File size: 11,703 Bytes
a187759 224893f d44d5d4 a187759 d44d5d4 f023c13 a187759 224893f a187759 366e0e8 231fcbb cb3f457 224893f 231fcbb 82f5b2b 657e12a 82f5b2b 657e12a 82f5b2b 657e12a 82f5b2b 6f3397f 657e12a 6f3397f 657e12a 6f3397f 657e12a da2a661 657e12a da2a661 a187759 224893f a187759 cb3f457 a187759 cb3f457 a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f a187759 224893f 231fcbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids: []
paperswithcode_id: irc-disentanglement
pretty_name: IRC Disentanglement
tags:
- conversation-disentanglement
dataset_info:
- config_name: channel_two
features:
- name: id
dtype: int32
- name: raw
dtype: string
- name: ascii
dtype: string
- name: tokenized
dtype: string
- name: connections
sequence: int32
splits:
- name: dev
num_bytes: 197173
num_examples: 1001
- name: pilot
num_bytes: 92498
num_examples: 501
- name: test
num_bytes: 186478
num_examples: 1001
- name: pilot_dev
num_bytes: 289679
num_examples: 1501
- name: all_
num_bytes: 495650
num_examples: 2602
download_size: 715946
dataset_size: 1261478
- config_name: ubuntu
features:
- name: id
dtype: int32
- name: raw
dtype: string
- name: ascii
dtype: string
- name: tokenized
dtype: string
- name: date
dtype: string
- name: connections
sequence: int32
splits:
- name: train
num_bytes: 55970012
num_examples: 220616
- name: validation
num_bytes: 3079320
num_examples: 12510
- name: test
num_bytes: 3916841
num_examples: 15010
download_size: 33214005
dataset_size: 62966173
configs:
- config_name: channel_two
data_files:
- split: dev
path: channel_two/dev-*
- split: pilot
path: channel_two/pilot-*
- split: test
path: channel_two/test-*
- split: pilot_dev
path: channel_two/pilot_dev-*
- split: all_
path: channel_two/all_-*
- config_name: ubuntu
data_files:
- split: train
path: ubuntu/train-*
- split: validation
path: ubuntu/validation-*
- split: test
path: ubuntu/test-*
default: true
---
# Dataset Card for IRC Disentanglement
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
- [Acknowledgments](#acknowledgments)
## Dataset Description
- **Homepage:** https://jkk.name/irc-disentanglement/
- **Repository:** https://github.com/jkkummerfeld/irc-disentanglement/tree/master/data
- **Paper:** https://aclanthology.org/P19-1374/
- **Leaderboard:** NA
- **Point of Contact:** jkummerf@umich.edu
### Dataset Summary
Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. This new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. The dataset is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context.
Note, the Github repository for the dataset also contains several useful tools for:
- Conversion (e.g. extracting conversations from graphs)
- Evaluation
- Preprocessing
- Word embeddings trained on the full Ubuntu logs in 2018
### Supported Tasks and Leaderboards
Conversational Disentanglement
### Languages
English (en)
## Dataset Structure
### Data Instances
For Ubuntu:
data["train"][1050]
```
{
'ascii': "[03:57] <Xophe> (also, I'm guessing that this isn't a good place to report minor but annoying bugs... what is?)",
'connections': [1048, 1054, 1055, 1072, 1073],
'date': '2004-12-25',
'id': 1050,
'raw': "[03:57] <Xophe> (also, I'm guessing that this isn't a good place to report minor but annoying bugs... what is?)",
'tokenized': "<s> ( also , i 'm guessing that this is n't a good place to report minor but annoying bugs ... what is ?) </s>"
}
```
For Channel_two:
data["train"][50]
```
{
'ascii': "[01:04] <Felicia> Chanel: i don't know off hand sorry",
'connections': [49, 53],
'id': 50,
'raw': "[01:04] <Felicia> Chanel: i don't know off hand sorry",
'tokenized': "<s> <user> : i do n't know off hand sorry </s>"
}
```
### Data Fields
'id' : The id of the message, this is the value that would be in the 'connections' of associated messages.
'raw' : The original message from the IRC log, as downloaded.
'ascii' : The raw message converted to ascii (unconvertable characters are replaced with a special word).
'tokenized' : The same message with automatic tokenisation and replacement of rare words with placeholder symbols.
'connections' : The indices of linked messages.
