File size: 12,199 Bytes
d82b204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9833ff8
d82b204
 
 
 
 
9833ff8
d82b204
 
 
 
 
 
 
9833ff8
d82b204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c1bbd
d82b204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c1bbd
 
d82b204
 
 
 
 
 
 
 
 
 
 
d2c1bbd
d82b204
 
 
 
 
 
 
 
 
 
 
d2c1bbd
d82b204
 
 
 
 
 
 
 
 
 
 
d2c1bbd
 
d82b204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c1bbd
d82b204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d9c67f
 
 
d82b204
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
# Original Copyright 2022  Jay Wang, Evan Montoya, David Munechika, Alex Yang, Ben Hoover, Polo Chau
# MIT License
"""Loading script for DiffusionDB."""

import re
import numpy as np
import pandas as pd

from json import load, dump
from os.path import join, basename
from huggingface_hub import hf_hub_url

import datasets

# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{wangDiffusionDBLargescalePrompt2022,
  title = {{{DiffusionDB}}: {{A}} Large-Scale Prompt Gallery Dataset for Text-to-Image Generative Models},
  author = {Wang, Zijie J. and Montoya, Evan and Munechika, David and Yang, Haoyang and Hoover, Benjamin and Chau, Duen Horng},
  year = {2022},
  journal = {arXiv:2210.14896 [cs]},
  url = {https://arxiv.org/abs/2210.14896}
}
"""

# You can copy an official description
_DESCRIPTION = """
DiffusionDB is the first large-scale text-to-image prompt dataset. It contains 2
million images generated by Stable Diffusion using prompts and hyperparameters
specified by real users. The unprecedented scale and diversity of this
human-actuated dataset provide exciting research opportunities in understanding
the interplay between prompts and generative models, detecting deepfakes, and
designing human-AI interaction tools to help users more easily use these models.
"""

_HOMEPAGE = "https://poloclub.github.io/diffusiondb"
_LICENSE = "CC0 1.0"
_VERSION = datasets.Version("0.9.1")

# Programmatically generate the URLs for different parts
# hf_hub_url() provides a more flexible way to resolve the file URLs
# https://huggingface.co/datasets/jainr3/diffusiondb-pixelart/resolve/main/images/part-000001.zip
_URLS = {}
_PART_IDS = range(1, 2001)

for i in _PART_IDS:
    _URLS[i] = hf_hub_url(
        "jainr3/diffusiondb-pixelart",
        filename=f"images/part-{i:06}.zip",
        repo_type="dataset",
    )


# Add the metadata parquet URL as well
_URLS["metadata"] = hf_hub_url(
    "jainr3/diffusiondb-pixelart", filename="metadata.parquet", repo_type="dataset"
)

_SAMPLER_DICT = {
    1: "ddim",
    2: "plms",
    3: "k_euler",
    4: "k_euler_ancestral",
    5: "ddik_heunm",
    6: "k_dpm_2",
    7: "k_dpm_2_ancestral",
    8: "k_lms",
    9: "others",
}


class DiffusionDBConfig(datasets.BuilderConfig):
    """BuilderConfig for DiffusionDB."""

    def __init__(self, part_ids, **kwargs):
        """BuilderConfig for DiffusionDB.
        Args:
          part_ids([int]): A list of part_ids.
          **kwargs: keyword arguments forwarded to super.
        """
        super(DiffusionDBConfig, self).__init__(version=_VERSION, **kwargs)
        self.part_ids = part_ids


class DiffusionDB(datasets.GeneratorBasedBuilder):
    """A large-scale text-to-image prompt gallery dataset based on Stable Diffusion."""

    BUILDER_CONFIGS = []

    # Programmatically generate configuration options (HF requires to use a string
    # as the config key)
    for num_k in [1, 5, 10, 50, 100, 500, 1000]:
        for sampling in ["first", "random"]:
            num_k_str = f"{num_k}k" if num_k < 1000 else f"{num_k // 1000}m"
            subset_str = "2m_"

            if sampling == "random":
                # Name the config
                cur_name = subset_str + "random_" + num_k_str

                # Add a short description for each config
                cur_description = (
                    f"Random {num_k_str} images with their prompts and parameters"
                )

                # Sample part_ids
                total_part_ids = _PART_IDS
                part_ids = np.random.choice(
                    total_part_ids, num_k, replace=False
                ).tolist()
            else:
                # Name the config
                cur_name = subset_str + "first_" + num_k_str

                # Add a short description for each config
                cur_description = f"The first {num_k_str} images in this dataset with their prompts and parameters"

                # Sample part_ids
                total_part_ids = _PART_IDS
                part_ids = total_part_ids[1 : num_k + 1]

            # Create configs
            BUILDER_CONFIGS.append(
                DiffusionDBConfig(
                    name=cur_name,
                    part_ids=part_ids,
                    description=cur_description,
                ),
            )


    # Need to manually add all (2m)
    BUILDER_CONFIGS.append(
        DiffusionDBConfig(
            name="2m_all",
            part_ids=_PART_IDS,
            description="All images with their prompts and parameters",
        ),
    )

    # We also prove a text-only option, which loads the meatadata parquet file
    BUILDER_CONFIGS.append(
        DiffusionDBConfig(
            name="2m_text_only",
            part_ids=[],
            description="Only include all prompts and parameters (no image)",
        ),
    )


