=1 ) SCREAMING_SNAKE_CASE__ = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(UpperCamelCase__ ) self.fpn_convs.append(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def A_ ( self : Optional[int] ): self.apply(self._init_weights ) def A_ ( self : List[str] , UpperCAmelCase_ : Tuple ): if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = inputs[-1] SCREAMING_SNAKE_CASE__ = [x] psp_outs.extend(self.psp_modules(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE__ = self.bottleneck(UpperCamelCase__ ) return output def A_ ( self : Optional[int] , UpperCAmelCase_ : torch.Tensor ): # build laterals SCREAMING_SNAKE_CASE__ = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(UpperCamelCase__ ) ) # build top-down path SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE__ = laterals[i - 1].shape[2:] SCREAMING_SNAKE_CASE__ = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=UpperCamelCase__ , mode='bilinear' , align_corners=self.align_corners ) # build outputs SCREAMING_SNAKE_CASE__ = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): SCREAMING_SNAKE_CASE__ = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='bilinear' , align_corners=self.align_corners ) SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=1 ) SCREAMING_SNAKE_CASE__ = self.fpn_bottleneck(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = self.classifier(UpperCamelCase__ ) return output class lowercase__ ( nn.Module ): def __init__( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : Union[int, Tuple[int, int]] = 1 ): super().__init__() SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = config.auxiliary_in_channels SCREAMING_SNAKE_CASE__ = config.auxiliary_channels SCREAMING_SNAKE_CASE__ = config.auxiliary_num_convs SCREAMING_SNAKE_CASE__ = config.auxiliary_concat_input SCREAMING_SNAKE_CASE__ = in_index SCREAMING_SNAKE_CASE__ = (kernel_size // 2) * dilation SCREAMING_SNAKE_CASE__ = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=UpperCamelCase__ , dilation=UpperCamelCase__ ) ) if self.num_convs == 0: SCREAMING_SNAKE_CASE__ = nn.Identity() else: SCREAMING_SNAKE_CASE__ = nn.Sequential(*UpperCamelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE__ = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=UpperCamelCase__ , padding=kernel_size // 2 ) SCREAMING_SNAKE_CASE__ = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def A_ ( self : Optional[Any] ): self.apply(self._init_weights ) def A_ ( self : List[Any] , UpperCAmelCase_ : List[str] ): if isinstance(UpperCamelCase__ , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def A_ ( self : Union[str, Any] , UpperCAmelCase_ : torch.Tensor ): # just take the relevant feature maps SCREAMING_SNAKE_CASE__ = encoder_hidden_states[self.in_index] SCREAMING_SNAKE_CASE__ = self.convs(UpperCamelCase__ ) if self.concat_input: SCREAMING_SNAKE_CASE__ = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) SCREAMING_SNAKE_CASE__ = self.classifier(UpperCamelCase__ ) return output class lowercase__ ( __lowercase ): A__ : Union[str, Any] =UperNetConfig A__ : List[str] ='''pixel_values''' A__ : int =True def A_ ( self : Tuple , UpperCAmelCase_ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def A_ ( self : str ): self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def A_ ( self : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]=False ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ = value __snake_case = R"""\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n""" __snake_case = R"""\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n""" @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , __lowercase , ) class lowercase__ ( __lowercase ): def __init__( self : List[str] , UpperCAmelCase_ : Union[str, Any] ): super().__init__(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) SCREAMING_SNAKE_CASE__ = UperNetHead(UpperCamelCase__ , in_channels=self.backbone.channels ) SCREAMING_SNAKE_CASE__ = UperNetFCNHead(UpperCamelCase__ ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('batch_size, sequence_length' ) ) @replace_return_docstrings(output_type=UpperCamelCase__ , config_class=_CONFIG_FOR_DOC ) def A_ ( self : Dict , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[torch.Tensor] = None , UpperCAmelCase_ : Optional[bool] = None , ): SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE__ = output_attentions if output_attentions is not None else self.config.output_attentions SCREAMING_SNAKE_CASE__ = self.backbone.forward_with_filtered_kwargs( UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , output_attentions=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = outputs.feature_maps SCREAMING_SNAKE_CASE__ = self.decode_head(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = nn.functional.interpolate(UpperCamelCase__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = None if self.auxiliary_head is not None: SCREAMING_SNAKE_CASE__ = self.auxiliary_head(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = nn.functional.interpolate( UpperCamelCase__ , size=pixel_values.shape[2:] , mode='bilinear' , align_corners=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = None if labels is not None: if self.config.num_labels == 1: raise ValueError('The number of labels should be greater than one' ) else: # compute weighted loss SCREAMING_SNAKE_CASE__ = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) SCREAMING_SNAKE_CASE__ = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = loss_fct(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[1:] else: SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=UpperCamelCase__ , logits=UpperCamelCase__ , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
472
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def snake_case__ ( ) ->Optional[int]: """simple docstring""" __lowercase : Dict = argparse.ArgumentParser() parser.add_argument( "-m", "--pretrained_model_name_or_path", type=_lowerCamelCase, default=_lowerCamelCase, required=_lowerCamelCase, help="Path to pretrained model or model identifier from huggingface.co/models.", ) parser.add_argument( "-c", "--caption", type=_lowerCamelCase, default="robotic cat with wings", help="Text used to generate images.", ) parser.add_argument( "-n", "--images_num", type=_lowerCamelCase, default=4, help="How much images to generate.", ) parser.add_argument( "-s", "--seed", type=_lowerCamelCase, default=42, help="Seed for random process.", ) parser.add_argument( "-ci", "--cuda_id", type=_lowerCamelCase, default=0, help="cuda_id.", ) __lowercase : Tuple = parser.parse_args() return args def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->Dict: """simple docstring""" if not len(_lowerCamelCase ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) __lowercase ,__lowercase : str = imgs[0].size __lowercase : int = Image.new("RGB", size=(cols * w, rows * h) ) __lowercase ,__lowercase : List[str] = grid.size for i, img in enumerate(_lowerCamelCase ): grid.paste(_lowerCamelCase, box=(i % cols * w, i // cols * h) ) return grid def snake_case__ ( _lowerCamelCase, _lowerCamelCase="robotic cat with wings", _lowerCamelCase=7.5, _lowerCamelCase=50, _lowerCamelCase=1, _lowerCamelCase=42, ) ->List[Any]: """simple docstring""" __lowercase : Optional[int] = torch.Generator(pipeline.device ).manual_seed(_lowerCamelCase ) __lowercase : Tuple = pipeline( _lowerCamelCase, guidance_scale=_lowerCamelCase, num_inference_steps=_lowerCamelCase, generator=_lowerCamelCase, num_images_per_prompt=_lowerCamelCase, ).images __lowercase : Optional[int] = int(math.sqrt(_lowerCamelCase ) ) __lowercase : Union[str, Any] = image_grid(_lowerCamelCase, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images __A : Tuple = parse_args() # Load models and create wrapper for stable diffusion __A : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __A : Optional[Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __A : List[str] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __A : Dict = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __A : Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __A : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __A : Tuple = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __A : Dict = unet.to(torch.device('cuda', args.cuda_id)) __A : int = pipeline.to(unet.device) __A, __A : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __A : List[str] = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
575
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def __snake_case ( _lowerCAmelCase : Tuple=None ) -> int: if subparsers is not None: A_ : int = subparsers.add_parser("env" ) else: A_ : str = argparse.ArgumentParser("Accelerate env command" ) parser.add_argument( "--config_file" , default=_lowerCAmelCase , help="The config file to use for the default values in the launching script." ) if subparsers is not None: parser.set_defaults(func=_lowerCAmelCase ) return parser def __snake_case ( _lowerCAmelCase : Union[str, Any] ) -> Tuple: A_ : Optional[Any] = torch.__version__ A_ : Dict = torch.cuda.is_available() A_ : Optional[Any] = is_xpu_available() A_ : Any = is_npu_available() A_ : List[Any] = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_lowerCAmelCase ): A_ : List[Any] = load_config_from_file(args.config_file ).to_dict() A_ : Union[str, Any] = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})", "PyTorch XPU available": str(_lowerCAmelCase ), "PyTorch NPU available": str(_lowerCAmelCase ), "System RAM": f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: A_ : List[str] = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n" ) print("\n".join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" ) A_ : Union[str, Any] = ( "\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else f"\t{accelerate_config}" ) print(_lowerCAmelCase ) A_ : Optional[int] = accelerate_config return info def __snake_case ( ) -> int: A_ : List[Any] = env_command_parser() A_ : List[str] = parser.parse_args() env_command(_lowerCAmelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
454
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __lowerCAmelCase ( lowercase : Callable[[int | float], int | float] , lowercase : int | float , lowercase : int | float , lowercase : int = 100 , ) -> float: """simple docstring""" snake_case : Union[str, Any] = x_start snake_case : Any = fnc(lowercase ) snake_case : Union[str, Any] = 0.0 for _ in range(lowercase ): # Approximates curve as a sequence of linear lines and sums their length snake_case : Tuple = (x_end - x_start) / steps + xa snake_case : Any = fnc(lowercase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step snake_case : List[str] = xa snake_case : Dict = fxa return length if __name__ == "__main__": def __lowerCAmelCase ( lowercase : List[str] ) -> Dict: """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") __snake_case = 10 while i <= 100000: print(F'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
178
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
'''simple docstring''' from timeit import timeit def __snake_case (__UpperCAmelCase ): """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) lowerCamelCase_ : Optional[int] = 0 while number: number &= number - 1 result += 1 return result def __snake_case (__UpperCAmelCase ): """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) lowerCamelCase_ : List[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __snake_case (): """simple docstring""" def do_benchmark(__UpperCAmelCase ) -> None: lowerCamelCase_ : Union[str, Any] = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) lowerCamelCase_ : List[str] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) lowerCamelCase_ : List[str] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
501
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
from collections.abc import Sequence from queue import Queue class _UpperCAmelCase : def __init__( self , a__ , a__ , a__ , a__=None , a__=None): A__ = start A__ = end A__ = val A__ = (start + end) // 2 A__ = left A__ = right def __repr__( self): return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class _UpperCAmelCase : def __init__( self , a__ , a__): A__ = collection A__ = function if self.collection: A__ = self._build_tree(0 , len(UpperCamelCase__) - 1) def snake_case_ ( self , a__ , a__): self._update_tree(self.root , UpperCamelCase__ , UpperCamelCase__) def snake_case_ ( self , a__ , a__): return self._query_range(self.root , UpperCamelCase__ , UpperCamelCase__) def snake_case_ ( self , a__ , a__): if start == end: return SegmentTreeNode(UpperCamelCase__ , UpperCamelCase__ , self.collection[start]) A__ = (start + end) // 2 A__ = self._build_tree(UpperCamelCase__ , UpperCamelCase__) A__ = self._build_tree(mid + 1 , UpperCamelCase__) return SegmentTreeNode(UpperCamelCase__ , UpperCamelCase__ , self.fn(left.val , right.val) , UpperCamelCase__ , UpperCamelCase__) def snake_case_ ( self , a__ , a__ , a__): if node.start == i and node.end == i: A__ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase__ , UpperCamelCase__) else: self._update_tree(node.right , UpperCamelCase__ , UpperCamelCase__) A__ = self.fn(node.left.val , node.right.val) def snake_case_ ( self , a__ , a__ , a__): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase__ , UpperCamelCase__) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase__ , node.mid) , self._query_range(node.right , node.mid + 1 , UpperCamelCase__) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase__ , UpperCamelCase__) def snake_case_ ( self): if self.root is not None: A__ = Queue() queue.put(self.root) while not queue.empty(): A__ = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("*" * 50) _lowercase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
632
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class __lowerCAmelCase ( __lowercase ): """simple docstring""" A__ : List[Any] = '''''' A__ : List[str] = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : List[str] , _snake_case : Optional[DatasetInfo] = None , _snake_case : Optional[str] = None , **_snake_case : Dict , ): super().__init__(self , **UpperCamelCase__ ) __lowercase : Optional[int] = repo_info __lowercase : Optional[Any] = token __lowercase : str = None def snake_case_ ( self : str ): if self.dir_cache is None: __lowercase : Optional[int] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes __lowercase : List[str] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(UpperCamelCase__ ): {'''name''': str(UpperCamelCase__ ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def snake_case_ ( self : int , _snake_case : str , _snake_case : str = "rb" , **_snake_case : int , ): if not isinstance(self.repo_info , UpperCamelCase__ ): raise NotImplementedError(F'Open is only implemented for dataset repositories, but got {self.repo_info}' ) __lowercase : str = hf_hub_url(self.repo_info.id , UpperCamelCase__ , revision=self.repo_info.sha ) return fsspec.open( UpperCamelCase__ , mode=UpperCamelCase__ , headers=get_authentication_headers_for_url(UpperCamelCase__ , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def snake_case_ ( self : int , _snake_case : int , **_snake_case : List[Any] ): self._get_dirs() __lowercase : List[Any] = self._strip_protocol(UpperCamelCase__ ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(UpperCamelCase__ ) def snake_case_ ( self : Dict , _snake_case : Union[str, Any] , _snake_case : Any=False , **_snake_case : int ): self._get_dirs() __lowercase : Optional[Any] = PurePosixPath(path.strip('''/''' ) ) __lowercase : str = {} for p, f in self.dir_cache.items(): __lowercase : List[str] = PurePosixPath(p.strip('''/''' ) ) __lowercase : str = p.parent if root == path: __lowercase : List[Any] = f __lowercase : Tuple = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
