File size: 5,481 Bytes
355e19b e3d5711 355e19b e3d5711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
- en
licenses:
- cc-by-nc-sa-4-0
multilinguality:
- monolingual
- other-language-learner
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-GUG-grammaticality-judgements
task_categories:
- conditional-text-generation
task_ids:
- conditional-text-generation-other-grammatical-error-correction
---
# Dataset Card for JFLEG
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/keisks/jfleg)
- **Repository:** [Github](https://github.com/keisks/jfleg)
- **Paper:** [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/)
- **Leaderboard:** [Leaderboard](https://github.com/keisks/jfleg#leader-board-published-results)
- **Point of Contact:** Courtney Napoles, Keisuke Sakaguchi
### Dataset Summary
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections.
### Supported Tasks and Leaderboards
Grammatical error correction.
### Languages
English (native as well as L2 writers)
## Dataset Structure
### Data Instances
Each instance contains a source sentence and four corrections. For example:
```python
{
'sentence': "They are moved by solar energy ."
'corrections': [
"They are moving by solar energy .",
"They are moved by solar energy .",
"They are moved by solar energy .",
"They are propelled by solar energy ."
]
}
```
### Data Fields
- sentence: original sentence written by an English learner
- corrections: corrected versions by human annotators. The order of the annotations are consistent (eg first sentence will always be written by annotator "ref0").
### Data Splits
- This dataset contains 1511 examples in total and comprise a dev and test split.
- There are 754 and 747 source sentences for dev and test, respectively.
- Each sentence has 4 corresponding corrected versions.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
### Citation Information
This benchmark was proposed by [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/).
```
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
author = {Napoles, Courtney and Sakaguchi, Keisuke and Tetreault, Joel},
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
booktitle = {Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers},
month = {April},
year = {2017},
address = {Valencia, Spain},
publisher = {Association for Computational Linguistics},
pages = {229--234},
url = {http://www.aclweb.org/anthology/E17-2037}
}
@InProceedings{heilman-EtAl:2014:P14-2,
author = {Heilman, Michael and Cahill, Aoife and Madnani, Nitin and Lopez, Melissa and Mulholland, Matthew and Tetreault, Joel},
title = {Predicting Grammaticality on an Ordinal Scale},
booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
month = {June},
year = {2014},
address = {Baltimore, Maryland},
publisher = {Association for Computational Linguistics},
pages = {174--180},
url = {http://www.aclweb.org/anthology/P14-2029}
}
```
### Contributions
Thanks to [@j-chim](https://github.com/j-chim) for adding this dataset. |