metadata
pretty_name: TinyShakespeare
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 1003858
num_examples: 1
- name: validation
num_bytes: 55774
num_examples: 1
- name: test
num_bytes: 55774
num_examples: 1
download_size: 706067
dataset_size: 1115406
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Dataset Card for "tiny_shakespeare"
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt
- Repository: More Information Needed
- Paper: More Information Needed
- Point of Contact: More Information Needed
- Size of downloaded dataset files: 1.11 MB
- Size of the generated dataset: 1.11 MB
- Total amount of disk used: 2.23 MB
Dataset Summary
40,000 lines of Shakespeare from a variety of Shakespeare's plays. Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of Recurrent Neural Networks': http://karpathy.github.io/2015/05/21/rnn-effectiveness/.
To use for e.g. character modelling:
d = datasets.load_dataset(name='tiny_shakespeare')['train']
d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))
# train split includes vocabulary for other splits
vocabulary = sorted(set(next(iter(d)).numpy()))
d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})
d = d.unbatch()
seq_len = 100
batch_size = 2
d = d.batch(seq_len)
d = d.batch(batch_size)
Supported Tasks and Leaderboards
Languages
Dataset Structure
Data Instances
default
- Size of downloaded dataset files: 1.11 MB
- Size of the generated dataset: 1.11 MB
- Total amount of disk used: 2.23 MB
An example of 'train' looks as follows.
{
"text": "First Citizen:\nBefore we proceed any further, hear me "
}
Data Fields
The data fields are the same among all splits.
default
text
: astring
feature.
Data Splits
name | train | validation | test |
---|---|---|---|
default | 1 | 1 | 1 |
Dataset Creation
Curation Rationale
Source Data
Initial Data Collection and Normalization
Who are the source language producers?
Annotations
Annotation process
Who are the annotators?
Personal and Sensitive Information
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
Citation Information
@misc{
author={Karpathy, Andrej},
title={char-rnn},
year={2015},
howpublished={\url{https://github.com/karpathy/char-rnn}}
}
Contributions
Thanks to @thomwolf, @lewtun, @patrickvonplaten for adding this dataset.