|
|
|
"""data_processing.ipynb |
|
|
|
Automatically generated by Colab. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/1Oz1QL0mD9g3lVBgtmqHa-QiwwIJ2JaX5 |
|
""" |
|
|
|
import pandas as pd |
|
import numpy as np |
|
import os |
|
from zipfile import ZipFile |
|
import re |
|
import json |
|
import io |
|
from PIL import Image, ImageFile |
|
ImageFile.LOAD_TRUNCATED_IMAGES = True |
|
|
|
from google.colab import drive |
|
drive.mount('/content/drive') |
|
|
|
path = "/content/drive/MyDrive/Duke/aphantasia_drawing_project/" |
|
|
|
data_path = os.path.join(path,"data",'drawing_experiment') |
|
|
|
|
|
|
|
df = pd.read_excel(data_path+"/questionnaire-data.xlsx", header=2) |
|
|
|
df["vviq_score"] = np.sum(df.filter(like = "vviq"), axis = 1) |
|
df["osiq_score"] = np.sum(df.filter(like = "osiq"), axis = 1) |
|
df["treatment"] = np.where(df.vviq_score > 40, "control", "aphantasia") |
|
|
|
df = df.rename(columns={ |
|
"Sub ID": "sub_id", |
|
df.columns[5]: "art_ability", |
|
df.columns[6]: "art_experience", |
|
df.columns[9]: "difficult", |
|
df.columns[10]: "diff_explanation" |
|
}) |
|
|
|
df.columns = df.columns.str.lower() |
|
|
|
df = df.drop(df.filter(like="unnamed").columns, axis = 1) |
|
df = df.drop(df.filter(regex="(vviq|osiq)\d+").columns, axis = 1) |
|
|
|
df[df.columns[df.dtypes == "object"]] = df[df.columns[df.dtypes == "object"]].astype("string") |
|
|
|
df = df.replace([np.nan,pd.NA, "nan","na","NA","n/a","N/A","N/a"], None) |
|
|
|
df.set_index('sub_id', inplace=True) |
|
|
|
|
|
|
|
actual_image_path = os.path.join(data_path,"Stimuli","Images") |
|
|
|
|
|
|
|
actual_images = {} |
|
for image_file in os.listdir(actual_image_path): |
|
img_path = os.path.join(actual_image_path, image_file) |
|
actual_images[image_file.removesuffix(".jpg")] = Image.open(img_path) |
|
|
|
|
|
|
|
key_map = { |
|
'high_sun_ajwbpqrwvknlvpeh': 'kitchen', |
|
'low_sun_acqsqjhtcbxeomux': 'bedroom', |
|
"low_sun_byqgoskwpvsbllvy":"livingroom" |
|
} |
|
|
|
for old_key, new_key in key_map.items(): |
|
actual_images[new_key] = actual_images.pop(old_key) |
|
|
|
aphantasia_drawings_path = os.path.join(data_path,"Drawings","Aphantasia") |
|
control_drawings_path = os.path.join(data_path,"Drawings","Control") |
|
|
|
|
|
|
|
directories = { |
|
"Aphantasia": aphantasia_drawings_path, |
|
"Control": control_drawings_path |
|
} |
|
|
|
|
|
|
|
aphantasia_subs = {i: "Aphantasia" for i in os.listdir(directories["Aphantasia"]) if "sub" in i} |
|
control_subs = {i: "Control" for i in os.listdir(directories["Control"]) if "sub" in i} |
|
sub_treatment_key = {**aphantasia_subs, **control_subs} |
|
|
|
|
|
|
|
def get_sub_files(sub): |
|
treatment_group = sub_treatment_key[sub] |
|
directory = directories[treatment_group] |
|
pattern = re.compile("^.*" + sub + "-[a-z]{3}\d-(kitchen|livingroom|bedroom).*") |
|
sub_files = os.listdir(os.path.join(directory, sub)) |
|
files_needed = {'mem1',"mem2",'mem3','pic1','pic2','pic3'} |
|
|
|
sub_key = {} |
|
for f in sub_files: |
|
if pattern.match(f): |
|
main_path = os.path.join(directory, sub, f) |
|
draw_type = f.split("-")[1] |
|
label = f.split("-")[2].removesuffix(".jpg") |
|
alt_path = os.path.join(directory, sub, "-".join([sub, draw_type]) + ".jpg") |
|
try: |
|
img = Image.open(main_path) |
|
except: |
|