    # Default to only load 1k random images
    DEFAULT_CONFIG_NAME = "2m_random_1k"

    def _info(self):
        """Specify the information of DiffusionDB."""

        if "text_only" in self.config.name:
            features = datasets.Features(
                {
                    "image_name": datasets.Value("string"),
                    "prompt": datasets.Value("string"),
                    "part_id": datasets.Value("uint16"),
                    "seed": datasets.Value("uint32"),
                    "step": datasets.Value("uint16"),
                    "cfg": datasets.Value("float32"),
                    "sampler": datasets.Value("string"),
                    "width": datasets.Value("uint16"),
                    "height": datasets.Value("uint16"),
                    "user_name": datasets.Value("string"),
                    "timestamp": datasets.Value("timestamp[us, tz=UTC]"),
                    "image_nsfw": datasets.Value("float32"),
                    "prompt_nsfw": datasets.Value("float32"),
                },
            )

        else:
            features = datasets.Features(
                {
                    "image": datasets.Image(),
                    "prompt": datasets.Value("string"),
                    "seed": datasets.Value("uint32"),
                    "step": datasets.Value("uint16"),
                    "cfg": datasets.Value("float32"),
                    "sampler": datasets.Value("string"),
                    "width": datasets.Value("uint16"),
                    "height": datasets.Value("uint16"),
                    "user_name": datasets.Value("string"),
                    "timestamp": datasets.Value("timestamp[us, tz=UTC]"),
                    "image_nsfw": datasets.Value("float32"),
                    "prompt_nsfw": datasets.Value("float32"),
                },
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # If several configurations are possible (listed in BUILDER_CONFIGS),
        # the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLS It can accept any type or nested list/dict
        # and will give back the same structure with the url replaced with path
        # to local files. By default the archives will be extracted and a path
        # to a cached folder where they are extracted is returned instead of the
        # archive

        # Download and extract zip files of all sampled part_ids
        data_dirs = []
        json_paths = []

        # Resolve the urls
        urls = _URLS

        for cur_part_id in self.config.part_ids:
            cur_url = urls[cur_part_id]
            data_dir = dl_manager.download_and_extract(cur_url)

            data_dirs.append(data_dir)
            json_paths.append(join(data_dir, f"part-{cur_part_id:06}.json"))

        # Also download the metadata table
        metadata_path = dl_manager.download(urls["metadata"])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "data_dirs": data_dirs,
                    "json_paths": json_paths,
                    "metadata_path": metadata_path,
                },
            ),
        ]

    def _generate_examples(self, data_dirs, json_paths, metadata_path):
        # This method handles input defined in _split_generators to yield
        # (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself,
        # but must be unique for each example.

        # Load the metadata parquet file if the config is text_only
        if "text_only" in self.config.name:
            metadata_df = pd.read_parquet(metadata_path)
            for _, row in metadata_df.iterrows():
                yield row["image_name"], {
                    "image_name": row["image_name"],
                    "prompt": row["prompt"],
                    "part_id": row["part_id"],
                    "seed": row["seed"],
                    "step": row["step"],
                    "cfg": row["cfg"],
                    "sampler": _SAMPLER_DICT[int(row["sampler"])],
                    "width": row["width"],
                    "height": row["height"],
                    "user_name": row["user_name"],
                    "timestamp": None
                    if pd.isnull(row["timestamp"])
                    else row["timestamp"],
                    "image_nsfw": row["image_nsfw"],
                    "prompt_nsfw": row["prompt_nsfw"],
                }

        else:
            num_data_dirs = len(data_dirs)
            assert num_data_dirs == len(json_paths)

            # Read the metadata table (only rows with the needed part_ids)
            part_ids = []
            for path in json_paths:
                cur_id = int(re.sub(r"part-(\d+)\.json", r"\1", basename(path)))
                part_ids.append(cur_id)

            # We have to use pandas here to make the dataset preview work (it
            # uses streaming mode)

            print(metadata_path)
            
            metadata_table = pd.read_parquet(
                metadata_path,
                filters=[("part_id", "in", part_ids)],
            )

            # Iterate through all extracted zip folders for images
            for k in range(num_data_dirs):
                cur_data_dir = data_dirs[k]
                cur_json_path = json_paths[k]

                json_data = load(open(cur_json_path, "r", encoding="utf8"))

                for img_name in json_data:
                    img_params = json_data[img_name]
                    img_path = join(cur_data_dir, img_name)

                    # Query the metadata
                    query_result = metadata_table.query(f'`image_name` == "{img_name}"')

                    # Yields examples as (key, example) tuples
                    yield img_name, {
                        "image": {
                            "path": img_path,
                            "bytes": open(img_path, "rb").read(),
                        },
                        "prompt": img_params["p"],
                        "seed": int(img_params["se"]),
                        "step": int(img_params["st"]),
                        "cfg": float(img_params["c"]),
                        "sampler": img_params["sa"],
                        "width": query_result["width"].to_list()[0],
                        "height": query_result["height"].to_list()[0],
                        "user_name": query_result["user_name"].to_list()[0],
                        "timestamp": None
                        if pd.isnull(query_result["timestamp"].to_list()[0])
                        else query_result["timestamp"].to_list()[0],
                        "image_nsfw": query_result["image_nsfw"].to_list()[0],
                        "prompt_nsfw": query_result["prompt_nsfw"].to_list()[0],
                    }