509
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
"""simple docstring""" def A_ ( lowercase = 1000 ) -> int: """simple docstring""" UpperCAmelCase_ ,UpperCAmelCase_ : Optional[Any] = 1, 1 UpperCAmelCase_ : List[Any] = 2 while True: UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[str] = fa + fa UpperCAmelCase_ ,UpperCAmelCase_ : List[Any] = fa, f index += 1 for _ in str(lowercase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
470
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class UpperCAmelCase ( pl.LightningModule ): def __init__( self :List[str] , lowercase_ :str )-> List[str]: super().__init__() A__ = model A__ = 2 A__ = nn.Linear(self.model.config.hidden_size , self.num_labels ) def UpperCAmelCase_ ( self :int )-> Tuple: pass def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str ): # load longformer model from model identifier A__ = LongformerModel.from_pretrained(_lowerCamelCase ) A__ = LightningModel(_lowerCamelCase ) A__ = torch.load(_lowerCamelCase , map_location=torch.device("cpu" ) ) lightning_model.load_state_dict(ckpt["state_dict"] ) # init longformer question answering model A__ = LongformerForQuestionAnswering.from_pretrained(_lowerCamelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_lowerCamelCase ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": __lowerCAmelCase : str =argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
440
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __lowerCamelCase ( __lowercase , __lowercase ): """simple docstring""" snake_case__ = 1 @register_to_config def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int = 1_000 , SCREAMING_SNAKE_CASE__ : Optional[Union[np.ndarray, List[float]]] = None ) -> Dict: # set `betas`, `alphas`, `timesteps` self.set_timesteps(UpperCamelCase__ ) # standard deviation of the initial noise distribution lowerCAmelCase__ = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCAmelCase__ = 4 # running values lowerCAmelCase__ = [] def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, torch.device] = None ) -> List[Any]: lowerCAmelCase__ = num_inference_steps lowerCAmelCase__ = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowerCAmelCase__ = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCAmelCase__ = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowerCAmelCase__ = torch.sin(steps * math.pi / 2 ) ** 2 lowerCAmelCase__ = (1.0 - self.betas**2) ** 0.5 lowerCAmelCase__ = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowerCAmelCase__ = timesteps.to(UpperCamelCase__ ) lowerCAmelCase__ = [] def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : bool = True , ) -> int: if self.num_inference_steps is None: raise ValueError( "Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler" ) lowerCAmelCase__ = (self.timesteps == timestep).nonzero().item() lowerCAmelCase__ = timestep_index + 1 lowerCAmelCase__ = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCamelCase__ ) if len(self.ets ) == 1: lowerCAmelCase__ = self.ets[-1] elif len(self.ets ) == 2: lowerCAmelCase__ = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCAmelCase__ = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowerCAmelCase__ = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowerCAmelCase__ = self._get_prev_sample(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase__ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Dict: return sample def a ( self : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: lowerCAmelCase__ = self.alphas[timestep_index] lowerCAmelCase__ = self.betas[timestep_index] lowerCAmelCase__ = self.alphas[prev_timestep_index] lowerCAmelCase__ = self.betas[prev_timestep_index] lowerCAmelCase__ = (sample - sigma * ets) / max(UpperCamelCase__ , 1e-8 ) lowerCAmelCase__ = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : List[str] ) -> Dict: return self.config.num_train_timesteps
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _lowercase : int = logging.getLogger(__name__) def lowerCamelCase__ ( A : List[str] , A : str ): '''simple docstring''' if os.path.exists(A ): if os.path.exists(os.path.join(A , '''config.json''' ) ) and os.path.isfile( os.path.join(A , '''config.json''' ) ): os.remove(os.path.join(A , '''config.json''' ) ) if os.path.exists(os.path.join(A , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(A , '''pytorch_model.bin''' ) ): os.remove(os.path.join(A , '''pytorch_model.bin''' ) ) else: os.makedirs(A ) model.save_pretrained(A ) def lowerCamelCase__ ( A : str , A : str=False ): '''simple docstring''' UpperCAmelCase = 2 if unlogit: UpperCAmelCase = torch.pow(A , A ) UpperCAmelCase = p * torch.log(A ) UpperCAmelCase = 0 return -plogp.sum(dim=-1 ) def lowerCamelCase__ ( A : Dict ): '''simple docstring''' logger.info('''lv, h >\t''' + '''\t'''.join(f"""{x + 1}""" for x in range(len(A ) ) ) ) for row in range(len(A ) ): if tensor.dtype != torch.long: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:.5f}""" for x in tensor[row].cpu().data ) ) else: logger.info(f"""layer {row + 1}:\t""" + '''\t'''.join(f"""{x:d}""" for x in tensor[row].cpu().data ) ) def lowerCamelCase__ ( A : Any , A : int , A : Any , A : Optional[Any]=True , A : Optional[int]=True , A : Optional[int]=None , A : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase = torch.zeros(A , A ).to(args.device ) UpperCAmelCase = torch.zeros(A , A ).to(args.device ) if head_mask is None: UpperCAmelCase = torch.ones(A , A ).to(args.device ) head_mask.requires_grad_(requires_grad=A ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase = None UpperCAmelCase = 0.0 UpperCAmelCase = 0.0 for step, inputs in enumerate(tqdm(A , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase = tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase = model(A , labels=A , head_mask=A ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(A ): UpperCAmelCase = entropy(attn.detach() , A ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(A ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase = 2 UpperCAmelCase = torch.pow(torch.pow(A , A ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: UpperCAmelCase = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(A ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(A ) logger.info('''Head ranked by importance scores''' ) UpperCAmelCase = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase = head_ranks.view_as(A ) print_ad_tensor(A ) return attn_entropy, head_importance, total_loss def lowerCamelCase__ ( A : List[Any] , A : Dict , A : Optional[Any] ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = compute_heads_importance(A , A , A , compute_entropy=A ) UpperCAmelCase = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , A , original_score * args.masking_threshold ) UpperCAmelCase = torch.ones_like(A ) UpperCAmelCase = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase = float('''Inf''' ) UpperCAmelCase = head_importance.view(-1 ).sort()[1] if len(A ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads UpperCAmelCase = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase = new_head_mask.view(-1 ) UpperCAmelCase = 0.0 UpperCAmelCase = new_head_mask.view_as(A ) UpperCAmelCase = new_head_mask.clone().detach() print_ad_tensor(A ) # Compute metric and head importance again UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = compute_heads_importance( A , A , A , compute_entropy=A , head_mask=A ) UpperCAmelCase = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , A , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('''Final head mask''' ) print_ad_tensor(A ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def lowerCamelCase__ ( A : Optional[Any] , A : Any , A : Union[str, Any] , A : List[Any] ): '''simple docstring''' UpperCAmelCase = datetime.now() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A ) UpperCAmelCase = 1 / loss UpperCAmelCase = datetime.now() - before_time UpperCAmelCase = sum(p.numel() for p in model.parameters() ) UpperCAmelCase = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(A ) ) } for k, v in heads_to_prune.items(): if isinstance(A , A ): UpperCAmelCase = [ v, ] assert sum(len(A ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(A ) UpperCAmelCase = sum(p.numel() for p in model.parameters() ) UpperCAmelCase = datetime.now() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = compute_heads_importance( A , A , A , compute_entropy=A , compute_importance=A , head_mask=A , actually_pruned=A , ) UpperCAmelCase = 1 / loss UpperCAmelCase = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , A , A , pruned_num_params / original_num_params * 1_00 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , A , A ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_00 ) save_model(A , args.output_dir ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=A , type=A , required=A , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=A , type=A , required=A , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=A , type=A , required=A , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=A , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=A , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=A , type=A , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=A , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=A , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=A , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=A , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=A , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=A , default=42 ) parser.add_argument('''--local_rank''' , type=A , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=A , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=A , default='''''' , help='''Can be used for distant debugging.''' ) UpperCAmelCase = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) UpperCAmelCase = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase = torch.device('''cuda''' , args.local_rank ) UpperCAmelCase = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase = nn.parallel.DistributedDataParallel( A , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=A ) elif args.n_gpu > 1: UpperCAmelCase = nn.DataParallel(A ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=A ) torch.save(A , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , A ) # Prepare dataset UpperCAmelCase = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase = (torch.from_numpy(A ),) UpperCAmelCase = TensorDataset(*A ) UpperCAmelCase = RandomSampler(A ) UpperCAmelCase = DataLoader(A , sampler=A , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(A , A , A ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase = mask_heads(A , A , A ) prune_heads(A , A , A , A ) if __name__ == "__main__": main()
210
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __snake_case = logging.get_logger(__name__) class lowercase__ ( __lowercase ): def __init__( self : Optional[int] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Union[str, Any] ): warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
472
def __UpperCamelCase (lowerCAmelCase : list[int] ) -> int: if not numbers: return 0 if not isinstance(lowerCAmelCase, (list, tuple) ) or not all( isinstance(lowerCAmelCase, lowerCAmelCase ) for number in numbers ): raise ValueError('numbers must be an iterable of integers' ) A = A = A = numbers[0] for i in range(1, len(lowerCAmelCase ) ): # update the maximum and minimum subarray products A = numbers[i] if number < 0: A , A = min_till_now, max_till_now A = max(lowerCAmelCase, max_till_now * number ) A = min(lowerCAmelCase, min_till_now * number ) # update the maximum product found till now A = max(lowerCAmelCase, lowerCAmelCase ) return max_prod
699
0
"""simple docstring""" import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow __A : List[str] = False class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case ( self : List[str] , lowercase__ : Union[str, Any]=3_2 ): set_seed(0 ) __lowercase : Optional[Any] = UNetaDModel(sample_size=UpperCamelCase__ , in_channels=3 , out_channels=3 ) __lowercase : str = torch.optim.SGD(model.parameters() , lr=0.0_0_0_1 ) return model, optimizer @slow def snake_case ( self : Dict ): __lowercase : Optional[Any] = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable __lowercase : List[Any] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=UpperCamelCase__ , ) __lowercase : List[str] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_start=0.0_0_0_1 , beta_end=0.0_2 , beta_schedule="linear" , clip_sample=UpperCamelCase__ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) __lowercase : Union[str, Any] = [torch.randn((4, 3, 3_2, 3_2) ).clip(-1 , 1 ).to(UpperCamelCase__ ) for _ in range(4 )] __lowercase : str = [torch.randn((4, 3, 3_2, 3_2) ).to(UpperCamelCase__ ) for _ in range(4 )] __lowercase : Optional[int] = [torch.randint(0 , 1_0_0_0 , (4,) ).long().to(UpperCamelCase__ ) for _ in range(4 )] # train with a DDPM scheduler __lowercase ,__lowercase : Optional[Any] = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() __lowercase : str = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __lowercase : str = model(UpperCamelCase__ , timesteps[i] ).sample __lowercase : Any = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM __lowercase ,__lowercase : Dict = self.get_model_optimizer(resolution=3_2 ) model.train().to(UpperCamelCase__ ) for i in range(4 ): optimizer.zero_grad() __lowercase : Dict = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) __lowercase : Optional[int] = model(UpperCamelCase__ , timesteps[i] ).sample __lowercase : List[str] = torch.nn.functional.mse_loss(UpperCamelCase__ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) ) self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-5 ) )
575
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
699
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase : List[Any] = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
178
