tiny_shakespeare / README.md
albertvillanova's picture
Convert dataset to Parquet
6fa1fd1
|
raw
history blame
6.25 kB
metadata
pretty_name: TinyShakespeare
dataset_info:
  features:
    - name: text
      dtype: string
  splits:
    - name: train
      num_bytes: 1003858
      num_examples: 1
    - name: validation
      num_bytes: 55774
      num_examples: 1
    - name: test
      num_bytes: 55774
      num_examples: 1
  download_size: 706067
  dataset_size: 1115406
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: validation
        path: data/validation-*
      - split: test
        path: data/test-*

Dataset Card for "tiny_shakespeare"

Table of Contents

Dataset Description

Dataset Summary

40,000 lines of Shakespeare from a variety of Shakespeare's plays. Featured in Andrej Karpathy's blog post 'The Unreasonable Effectiveness of Recurrent Neural Networks': http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

To use for e.g. character modelling:

d = datasets.load_dataset(name='tiny_shakespeare')['train']
d = d.map(lambda x: datasets.Value('strings').unicode_split(x['text'], 'UTF-8'))
# train split includes vocabulary for other splits
vocabulary = sorted(set(next(iter(d)).numpy()))
d = d.map(lambda x: {'cur_char': x[:-1], 'next_char': x[1:]})
d = d.unbatch()
seq_len = 100
batch_size = 2
d = d.batch(seq_len)
d = d.batch(batch_size)

Supported Tasks and Leaderboards

More Information Needed

Languages

More Information Needed

Dataset Structure

Data Instances

default

  • Size of downloaded dataset files: 1.11 MB
  • Size of the generated dataset: 1.11 MB
  • Total amount of disk used: 2.23 MB

An example of 'train' looks as follows.

{
    "text": "First Citizen:\nBefore we proceed any further, hear me "
}

Data Fields

The data fields are the same among all splits.

default

  • text: a string feature.

Data Splits

name train validation test
default 1 1 1

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@misc{
  author={Karpathy, Andrej},
  title={char-rnn},
  year={2015},
  howpublished={\url{https://github.com/karpathy/char-rnn}}
}

Contributions

Thanks to @thomwolf, @lewtun, @patrickvonplaten for adding this dataset.