code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase__ : Optional[int] = "base_with_context" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) for lyr_num, lyr in enumerate(model.encoders ): _SCREAMING_SNAKE_CASE = weights[F"layers_{lyr_num}"] _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = ly_weight["""attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) for lyr_num, lyr in enumerate(model.encoders ): _SCREAMING_SNAKE_CASE = weights[F"layers_{lyr_num}"] _SCREAMING_SNAKE_CASE = ly_weight["""attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _SCREAMING_SNAKE_CASE = weights[F"layers_{lyr_num}"] _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = ly_weight["""self_attention"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = ly_weight["""MultiHeadDotProductAttention_0"""] _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _SCREAMING_SNAKE_CASE = jnp.tree_util.tree_map(onp.array , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _SCREAMING_SNAKE_CASE = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _SCREAMING_SNAKE_CASE = inference.parse_training_gin_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = inference.InferenceModel(args.checkpoint_path , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _SCREAMING_SNAKE_CASE = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _SCREAMING_SNAKE_CASE = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _SCREAMING_SNAKE_CASE = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _SCREAMING_SNAKE_CASE = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _SCREAMING_SNAKE_CASE = SpectrogramDiffusionPipeline( notes_encoder=SCREAMING_SNAKE_CASE_ , continuous_encoder=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , melgan=SCREAMING_SNAKE_CASE_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument( "--checkpoint_path", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="Path to the original jax model checkpoint.", ) UpperCamelCase__ : List[Any] = parser.parse_args() main(args)
0
'''simple docstring''' import sys UpperCamelCase__ : int = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = N ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = -sys.maxsize - 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) - 12 ): _SCREAMING_SNAKE_CASE = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _SCREAMING_SNAKE_CASE = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
0
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 5_12 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModel(config=A__ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=A__ ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(A__ )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE = 5_00_00 _SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE = emba(input_ids.shape ) _SCREAMING_SNAKE_CASE = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> int: # 2,12,16,64 _SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE = embed_positions([2, 16, 7_68] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
0
'''simple docstring''' UpperCamelCase__ : Dict = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } UpperCamelCase__ : str = {value: key for key, value in encode_dict.items()} def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _SCREAMING_SNAKE_CASE = """""" for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _SCREAMING_SNAKE_CASE = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
0
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'CLIPImageProcessor' SCREAMING_SNAKE_CASE = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> List[str]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[int]: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(A__ ) for k, v in self.__dict__.items()} )
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ : str = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers UpperCamelCase__ : List[str] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ ( ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_ ) ) _SCREAMING_SNAKE_CASE = os.path.join(SCREAMING_SNAKE_CASE_ , """words.txt""" ) _SCREAMING_SNAKE_CASE = """""" with open(SCREAMING_SNAKE_CASE_ ) as f: _SCREAMING_SNAKE_CASE = f.readline() _SCREAMING_SNAKE_CASE = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] _SCREAMING_SNAKE_CASE = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE_ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(solution())
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE = 'ChineseCLIPImageProcessor' SCREAMING_SNAKE_CASE = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , A__=None , A__=None , **A__ ) -> int: _SCREAMING_SNAKE_CASE = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , A__ , ) _SCREAMING_SNAKE_CASE = kwargs.pop("""feature_extractor""" ) _SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.image_processor def __call__( self , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=A__ , **A__ ) if images is not None: _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=A__ , **A__ ) if text is not None and images is not None: _SCREAMING_SNAKE_CASE = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A__ ) , tensor_type=A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Dict: return self.tokenizer.batch_decode(*A__ , **A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> Optional[Any]: return self.tokenizer.decode(*A__ , **A__ ) @property def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names _SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCamelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , A__ , ) return self.image_processor_class