(only ubuntu) 'date' : The date the messages are from. The labelling for each date only start after the first 1000 messages of that date.
### Data Splits
The dataset has 4 parts:
| Part | Number of Annotated Messages |
| ------------- | ------------------------------------------- |
| Train | 67,463 |
| Dev | 2,500 |
| Test | 5,000 |
| Channel 2 | 2,600 |
## Dataset Creation
### Curation Rationale
IRC is a synchronous chat setting with a long history of use.
Several channels log all messages and make them publicly available.
The Ubuntu channel is particularly heavily used and has been the subject of several academic studies.
Data was selected from the channel in order to capture the diversity of situations in the channel (e.g. when there are many users or very few users).
For full details, see the [annotation information page](https://github.com/jkkummerfeld/irc-disentanglement/blob/master/data/READ.history.md).
### Source Data
#### Initial Data Collection and Normalization
Data was collected from the Ubuntu IRC channel logs, which are publicly available at [https://irclogs.ubuntu.com/](https://irclogs.ubuntu.com/).
The raw files are included, as well as two other versions:
- ASCII, converted using the script [make_txt.py](https://github.com/jkkummerfeld/irc-disentanglement/blob/master/tools/preprocessing/make-txt.py)
- Tok, tokenised text with rare words replaced by UNK using the script [dstc8-tokenise.py](https://github.com/jkkummerfeld/irc-disentanglement/blob/master/tools/preprocessing/dstc8-tokenise.py)
The raw channel two data is from prior work [(Elsner and Charniak, 2008)](https://www.aclweb.org/anthology/P08-1095.pdf)].
#### Who are the source language producers?
The text is from a large group of internet users asking questions and providing answers related to Ubuntu.
### Annotations
#### Annotation process
The data is expert annotated with:
- Training, one annotation per line in general, a small portion is double-annotated and adjudicated
- Dev, Channel 2, double annotated and adjudicated
- Test, triple annotated and adjudicated
| Part | Annotators | Adjudication? |
| ------------- | --------------- | ------------------------------------- |
| Train | 1 or 2 per file | For files with 2 annotators (only 10) |
| Dev | 2 | Yes |
| Test | 3 | Yes |
| Channel 2 | 2 | Yes |
#### Who are the annotators?
Students and a postdoc at the University of Michigan.
Everyone involved went through a training process with feedback to learn the annotation guidelines.
### Personal and Sensitive Information
No content is removed or obfuscated.
There is probably personal information in the dataset from users.
## Considerations for Using the Data
### Social Impact of Dataset
The raw data is already available online and the annotations do not significantly provide additional information that could have a direct social impact.
### Discussion of Biases
The data is mainly from a single technical domain (Ubuntu tech support) that probably has a demographic skew of some sort.
Given that users are only identified by their self-selected usernames, it is difficult to know more about the authors.
### Other Known Limitations
Being focused on a single language and a single channel means that the data is likely capturing a particular set of conventions in communication.
Those conventions may not apply to other channels, or beyond IRC.
## Additional Information
### Dataset Curators
Jonathan K. Kummerfeld
### Licensing Information
Creative Commons Attribution 4.0
### Citation Information
```
@inproceedings{kummerfeld-etal-2019-large,
title = "A Large-Scale Corpus for Conversation Disentanglement",
author = "Kummerfeld, Jonathan K. and
Gouravajhala, Sai R. and
Peper, Joseph J. and
Athreya, Vignesh and
Gunasekara, Chulaka and
Ganhotra, Jatin and
Patel, Siva Sankalp and
Polymenakos, Lazaros C and
Lasecki, Walter",
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P19-1374",
doi = "10.18653/v1/P19-1374",
pages = "3846--3856",
arxiv = "https://arxiv.org/abs/1810.11118",
software = "https://jkk.name/irc-disentanglement",
data = "https://jkk.name/irc-disentanglement",
abstract = "Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89{\%} of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.",
}
```
### Contributions
Thanks to [@dhruvjoshi1998](https://github.com/dhruvjoshi1998) for adding this dataset.
Thanks to [@jkkummerfeld](https://github.com/jkkummerfeld) for improvements to the documentation.
### Acknowledgments
This material is based in part upon work supported by IBM under contract 4915012629. Any opinions, findings, conclusions or recommendations expressed are those of the authors and do not necessarily reflect the views of IBM. |