File size: 6,322 Bytes
19e4502 80474da 19e4502 80474da 19e4502 e6fc781 19e4502 e6fc781 19e4502 e6fc781 19e4502 b42976b 19e4502 b42976b 19e4502 80474da 19e4502 80474da 19e4502 80474da 19e4502 e6fc781 19e4502 80474da 19e4502 80474da e6fc781 19e4502 80474da e6fc781 80474da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
from mpi4py import MPI
from mpi4py.futures import MPICommExecutor
import warnings
from Bio.PDB import PDBParser, PPBuilder, CaPPBuilder
from Bio.PDB.NeighborSearch import NeighborSearch
from Bio.PDB.Selection import unfold_entities
import numpy as np
import dask.array as da
from rdkit import Chem
from spyrmsd import molecule
from spyrmsd import graph
import networkx as nx
import os
import re
import sys
# all punctuation
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
# tokenization regex (Schwaller)
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])"""
max_seq = 2046 # = 2048 - 2 (accounting for [CLS] and [SEP])
max_smiles = 510 # = 512 - 2
chunk_size = '1G'
def rot_from_two_vecs(e0_unnormalized, e1_unnormalized):
"""Create rotation matrices from unnormalized vectors for the x and y-axes.
This creates a rotation matrix from two vectors using Gram-Schmidt
orthogonalization.
Args:
e0_unnormalized: vectors lying along x-axis of resulting rotation
e1_unnormalized: vectors lying in xy-plane of resulting rotation
Returns:
Rotations resulting from Gram-Schmidt procedure.
"""
# Normalize the unit vector for the x-axis, e0.
e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized)
# make e1 perpendicular to e0.
c = np.dot(e1_unnormalized, e0)
e1 = e1_unnormalized - c * e0
e1 = e1 / np.linalg.norm(e1)
# Compute e2 as cross product of e0 and e1.
e2 = np.cross(e0, e1)
# local to space frame
return np.stack([e0,e1,e2]).T
def get_local_frames(mol):
# get the two nearest neighbors of every atom on the molecular graph
# ties are broken using canonical ordering
g = molecule.Molecule.from_rdkit(mol).to_graph()
R = []
for node in g:
length = nx.single_source_shortest_path_length(g, node)
neighbor_a = [n for n,l in length.items() if l==1][0]
try:
neighbor_b = [n for n,l in length.items() if l==1][1]
except:
# get next nearest neighbor
neighbor_b = [n for n,l in length.items() if l==2][0]
xyz = np.array(mol.GetConformer().GetAtomPosition(node))
xyz_a = np.array(mol.GetConformer().GetAtomPosition(neighbor_a))
xyz_b = np.array(mol.GetConformer().GetAtomPosition(neighbor_b))
R.append(rot_from_two_vecs(xyz_a-xyz, xyz_b-xyz))
return R
def parse_complex(fn):
try:
name = os.path.basename(fn)
# parse protein sequence and coordinates
parser = PDBParser()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
structure = parser.get_structure('protein',fn+'/'+name+'_protein.pdb')
res_frames = []
# extract sequence, Calpha positions and local coordinate frames using the AF2 convention
ppb = CaPPBuilder()
seq = []
xyz_receptor = []
R_receptor = []
for pp in ppb.build_peptides(structure):
seq.append(str(pp.get_sequence()))
xyz_receptor += [tuple(a.get_vector()) for a in pp.get_ca_list()]
for res in pp:
N = np.array(tuple(res['N'].get_vector()))
C = np.array(tuple(res['C'].get_vector()))
CA = np.array(tuple(res['CA'].get_vector()))
R_receptor.append(rot_from_two_vecs(N-CA,C-CA).flatten().tolist())
seq = ''.join(seq)
# parse ligand, convert to SMILES and map atoms
suppl = Chem.SDMolSupplier(fn+'/'+name+'_ligand.sdf')
mol = next(suppl)
# bring molecule atoms in canonical order (to determine local frames uniquely)
m_neworder = tuple(zip(*sorted([(j, i) for i, j in enumerate(Chem.CanonicalRankAtoms(mol))])))[1]
mol = Chem.RenumberAtoms(mol, m_neworder)
# position of atoms in SMILES (not counting punctuation)
smi = Chem.MolToSmiles(mol)
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))]
# tokenize the SMILES
tokens = list(filter(None, re.split(molecule_regex, smi)))
# remove punctuation
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens]
k = 0
token_pos = []
token_rot = []
frames = get_local_frames(mol)
for i,token in enumerate(masked_tokens):
if token != '':
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k])))
token_rot.append(frames[atom_order[k]].flatten().tolist())
k += 1
else:
token_pos.append((np.nan, np.nan, np.nan))
token_rot.append(np.eye(3).flatten().tolist())
return name, seq, smi, xyz_receptor, token_pos, token_rot, R_receptor
except Exception as e:
print(e)
return None
if __name__ == '__main__':
import glob
filenames = glob.glob('data/pdbbind/v2020-other-PL/*')
filenames.extend(glob.glob('data/pdbbind/refined-set/*'))
filenames = sorted(filenames)
comm = MPI.COMM_WORLD
with MPICommExecutor(comm, root=0) as executor:
if executor is not None:
result = executor.map(parse_complex, filenames, chunksize=32)
result = list(result)
names = [r[0] for r in result if r is not None]
seqs = [r[1] for r in result if r is not None]
all_smiles = [r[2] for r in result if r is not None]
all_xyz_receptor = [r[3] for r in result if r is not None]
all_xyz_ligand = [r[4] for r in result if r is not None]
all_rot_ligand = [r[5] for r in result if r is not None]
all_rot_receptor = [r[6] for r in result if r is not None]
import pandas as pd
df = pd.DataFrame({'name': names, 'seq': seqs,
'smiles': all_smiles,
'receptor_xyz': all_xyz_receptor,
'ligand_xyz': all_xyz_ligand,
'ligand_rot': all_rot_ligand,
'receptor_rot': all_rot_receptor})
df.to_parquet('data/pdbbind.parquet',index=False)
|