0
1
'''simple docstring''' import itertools import math def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE = 2 while True: if is_prime(SCREAMING_SNAKE_CASE_ ): yield num num += 1 def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = 1_00_01 ) -> int: """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
0
'''simple docstring''' from sklearn.metrics import matthews_corrcoef import datasets UpperCamelCase__ : List[str] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCamelCase__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCamelCase__ : Any = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _a (datasets.Metric): """simple docstring""" def UpperCamelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCamelCase ( self , A__ , A__ , A__=None ) -> List[str]: return { "matthews_correlation": float(matthews_corrcoef(A__ , A__ , sample_weight=A__ ) ), }
0
1
'''simple docstring''' import re from filelock import FileLock try: import nltk UpperCamelCase__ : Optional[int] = True except (ImportError, ModuleNotFoundError): UpperCamelCase__ : Any = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , SCREAMING_SNAKE_CASE_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(SCREAMING_SNAKE_CASE_ ) )
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: """simple docstring""" print(F"Vertex\tShortest Distance from vertex {src}" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"{i}\t\t{d}" ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[float]: """simple docstring""" _SCREAMING_SNAKE_CASE = [float("""inf""" )] * vertex_count _SCREAMING_SNAKE_CASE = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: _SCREAMING_SNAKE_CASE = distance[u] + w _SCREAMING_SNAKE_CASE = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : int = int(input("Enter number of vertices: ").strip()) UpperCamelCase__ : int = int(input("Enter number of edges: ").strip()) UpperCamelCase__ : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Dict = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) UpperCamelCase__ : Optional[Any] = {"src": src, "dst": dest, "weight": weight} UpperCamelCase__ : Optional[Any] = int(input("\nEnter shortest path source:").strip()) UpperCamelCase__ : Any = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
0
1
'''simple docstring''' import numpy as np def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> np.ndarray: """simple docstring""" return vector * sigmoid(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class _a : """simple docstring""" def __init__( self , A__ , A__=13 , A__=7 , A__=True , A__=True , A__=True , A__=True , A__=99 , A__=32 , A__=2 , A__=4 , A__=37 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=16 , A__=2 , A__=0.02 , A__=3 , A__=4 , A__=None , ) -> int: _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 5_12 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModel(config=A__ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(A__ ) _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> str: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFRoFormerForCausalLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Dict: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForSequenceClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = self.num_choices _SCREAMING_SNAKE_CASE = TFRoFormerForMultipleChoice(config=A__ ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = tf.tile(tf.expand_dims(A__ , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFRoFormerForTokenClassification(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ , A__ , A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = TFRoFormerForQuestionAnswering(config=A__ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _SCREAMING_SNAKE_CASE = model(A__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _a (_lowerCamelCase , _lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self , A__ , A__ , A__ , A__ , A__ ) -> str: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = TFRoFormerModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A__ , hidden_size=37 ) def UpperCamelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A__ ) def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A__ ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A__ ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A__ ) @slow def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = TFRoFormerModel.from_pretrained("""junnyu/roformer_chinese_base""" ) self.assertIsNotNone(A__ ) @require_tf class _a (unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = TFRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(A__ )[0] # TODO Replace vocab size _SCREAMING_SNAKE_CASE = 5_00_00 _SCREAMING_SNAKE_CASE = [1, 6, vocab_size] self.assertEqual(output.shape , A__ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-4 ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant([[4, 10]] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _SCREAMING_SNAKE_CASE = emba(input_ids.shape ) _SCREAMING_SNAKE_CASE = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) _SCREAMING_SNAKE_CASE = emba.weight[:3, :5] tf.debugging.assert_near(A__ , A__ , atol=self.tolerance ) @require_tf class _a (unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = 1E-4 def UpperCamelCase ( self ) -> int: # 2,12,16,64 _SCREAMING_SNAKE_CASE = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 _SCREAMING_SNAKE_CASE = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _SCREAMING_SNAKE_CASE = embed_positions([2, 16, 7_68] )[None, None, :, :] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = TFRoFormerSelfAttention.apply_rotary_position_embeddings( A__ , A__ , A__ ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _SCREAMING_SNAKE_CASE = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A__ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A__ , atol=self.tolerance )
