|
--- |
|
dataset_info: |
|
features: |
|
- name: original_image |
|
dtype: image |
|
- name: prompt |
|
dtype: string |
|
- name: transformed_image |
|
dtype: image |
|
splits: |
|
- name: train |
|
num_bytes: 604990210.0 |
|
num_examples: 994 |
|
download_size: 604849707 |
|
dataset_size: 604990210.0 |
|
--- |
|
# Canny DiffusionDB |
|
|
|
This dataset is the [DiffusionDB dataset](https://huggingface.co/datasets/poloclub/diffusiondb) that is transformed using Canny transformation. |
|
|
|
You can see samples below 👇 |
|
|
|
**Sample:** |
|
|
|
Original Image: |
|
![image](https://datasets-server.huggingface.co/assets/merve/canny_diffusiondb/--/merve--canny_diffusiondb/train/0/original_image/image.jpg) |
|
Transformed Image: |
|
![image](https://datasets-server.huggingface.co/assets/merve/canny_diffusiondb/--/merve--canny_diffusiondb/train/0/transformed_image/image.jpg) |
|
Caption: |
|
"a small wheat field beside a forest, studio lighting, golden ratio, details, masterpiece, fine art, intricate, decadent, ornate, highly detailed, digital painting, octane render, ray tracing reflections, 8 k, featured, by claude monet and vincent van gogh " |
|
|
|
Below you can find a small script used to create this dataset: |
|
```python |
|
|
|
def canny_convert(image): |
|
image_array = np.array(image) |
|
gray_image = cv2.cvtColor(image_array, cv2.COLOR_BGR2GRAY) |
|
edges = cv2.Canny(gray_image, 100, 200) |
|
edge_image = Image.fromarray(edges) |
|
return edge_image |
|
|
|
dataset = load_dataset("poloclub/diffusiondb", split = "train") |
|
|
|
dataset_list = [] |
|
for data in dataset: |
|
|
|
image_path = data["image"] |
|
prompt = data["prompt"] |
|
transformed_image_path = canny_convert(image_path) |
|
|
|
new_data = { |
|
"original_image": image, |
|
"prompt": prompt, |
|
"transformed_image": transformed_image, |
|
} |
|
dataset_list.append(new_data) |
|
|
|
``` |