import sys def __UpperCamelCase (lowerCAmelCase : Dict ) -> Dict: A = len(lowerCAmelCase ) A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] A = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2, lowerCAmelCase ): for a in range(1, n - chain_length + 1 ): A = a + chain_length - 1 A = sys.maxsize for c in range(lowerCAmelCase, lowerCAmelCase ): A = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A = cost A = c return matrix, sol def __UpperCamelCase (lowerCAmelCase : Optional[Any], lowerCAmelCase : Union[str, Any], lowerCAmelCase : Union[str, Any] ) -> List[str]: if i == j: print('A' + str(lowerCAmelCase ), end=' ' ) else: print('(', end=' ' ) print_optiomal_solution(lowerCAmelCase, lowerCAmelCase, optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase, optimal_solution[i][j] + 1, lowerCAmelCase ) print(')', end=' ' ) def __UpperCamelCase () -> List[str]: A = [30, 35, 15, 5, 10, 20, 25] A = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A , A = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase, 1, n - 1 ) if __name__ == "__main__": main()
699
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__ ( __lowercase ,__lowercase ): @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 128 , UpperCamelCase_ : int = 256 , UpperCamelCase_ : float = 2_000.0 , UpperCamelCase_ : int = 768 , UpperCamelCase_ : int = 12 , UpperCamelCase_ : int = 12 , UpperCamelCase_ : int = 64 , UpperCamelCase_ : int = 2_048 , UpperCamelCase_ : float = 0.1 , ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ : Union[str, Any] = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) lowerCamelCase_ : Optional[int] = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = nn.Dropout(p=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder lowerCamelCase_ : Union[str, Any] = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = TaLayerNorm(UpperCamelCase__ ) lowerCamelCase_ : str = nn.Dropout(p=UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : List[str] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ) -> List[str]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCamelCase_ : Optional[Any] = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCamelCase_ : List[Any] = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCamelCase_ : Dict = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCamelCase_ : str = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCamelCase_ : str = self.position_encoding(UpperCamelCase__ ) lowerCamelCase_ : Any = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings lowerCamelCase_ : List[Any] = self.dropout(UpperCamelCase__ ) # decoder: No padding present. lowerCamelCase_ : Dict = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCamelCase_ : Union[str, Any] = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCamelCase_ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCamelCase_ : Any = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCamelCase_ : Union[str, Any] = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] lowerCamelCase_ : Dict = self.decoder_norm(UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = self.post_dropout(UpperCamelCase__ ) lowerCamelCase_ : List[Any] = self.spec_out(UpperCamelCase__ ) return spec_out class lowerCAmelCase__ ( nn.Module ): def __init__( self : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]=1e-6 ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ : Union[str, Any] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[Any]=None , ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: lowerCamelCase_ : int = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) lowerCamelCase_ : Dict = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer lowerCamelCase_ : str = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class lowerCAmelCase__ ( nn.Module ): def __init__( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ : List[str] = TaLayerNorm(UpperCamelCase__ ) lowerCamelCase_ : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) lowerCamelCase_ : Tuple = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) lowerCamelCase_ : Dict = nn.Dropout(UpperCamelCase__ ) def __UpperCamelCase ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : Any = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: lowerCamelCase_ : Any = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block lowerCamelCase_ : Optional[Any] = self.attention(UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ : Dict = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) lowerCamelCase_ : List[str] = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) lowerCamelCase_ : List[Any] = nn.Dropout(UpperCamelCase__ ) def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : List[str]=None , ) -> Tuple: """simple docstring""" lowerCamelCase_ : int = self.layer_norm(UpperCamelCase__ ) lowerCamelCase_ : Tuple = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) lowerCamelCase_ : Any = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class lowerCAmelCase__ ( nn.Module ): def __init__( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> List[Any]: """simple docstring""" super().__init__() lowerCamelCase_ : List[str] = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) lowerCamelCase_ : Tuple = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) lowerCamelCase_ : Tuple = nn.Dropout(UpperCamelCase__ ) def __UpperCamelCase ( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any=None ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Optional[int] = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: lowerCamelCase_ : Dict = self.film(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ : Dict = self.DenseReluDense(UpperCamelCase__ ) lowerCamelCase_ : Any = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ) -> str: """simple docstring""" super().__init__() lowerCamelCase_ : int = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) lowerCamelCase_ : Optional[int] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) lowerCamelCase_ : Optional[Any] = nn.Dropout(UpperCamelCase__ ) lowerCamelCase_ : Any = NewGELUActivation() def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ : List[Any] = self.act(self.wi_a(UpperCamelCase__ ) ) lowerCamelCase_ : int = self.wi_a(UpperCamelCase__ ) lowerCamelCase_ : Tuple = hidden_gelu * hidden_linear lowerCamelCase_ : int = self.dropout(UpperCamelCase__ ) lowerCamelCase_ : Dict = self.wo(UpperCamelCase__ ) return hidden_states class lowerCAmelCase__ ( nn.Module ): def __init__( self : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple=1e-6 ) -> int: """simple docstring""" super().__init__() lowerCamelCase_ : Tuple = nn.Parameter(torch.ones(UpperCamelCase__ ) ) lowerCamelCase_ : str = eps def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Dict: """simple docstring""" lowerCamelCase_ : str = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) lowerCamelCase_ : int = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCamelCase_ : Dict = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__ ( nn.Module ): def __UpperCamelCase ( self : Any , UpperCamelCase_ : torch.Tensor ) -> Optional[int]: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class lowerCAmelCase__ ( nn.Module ): def __init__( self : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Tuple: """simple docstring""" super().__init__() lowerCamelCase_ : Any = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : List[Any] = self.scale_bias(UpperCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : int = torch.chunk(UpperCamelCase__ , 2 , -1 ) lowerCamelCase_ : Any = x * (1 + scale) + shift return x
501
from math import isqrt def __UpperCamelCase (lowerCAmelCase : int ) -> bool: return all(number % divisor != 0 for divisor in range(2, isqrt(lowerCAmelCase ) + 1 ) ) def __UpperCamelCase (lowerCAmelCase : int = 10**6 ) -> int: A = 0 A = 1 A = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
699
0
from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase_ : dict , UpperCamelCase_ : str )-> set[str]: A__ , A__ = set(UpperCamelCase_ ), [start] while stack: A__ = stack.pop() explored.add(UpperCamelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCamelCase_ ) return explored _lowercase = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
632
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _UpperCAmelCase = logging.get_logger(__name__) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : Tuple ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
699
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _snake_case : Tuple , _snake_case : Optional[int]=7 , _snake_case : Dict=3 , _snake_case : Union[str, Any]=18 , _snake_case : Optional[Any]=30 , _snake_case : Optional[int]=400 , _snake_case : Optional[Any]=True , _snake_case : Union[str, Any]=None , _snake_case : str=True , _snake_case : Any=None , _snake_case : int=True , ): __lowercase : Any = size if size is not None else {'''shortest_edge''': 20} __lowercase : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __lowercase : Any = parent __lowercase : List[Any] = batch_size __lowercase : int = num_channels __lowercase : str = image_size __lowercase : Any = min_resolution __lowercase : List[Any] = max_resolution __lowercase : Tuple = do_resize __lowercase : int = size __lowercase : Dict = do_center_crop __lowercase : List[str] = crop_size __lowercase : Union[str, Any] = do_flip_channel_order def snake_case_ ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class __lowerCAmelCase ( __lowercase , unittest.TestCase ): """simple docstring""" A__ : Dict = MobileViTImageProcessor if is_vision_available() else None def snake_case_ ( self : Any ): __lowercase : str = MobileViTImageProcessingTester(self ) @property def snake_case_ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self : str ): __lowercase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_flip_channel_order''' ) ) def snake_case_ ( self : Optional[int] ): __lowercase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case_ ( self : Tuple ): pass def snake_case_ ( self : Any ): # Initialize image_processing __lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowercase : List[Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : List[str] ): # Initialize image_processing __lowercase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowercase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input __lowercase : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowercase : Optional[int] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case_ ( self : List[Any] ): # Initialize image_processing __lowercase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowercase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input __lowercase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __lowercase : List[Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
509
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : str = "layer_norm" , UpperCamelCase__ : bool = False , ): super().__init__() A = only_cross_attention A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' A = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: A = AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A = AdaLayerNormZero(UpperCamelCase__ , UpperCamelCase__ ) else: A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = Attention( query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCamelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. A = ( AdaLayerNorm(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) ) A = Attention( query_dim=UpperCamelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , dropout=UpperCamelCase__ , bias=UpperCamelCase__ , upcast_attention=UpperCamelCase__ , ) # is self-attn if encoder_hidden_states is none else: A = None A = None # 3. Feed-forward A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) A = FeedForward(UpperCamelCase__ , dropout=UpperCamelCase__ , activation_fn=UpperCamelCase__ , final_dropout=UpperCamelCase__ ) # let chunk size default to None A = None A = 0 def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): # Sets chunk feed-forward A = chunk_size A = dim def UpperCamelCase ( self : Dict , UpperCamelCase__ : torch.FloatTensor , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , UpperCamelCase__ : Dict[str, Any] = None , UpperCamelCase__ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: A = self.norma(UpperCamelCase__ , UpperCamelCase__ ) elif self.use_ada_layer_norm_zero: A , A , A , A , A = self.norma( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=hidden_states.dtype ) else: A = self.norma(UpperCamelCase__ ) A = cross_attention_kwargs if cross_attention_kwargs is not None else {} A = self.attna( UpperCamelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) if self.use_ada_layer_norm_zero: A = gate_msa.unsqueeze(1 ) * attn_output A = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: A = ( self.norma(UpperCamelCase__ , UpperCamelCase__ ) if self.use_ada_layer_norm else self.norma(UpperCamelCase__ ) ) A = self.attna( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , **UpperCamelCase__ , ) A = attn_output + hidden_states # 3. Feed-forward A = self.norma(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) A = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size A = torch.cat( [self.ff(UpperCamelCase__ ) for hid_slice in norm_hidden_states.chunk(UpperCamelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: A = self.ff(UpperCamelCase__ ) if self.use_ada_layer_norm_zero: A = gate_mlp.unsqueeze(1 ) * ff_output A = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 4 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : bool = False , ): super().__init__() A = int(dim * mult ) A = dim_out if dim_out is not None else dim if activation_fn == "gelu": A = GELU(UpperCamelCase__ , UpperCamelCase__ ) if activation_fn == "gelu-approximate": A = GELU(UpperCamelCase__ , UpperCamelCase__ , approximate='tanh' ) elif activation_fn == "geglu": A = GEGLU(UpperCamelCase__ , UpperCamelCase__ ) elif activation_fn == "geglu-approximate": A = ApproximateGELU(UpperCamelCase__ , UpperCamelCase__ ) A = nn.ModuleList([] ) # project in self.net.append(UpperCamelCase__ ) # project dropout self.net.append(nn.Dropout(UpperCamelCase__ ) ) # project out self.net.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(UpperCamelCase__ ) ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int ): for module in self.net: A = module(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : str = "none" ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) A = approximate def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int ): A = self.proj(UpperCamelCase__ ) A = self.gelu(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , dim_out * 2 ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Tuple ): if gate.device.type != "mps": return F.gelu(UpperCamelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCamelCase ( self : str , UpperCamelCase__ : str ): A , A = self.proj(UpperCamelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(UpperCamelCase__ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : int , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Optional[int] ): A = self.proj(UpperCamelCase__ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ): super().__init__() A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , embedding_dim * 2 ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ ) def UpperCamelCase ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] ): A = self.linear(self.silu(self.emb(UpperCamelCase__ ) ) ) A , A = torch.chunk(UpperCamelCase__ , 2 ) A = self.norm(UpperCamelCase__ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): super().__init__() A = CombinedTimestepLabelEmbeddings(UpperCamelCase__ , UpperCamelCase__ ) A = nn.SiLU() A = nn.Linear(UpperCamelCase__ , 6 * embedding_dim , bias=UpperCamelCase__ ) A = nn.LayerNorm(UpperCamelCase__ , elementwise_affine=UpperCamelCase__ , eps=1e-6 ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : Tuple=None ): A = self.linear(self.silu(self.emb(UpperCamelCase__ , UpperCamelCase__ , hidden_dtype=UpperCamelCase__ ) ) ) A , A , A , A , A , A = emb.chunk(6 , dim=1 ) A = self.norm(UpperCamelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[str] = None , UpperCamelCase__ : float = 1e-5 ): super().__init__() A = num_groups A = eps if act_fn is None: A = None else: A = get_activation(UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , out_dim * 2 ) def UpperCamelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : str ): if self.act: A = self.act(UpperCamelCase__ ) A = self.linear(UpperCamelCase__ ) A = emb[:, :, None, None] A , A = emb.chunk(2 , dim=1 ) A = F.group_norm(UpperCamelCase__ , self.num_groups , eps=self.eps ) A = x * (1 + scale) + shift return x
