needle-threading / README.md
jonathan-roberts1's picture
Updated links and added citation info
f4382e5 verified
---
dataset_info:
features:
- name: id
dtype: int64
- name: haystack
dtype: string
- name: keys
dtype: string
- name: values
dtype: string
- name: question
dtype: string
- name: context_length
dtype: int64
- name: num_kv_pairs
dtype: int64
- name: repeat_number
dtype: int64
- name: needle_depth
dtype: string
- name: num_needles
dtype: int64
- name: needle_placement
dtype: string
- name: conditional_character
dtype: string
- name: thread_length
dtype: int64
- name: thread_direction
dtype: string
- name: num_threads
dtype: int64
splits:
- name: Single_Needle
num_bytes: 159048560
num_examples: 660
- name: Multiple_Needles
num_bytes: 261371340
num_examples: 1080
- name: Conditional_Needles
num_bytes: 260974140
num_examples: 1080
- name: Single_Threads
num_bytes: 564730140
num_examples: 2340
- name: Multi_Threads
num_bytes: 1391847750
num_examples: 5700
download_size: 1798326219
dataset_size: 2637971930
configs:
- config_name: default
data_files:
- split: Single_Needle
path: data/Single_Needle-*
- split: Multiple_Needles
path: data/Multiple_Needles-*
- split: Conditional_Needles
path: data/Conditional_Needles-*
- split: Single_Threads
path: data/Single_Threads-*
- split: Multi_Threads
path: data/Multi_Threads-*
license: mit
language:
- en
---
---
---
# Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
## Dataset Description
- **Homepage:** [https://needle-threading.github.io](https://needle-threading.github.io)
- **Paper:** [Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?](https://arxiv.org/abs/2411.05000)
- **Repository** [Needle Threading](https://github.com/jonathan-roberts1/needle-threading)
## Dataset Summary
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. Although the development of longer context models has seen rapid gains recently, our understanding of how effectively they use their context has not kept pace.
To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window.
Strikingly, we find that many models are remarkably thread-safe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows.
## Example Usage
### Option 1: HuggingFace datasets
```python
from datasets import load_dataset
# task splits can be downloaded separately:
# splits = ['Single_Needle', 'Multi_Needle', 'Conditional_Needle', 'Single_Thread', 'Multi_Thread']
single_needle_dataset = load_dataset("jonathan-roberts1/needle-threading", split='Single_Needle')
"""
Dataset({
features: ['id', 'haystack', 'keys', 'values', 'question', 'context_length', 'num_kv_pairs',
'repeat_number', 'needle_depth', 'num_needles', 'needle_placement', 'conditional_character',
'thread_length', 'thread_direction', 'num_threads'],
num_rows: 660
})
Note the units of context_length are number of characters.
"""
# query individual questions
single_needle_dataset[5] # e.g., the 6th element
"""
{'id': 5, 'haystack': '{"e3e70682-c209-4cac-629f-6fbed82c07cd": "f728b4fa-4248-5e3a-0a5d-2f346baa9455",
"eb1...": "964a870c-7c87-9b74-1d87-8f9f9cdf5a86"}', 'keys': '247a8333-f7b0-b7d2-cda8-056c3d15eef7',
'values': '1759edc3-72ae-2244-8b01-63c1cd9d2b7d', 'question': 'Extract the value corresponding to
the specified key in the JSON object. Key: "247a83...-cda8-056c3d15eef7"\n Corresponding value: ',
'context_length': 2000, 'num_kv_pairs': 25, 'repeat_number': 0, 'needle_depth': '50', 'num_needles': 1,
'needle_placement': 'depthwise', 'conditional_character': 'N/A', 'thread_length': 1,
'thread_direction': 'N/A', 'num_threads': 0}
"""
```
### Option 2: Manual download
Directly downloading image files and question data from the needle-threading HuggingFace repository into the ```data``` directory in this repo.
```
cd data
wget https://huggingface.co/datasets/jonathan-roberts1/needle-threading/resolve/main/data_json.zip
unzip data_json.zip && rm data_json.zip
```
#### Expected structure
```
β”œβ”€β”€ data
β”œβ”€β”€ json_data
β”œβ”€β”€ Single_Needle.json
β”œβ”€β”€ Multiple_Needles.json
β”œβ”€β”€ Conditional_Needles.json
β”œβ”€β”€ Single_Threads.json
β”œβ”€β”€ Multi_Threads.json
```
Note: ```data_json/``` needs to be downloaded.
Please visit our [GitHub repository](https://github.com/jonathan-roberts1/needle-threading) for example inference code.
### Dataset Curators
This dataset was curated by Jonathan Roberts, Kai Han, and Samuel Albanie
### Citation
If you found our work useful in your own research, please consider citing our paper:
```latex
@article{roberts2024needle,
title={Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?},
author={Roberts, Jonathan and Han, Kai and Albanie, Samuel},
journal={arXiv preprint arXiv:2411.05000},
year={2024}
}
```