|
--- |
|
language: |
|
- en |
|
tags: |
|
- clouds |
|
- sentinel-2 |
|
- image-segmentation |
|
- deep-learning |
|
- remote-sensing |
|
pretty_name: cloudsen12 |
|
--- |
|
# cloudsen12 |
|
|
|
***``A dataset about clouds from Sentinel-2``*** |
|
|
|
CloudSEN12 is a LARGE dataset (~1 TB) for cloud semantic understanding that consists of 49,400 image patches (IP) that are evenly spread throughout all continents except Antarctica. Each IP covers 5090 x 5090 meters and contains data from Sentinel-2 levels 1C and 2A, hand-crafted annotations of thick and thin clouds and cloud shadows, Sentinel-1 Synthetic Aperture Radar (SAR), digital elevation model, surface water occurrence, land cover classes, and cloud mask results from six cutting-edge cloud detection algorithms. |
|
CloudSEN12 is designed to support both weakly and self-/semi-supervised learning strategies by including three distinct forms of hand-crafted labeling data: high-quality, scribble and no-annotation. For more details on how we created the dataset see our paper: CloudSEN12 - a global dataset for semantic understanding of cloud and cloud shadow in Sentinel-2. |
|
|
|
|
|
**ML-STAC Snippet** |
|
```python |
|
import mlstac |
|
secret = 'https://huggingface.co/datasets/jfloresf/mlstac-demo/resolve/main/main.json' |
|
train_db = mlstac.load(secret, framework='torch', stream=True, device='cpu') |
|
``` |
|
|
|
<p align="center"> |
|
<img src="header.png" /> |
|
</p> |
|
|
|
**Sensor: Sentinel2 - MSI** |
|
|
|
**ML-STAC Task: TensorToTensor, TensorSegmentation** |
|
|
|
**Data raw repository: [https://cloudsen12.github.io/](https://cloudsen12.github.io/)** |
|
|
|
**Dataset discussion: [https://github.com/IPL-UV/ML-STAC/discussions/2](https://github.com/IPL-UV/ML-STAC/discussions/2)** |
|
|
|
**Review mean score: 5.0** |
|
|
|
**Split_strategy: random** |
|
|
|
**Paper: [https://www.nature.com/articles/s41597-022-01878-2](https://www.nature.com/articles/s41597-022-01878-2)** |
|
## Data Providers |
|
|
|
|Name|Role|URL| |
|
| :---: | :---: | :---: | |
|
|Image & Signal Processing|['host']|https://isp.uv.es/| |
|
|ESA|['producer']|https://www.esa.int/| |
|
|
|
## Curators |
|
|
|
|Name|Organization|URL| |
|
| :---: | :---: | :---: | |
|
|Jair Flores|OEFA|http://jflores.github.io/| |
|
|
|
## Reviewers |
|
|
|
|Name|Organization|URL|Score| |
|
| :---: | :---: | :---: | :---: | |
|
|Cesar Aybar|Image & Signal Processing|http://csaybar.github.io/|5| |
|
|
|
## Labels |
|
|
|
|Name|Value| |
|
| :---: | :---: | |
|
|clear|0| |
|
|thick-cloud|1| |
|
|thin-cloud|2| |
|
|cloud-shadow|3| |
|
|
|
## Dimensions |
|
|
|
### input |
|
|
|
|Axis|Name|Description| |
|
| :---: | :---: | :---: | |
|
|0|C|Spectral bands| |
|
|1|H|Height| |
|
|2|W|Width| |
|
|
|
### target |
|
|
|
|Axis|Name|Description| |
|
| :---: | :---: | :---: | |
|
|0|C|Hand-crafted labels| |
|
|1|H|Height| |
|
|2|W|Width| |
|
|
|
## Spectral Bands |
|
|
|
|Name|Common Name|Description|Center Wavelength|Full Width Half Max|Index| |
|
| :---: | :---: | :---: | :---: | :---: | :---: | |
|
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0| |
|
|B02|blue|Band 2 - Blue - 10m|496.5|53.0|1| |
|
|B03|green|Band 3 - Green - 10m|560.0|34.0|2| |
|
|B04|red|Band 4 - Red - 10m|664.5|29.0|3| |
|
|B05|red edge 1|Band 5 - Vegetation red edge 1 - 20m|704.5|13.0|4| |
|
|B06|red edge 2|Band 6 - Vegetation red edge 2 - 20m|740.5|13.0|5| |
|
|B07|red edge 3|Band 7 - Vegetation red edge 3 - 20m|783.0|18.0|6| |
|
|B08|NIR|Band 8 - Near infrared - 10m|840.0|114.0|7| |
|
|B8A|red edge 4|Band 8A - Vegetation red edge 4 - 20m|864.5|19.0|8| |
|
|B09|water vapor|Band 9 - Water vapor - 60m|945.0|18.0|9| |
|
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10| |
|
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11| |
|
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12| |
|
|