|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from email.mime import audio |
|
from pathlib import Path |
|
import os |
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import AutomaticSpeechRecognition |
|
|
|
|
|
|
|
_DESCRIPTION = """ |
|
The PSST Challenge focuses on a technically-challenging and clinically |
|
important task—high-accuracy automatic phoneme recognition of disordered |
|
speech, in a diagnostic context—which has applications in many different |
|
areas relating to speech and language disorders. |
|
""" |
|
|
|
class PSSTDataset(datasets.GeneratorBasedBuilder): |
|
"""PSST Dataset""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="psst"), |
|
] |
|
|
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"utterance_id": datasets.Value("string"), |
|
"session": datasets.Value("string"), |
|
"test": datasets.Value("string"), |
|
"prompt": datasets.Value("string"), |
|
"transcript": datasets.Value("string"), |
|
"phonemes": datasets.Sequence(datasets.Value("string")), |
|
"correctness": datasets.Value("bool"), |
|
"aq_index": datasets.Value("float"), |
|
"duration_frames": datasets.Value("uint64"), |
|
"audio": datasets.Audio(sampling_rate=16_000) |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="https://psst.study/", |
|
task_templates=[ |
|
AutomaticSpeechRecognition(audio_file_path_column="filename", transcription_column="transcript") |
|
], |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
if hasattr(dl_manager, 'manual_dir') and dl_manager.manual_dir is not None: |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
else: |
|
raise Exception("No path to data specified") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"split": "train", |
|
"data_dir": data_dir |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"split": "valid", |
|
"data_dir": data_dir |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples( |
|
self, split, data_dir |
|
): |
|
"""Yields examples as (key, example) tuples. """ |
|
data_path = Path(data_dir) |
|
split_path = data_path / split |
|
if not split_path.exists(): |
|
raise Exception(f"{split} directory not found ({split_path})") |
|
utterances = split_path / "utterances.tsv" |
|
if not utterances.exists(): |
|
raise Exception(f"utterances.tsv not found in {split} directory ({split_path})") |
|
with open(utterances) as tsvfile: |
|
data = csv.DictReader(tsvfile, delimiter='\t') |
|
for row in data: |
|
audiopath = split_path / row["filename"] |
|
if audiopath.exists(): |
|
with open(audiopath, "rb") as audiofile: |
|
yield row["utterance_id"], { |
|
"utterance_id": row["utterance_id"], |
|
"session": row["session"], |
|
"test": row["test"], |
|
"prompt": row["prompt"], |
|
"transcript": row["transcript"], |
|
"phonemes": row["transcript"].strip().split(" "), |
|
"correctness": (row["correctness"] == "True"), |
|
"aq_index": float(row["aq_index"]), |
|
"duration_frames": int(row["duration_frames"]), |
|
"audio": { |
|
"path": str(audiopath), |
|
"bytes": audiofile.read() |
|
} |
|
} |
|
|