699
0
"""simple docstring""" import sys def A_ ( lowercase ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = len(lowercase ) UpperCAmelCase_ : Dict = [[0 for x in range(lowercase )] for x in range(lowercase )] UpperCAmelCase_ : Dict = [[0 for x in range(lowercase )] for x in range(lowercase )] for chain_length in range(2 , lowercase ): for a in range(1 , n - chain_length + 1 ): UpperCAmelCase_ : List[Any] = a + chain_length - 1 UpperCAmelCase_ : Dict = sys.maxsize for c in range(lowercase , lowercase ): UpperCAmelCase_ : List[str] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: UpperCAmelCase_ : Union[str, Any] = cost UpperCAmelCase_ : int = c return matrix, sol def A_ ( lowercase , lowercase , lowercase ) -> List[str]: """simple docstring""" if i == j: print("""A""" + str(lowercase ) , end=""" """ ) else: print("""(""" , end=""" """ ) print_optiomal_solution(lowercase , lowercase , optimal_solution[i][j] ) print_optiomal_solution(lowercase , optimal_solution[i][j] + 1 , lowercase ) print(""")""" , end=""" """ ) def A_ ( ) -> List[str]: """simple docstring""" UpperCAmelCase_ : List[Any] = [30, 35, 15, 5, 10, 20, 25] UpperCAmelCase_ : Optional[Any] = len(lowercase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 UpperCAmelCase_ ,UpperCAmelCase_ : str = matrix_chain_order(lowercase ) print("""No. of Operation required: """ + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowercase , 1 , n - 1 ) if __name__ == "__main__": main()
470
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } _UpperCAmelCase = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } _UpperCAmelCase = "</w>" _UpperCAmelCase = "@@ " def __UpperCamelCase (lowerCAmelCase : Optional[int] ) -> List[str]: A = set() A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {"facebook/s2t-wav2vec2-large-en-de": 1_024} class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : str="<pad>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Optional[int] , ): super().__init__( unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , **UpperCamelCase__ , ) A = do_lower_case with open(UpperCamelCase__ , encoding='utf-8' ) as vocab_handle: A = json.load(UpperCamelCase__ ) A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) A = None A = None else: with open(UpperCamelCase__ , encoding='utf-8' ) as merges_handle: A = merges_handle.read().split('\n' )[:-1] A = [tuple(merge.split()[:2] ) for merge in merges] A = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) A = {} @property def UpperCamelCase ( self : Union[str, Any] ): return len(self.decoder ) def UpperCamelCase ( self : Optional[Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Optional[int] ): A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] A = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: A = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break A , A = bigram A = [] A = 0 while i < len(UpperCamelCase__ ): try: A = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A = tuple(UpperCamelCase__ ) A = new_word if len(UpperCamelCase__ ) == 1: break else: A = get_pairs(UpperCamelCase__ ) A = ' '.join(UpperCamelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: A = '\n' + BPE_TOKEN_MERGES if word.endswith(UpperCamelCase__ ): A = word.replace(UpperCamelCase__ , '' ) A = word.replace(' ' , UpperCamelCase__ ) A = word return word def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : Dict ): if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: A = text.lower() A = text.split() A = [] for token in text: if token: split_tokens.extend(list(self.bpe(UpperCamelCase__ ).split(' ' ) ) ) return split_tokens def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : str ): return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def UpperCamelCase ( self : str , UpperCamelCase__ : int ): A = self.decoder.get(UpperCamelCase__ , self.unk_token ) return result def UpperCamelCase ( self : Tuple , UpperCamelCase__ : List[str] ): A = ' '.join(UpperCamelCase__ ) # make sure @@ tokens are concatenated A = ''.join(string.split(UpperCamelCase__ ) ) return string def UpperCamelCase ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '\n' ) A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(UpperCamelCase__ , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) A = token_index writer.write(' '.join(UpperCamelCase__ ) + '\n' ) index += 1 return (vocab_file, merges_file)
699
0
'''simple docstring''' import requests from bsa import BeautifulSoup def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : dict ): A__ = BeautifulSoup(requests.get(_lowerCamelCase , params=_lowerCamelCase ).content , "html.parser" ) A__ = soup.find("div" , attrs={"class": "gs_ri"} ) A__ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase : Any ={ "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
440
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''facebook/bart-large-mnli''' SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) SCREAMING_SNAKE_CASE : Any = '''text_classifier''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer SCREAMING_SNAKE_CASE : Dict = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : List[Any] = ['''text''', ['''text''']] SCREAMING_SNAKE_CASE : Dict = ['''text'''] def UpperCamelCase ( self : List[str] ): super().setup() A = self.model.config A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): A = int(UpperCamelCase__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def UpperCamelCase ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): A = labels return self.pre_processor( [text] * len(UpperCamelCase__ ) , [f'''This example is {label}''' for label in labels] , return_tensors='pt' , padding='max_length' , ) def UpperCamelCase ( self : int , UpperCamelCase__ : List[str] ): A = outputs.logits A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
699
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class __lowerCamelCase ( yaml.SafeLoader ): """simple docstring""" def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: lowerCAmelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] lowerCAmelCase__ = [tuple(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else key for key in keys] lowerCAmelCase__ = Counter(UpperCamelCase__ ) lowerCAmelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'Got duplicate yaml keys: {duplicate_keys}' ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str]=False ) -> Tuple: lowerCAmelCase__ = super().construct_mapping(UpperCamelCase__ , deep=UpperCamelCase__ ) self._check_no_duplicates_on_constructed_node(UpperCamelCase__ ) return mapping def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowerCAmelCase__ = full_content[1:].index("---" ) + 1 lowerCAmelCase__ = "\n".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(lowerCAmelCase_ ) class __lowerCamelCase ( __lowercase ): """simple docstring""" snake_case__ = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def a ( cls : int , SCREAMING_SNAKE_CASE__ : Path ) -> Tuple: with open(UpperCamelCase__ , encoding="utf-8" ) as readme_file: lowerCAmelCase__ , lowerCAmelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(UpperCamelCase__ ) else: return cls() def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Path ) -> str: if path.exists(): with open(UpperCamelCase__ , encoding="utf-8" ) as readme_file: lowerCAmelCase__ = readme_file.read() else: lowerCAmelCase__ = None lowerCAmelCase__ = self._to_readme(UpperCamelCase__ ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as readme_file: readme_file.write(UpperCamelCase__ ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> int: if readme_content is not None: lowerCAmelCase__ , lowerCAmelCase__ = _split_yaml_from_readme(UpperCamelCase__ ) lowerCAmelCase__ = "---\n" + self.to_yaml_string() + "---\n" + content else: lowerCAmelCase__ = "---\n" + self.to_yaml_string() + "---\n" return full_content @classmethod def a ( cls : str , SCREAMING_SNAKE_CASE__ : str ) -> Any: lowerCAmelCase__ = yaml.load(UpperCamelCase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields lowerCAmelCase__ = { (key.replace("-" , "_" ) if key.replace("-" , "_" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**UpperCamelCase__ ) def a ( self : int ) -> Tuple: return yaml.safe_dump( { (key.replace("_" , "-" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=UpperCamelCase__ , allow_unicode=UpperCamelCase__ , encoding="utf-8" , ).decode("utf-8" ) UpperCamelCase = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser UpperCamelCase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') UpperCamelCase = ap.parse_args() UpperCamelCase = Path(args.readme_filepath) UpperCamelCase = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
61
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase (lowerCAmelCase : List[str] ) -> Dict: A = r'\w+[.]\d+' A = re.findall(lowerCAmelCase, lowerCAmelCase ) for pat in pats: A = key.replace(lowerCAmelCase, '_'.join(pat.split('.' ) ) ) return key def __UpperCamelCase (lowerCAmelCase : Optional[int], lowerCAmelCase : Dict, lowerCAmelCase : Dict ) -> Any: A = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": A = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy A = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A = flax_model.init_weights(PRNGKey(lowerCAmelCase ) ) A = flatten_dict(lowerCAmelCase ) A = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A = rename_key(lowerCAmelCase ) A = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters A , A = rename_key_and_reshape_tensor(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown A = jnp.asarray(lowerCAmelCase ) return unflatten_dict(lowerCAmelCase )
699
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__( __lowercase , __lowercase , unittest.TestCase ): __magic_name__ : List[Any] = IFInpaintingPipeline __magic_name__ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __magic_name__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __magic_name__ : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def a__( self : List[str] )-> Optional[Any]: """simple docstring""" return self._get_dummy_components() def a__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple=0 )-> Tuple: """simple docstring""" if str(UpperCamelCase__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(UpperCamelCase__ ) else: UpperCAmelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__( self : str )-> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a__( self : Tuple )-> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def a__( self : int )-> Dict: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def a__( self : Optional[Any] )-> Optional[int]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a__( self : str )-> Tuple: """simple docstring""" self._test_save_load_local() def a__( self : Dict )-> Optional[Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
210
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : Collection[float] | None = None ): if components is None: A = [] A = list(UpperCamelCase__ ) def __len__( self : List[Any] ): return len(self.__components ) def __str__( self : str ): return "(" + ",".join(map(UpperCamelCase__ , self.__components ) ) + ")" def __add__( self : str , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] + other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: raise Exception('must have the same size' ) def __sub__( self : Dict , UpperCamelCase__ : Vector ): A = len(self ) if size == len(UpperCamelCase__ ): A = [self.__components[i] - other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return Vector(UpperCamelCase__ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self : Tuple , UpperCamelCase__ : float ): ... @overload def __mul__( self : Dict , UpperCamelCase__ : Vector ): ... def __mul__( self : Union[str, Any] , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , (float, int) ): A = [c * other for c in self.__components] return Vector(UpperCamelCase__ ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(self ) == len(UpperCamelCase__ ): A = len(self ) A = [self.__components[i] * other.component(UpperCamelCase__ ) for i in range(UpperCamelCase__ )] return sum(UpperCamelCase__ ) else: # error case raise Exception('invalid operand!' ) def UpperCamelCase ( self : Union[str, Any] ): return Vector(self.__components ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def UpperCamelCase ( self : Any , UpperCamelCase__ : int , UpperCamelCase__ : float ): assert -len(self.__components ) <= pos < len(self.__components ) A = value def UpperCamelCase ( self : str ): if len(self.__components ) == 0: raise Exception('Vector is empty' ) A = [c**2 for c in self.__components] return math.sqrt(sum(UpperCamelCase__ ) ) def UpperCamelCase ( self : Any , UpperCamelCase__ : Vector , UpperCamelCase__ : bool = False ): A = self * other A = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __UpperCamelCase (lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) return Vector([0] * dimension ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: assert isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, lowerCAmelCase )) A = [0] * dimension A = 1 return Vector(lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : float, lowerCAmelCase : Vector, lowerCAmelCase : Vector ) -> Vector: assert ( isinstance(lowerCAmelCase, lowerCAmelCase ) and isinstance(lowerCAmelCase, lowerCAmelCase ) and (isinstance(lowerCAmelCase, (int, float) )) ) return x * scalar + y def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Vector: random.seed(lowerCAmelCase ) A = [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : list[list[float]] , UpperCamelCase__ : int , UpperCamelCase__ : int ): A = matrix A = w A = h def __str__( self : int ): A = '' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any] , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] + other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self : Dict , UpperCamelCase__ : Matrix ): if self.