File size: 5,728 Bytes
19e4502
 
 
 
 
 
 
 
 
 
 
 
 
 
940549f
19e4502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1c199e
 
19e4502
b42976b
19e4502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
940549f
19e4502
 
 
 
e6fc781
 
19e4502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: A dataset of protein sequences, ligand SMILES, and complex coordinates."""

import huggingface_hub
import os
import pyarrow.parquet as pq
import datasets


# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {jglaser/pdbbind_complexes},
author={Jens Glaser, ORNL
},
year={2022}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
A dataset to fine-tune language models on protein-ligand binding affinity and contact prediction.
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "BSD two-clause"

# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URL = "https://huggingface.co/datasets/jglaser/pdbbind_complexes/resolve/main/"
_data_dir = "data/"
_file_names = {'default': _data_dir+'pdbbind.parquet'}

_URLs = {name: _URL+_file_names[name] for name in _file_names}


# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class PDBBindComplexes(datasets.ArrowBasedBuilder):
    """List of protein sequences, ligand SMILES, and complex coordinates."""

    VERSION = datasets.Version("1.4.0")

    def _info(self):
        # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
        #if self.config.name == "first_domain":  # This is the name of the configuration selected in BUILDER_CONFIGS above
        #    features = datasets.Features(
        #        {
        #            "sentence": datasets.Value("string"),
        #             "option1": datasets.Value("string"),
        #            "answer": datasets.Value("string")
        #            # These are the features of your dataset like images, labels ...
        #        }
        #    )
        #else:  # This is an example to show how to have different features for "first_domain" and "second_domain"
        features = datasets.Features(
            {
                "name": datasets.Value("string"),
                "seq": datasets.Value("string"),
                "smiles": datasets.Value("string"),
                "ligand_xyz": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
                "receptor_xyz": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
                "ligand_rot": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
                "receptor_rot": datasets.Sequence(datasets.Sequence(datasets.Value('float32'))),
                # These are the features of your dataset like images, labels ...
            }
        )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        files = dl_manager.download_and_extract(_URLs)

        return [
            datasets.SplitGenerator(
                # These kwargs will be passed to _generate_examples
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    'filepath': files["default"],
                },
            ),

        ]

    def _generate_tables(
        self, filepath
    ):
        from pyarrow import fs
        local = fs.LocalFileSystem()

        for i, f in enumerate([filepath]):
            yield i, pq.read_table(f,filesystem=local)