jiaheillu's picture
Update README.md
669ada4
|
raw
history blame
7.02 kB
---
license: openrail
task_categories:
- conversational
language:
- aa
tags:
- music
size_categories:
- n<1K
pretty_name: genshin_voice_sovits
---
# 效果预览
本仓库用于预览训练出的各种语音模型的效果,点击角色名自动跳转对应训练参数。</br>
推荐用谷歌浏览器,其他浏览器可能无法正确加载预览的音频。</br>
正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
有推荐的歌想要转换听听效果,或者其他内容建议,[点我](https://huggingface.co/datasets/jiaheillu/audio_preview/discussions/new)发起讨论</br>
下面是预览音频,左右滑动可以看到全部
<style>
.scrolling-container {
width: 100%;
max-width: 800px;
height: 300px;
overflow: auto;
margin: 0;
}
@media screen and (max-width: 768px) {
.scrolling-container {
width: 100%;
height: auto;
overflow: auto;
}
}
</style>
<div class="scrolling-container">
<table border="1" style="white-space: nowrap; text-align: center;">
<thead>
<tr>
<th>角色名</th>
<th>角色原声A</th>
<th>被转换人声B</th>
<th>A音色替换B</th>
<th>A音色翻唱(点击直接下载)</th>
</tr>
</thead>
<tbody>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/散兵效果预览/训练参数速览.md">散兵</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/部分训练集/真遗憾,小吉祥草王让他消除了那么多的切片,剥夺了我将他一片一片千刀万剐的快乐%E3%80%82.mp3" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/原声/shenli3.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/shenli3mp3_auto_liulangzhe.wav" controls="controls"></audio></td>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/夢で逢えたら2liulangzhe_f.wav">夢で会えたら</a></td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/胡桃_preview/README.md">胡桃</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E8%83%A1%E6%A1%83_preview/hutao.wav" controls="controls"></audio></td>
<td>.........</td>
<td>.........</td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/moonlight_shadow2胡桃.WAV">moonlight shadow</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/云烟成雨2胡桃.WAV">云烟成雨</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/原点2胡桃.WAV">原点</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/夢だ会えたら2胡桃.WAV">夢で逢えたら</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/贝加尔湖畔2胡桃.WAV">贝加尔湖畔</a>
</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/绫华_preview/README.md">神里绫华</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/linghua428.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/yelan.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/绫华_preview/yelan.wav_auto_linghua_0.5.wav" controls="controls"></audio></td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/アムリタ2绫华.WAV">アムリタ</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/大鱼2绫华.WAV">大鱼</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/遊園施設2绫华.WAV">遊園施設</a>,
<a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/the_day_you_want_away2绫华.WAV">the day you want away</a>
</td>
</tr>
<tr>
<td><a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/blob/main/宵宫_preview/README.md">宵宫</a></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/xiaogong.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/hutao2.wav" controls="controls"></audio></td>
<td><audio src="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/hutao2wav_0key_xiaogong_0.5-2.wav" controls="controls"></audio></td>
<td>
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/昨夜书2宵宫.WAV">昨夜书</a>,
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/lemon2宵宫.WAV">lemon</a>,
<a href="https://huggingface.co/datasets/jiaheillu/sovits_audio_preview/resolve/main/宵宫_preview/my_heart_will_go_no2宵宫.WAV">my heart will go on</a>,
</td>
</tr>
</tbody>
</table>
</div>
关键参数:
audio duration:训练集总时长
epoch: 轮数
其余:
batch_size = 一个step训练的片段数<br>
segments = 音频被切分的片段<br>
step=segments*epoch/batch_size,即模型文件后面数字由来<br>
以散兵为例:
损失函数图像:主要看step 与 loss5,比如:<br>
给一个大致的参考,待转换音频都为高音女生,这是较为刁钻的测试:如图,10min纯净人声,<br>
差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
何,差不多有个概念。当然即使loss也不足以参考,唯一的衡量标准就是当事人的耳朵。当然,正常训练,10min还是有些少的。<br>
[点我查看相关文件](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
![sanbing_loss](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E6%95%A3%E5%85%B5%E6%95%88%E6%9E%9C%E9%A2%84%E8%A7%88/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)