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'luke' def __init__( self , A__=5_02_67 , A__=50_00_00 , A__=7_68 , A__=2_56 , A__=12 , A__=12 , A__=30_72 , A__="gelu" , A__=0.1 , A__=0.1 , A__=5_12 , A__=2 , A__=0.02 , A__=1E-12 , A__=True , A__=None , A__=1 , A__=0 , A__=2 , **A__ , ) -> int: super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = entity_vocab_size _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = entity_emb_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_dropout_prob _SCREAMING_SNAKE_CASE = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = type_vocab_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = use_entity_aware_attention _SCREAMING_SNAKE_CASE = classifier_dropout
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase__ : int = {"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Optional[Any] = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
0
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = XCLIPTextConfig() # derive patch size from model name _SCREAMING_SNAKE_CASE = model_name.find("""patch""" ) _SCREAMING_SNAKE_CASE = int(model_name[start_idx + len("""patch""" ) : start_idx + len("""patch""" ) + 2] ) _SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 _SCREAMING_SNAKE_CASE = 12 _SCREAMING_SNAKE_CASE = 10_24 _SCREAMING_SNAKE_CASE = 40_96 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 24 _SCREAMING_SNAKE_CASE = 7_68 _SCREAMING_SNAKE_CASE = 30_72 if model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = 3_36 _SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: _SCREAMING_SNAKE_CASE = 7_68 return config def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: """simple docstring""" # text encoder if name == "token_embedding.weight": _SCREAMING_SNAKE_CASE = name.replace("""token_embedding.weight""" , """text_model.embeddings.token_embedding.weight""" ) if name == "positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional_embedding""" , """text_model.embeddings.position_embedding.weight""" ) if "ln_1" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_1""" , """layer_norm1""" ) if "ln_2" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_2""" , """layer_norm2""" ) if "c_fc" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_fc""" , """fc1""" ) if "c_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""c_proj""" , """fc2""" ) if name.startswith("""transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""transformer.resblocks""" , """text_model.encoder.layers""" ) if "attn.out_proj" in name and "message" not in name: _SCREAMING_SNAKE_CASE = name.replace("""attn.out_proj""" , """self_attn.out_proj""" ) if "ln_final" in name: _SCREAMING_SNAKE_CASE = name.replace("""ln_final""" , """text_model.final_layer_norm""" ) # visual encoder if name == "visual.class_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.class_embedding""" , """vision_model.embeddings.class_embedding""" ) if name == "visual.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""visual.positional_embedding""" , """vision_model.embeddings.position_embedding.weight""" ) if name.startswith("""visual.transformer.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""visual.transformer.resblocks""" , """vision_model.encoder.layers""" ) if "visual.conv1" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.conv1""" , """vision_model.embeddings.patch_embedding""" ) if "visual.ln_pre" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_pre""" , """vision_model.pre_layernorm""" ) if "visual.ln_post" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.ln_post""" , """vision_model.post_layernorm""" ) if "visual.proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""visual.proj""" , """visual_projection.weight""" ) if "text_projection" in name: _SCREAMING_SNAKE_CASE = name.replace("""text_projection""" , """text_projection.weight""" ) # things on top if "prompts_visual_proj" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_proj""" , """prompts_visual_projection""" ) if "prompts_visual_ln" in name: _SCREAMING_SNAKE_CASE = name.replace("""prompts_visual_ln""" , """prompts_visual_layernorm""" ) # mit if name == "mit.positional_embedding": _SCREAMING_SNAKE_CASE = name.replace("""positional""" , """position""" ) if name.startswith("""mit.resblocks""" ): _SCREAMING_SNAKE_CASE = name.replace("""mit.resblocks""" , """mit.encoder.layers""" ) # prompts generator if name.startswith("""prompts_generator.norm""" ): _SCREAMING_SNAKE_CASE = name.replace("""prompts_generator.norm""" , """prompts_generator.layernorm""" ) return name def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: _SCREAMING_SNAKE_CASE = key.split(""".""" ) if key.startswith("""visual""" ): _SCREAMING_SNAKE_CASE = key_split[3] _SCREAMING_SNAKE_CASE = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[ :dim ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[ -dim: ] else: if "weight" in key: _SCREAMING_SNAKE_CASE = val[ :dim, : ] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[ -dim:, : ] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] elif key.startswith("""mit""" ): _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[dim : dim * 2] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = key_split[2] _SCREAMING_SNAKE_CASE = config.text_config.hidden_size if "weight" in key: _SCREAMING_SNAKE_CASE = val[:dim, :] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE = val[-dim:, :] else: _SCREAMING_SNAKE_CASE = val[:dim] _SCREAMING_SNAKE_CASE = val[ dim : dim * 2 ] _SCREAMING_SNAKE_CASE = val[-dim:] else: _SCREAMING_SNAKE_CASE = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: _SCREAMING_SNAKE_CASE = val.T _SCREAMING_SNAKE_CASE = val return orig_state_dict def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: """simple docstring""" if num_frames == 8: _SCREAMING_SNAKE_CASE = """eating_spaghetti_8_frames.npy""" elif num_frames == 16: _SCREAMING_SNAKE_CASE = """eating_spaghetti.npy""" elif num_frames == 32: _SCREAMING_SNAKE_CASE = """eating_spaghetti_32_frames.npy""" _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename=SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" , ) _SCREAMING_SNAKE_CASE = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = { # fully supervised kinetics-400 checkpoints """xclip-base-patch32""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth""", """xclip-base-patch32-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth""" ), """xclip-base-patch16""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth""", """xclip-base-patch16-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth""" ), """xclip-large-patch14""": """https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb""", """xclip-large-patch14-16-frames""": """https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f""", # fully supervised kinetics-600 checkpoints """xclip-base-patch16-kinetics-600""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth""" ), """xclip-base-patch16-kinetics-600-16-frames""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth""" ), """xclip-large-patch14-kinetics-600""": """https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be""", # few shot """xclip-base-patch16-hmdb-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth""" ), """xclip-base-patch16-hmdb-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth""" ), """xclip-base-patch16-hmdb-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth""" ), """xclip-base-patch16-hmdb-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth""" ), """xclip-base-patch16-ucf-2-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth""" ), """xclip-base-patch16-ucf-4-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth""" ), """xclip-base-patch16-ucf-8-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth""" ), """xclip-base-patch16-ucf-16-shot""": ( """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth""" ), # zero shot """xclip-base-patch16-zero-shot""": """https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth""", } _SCREAMING_SNAKE_CASE = model_to_url[model_name] _SCREAMING_SNAKE_CASE = 8 if "16-frames" in model_name: _SCREAMING_SNAKE_CASE = 16 elif "shot" in model_name: _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: _SCREAMING_SNAKE_CASE = """pytorch_model.bin""" gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""model"""] else: _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )["""model"""] _SCREAMING_SNAKE_CASE = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = XCLIPModel(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() _SCREAMING_SNAKE_CASE = 3_36 if model_name == """xclip-large-patch14-16-frames""" else 2_24 _SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained("""openai/clip-vit-base-patch32""" ) _SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = prepare_video(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = processor( text=["""playing sports""", """eating spaghetti""", """go shopping"""] , videos=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , padding=SCREAMING_SNAKE_CASE_ ) print("""Shape of pixel values:""" , inputs.pixel_values.shape ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs _SCREAMING_SNAKE_CASE = outputs.logits_per_video _SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1 ) print("""Probs:""" , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": _SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": _SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"Model name {model_name} not supported" ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print("""Pushing model, processor and slow tokenizer files to the hub...""" ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization="""nielsr""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__ : str = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
0