img = Image.open(alt_path) |
|
sub_key[draw_type] = { |
|
"label": label, |
|
"drawing": img |
|
} |
|
|
|
unknown_drawings = files_needed - sub_key.keys() |
|
if unknown_drawings: |
|
for unk in unknown_drawings: |
|
path = os.path.join(directory, sub, "-".join([sub, unk]) + ".jpg") |
|
try: |
|
img = Image.open(path) |
|
except: |
|
img = "No Image" |
|
sub_key[unk] = { |
|
"label": "unknown", |
|
"drawing": img |
|
} |
|
return sub_key |
|
|
|
|
|
|
|
|
|
|
|
subject_data = {} |
|
for sub in iter(sub_treatment_key): |
|
subject_data[sub] = get_sub_files(sub) |
|
|
|
def is_image_blank(image): |
|
if image.mode != 'RGB': |
|
image = image.convert('RGB') |
|
pixels = list(image.getdata()) |
|
return all(pixel == (255, 255, 255) for pixel in pixels) |
|
|
|
for sub in iter(subject_data): |
|
dat = subject_data[sub] |
|
for key in dat.keys(): |
|
if is_image_blank(dat[key]["drawing"]): |
|
dat[key]["label"] = "blank" |
|
|
|
|
|
|
|
subs_missing_labels = {} |
|
for sub in iter(subject_data): |
|
dat = subject_data[sub] |
|
for key in dat.keys(): |
|
if "unknown" in dat[key]["label"]: |
|
if sub not in subs_missing_labels: |
|
subs_missing_labels[sub] = [] |
|
subs_missing_labels[sub].append(key) |
|
|
|
subs_missing_labels |
|
|
|
subject_data["sub8"]["pic3"]["label"] = "livingroom" |
|
subject_data["sub6"]["pic3"]["label"] = "bedroom" |
|
subject_data["sub6"]["pic1"]["label"] = "kitchen" |
|
|
|
|
|
|
|
def clean_sub_dat(sub): |
|
id = int(sub[3:]) |
|
treatment_group = sub_treatment_key[sub] |
|
if id in df.index: |
|
demographics_dict = df.loc[id].to_dict() |
|
else: |
|
demographics_dict = {} |
|
demographics_dict.pop("treatment",None) |
|
drawings = { |
|
"bedroom": {}, |
|
"kitchen": {}, |
|
"livingroom": {} |
|
} |
|
for draw_type, draw_data in subject_data[sub].items(): |
|
t = "memory" if draw_type[:-1] == "mem" else "perception" |
|
for d in drawings.keys(): |
|
if draw_data["label"] == d: |
|
drawings[d][t] = draw_data["drawing"] |
|
|
|
return { |
|
"subject_id": id, |
|
"treatment": treatment_group, |
|
"demographics": demographics_dict, |
|
"drawings": drawings, |
|
"image": actual_images |
|
} |
|
|
|
|
|
|
|
full_data = [] |
|
for s in subject_data.keys(): |
|
full_data.append(clean_sub_dat(s)) |
|
|
|
"""160,161,162 removed, they dont have images""" |
|
|
|
|
|
|
|
full_df = pd.json_normalize(full_data) |
|
|
|
|
|
|
|
def image_to_byt(img, size=(224, 224)): |
|
if pd.isna(img): |
|
return None |
|
img_resized = img.resize(size) |
|
img_byte_arr = io.BytesIO() |
|
img_resized.save(img_byte_arr, format='PNG') |
|
return img_byte_arr.getvalue() |
|
|
|
drawing_columns = [col for col in full_df.columns if "drawings" in col or "image" in col] |
|
|
|
|
|
|
|
for col in drawing_columns: |
|
full_df[col] = full_df[col].apply(image_to_byt) |
|
|
|
def safe_convert_to_int(value): |
|
try: |
|
return int(value) |
|
except (ValueError, TypeError): |
|
return -99 |
|
|
|
col_to_process = [ |
|
"demographics.age", |
|
"demographics.art_ability", |
|
"demographics.vviq_score", |
|
"demographics.osiq_score" |
|
] |
|
|
|
for col in col_to_process: |
|
full_df[col] = full_df[col].apply(safe_convert_to_int) |
|
|
|
full_data_path = os.path.join(path, "data","aphantasia_data.parquet") |
|
|
|
full_df.to_parquet(full_data_path, index=False) |
|
|
|
|