__width == other.width() and self.__height == other.height(): A = [] for i in range(self.__height ): A = [ self.__matrix[i][j] - other.component(UpperCamelCase__ , UpperCamelCase__ ) for j in range(self.__width ) ] matrix.append(UpperCamelCase__ ) return Matrix(UpperCamelCase__ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self : int , UpperCamelCase__ : float ): ... @overload def __mul__( self : Union[str, Any] , UpperCamelCase__ : Vector ): ... def __mul__( self : Tuple , UpperCamelCase__ : float | Vector ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): # matrix-vector if len(UpperCamelCase__ ) == self.__width: A = zero_vector(self.__height ) for i in range(self.__height ): A = [ self.__matrix[i][j] * other.component(UpperCamelCase__ ) for j in range(self.__width ) ] ans.change_component(UpperCamelCase__ , sum(UpperCamelCase__ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(UpperCamelCase__ , (int, float) ): # matrix-scalar A = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(UpperCamelCase__ , self.__width , self.__height ) return None def UpperCamelCase ( self : Optional[int] ): return self.__height def UpperCamelCase ( self : List[Any] ): return self.__width def UpperCamelCase ( self : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : float ): if 0 <= x < self.__height and 0 <= y < self.__width: A = value else: raise Exception('change_component: indices out of bounds' ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) A = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(UpperCamelCase__ ) ): A = minor[i][:y] + minor[i][y + 1 :] return Matrix(UpperCamelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def UpperCamelCase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(UpperCamelCase__ , UpperCamelCase__ ) else: raise Exception('Indices out of bounds' ) def UpperCamelCase ( self : Tuple ): if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: A = [ self.__matrix[0][y] * self.cofactor(0 , UpperCamelCase__ ) for y in range(self.__width ) ] return sum(UpperCamelCase__ ) def __UpperCamelCase (lowerCAmelCase : int ) -> Matrix: A = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : int ) -> Matrix: random.seed(lowerCAmelCase ) A = [ [random.randint(lowerCAmelCase, lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )
699
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = """▁""" __snake_case = {"""vocab_file""": """sentencepiece.bpe.model"""} __snake_case = { """vocab_file""": { """facebook/xglm-564M""": """https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model""", } } __snake_case = { """facebook/xglm-564M""": 20_48, } class lowercase__ ( __lowercase ): A__ : str =VOCAB_FILES_NAMES A__ : Optional[int] =PRETRAINED_VOCAB_FILES_MAP A__ : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Optional[Any] =['''input_ids''', '''attention_mask'''] def __init__( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]="<s>" , UpperCAmelCase_ : str="</s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : int="<unk>" , UpperCAmelCase_ : Dict="<pad>" , UpperCAmelCase_ : Optional[Dict[str, Any]] = None , **UpperCAmelCase_ : Tuple , ): SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = [F'<madeupword{i}>' for i in range(self.num_madeup_words )] SCREAMING_SNAKE_CASE__ = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ = 1 # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} SCREAMING_SNAKE_CASE__ = len(self.sp_model ) SCREAMING_SNAKE_CASE__ = {F'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[Any] ): SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() return state def __setstate__( self : Union[str, Any] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A_ ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.sep_token_id] + token_ids_a SCREAMING_SNAKE_CASE__ = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def A_ ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def A_ ( self : str ): return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : List[Any] , UpperCAmelCase_ : str ): return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A_ ( self : Dict , UpperCAmelCase_ : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self : Any , UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE__ = ''.join(UpperCamelCase__ ).replace(UpperCamelCase__ , ' ' ).strip() return out_string def A_ ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE__ = os.path.join( UpperCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
472
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = '''blenderbot-small''' SCREAMING_SNAKE_CASE : Any = ['''past_key_values'''] SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCamelCase__ : Optional[Any]=50265 , UpperCamelCase__ : Optional[int]=512 , UpperCamelCase__ : int=8 , UpperCamelCase__ : Optional[int]=2048 , UpperCamelCase__ : Optional[Any]=16 , UpperCamelCase__ : Optional[Any]=8 , UpperCamelCase__ : List[Any]=2048 , UpperCamelCase__ : int=16 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : int=True , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=512 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=1 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Dict=2 , **UpperCamelCase__ : List[str] , ): A = vocab_size A = max_position_embeddings A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) class _UpperCAmelCase ( __lowercase ): '''simple docstring''' @property def UpperCamelCase ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A = {0: 'batch'} A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A = {0: 'batch', 1: 'decoder_sequence'} A = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} else: A = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def UpperCamelCase ( self : int ): if self.task in ["default", "seq2seq-lm"]: A = super().outputs else: A = super(UpperCamelCase__ , self ).outputs if self.use_past: A , A = self.num_layers for i in range(UpperCamelCase__ ): A = {0: 'batch', 2: 'past_sequence + sequence'} A = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def UpperCamelCase ( self : int , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Generate decoder inputs A = seq_length if not self.use_past else 1 A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} A = dict(**UpperCamelCase__ , **UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape A = common_inputs['decoder_input_ids'].shape[1] A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A = decoder_seq_length + 3 A = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ )] , dim=1 ) A = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A , A = self.num_layers A = min(UpperCamelCase__ , UpperCamelCase__ ) A = max(UpperCamelCase__ , UpperCamelCase__ ) - min_num_layers A = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase__ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ ), ) ) # TODO: test this. A = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase__ , UpperCamelCase__ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) ) return common_inputs def UpperCamelCase ( self : Tuple , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A , A = common_inputs['input_ids'].shape # Not using the same length for past_key_values A = seqlen + 2 A , A = self.num_layers A , A = self.num_attention_heads A = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A = common_inputs['attention_mask'].dtype A = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) A = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(UpperCamelCase__ ) ] return common_inputs def UpperCamelCase ( self : List[str] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A = tokenizer.num_special_tokens_to_add(UpperCamelCase__ ) A = compute_effective_axis_dimension( UpperCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase__ ) # Generate dummy inputs according to compute batch and sequence A = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A = dict(tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ ) ) return common_inputs def UpperCamelCase ( self : Any , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: A = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) elif self.task == "causal-lm": A = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) else: A = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) return common_inputs def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ): if self.task in ["default", "seq2seq-lm"]: A = super()._flatten_past_key_values_(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: A = super(UpperCamelCase__ , self )._flatten_past_key_values_( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
699
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__ ( __lowercase ): """simple docstring""" def __init__( self : List[Any] , lowercase__ : TransformeraDModel , lowercase__ : AutoencoderKL , lowercase__ : KarrasDiffusionSchedulers , lowercase__ : Optional[Dict[int, str]] = None , ): super().__init__() self.register_modules(transformer=UpperCamelCase__ , vae=UpperCamelCase__ , scheduler=UpperCamelCase__ ) # create a imagenet -> id dictionary for easier use __lowercase : List[Any] = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): __lowercase : List[str] = int(UpperCamelCase__ ) __lowercase : str = dict(sorted(self.labels.items() ) ) def snake_case ( self : int , lowercase__ : Union[str, List[str]] ): if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowercase : Tuple = list(UpperCamelCase__ ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : Dict , lowercase__ : List[int] , lowercase__ : float = 4.0 , lowercase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase__ : int = 5_0 , lowercase__ : Optional[str] = "pil" , lowercase__ : bool = True , ): __lowercase : List[Any] = len(UpperCamelCase__ ) __lowercase : Union[str, Any] = self.transformer.config.sample_size __lowercase : Optional[int] = self.transformer.config.in_channels __lowercase : int = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=UpperCamelCase__ , device=self.device , dtype=self.transformer.dtype , ) __lowercase : int = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __lowercase : int = torch.tensor(UpperCamelCase__ , device=self.device ).reshape(-1 ) __lowercase : List[str] = torch.tensor([1_0_0_0] * batch_size , device=self.device ) __lowercase : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __lowercase : Tuple = latent_model_input[: len(UpperCamelCase__ ) // 2] __lowercase : Tuple = torch.cat([half, half] , dim=0 ) __lowercase : int = self.scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) __lowercase : Tuple = t if not torch.is_tensor(UpperCamelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __lowercase : Optional[Any] = latent_model_input.device.type == "mps" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): __lowercase : Any = torch.floataa if is_mps else torch.floataa else: __lowercase : str = torch.intaa if is_mps else torch.intaa __lowercase : Union[str, Any] = torch.tensor([timesteps] , dtype=UpperCamelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __lowercase : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowercase : List[str] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __lowercase : Union[str, Any] = self.transformer( UpperCamelCase__ , timestep=UpperCamelCase__ , class_labels=UpperCamelCase__ ).sample # perform guidance if guidance_scale > 1: __lowercase ,__lowercase : str = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __lowercase ,__lowercase : List[str] = torch.split(UpperCamelCase__ , len(UpperCamelCase__ ) // 2 , dim=0 ) __lowercase : List[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __lowercase : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) __lowercase : Dict = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __lowercase ,__lowercase : Tuple = torch.split(UpperCamelCase__ , UpperCamelCase__ , dim=1 ) else: __lowercase : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 __lowercase : List[Any] = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample if guidance_scale > 1: __lowercase ,__lowercase : str = latent_model_input.chunk(2 , dim=0 ) else: __lowercase : Optional[int] = latent_model_input __lowercase : int = 1 / self.vae.config.scaling_factor * latents __lowercase : List[Any] = self.vae.decode(UpperCamelCase__ ).sample __lowercase : Optional[int] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __lowercase : Tuple = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowercase : Tuple = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=UpperCamelCase__ )
575
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE : List[str] = '''BridgeTowerImageProcessor''' SCREAMING_SNAKE_CASE : Tuple = ('''RobertaTokenizer''', '''RobertaTokenizerFast''') def __init__( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[bool, str, PaddingStrategy] = False , UpperCamelCase__ : Union[bool, str, TruncationStrategy] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : Optional[bool] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = False , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , **UpperCamelCase__ : List[Any] , ): A = self.tokenizer( text=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , stride=UpperCamelCase__ , pad_to_multiple_of=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , return_special_tokens_mask=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , return_length=UpperCamelCase__ , verbose=UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ , ) # add pixel_values + pixel_mask A = self.image_processor( UpperCamelCase__ , return_tensors=UpperCamelCase__ , do_normalize=UpperCamelCase__ , do_center_crop=UpperCamelCase__ , **UpperCamelCase__ ) encoding.update(UpperCamelCase__ ) return encoding def UpperCamelCase ( self : Dict , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Any ): return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCamelCase ( self : int , *UpperCamelCase__ : int , **UpperCamelCase__ : List[str] ): return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCamelCase ( self : Any ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
699