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): UpperCamelCase__ : int = "pt" elif is_tf_available(): UpperCamelCase__ : Dict = "tf" else: UpperCamelCase__ : Optional[int] = "jax" class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = PerceiverTokenizer SCREAMING_SNAKE_CASE = False def UpperCamelCase ( self ) -> List[Any]: super().setUp() _SCREAMING_SNAKE_CASE = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase ( self ) -> str: return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def UpperCamelCase ( self , **A__ ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self , A__ , A__=False , A__=20 , A__=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. _SCREAMING_SNAKE_CASE = [] for i in range(len(A__ ) ): try: _SCREAMING_SNAKE_CASE = tokenizer.decode([i] , clean_up_tokenization_spaces=A__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A__ : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , A__ ) ) _SCREAMING_SNAKE_CASE = list(filter(lambda A__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A__ ) , A__ ) ) if max_length is not None and len(A__ ) > max_length: _SCREAMING_SNAKE_CASE = toks[:max_length] if min_length is not None and len(A__ ) < min_length and len(A__ ) > 0: while len(A__ ) < min_length: _SCREAMING_SNAKE_CASE = toks + toks # toks_str = [t[1] for t in toks] _SCREAMING_SNAKE_CASE = [t[0] for t in toks] # Ensure consistency _SCREAMING_SNAKE_CASE = tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) if " " not in output_txt and len(A__ ) > 1: _SCREAMING_SNAKE_CASE = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A__ ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A__ ) ) if with_prefix_space: _SCREAMING_SNAKE_CASE = """ """ + output_txt _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) return output_txt, output_ids def UpperCamelCase ( self ) -> int: _SCREAMING_SNAKE_CASE = self.perceiver_tokenizer _SCREAMING_SNAKE_CASE = """Unicode €.""" _SCREAMING_SNAKE_CASE = tokenizer(A__ ) _SCREAMING_SNAKE_CASE = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , A__ ) # decoding _SCREAMING_SNAKE_CASE = tokenizer.decode(A__ ) self.assertEqual(A__ , """[CLS]Unicode €.[SEP]""" ) _SCREAMING_SNAKE_CASE = tokenizer("""e è é ê ë""" ) _SCREAMING_SNAKE_CASE = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , A__ ) # decoding _SCREAMING_SNAKE_CASE = tokenizer.decode(A__ ) self.assertEqual(A__ , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = self.perceiver_tokenizer _SCREAMING_SNAKE_CASE = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off _SCREAMING_SNAKE_CASE = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on _SCREAMING_SNAKE_CASE = tokenizer(A__ , padding=A__ , return_tensors=A__ ) self.assertIsInstance(A__ , A__ ) if FRAMEWORK != "jax": _SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0] ) else: _SCREAMING_SNAKE_CASE = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A__ , A__ ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.perceiver_tokenizer _SCREAMING_SNAKE_CASE = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _SCREAMING_SNAKE_CASE = tokenizer(A__ , padding=A__ , return_tensors=A__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , A__ ) self.assertIn("""attention_mask""" , A__ ) self.assertNotIn("""decoder_input_ids""" , A__ ) self.assertNotIn("""decoder_attention_mask""" , A__ ) def UpperCamelCase ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE = self.perceiver_tokenizer _SCREAMING_SNAKE_CASE = [ """Summary of the text.""", """Another summary.""", ] _SCREAMING_SNAKE_CASE = tokenizer( text_target=A__ , max_length=32 , padding="""max_length""" , truncation=A__ , return_tensors=A__ ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def UpperCamelCase ( self ) -> Dict: # safety check on max_len default value so we are sure the test works _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = """ He is very happy, UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) shutil.rmtree(A__ ) _SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc _SCREAMING_SNAKE_CASE = tempfile.mkdtemp() _SCREAMING_SNAKE_CASE = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) _SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A__ ) _SCREAMING_SNAKE_CASE = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(A__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A__ ) with open(os.path.join(A__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _SCREAMING_SNAKE_CASE = json.load(A__ ) with open(os.path.join(A__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _SCREAMING_SNAKE_CASE = json.load(A__ ) _SCREAMING_SNAKE_CASE = [F"<extra_id_{i}>" for i in range(1_25 )] _SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ """an_additional_special_token""" ] _SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(A__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A__ , A__ ) with open(os.path.join(A__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(A__ , A__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( A__ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=A__ )] _SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def UpperCamelCase ( self ) -> Tuple: pass def UpperCamelCase ( self ) -> Dict: pass def UpperCamelCase ( self ) -> Dict: pass def UpperCamelCase ( self ) -> Tuple: pass def UpperCamelCase ( self ) -> Union[str, Any]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens _SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=A__ , do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): _SCREAMING_SNAKE_CASE = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] _SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(A__ ) self.assertIsInstance(A__ , A__ )
