Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
jfleg / README.md
albertvillanova's picture
Add ArXiv paper URL (#3)
8b9fb0e verified
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
- other-language-learner
size_categories:
- 1K<n<10K
source_datasets:
- extended|other-GUG-grammaticality-judgements
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: jfleg
pretty_name: JHU FLuency-Extended GUG corpus
tags:
- grammatical-error-correction
dataset_info:
features:
- name: sentence
dtype: string
- name: corrections
sequence: string
splits:
- name: validation
num_bytes: 379979
num_examples: 755
- name: test
num_bytes: 379699
num_examples: 748
download_size: 289093
dataset_size: 759678
configs:
- config_name: default
data_files:
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
# Dataset Card for JFLEG
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Github](https://github.com/keisks/jfleg)
- **Repository:** [Github](https://github.com/keisks/jfleg)
- **Paper:** [Napoles et al., 2020](https://www.aclweb.org/anthology/E17-2037/)
- **Leaderboard:** [Leaderboard](https://github.com/keisks/jfleg#leader-board-published-results)
- **Point of Contact:** Courtney Napoles, Keisuke Sakaguchi
### Dataset Summary
JFLEG (JHU FLuency-Extended GUG) is an English grammatical error correction (GEC) corpus. It is a gold standard benchmark for developing and evaluating GEC systems with respect to fluency (extent to which a text is native-sounding) as well as grammaticality. For each source document, there are four human-written corrections.
### Supported Tasks and Leaderboards
Grammatical error correction.
### Languages
English (native as well as L2 writers)
## Dataset Structure
### Data Instances
Each instance contains a source sentence and four corrections. For example:
```python
{
'sentence': "They are moved by solar energy ."
'corrections': [
"They are moving by solar energy .",
"They are moved by solar energy .",
"They are moved by solar energy .",
"They are propelled by solar energy ."
]
}
```
### Data Fields
- sentence: original sentence written by an English learner
- corrections: corrected versions by human annotators. The order of the annotations are consistent (eg first sentence will always be written by annotator "ref0").
### Data Splits
- This dataset contains 1511 examples in total and comprise a dev and test split.
- There are 754 and 747 source sentences for dev and test, respectively.
- Each sentence has 4 corresponding corrected versions.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
This work is licensed under a [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License](https://creativecommons.org/licenses/by-nc-sa/4.0/).
### Citation Information
This benchmark was proposed by [Napoles et al., 2020](https://arxiv.org/abs/1702.04066).
```
@InProceedings{napoles-sakaguchi-tetreault:2017:EACLshort,
author = {Napoles, Courtney and Sakaguchi, Keisuke and Tetreault, Joel},
title = {JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction},
booktitle = {Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers},
month = {April},
year = {2017},
address = {Valencia, Spain},
publisher = {Association for Computational Linguistics},
pages = {229--234},
url = {http://www.aclweb.org/anthology/E17-2037}
}
@InProceedings{heilman-EtAl:2014:P14-2,
author = {Heilman, Michael and Cahill, Aoife and Madnani, Nitin and Lopez, Melissa and Mulholland, Matthew and Tetreault, Joel},
title = {Predicting Grammaticality on an Ordinal Scale},
booktitle = {Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)},
month = {June},
year = {2014},
address = {Baltimore, Maryland},
publisher = {Association for Computational Linguistics},
pages = {174--180},
url = {http://www.aclweb.org/anthology/P14-2029}
}
```
### Contributions
Thanks to [@j-chim](https://github.com/j-chim) for adding this dataset.