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __magic_name__ ( __lowercase ): """simple docstring""" __UpperCamelCase = '''longformer''' def __init__( self :Dict , snake_case :Union[List[int], int] = 512 , snake_case :int = 2 , snake_case :int = 1 , snake_case :int = 0 , snake_case :int = 2 , snake_case :int = 30_522 , snake_case :int = 768 , snake_case :int = 12 , snake_case :int = 12 , snake_case :int = 3_072 , snake_case :str = "gelu" , snake_case :float = 0.1 , snake_case :float = 0.1 , snake_case :int = 512 , snake_case :int = 2 , snake_case :float = 0.02 , snake_case :float = 1e-12 , snake_case :bool = False , **snake_case :Dict , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A_ : List[str] = attention_window A_ : Dict = sep_token_id A_ : str = bos_token_id A_ : Tuple = eos_token_id A_ : List[str] = vocab_size A_ : Dict = hidden_size A_ : List[str] = num_hidden_layers A_ : int = num_attention_heads A_ : Dict = hidden_act A_ : int = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : List[str] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : Union[str, Any] = initializer_range A_ : Optional[int] = layer_norm_eps A_ : List[Any] = onnx_export class __magic_name__ ( __lowercase ): """simple docstring""" def __init__( self :Tuple , snake_case :"PretrainedConfig" , snake_case :str = "default" , snake_case :"List[PatchingSpec]" = None ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A_ : str = True @property def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' if self.task == "multiple-choice": A_ : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: A_ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ] ) @property def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : int = super().outputs if self.task == "default": A_ : Tuple = {0: "batch"} return outputs @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' return max(super().default_onnx_opset , 14 ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :"PreTrainedTokenizerBase" , snake_case :int = -1 , snake_case :int = -1 , snake_case :bool = False , snake_case :Optional[TensorType] = None , ): '''simple docstring''' A_ : Tuple = super().generate_dummy_inputs( preprocessor=UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly A_ : List[str] = torch.zeros_like(inputs["input_ids"] ) # make every second token global A_ : Dict = 1 return inputs
454
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> str: return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
699
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class _lowerCAmelCase : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=64 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=[1, 16, 4, 4] , UpperCamelCase__=None , ) -> List[Any]: '''simple docstring''' snake_case : List[str] = parent snake_case : Optional[int] = batch_size snake_case : Tuple = image_size snake_case : List[Any] = patch_size snake_case : Optional[Any] = num_channels snake_case : Optional[Any] = is_training snake_case : int = use_labels snake_case : Tuple = hidden_size snake_case : Any = num_hidden_layers snake_case : List[str] = num_attention_heads snake_case : Union[str, Any] = intermediate_size snake_case : int = hidden_act snake_case : Optional[Any] = hidden_dropout_prob snake_case : Optional[int] = attention_probs_dropout_prob snake_case : Optional[int] = type_sequence_label_size snake_case : List[Any] = initializer_range snake_case : Optional[Any] = scope snake_case : Union[str, Any] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size snake_case : Any = (self.image_size // 32) ** 2 snake_case : Optional[int] = num_patches + 1 def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : int = None if self.use_labels: snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : List[str] = self.get_config() return config, pixel_values, labels def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : int = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCamelCase__ , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: '''simple docstring''' snake_case : int = ViTHybridModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: '''simple docstring''' snake_case : str = self.type_sequence_label_size snake_case : str = ViTHybridForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : int = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : List[str] = config_and_inputs snake_case : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowerCAmelCase ( __lowercase , __lowercase , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __UpperCAmelCase : List[str] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Dict = False __UpperCAmelCase : List[Any] = False __UpperCAmelCase : List[Any] = False def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = ViTHybridModelTester(self ) snake_case : List[str] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : List[Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case ,snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCamelCase__ ) snake_case : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[int] = [*signature.parameters.keys()] snake_case : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case ,snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Any = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(config=UpperCamelCase__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": snake_case : List[Any] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = ViTHybridModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" snake_case : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): @cached_property def lowerCamelCase ( self ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase__ ) snake_case : int = self.default_image_processor snake_case : int = prepare_img() snake_case : Optional[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Dict = model(**UpperCamelCase__ ) # verify the logits snake_case : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Optional[int] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow @require_accelerate def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) snake_case : Tuple = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) snake_case : Any = prepare_img() snake_case : Optional[int] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ) snake_case : Any = model(**UpperCamelCase__ ) snake_case : Optional[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes snake_case : List[Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
178
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _UpperCAmelCase ( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase__ : int = 128 , UpperCamelCase__ : int = 256 , UpperCamelCase__ : float = 2_000.0 , UpperCamelCase__ : int = 768 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 12 , UpperCamelCase__ : int = 64 , UpperCamelCase__ : int = 2048 , UpperCamelCase__ : float = 0.1 , ): super().__init__() A = nn.Sequential( nn.Linear(UpperCamelCase__ , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=UpperCamelCase__ ) , nn.SiLU() , ) A = nn.Embedding(UpperCamelCase__ , UpperCamelCase__ ) A = False A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.ModuleList() for lyr_num in range(UpperCamelCase__ ): # FiLM conditional T5 decoder A = DecoderLayer(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) self.decoders.append(UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ ) A = nn.Dropout(p=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : int ): A = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ): A , A , A = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. A = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) A = self.conditioning_emb(UpperCamelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) A = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. A = torch.broadcast_to( torch.arange(UpperCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) A = self.position_encoding(UpperCamelCase__ ) A = self.continuous_inputs_projection(UpperCamelCase__ ) inputs += position_encodings A = self.dropout(UpperCamelCase__ ) # decoder: No padding present. A = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. A = [(x, self.encoder_decoder_mask(UpperCamelCase__ , UpperCamelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings A = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) A = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: A = lyr( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , )[0] A = self.decoder_norm(UpperCamelCase__ ) A = self.post_dropout(UpperCamelCase__ ) A = self.spec_out(UpperCamelCase__ ) return spec_out class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=1e-6 ): super().__init__() A = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=UpperCamelCase__ , d_kv=UpperCamelCase__ , num_heads=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ , layer_norm_epsilon=UpperCamelCase__ ) ) def UpperCamelCase ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[Any]=None , ): A = self.layer[0]( UpperCamelCase__ , conditioning_emb=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) if encoder_hidden_states is not None: A = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) A = self.layer[1]( UpperCamelCase__ , key_value_states=UpperCamelCase__ , attention_mask=UpperCamelCase__ , ) # Apply Film Conditional Feed Forward layer A = self.layer[-1](UpperCamelCase__ , UpperCamelCase__ ) return (hidden_states,) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict ): super().__init__() A = TaLayerNorm(UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Tuple=None , ): # pre_self_attention_layer_norm A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.FiLMLayer(UpperCamelCase__ , UpperCamelCase__ ) # Self-attention block A = self.attention(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): super().__init__() A = Attention(query_dim=UpperCamelCase__ , heads=UpperCamelCase__ , dim_head=UpperCamelCase__ , out_bias=UpperCamelCase__ , scale_qk=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=None , ): A = self.layer_norm(UpperCamelCase__ ) A = self.attention( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) A = hidden_states + self.dropout(UpperCamelCase__ ) return layer_output class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): super().__init__() A = TaDenseGatedActDense(d_model=UpperCamelCase__ , d_ff=UpperCamelCase__ , dropout_rate=UpperCamelCase__ ) A = TaFiLMLayer(in_features=d_model * 4 , out_features=UpperCamelCase__ ) A = TaLayerNorm(UpperCamelCase__ , eps=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) def UpperCamelCase ( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=None ): A = self.layer_norm(UpperCamelCase__ ) if conditioning_emb is not None: A = self.film(UpperCamelCase__ , UpperCamelCase__ ) A = self.DenseReluDense(UpperCamelCase__ ) A = hidden_states + self.dropout(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A = nn.Dropout(UpperCamelCase__ ) A = NewGELUActivation() def UpperCamelCase ( self : Optional[Any] , UpperCamelCase__ : List[Any] ): A = self.act(self.wi_a(UpperCamelCase__ ) ) A = self.wi_a(UpperCamelCase__ ) A = hidden_gelu * hidden_linear A = self.dropout(UpperCamelCase__ ) A = self.wo(UpperCamelCase__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=1e-6 ): super().__init__() A = nn.Parameter(torch.ones(UpperCamelCase__ ) ) A = eps def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : int ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 A = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=UpperCamelCase__ ) A = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: A = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def UpperCamelCase ( self : Any , UpperCamelCase__ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(UpperCamelCase__ , 3.0 )) )) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : int ): super().__init__() A = nn.Linear(UpperCamelCase__ , out_features * 2 , bias=UpperCamelCase__ ) def UpperCamelCase ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] ): A = self.scale_bias(UpperCamelCase__ ) A , A = torch.chunk(UpperCamelCase__ , 2 , -1 ) A = x * (1 + scale) + shift return x
699
0
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Union[str, Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } __lowerCamelCase : List[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase_ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ) if weight_type is not None: lowerCamelCase_ : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase ).shape else: lowerCamelCase_ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCamelCase_ : Tuple = value elif weight_type == "weight_g": lowerCamelCase_ : Union[str, Any] = value elif weight_type == "weight_v": lowerCamelCase_ : Dict = value elif weight_type == "bias": lowerCamelCase_ : List[Any] = value else: lowerCamelCase_ : List[str] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = [] lowerCamelCase_ : int = fairseq_model.state_dict() lowerCamelCase_ : List[Any] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCamelCase_ : int = False if "conv_layers" in name: load_conv_layer( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hf_model.config.feat_extract_norm == '''group''' , ) lowerCamelCase_ : List[str] = True else: for key, mapped_key in MAPPING.items(): lowerCamelCase_ : Tuple = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue lowerCamelCase_ : List[str] = True if "*" in mapped_key: lowerCamelCase_ : List[str] = name.split(__UpperCAmelCase )[0].split('''.''' )[-2] lowerCamelCase_ : str = mapped_key.replace('''*''' , __UpperCAmelCase ) if "weight_g" in name: lowerCamelCase_ : List[Any] = '''weight_g''' elif "weight_v" in name: lowerCamelCase_ : Dict = '''weight_v''' elif "bias" in name: lowerCamelCase_ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCamelCase_ : Any = '''weight''' else: lowerCamelCase_ : Optional[int] = None set_recursively(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) continue if not is_used: unused_weights.append(__UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[int] = full_name.split('''conv_layers.''' )[-1] lowerCamelCase_ : str = name.split('''.''' ) lowerCamelCase_ : int = int(items[0] ) lowerCamelCase_ : Optional[Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCamelCase_ : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCamelCase_ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) lowerCamelCase_ : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCamelCase_ : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__UpperCAmelCase ) @torch.no_grad() def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ): """simple docstring""" if config_path is not None: lowerCamelCase_ : List[str] = UniSpeechSatConfig.from_pretrained(__UpperCAmelCase ) else: lowerCamelCase_ : Tuple = UniSpeechSatConfig() lowerCamelCase_ : str = '''''' if is_finetuned: lowerCamelCase_ : int = UniSpeechSatForCTC(__UpperCAmelCase ) else: lowerCamelCase_ : Optional[int] = UniSpeechSatForPreTraining(__UpperCAmelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) lowerCamelCase_ : Union[str, Any] = model[0].eval() recursively_load_weights(__UpperCAmelCase , __UpperCAmelCase ) hf_wavavec.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __lowerCamelCase : str = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
501