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = "▁" UpperCamelCase__ : Any = {"vocab_file": "spiece.model"} UpperCamelCase__ : int = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase__ : Optional[int] = { "google/reformer-crime-and-punishment": 524_288, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__ , A__="</s>" , A__="<unk>" , A__=[] , A__ = None , **A__ , ) -> None: _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCamelCase ( self ) -> Dict[str, int]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(A__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: if index < self.sp_model.get_piece_size(): _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(A__ ) return token def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Any = "▁" UpperCamelCase__ : Any = {"vocab_file": "spiece.model"} UpperCamelCase__ : int = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } UpperCamelCase__ : Optional[int] = { "google/reformer-crime-and-punishment": 524_288, } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] def __init__( self , A__ , A__="</s>" , A__="<unk>" , A__=[] , A__ = None , **A__ , ) -> None: _SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=A__ , unk_token=A__ , additional_special_tokens=A__ , sp_model_kwargs=self.sp_model_kwargs , **A__ , ) _SCREAMING_SNAKE_CASE = vocab_file _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A__ ) @property def UpperCamelCase ( self ) -> Any: return self.sp_model.get_piece_size() def UpperCamelCase ( self ) -> Dict[str, int]: _SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(A__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: _SCREAMING_SNAKE_CASE = self.__dict__.copy() _SCREAMING_SNAKE_CASE = None return state def __setstate__( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self , A__ ) -> List[str]: return self.sp_model.encode(A__ , out_type=A__ ) def UpperCamelCase ( self , A__ ) -> Union[str, Any]: return self.sp_model.piece_to_id(A__ ) def UpperCamelCase ( self , A__ ) -> List[Any]: if index < self.sp_model.get_piece_size(): _SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(A__ ) return token def UpperCamelCase ( self , A__ ) -> str: _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A__ ) + token _SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(A__ ) out_string += self.sp_model.decode(A__ ) return out_string.strip() def UpperCamelCase ( self , A__ , A__ = None ) -> Tuple[str]: if not os.path.isdir(A__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _SCREAMING_SNAKE_CASE = os.path.join( A__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A__ ) elif not os.path.isfile(self.vocab_file ): with open(A__ , """wb""" ) as fi: _SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(A__ ) return (out_vocab_file,)
0
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , **A__ ) -> None: warnings.warn( """The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DPTImageProcessor instead.""" , A__ , ) super().__init__(*A__ , **A__ )
0
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _a (_lowerCamelCase , unittest.TestCase): """simple docstring""" SCREAMING_SNAKE_CASE = MobileBertTokenizer SCREAMING_SNAKE_CASE = MobileBertTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = filter_non_english SCREAMING_SNAKE_CASE = 'google/mobilebert-uncased' def UpperCamelCase ( self ) -> Any: super().setUp() _SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCamelCase ( self , A__ ) -> List[str]: _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) _SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(A__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=A__ ) _SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" _SCREAMING_SNAKE_CASE = tokenizer.tokenize(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() _SCREAMING_SNAKE_CASE = tokenizer.encode(A__ ) _SCREAMING_SNAKE_CASE = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Dict: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=A__ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def UpperCamelCase ( self ) -> Tuple: _SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] _SCREAMING_SNAKE_CASE = {} for i, token in enumerate(A__ ): _SCREAMING_SNAKE_CASE = i _SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=A__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def UpperCamelCase ( self ) -> str: self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def UpperCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def UpperCamelCase ( self ) -> Dict: self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def UpperCamelCase ( self ) -> str: _SCREAMING_SNAKE_CASE = self.get_tokenizer() _SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCamelCase ( self ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." _SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(A__ , """do_lower_case""" ) else False _SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def UpperCamelCase ( self ) -> Any: _SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] _SCREAMING_SNAKE_CASE = """""".join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(A__ , **A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(A__ ) _SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _SCREAMING_SNAKE_CASE = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
