metadata
language:
- de
license: cc-by-4.0
task_categories:
- text-classification
pretty_name: GermEval 18
dataset_info:
features:
- name: text
dtype: string
- name: coarse
dtype:
class_label:
names:
'0': OTHER
'1': OFFENSE
- name: fine
dtype:
class_label:
names:
'0': OTHER
'1': ABUSE
'2': INSULT
'3': PROFANITY
splits:
- name: train
num_bytes: 826320
num_examples: 5009
- name: test
num_bytes: 509105
num_examples: 3532
download_size: 867329
dataset_size: 1335425
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
GermEval18 Loader
- Data Repository: https://github.com/uds-lsv/GermEval-2018-Data
- Data Reference: https://doi.org/10.11588/data/0B5VML
- Paper: https://epub.oeaw.ac.at/0xc1aa5576_0x003a10d2.pdf
Info
Note: This dataset is a loader script that pulls the data straight from the official GitHub repository.
What is the difference to philschmid/germeval18?: We did not get all samples, when using the former script.
Output from philschmid/germeval18:
DatasetDict({
train: Dataset({
features: ['text', 'binary', 'multi'],
num_rows: 5009
})
test: Dataset({
features: ['text', 'binary', 'multi'],
num_rows: 3398
})
})
but the dataset (that our loader script is based on) contains all samples from the GermEval18 dataset:
DatasetDict({
train: Dataset({
features: ['text', 'coarse', 'fine'],
num_rows: 5009
})
test: Dataset({
features: ['text', 'coarse', 'fine'],
num_rows: 3532
})
})