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _UpperCAmelCase = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _UpperCAmelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class _UpperCAmelCase : '''simple docstring''' def __init__( self : Union[str, Any] ): A = WATERMARK_BITS A = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def UpperCamelCase ( self : Optional[int] , UpperCamelCase__ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images A = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() A = [self.encoder.encode(UpperCamelCase__ , 'dwtDct' ) for image in images] A = torch.from_numpy(np.array(UpperCamelCase__ ) ).permute(0 , 3 , 1 , 2 ) A = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
699
0
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int )-> Dict: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase__ ( UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] )-> List[Any]: A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] )-> Tuple: A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowerCAmelCase__ ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict )-> Union[str, Any]: A__ = tmp_path / '''cache''' A__ = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict )-> Dict: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} A__ = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} A__ = features.copy() A__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = tmp_path / '''cache''' A__ = JsonDatasetReader(UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] )-> str: A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ , split=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple )-> Any: if issubclass(UpperCamelCase_ , UpperCamelCase_ ): A__ = jsonl_path elif issubclass(UpperCamelCase_ , UpperCamelCase_ ): A__ = [jsonl_path] A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_dataset(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=("train",) )-> str: assert isinstance(UpperCamelCase_ , UpperCamelCase_ ) for split in splits: A__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCAmelCase__ ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] )-> int: A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCAmelCase__ ( UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple )-> Any: A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = JsonDatasetReader({'''train''': jsonl_path} , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowerCAmelCase__ ( UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] )-> List[Any]: if split: A__ = {split: jsonl_path} else: A__ = '''train''' A__ = {'''train''': jsonl_path, '''test''': jsonl_path} A__ = tmp_path / '''cache''' A__ = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} A__ = JsonDatasetReader(UpperCamelCase_ , cache_dir=UpperCamelCase_ ).read() _check_json_datasetdict(UpperCamelCase_ , UpperCamelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCAmelCase__ ( UpperCamelCase_ : Any )-> Any: return json.load(UpperCamelCase_ ) def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] )-> Union[str, Any]: return [json.loads(UpperCamelCase_ ) for line in buffer] class _UpperCAmelCase : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)]) def snake_case_ ( self , a__ , a__ , a__): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__).write() buffer.seek(0) A__ = load_json_function(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) assert isinstance(exported_content[0] , UpperCamelCase__) assert len(UpperCamelCase__) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__).write() buffer.seek(0) A__ = load_json(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''') and not hasattr(exported_content[0] , '''keys''') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(UpperCamelCase__) == 1_0 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)]) def snake_case_ ( self , a__ , a__ , a__): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , num_proc=2).write() buffer.seek(0) A__ = load_json_function(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) assert isinstance(exported_content[0] , UpperCamelCase__) assert len(UpperCamelCase__) == 1_0 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789'''), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , lines=UpperCamelCase__ , orient=UpperCamelCase__ , num_proc=2).write() buffer.seek(0) A__ = load_json(UpperCamelCase__) assert isinstance(UpperCamelCase__ , UpperCamelCase__) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase__ , '''keys''') and not hasattr(exported_content[0] , '''keys''') if len_at: assert len(exported_content[len_at]) == 1_0 else: assert len(UpperCamelCase__) == 1_0 def snake_case_ ( self , a__): with pytest.raises(UpperCamelCase__): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , num_proc=0) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')]) def snake_case_ ( self , a__ , a__ , a__ , a__ , a__): A__ = tmp_path_factory.mktemp('''data''') / F"test.json.{extension}" A__ = str(shared_datadir / F"test_file.json.{extension}") JsonDatasetWriter(UpperCamelCase__ , UpperCamelCase__ , compression=UpperCamelCase__).write() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''') as f: A__ = f.read() with fsspec.open(UpperCamelCase__ , '''rb''' , compression='''infer''') as f: A__ = f.read() assert exported_content == original_content
632
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } _UpperCAmelCase = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : Dict, lowerCAmelCase : Optional[int], lowerCAmelCase : List[Any], lowerCAmelCase : str ) -> int: for attribute in key.split('.' ): A = getattr(lowerCAmelCase, lowerCAmelCase ) if weight_type is not None: A = getattr(lowerCAmelCase, lowerCAmelCase ).shape else: A = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A = value elif weight_type == "weight_g": A = value elif weight_type == "weight_v": A = value elif weight_type == "bias": A = value else: A = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __UpperCamelCase (lowerCAmelCase : List[str], lowerCAmelCase : Optional[int] ) -> Dict: A = [] A = fairseq_model.state_dict() A = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): A = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, hf_model.config.feat_extract_norm == 'group', ) A = True else: for key, mapped_key in MAPPING.items(): A = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue A = True if "*" in mapped_key: A = name.split(lowerCAmelCase )[0].split('.' )[-2] A = mapped_key.replace('*', lowerCAmelCase ) if "weight_g" in name: A = 'weight_g' elif "weight_v" in name: A = 'weight_v' elif "bias" in name: A = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj A = 'weight' else: A = None set_recursively(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) continue if not is_used: unused_weights.append(lowerCAmelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : Tuple, lowerCAmelCase : List[Any], lowerCAmelCase : int ) -> Dict: A = full_name.split('conv_layers.' )[-1] A = name.split('.' ) A = int(items[0] ) A = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase ) @torch.no_grad() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : Dict, lowerCAmelCase : Union[str, Any]=None, lowerCAmelCase : str=None, lowerCAmelCase : List[Any]=True ) -> Union[str, Any]: if config_path is not None: A = UniSpeechSatConfig.from_pretrained(lowerCAmelCase ) else: A = UniSpeechSatConfig() A = '' if is_finetuned: A = UniSpeechSatForCTC(lowerCAmelCase ) else: A = UniSpeechSatForPreTraining(lowerCAmelCase ) A , A , A = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) A = model[0].eval() recursively_load_weights(lowerCAmelCase, lowerCAmelCase ) hf_wavavec.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
699
0
import numpy as np import qiskit def UpperCAmelCase_ ( __lowerCAmelCase = 8 , __lowerCAmelCase = None ) -> str: __lowercase : Union[str, Any] = np.random.default_rng(seed=__lowerCAmelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowercase : Tuple = 6 * key_len # Measurement basis for Alice's qubits. __lowercase : List[Any] = rng.integers(2 , size=__lowerCAmelCase ) # The set of states Alice will prepare. __lowercase : List[Any] = rng.integers(2 , size=__lowerCAmelCase ) # Measurement basis for Bob's qubits. __lowercase : List[str] = rng.integers(2 , size=__lowerCAmelCase ) # Quantum Circuit to simulate BB84 __lowercase : Any = qiskit.QuantumCircuit(__lowerCAmelCase , name='''BB84''' ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(__lowerCAmelCase ): if alice_state[index] == 1: bbaa_circ.x(__lowerCAmelCase ) if alice_basis[index] == 1: bbaa_circ.h(__lowerCAmelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__lowerCAmelCase ): if bob_basis[index] == 1: bbaa_circ.h(__lowerCAmelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowercase : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowercase : str = qiskit.execute(__lowerCAmelCase , __lowerCAmelCase , shots=1 , seed_simulator=__lowerCAmelCase ) # Returns the result of measurement. __lowercase : Any = job.result().get_counts(__lowerCAmelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowercase : Union[str, Any] = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __lowercase : List[str] = gen_key[:key_len] if len(__lowerCAmelCase ) >= key_len else gen_key.ljust(__lowerCAmelCase , '''0''' ) return key if __name__ == "__main__": print(F'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
509
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _UpperCAmelCase = TypeVar("T") class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : T ): A = data A = None def __str__( self : Optional[int] ): return f'''{self.data}''' class _UpperCAmelCase ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): A = None def __iter__( self : int ): A = self.top while node: yield node.data A = node.next def __str__( self : Any ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def UpperCamelCase ( self : List[str] ): return self.top is None def UpperCamelCase ( self : Dict , UpperCamelCase__ : T ): A = Node(UpperCamelCase__ ) if not self.is_empty(): A = self.top A = node def UpperCamelCase ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , UpperCamelCase__ ) A = self.top A = self.top.next return pop_node.data def UpperCamelCase ( self : List[str] ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def UpperCamelCase ( self : List[str] ): A = None if __name__ == "__main__": from doctest import testmod testmod()
699
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase_ = logging.get_logger(__name__) lowercase_ = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCAmelCase_ (__lowercase , __lowercase ): """simple docstring""" UpperCamelCase_ : List[str] = '''nat''' UpperCamelCase_ : Optional[int] = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : List[str] , a_ : Any=4 , a_ : List[Any]=3 , a_ : List[str]=64 , a_ : Tuple=[3, 4, 6, 5] , a_ : Dict=[2, 4, 8, 16] , a_ : Optional[Any]=7 , a_ : Tuple=3.0 , a_ : Optional[Any]=True , a_ : Tuple=0.0 , a_ : Union[str, Any]=0.0 , a_ : Any=0.1 , a_ : int="gelu" , a_ : str=0.02 , a_ : Dict=1E-5 , a_ : Any=0.0 , a_ : Union[str, Any]=None , a_ : List[Any]=None , **a_ : List[Any] , )-> Dict: """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCAmelCase_ : int = patch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : Any = embed_dim UpperCAmelCase_ : str = depths UpperCAmelCase_ : str = len(UpperCamelCase__ ) UpperCAmelCase_ : Dict = num_heads UpperCAmelCase_ : Any = kernel_size UpperCAmelCase_ : int = mlp_ratio UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase_ : int = drop_path_rate UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : int = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : List[str] = int(embed_dim * 2 ** (len(UpperCamelCase__ ) - 1) ) UpperCAmelCase_ : int = layer_scale_init_value UpperCAmelCase_ : Union[str, Any] = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(UpperCamelCase__ ) + 1 )] UpperCAmelCase_ ,UpperCAmelCase_ : str = get_aligned_output_features_output_indices( out_features=UpperCamelCase__ , out_indices=UpperCamelCase__ , stage_names=self.stage_names )
470
from __future__ import annotations import math def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int, lowerCAmelCase : bool, lowerCAmelCase : list[int], lowerCAmelCase : float ) -> int: if depth < 0: raise ValueError('Depth cannot be less than 0' ) if not scores: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) if is_max else min( minimax(depth + 1, node_index * 2, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), minimax(depth + 1, node_index * 2 + 1, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ), ) ) def __UpperCamelCase () -> None: A = [90, 23, 6, 33, 21, 65, 123, 34_423] A = math.log(len(lowerCAmelCase ), 2 ) print(f'''Optimal value : {minimax(0, 0, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
699
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : str =OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) __lowerCAmelCase : List[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def UpperCamelCase ( _lowerCamelCase : str ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: A__ = model_type_to_module_name(_lowerCamelCase ) A__ = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(_lowerCamelCase , _lowerCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_lowerCamelCase , "__name__" , _lowerCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. A__ = importlib.import_module("transformers" ) if hasattr(_lowerCamelCase , _lowerCamelCase ): return getattr(_lowerCamelCase , _lowerCamelCase ) return None def UpperCamelCase ( _lowerCamelCase : Union[str, os.PathLike] , _lowerCamelCase : Optional[Union[str, os.PathLike]] = None , _lowerCamelCase : bool = False , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[Dict[str, str]] = None , _lowerCamelCase : Optional[Union[bool, str]] = None , _lowerCamelCase : Optional[str] = None , _lowerCamelCase : bool = False , **_lowerCamelCase : Any , ): A__ = get_file_from_repo( _lowerCamelCase , _lowerCamelCase , cache_dir=_lowerCamelCase , force_download=_lowerCamelCase , resume_download=_lowerCamelCase , proxies=_lowerCamelCase , use_auth_token=_lowerCamelCase , revision=_lowerCamelCase , local_files_only=_lowerCamelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(_lowerCamelCase , encoding="utf-8" ) as reader: return json.load(_lowerCamelCase ) class UpperCAmelCase : def __init__( self :Union[str, Any] )-> str: raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase__ ) def UpperCAmelCase_ ( cls :List[str] , lowercase_ :Union[str, Any] , **lowercase_ :Tuple )-> Dict: A__ = kwargs.pop("config" , UpperCamelCase__ ) A__ = kwargs.pop("trust_remote_code" , UpperCamelCase__ ) A__ = True A__, A__ = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase__ , **UpperCamelCase__ ) A__ = config_dict.get("image_processor_type" , UpperCamelCase__ ) A__ = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): A__ = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: A__ = config_dict.pop("feature_extractor_type" , UpperCamelCase__ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model\'s feature extractor configuration." ) A__ = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): A__ = config_dict["auto_map"]["AutoFeatureExtractor"] A__ = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model\'s feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ = AutoConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # It could be in `config.image_processor_type`` A__ = getattr(UpperCamelCase__ , "image_processor_type" , UpperCamelCase__ ) if hasattr(UpperCamelCase__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: A__ = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: A__ = image_processor_class_from_name(UpperCamelCase__ ) A__ = image_processor_auto_map is not None A__ = image_processor_class is not None or type(UpperCamelCase__ ) in IMAGE_PROCESSOR_MAPPING A__ = resolve_trust_remote_code( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if has_remote_code and trust_remote_code: A__ = get_class_from_dynamic_module( UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) A__ = kwargs.pop("code_revision" , UpperCamelCase__ ) if os.path.isdir(UpperCamelCase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase__ ) in IMAGE_PROCESSOR_MAPPING: A__ = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase__ )] return image_processor_class.from_dict(UpperCamelCase__ , **UpperCamelCase__ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCAmelCase_ ( lowercase_ :List[Any] , lowercase_ :Optional[int] )-> str: IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase__ , UpperCamelCase__ )