0
1
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup UpperCamelCase__ : Optional[Any] = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ = "dhaka" , SCREAMING_SNAKE_CASE_ = 5 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = min(SCREAMING_SNAKE_CASE_ , 50 ) # Prevent abuse! _SCREAMING_SNAKE_CASE = { """q""": query, """tbm""": """isch""", """hl""": """en""", """ijn""": """0""", } _SCREAMING_SNAKE_CASE = requests.get("""https://www.google.com/search""" , params=SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = BeautifulSoup(html.text , """html.parser""" ) _SCREAMING_SNAKE_CASE = """""".join( re.findall(r"""AF_initDataCallback\(([^<]+)\);""" , str(soup.select("""script""" ) ) ) ) _SCREAMING_SNAKE_CASE = json.dumps(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = json.loads(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = re.findall( r"""\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",""" , SCREAMING_SNAKE_CASE_ , ) if not matched_google_image_data: return 0 _SCREAMING_SNAKE_CASE = re.sub( r"""\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]""" , """""" , str(SCREAMING_SNAKE_CASE_ ) , ) _SCREAMING_SNAKE_CASE = re.findall( r"""(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]""" , SCREAMING_SNAKE_CASE_ , ) for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE_ ): if index >= max_images: return index _SCREAMING_SNAKE_CASE = bytes(SCREAMING_SNAKE_CASE_ , """ascii""" ).decode( """unicode-escape""" ) _SCREAMING_SNAKE_CASE = bytes(SCREAMING_SNAKE_CASE_ , """ascii""" ).decode( """unicode-escape""" ) _SCREAMING_SNAKE_CASE = urllib.request.build_opener() _SCREAMING_SNAKE_CASE = [ ( """User-Agent""", """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""", ) ] urllib.request.install_opener(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = F"query_{query.replace(' ' , '_' )}" if not os.path.exists(SCREAMING_SNAKE_CASE_ ): os.makedirs(SCREAMING_SNAKE_CASE_ ) urllib.request.urlretrieve( # noqa: S310 SCREAMING_SNAKE_CASE_ , F"{path_name}/original_size_img_{index}.jpg" ) return index if __name__ == "__main__": try: UpperCamelCase__ : List[str] = download_images_from_google_query(sys.argv[1]) print(f"""{image_count} images were downloaded to disk.""") except IndexError: print("Please provide a search term.") raise
0
'''simple docstring''' import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput UpperCamelCase__ : Tuple = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a (_lowerCamelCase): """simple docstring""" def __init__( self , *A__ , A__=None , A__=None , A__=None , **A__ ) -> Optional[int]: super().__init__(*A__ , **A__ ) _SCREAMING_SNAKE_CASE = eval_examples _SCREAMING_SNAKE_CASE = post_process_function _SCREAMING_SNAKE_CASE = quant_trainer_args _SCREAMING_SNAKE_CASE = 1_28 # default number of calibration samples def UpperCamelCase ( self , A__=None ) -> Union[str, Any]: if calib_dataset is None and self.calib_dataset is None: raise ValueError("""Trainer: calibration requires an calib_dataset.""" ) _SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset _SCREAMING_SNAKE_CASE = self._remove_unused_columns(A__ , description="""Calibration""" ) return DataLoader( A__ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=A__ , ) def UpperCamelCase ( self , A__=None ) -> str: _SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset _SCREAMING_SNAKE_CASE = self.get_calib_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.model quant_trainer.configure_model(A__ , self.quant_trainer_args , calib=A__ ) model.eval() quant_trainer.enable_calibration(A__ ) logger.info("""***** Running calibration *****""" ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(A__ ): # Prediction step _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.prediction_step(A__ , A__ , prediction_loss_only=A__ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = model def UpperCamelCase ( self , A__=None , A__=None , A__=None , A__ = "eval" ) -> List[Any]: _SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) self.log(A__ ) else: _SCREAMING_SNAKE_CASE = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , A__ ) return metrics def UpperCamelCase ( self , A__ , A__ , A__=None , A__ = "test" ) -> List[str]: _SCREAMING_SNAKE_CASE = self.get_test_dataloader(A__ ) # Temporarily disable metric computation, we will do it in the loop here. _SCREAMING_SNAKE_CASE = self.compute_metrics _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _SCREAMING_SNAKE_CASE = eval_loop( A__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A__ , ) finally: _SCREAMING_SNAKE_CASE = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output _SCREAMING_SNAKE_CASE = self.post_process_function(A__ , A__ , output.predictions , """predict""" ) _SCREAMING_SNAKE_CASE = self.compute_metrics(A__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): _SCREAMING_SNAKE_CASE = metrics.pop(A__ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A__ ) def UpperCamelCase ( self , A__="./" ) -> Tuple: _SCREAMING_SNAKE_CASE = self.eval_dataset _SCREAMING_SNAKE_CASE = self.get_eval_dataloader(A__ ) _SCREAMING_SNAKE_CASE = next(iter(A__ ) ) # saving device - to make it consistent _SCREAMING_SNAKE_CASE = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) # convert to tuple _SCREAMING_SNAKE_CASE = tuple(v.to(A__ ) for k, v in batch.items() ) logger.info("""Converting model to be onnx compatible""" ) from pytorch_quantization.nn import TensorQuantizer _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = self.model.to(A__ ) model.eval() model.float() _SCREAMING_SNAKE_CASE = model.module if hasattr(A__ , """module""" ) else model quant_trainer.configure_model(A__ , self.quant_trainer_args ) _SCREAMING_SNAKE_CASE = os.path.join(A__ , """model.onnx""" ) logger.info(F"exporting model to {output_model_file}" ) _SCREAMING_SNAKE_CASE = {0: """batch_size""", 1: """seq_len"""} torch.onnx.export( A__ , A__ , A__ , export_params=A__ , opset_version=13 , do_constant_folding=A__ , input_names=["""input_ids""", """attention_mask""", """token_type_ids"""] , output_names=["""output_start_logits""", """output_end_logits"""] , dynamic_axes={ """input_ids""": axes, """attention_mask""": axes, """token_type_ids""": axes, """output_start_logits""": axes, """output_end_logits""": axes, } , verbose=A__ , ) logger.info("""onnx export finished""" )
0
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class _a (_lowerCamelCase): """simple docstring""" SCREAMING_SNAKE_CASE = 'rwkv' SCREAMING_SNAKE_CASE = {'max_position_embeddings': 'context_length'} def __init__( self , A__=5_02_77 , A__=10_24 , A__=40_96 , A__=32 , A__=None , A__=None , A__=1E-5 , A__=0 , A__=0 , A__=6 , A__=False , A__=True , **A__ , ) -> Any: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = context_length _SCREAMING_SNAKE_CASE = hidden_size _SCREAMING_SNAKE_CASE = num_hidden_layers _SCREAMING_SNAKE_CASE = attention_hidden_size if attention_hidden_size is not None else hidden_size _SCREAMING_SNAKE_CASE = intermediate_size if intermediate_size is not None else 4 * hidden_size _SCREAMING_SNAKE_CASE = layer_norm_epsilon _SCREAMING_SNAKE_CASE = rescale_every _SCREAMING_SNAKE_CASE = use_cache _SCREAMING_SNAKE_CASE = bos_token_id _SCREAMING_SNAKE_CASE = eos_token_id super().__init__( tie_word_embeddings=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ )
0
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" return "".join([hex(SCREAMING_SNAKE_CASE_ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE_ )] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bytes: """simple docstring""" # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE_ ) % 2) != 0: raise ValueError( """Base16 encoded data is invalid: Data does not have an even number of hex digits.""" ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE_ ) <= set("""0123456789ABCDEF""" ): raise ValueError( """Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.""" ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
1
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class _a : """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> bool: """simple docstring""" # Validation def is_valid_tree(SCREAMING_SNAKE_CASE_ ) -> bool: if node is None: return True if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Each node should be type of TreeNode and data should be float.""" ) def is_binary_search_tree_recursive_check( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , SCREAMING_SNAKE_CASE_ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , SCREAMING_SNAKE_CASE_ ) ) return is_binary_search_tree_recursive_check(SCREAMING_SNAKE_CASE_ , -float("""inf""" ) , float("""inf""" ) ) if __name__ == "__main__": import doctest doctest.testmod()
0
'''simple docstring''' import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): requests.request("""GET""" , """https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" , """https://huggingface.co""" , timeout=1.0 ) @pytest.mark.integration def lowerCAmelCase_ ( ) -> int: """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" , """https://huggingface.co""" ) def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("""https://huggingface.co""" )
0
1

Dataset Card for "python_codestyles-single-1k"

This dataset contains negative and positive examples with python code of compliance with a code style. A positive example represents compliance with the code style (label is 1). Each example is composed of two components, the first component consists of a code that either conforms to the code style or violates it and the second component corresponding to an example code that already conforms to a code style. In total, the dataset contains 1.000 completely different code styles. The code styles differ in exactly one codestyle rule, which is called a single codestyle dataset variant. The dataset consists of a training and test group, with none of the code styles overlapping between groups. In addition, both groups contain completely different underlying codes.

The examples contain source code from the following repositories:

repository tag or commit
TheAlgorithms/Python f614ed72170011d2d439f7901e1c8daa7deac8c4
huggingface/transformers v4.31.0
huggingface/datasets 2.13.1
huggingface/diffusers v0.18.2
huggingface/accelerate v0.21.0

You can find the corresponding code styles of the examples in the file additional_data.json. The code styles in the file are split by training and test group and the index corresponds to the class for the columns code_codestyle and style_context_codestyle in the dataset.

There are 364.381 samples in total and 182.181 positive and 182.200 negative samples.

Downloads last month
80
Edit dataset card