metadata
pretty_name: '`beir/nfcorpus/dev`'
viewer: false
source_datasets:
- irds/beir_nfcorpus
task_categories:
- text-retrieval
Dataset Card for beir/nfcorpus/dev
The beir/nfcorpus/dev
dataset, provided by the ir-datasets package.
For more information about the dataset, see the documentation.
Data
This dataset provides:
queries
(i.e., topics); count=324qrels
: (relevance assessments); count=11,385For
docs
, useirds/beir_nfcorpus
Usage
from datasets import load_dataset
queries = load_dataset('irds/beir_nfcorpus_dev', 'queries')
for record in queries:
record # {'query_id': ..., 'text': ...}
qrels = load_dataset('irds/beir_nfcorpus_dev', 'qrels')
for record in qrels:
record # {'query_id': ..., 'doc_id': ..., 'relevance': ..., 'iteration': ...}
Note that calling load_dataset
will download the dataset (or provide access instructions when it's not public) and make a copy of the
data in 🤗 Dataset format.
Citation Information
@inproceedings{Boteva2016Nfcorpus,
title="A Full-Text Learning to Rank Dataset for Medical Information Retrieval",
author = "Vera Boteva and Demian Gholipour and Artem Sokolov and Stefan Riezler",
booktitle = "Proceedings of the European Conference on Information Retrieval ({ECIR})",
location = "Padova, Italy",
publisher = "Springer",
year = 2016
}
@article{Thakur2021Beir,
title = "BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information Retrieval Models",
author = "Thakur, Nandan and Reimers, Nils and Rücklé, Andreas and Srivastava, Abhishek and Gurevych, Iryna",
journal= "arXiv preprint arXiv:2104.08663",
month = "4",
year = "2021",
url = "https://arxiv.org/abs/2104.08663",
}