440
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __UpperCamelCase (lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : str, lowerCAmelCase : PreTrainedTokenizer, lowerCAmelCase : int, lowerCAmelCase : Optional[int] = None, ) -> Dict: A = {} if train_file is not None: A = [train_file] if eval_file is not None: A = [eval_file] if test_file is not None: A = [test_file] A = datasets.load_dataset('csv', data_files=lowerCAmelCase ) A = list(ds[list(files.keys() )[0]].features.keys() ) A = features_name.pop(lowerCAmelCase ) A = list(set(ds[list(files.keys() )[0]][label_name] ) ) A = {label: i for i, label in enumerate(lowerCAmelCase )} A = tokenizer.model_input_names A = {} if len(lowerCAmelCase ) == 1: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( example[features_name[0]], truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length' ), batched=lowerCAmelCase, ) elif len(lowerCAmelCase ) == 2: for k in files.keys(): A = ds[k].map( lambda lowerCAmelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]), truncation=lowerCAmelCase, max_length=lowerCAmelCase, padding='max_length', ), batched=lowerCAmelCase, ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A = {k: v for k, v in ex.items() if k in input_names} A = labelaid[ex[label_name]] yield (d, label) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A = ( tf.data.Dataset.from_generator( lowerCAmelCase, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : int = field(metadata={'''help''': '''Which column contains the label'''} ) SCREAMING_SNAKE_CASE : str = field(default=__lowercase , metadata={'''help''': '''The path of the training file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the development file'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field(default=__lowercase , metadata={'''help''': '''The path of the test file'''} ) SCREAMING_SNAKE_CASE : int = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE : bool = field( default=__lowercase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) @dataclass class _UpperCAmelCase : '''simple docstring''' SCREAMING_SNAKE_CASE : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE : bool = field(default=__lowercase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. SCREAMING_SNAKE_CASE : Optional[str] = field( default=__lowercase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) def __UpperCamelCase () -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A , A , A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) A , A , A , A = get_tfds( train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=lowerCAmelCase, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, ) A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(lowerCAmelCase ), labelaid=lowerCAmelCase, idalabel={id: label for label, id in labelaid.items()}, finetuning_task='text-classification', cache_dir=model_args.cache_dir, ) with training_args.strategy.scope(): A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_pt=bool('.bin' in model_args.model_name_or_path ), config=lowerCAmelCase, cache_dir=model_args.cache_dir, ) def compute_metrics(lowerCAmelCase : EvalPrediction ) -> Dict: A = np.argmax(p.predictions, axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A = TFTrainer( model=lowerCAmelCase, args=lowerCAmelCase, train_dataset=lowerCAmelCase, eval_dataset=lowerCAmelCase, compute_metrics=lowerCAmelCase, ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate() A = os.path.join(training_args.output_dir, 'eval_results.txt' ) with open(lowerCAmelCase, 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(lowerCAmelCase ) return results if __name__ == "__main__": main()
699
0
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCamelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class __lowerCamelCase ( tr.AbstractTransform ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE__ : str = " " ) -> List[str]: lowerCAmelCase__ = sentence_delimiter def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: return list(UpperCamelCase__ ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: lowerCAmelCase__ = [] for sent_idx, sentence in enumerate(UpperCamelCase__ ): chars.extend(self.process_string(UpperCamelCase__ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase__ ) - 1: chars.append(self.sentence_delimiter ) return chars UpperCamelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCamelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCamelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' UpperCamelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' UpperCamelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): """simple docstring""" def a ( self : List[str] ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[Any]: if concatenate_texts: return jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , )["wer"] lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 for prediction, reference in zip(UpperCamelCase__ , UpperCamelCase__ ): lowerCAmelCase__ = jiwer.compute_measures( UpperCamelCase__ , UpperCamelCase__ , truth_transform=UpperCamelCase__ , hypothesis_transform=UpperCamelCase__ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
61
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure)
699
0
'''simple docstring''' import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__( __lowercase , unittest.TestCase ): __magic_name__ : int = AudioLDMPipeline __magic_name__ : Union[str, Any] = TEXT_TO_AUDIO_PARAMS __magic_name__ : Union[str, Any] = TEXT_TO_AUDIO_BATCH_PARAMS __magic_name__ : Optional[int] = frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def a__( self : Dict )-> int: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=(32, 64) , class_embed_type='''simple_projection''' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=UpperCamelCase__ , ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) UpperCAmelCase = ClapTextModelWithProjection(UpperCamelCase__ ) UpperCAmelCase = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' , model_max_length=77 ) UpperCAmelCase = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCamelCase__ , ) UpperCAmelCase = SpeechTaHifiGan(UpperCamelCase__ ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''vocoder''': vocoder, } return components def a__( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple=0 )-> str: """simple docstring""" if str(UpperCamelCase__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(UpperCamelCase__ ) else: UpperCAmelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) UpperCAmelCase = { '''prompt''': '''A hammer hitting a wooden surface''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, } return inputs def a__( self : Tuple )-> List[Any]: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase__ ) == 256 UpperCAmelCase = audio[:10] UpperCAmelCase = np.array( [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def a__( self : Tuple )-> Any: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 3 * [inputs['''prompt''']] # forward UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ) UpperCAmelCase = output.audios[0] UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase = audioldm_pipe.tokenizer( UpperCamelCase__ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs['''input_ids'''].to(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.text_encoder( UpperCamelCase__ , ) UpperCAmelCase = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase = F.normalize(UpperCamelCase__ , dim=-1 ) UpperCAmelCase = prompt_embeds # forward UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ) UpperCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def a__( self : Optional[Any] )-> Dict: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 3 * ['''this is a negative prompt'''] UpperCAmelCase = negative_prompt UpperCAmelCase = 3 * [inputs['''prompt''']] # forward UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ) UpperCAmelCase = output.audios[0] UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase = [] for p in [prompt, negative_prompt]: UpperCAmelCase = audioldm_pipe.tokenizer( UpperCamelCase__ , padding='''max_length''' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors='''pt''' , ) UpperCAmelCase = text_inputs['''input_ids'''].to(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.text_encoder( UpperCamelCase__ , ) UpperCAmelCase = text_embeds.text_embeds # additional L_2 normalization over each hidden-state UpperCAmelCase = F.normalize(UpperCamelCase__ , dim=-1 ) embeds.append(UpperCamelCase__ ) UpperCAmelCase , UpperCAmelCase = embeds # forward UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ) UpperCAmelCase = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def a__( self : Tuple )-> int: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = '''egg cracking''' UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ , negative_prompt=UpperCamelCase__ ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase__ ) == 256 UpperCAmelCase = audio[:10] UpperCAmelCase = np.array( [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def a__( self : Optional[Any] )-> Any: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase__ ) UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = '''A hammer hitting a wooden surface''' # test num_waveforms_per_prompt=1 (default) UpperCAmelCase = audioldm_pipe(UpperCamelCase__ , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts UpperCAmelCase = 2 UpperCAmelCase = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt UpperCAmelCase = 2 UpperCAmelCase = audioldm_pipe(UpperCamelCase__ , num_inference_steps=2 , num_waveforms_per_prompt=UpperCamelCase__ ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts UpperCAmelCase = 2 UpperCAmelCase = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCamelCase__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def a__( self : Any )-> Any: """simple docstring""" UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.vocoder.config.sampling_rate UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe(audio_length_in_s=0.016 , **UpperCamelCase__ ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase__ ) / vocoder_sampling_rate == 0.016 UpperCAmelCase = audioldm_pipe(audio_length_in_s=0.032 , **UpperCamelCase__ ) UpperCAmelCase = output.audios[0] assert audio.ndim == 1 assert len(UpperCamelCase__ ) / vocoder_sampling_rate == 0.032 def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = AudioLDMPipeline(**UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = ['''hey'''] UpperCAmelCase = audioldm_pipe(UpperCamelCase__ , num_inference_steps=1 ) UpperCAmelCase = output.audios.shape assert audio_shape == (1, 256) UpperCAmelCase = audioldm_pipe.vocoder.config config.model_in_dim *= 2 UpperCAmelCase = SpeechTaHifiGan(UpperCamelCase__ ).to(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe(UpperCamelCase__ , num_inference_steps=1 ) UpperCAmelCase = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def a__( self : List[str] )-> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCamelCase__ ) def a__( self : Dict )-> Tuple: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCamelCase__ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__( self : Tuple )-> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase__ ) @slow class UpperCamelCase__( unittest.TestCase ): def a__( self : Tuple )-> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any]="cpu" , lowerCAmelCase : Optional[int]=torch.floataa , lowerCAmelCase : Union[str, Any]=0 )-> Any: """simple docstring""" UpperCAmelCase = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) UpperCAmelCase = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 8, 128, 16) ) UpperCAmelCase = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) UpperCAmelCase = { '''prompt''': '''A hammer hitting a wooden surface''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 2.5, } return inputs def a__( self : Optional[int] )-> Dict: """simple docstring""" UpperCAmelCase = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_inputs(UpperCamelCase__ ) UpperCAmelCase = 25 UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase__ ) == 81920 UpperCAmelCase = audio[77230:77240] UpperCAmelCase = np.array( [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] ) UpperCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def a__( self : Any )-> str: """simple docstring""" UpperCAmelCase = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' ) UpperCAmelCase = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) UpperCAmelCase = audioldm_pipe.to(UpperCamelCase__ ) audioldm_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) UpperCAmelCase = self.get_inputs(UpperCamelCase__ ) UpperCAmelCase = audioldm_pipe(**UpperCamelCase__ ).audios[0] assert audio.ndim == 1 assert len(UpperCamelCase__ ) == 81920 UpperCAmelCase = audio[27780:27790] UpperCAmelCase = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] ) UpperCAmelCase = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
210
def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> Optional[int]: if b == 0: return 1 if (b % 2) == 0: return actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(lowerCAmelCase, int(b / 2 ) ) * actual_power(lowerCAmelCase, int(b / 2 ) ) def __UpperCamelCase (lowerCAmelCase : int, lowerCAmelCase : int ) -> float: if b < 0: return 1 / actual_power(lowerCAmelCase, lowerCAmelCase ) return actual_power(lowerCAmelCase, lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
699
0